Abstract

A light detection and ranging (lidar) system with ±90° of steering based on an adaptive electrowetting-based prism for nonmechanical beam steering has been demonstrated. Electrowetting-based prisms provide a transmissive, low power, and compact alternative to conventional adaptive optics as a nonmechanical beam scanner. The electrowetting prism has a steering range of ±7.8°. We demonstrate a method to amplify the scan angle to ±90° and perform a one-dimensional scan in a lidar system.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Two-photon laser scanning microscopy with electrowetting-based prism scanning

Omkar D. Supekar, Baris N. Ozbay, Mo Zohrabi, Philip D. Nystrom, Gregory L. Futia, Diego Restrepo, Emily A. Gibson, Juliet T. Gopinath, and Victor M. Bright
Biomed. Opt. Express 8(12) 5412-5426 (2017)

Wide-angle nonmechanical beam steering using liquid lenses

Mo Zohrabi, Robert H. Cormack, and Juliet T. Gopinath
Opt. Express 24(21) 23798-23809 (2016)

Adaptive electrowetting lens-prism element

Soraya Terrab, Alexander M. Watson, Christopher Roath, Juliet T. Gopinath, and Victor M. Bright
Opt. Express 23(20) 25838-25845 (2015)

References

  • View by:
  • |
  • |
  • |

  1. R. T. H. Collis, “Lidar,” Appl. Opt. 9, 1782–1788 (1970).
    [Crossref] [PubMed]
  2. R. G. Driggers, Encyclopedia of Optical Engineering - Volume 2 (CRC, 2003).
  3. C. G. Bachman, Laser Radar Systems and Techniques (Artech House, 1979).
  4. G. W. Kattawar and G. N. Plass, “Time of flight lidar measurements as an ocean probe,” Appl. Opt. 11, 662–666 (1972).
    [Crossref] [PubMed]
  5. J. W. Hair, C. A. Hostetler, A. L. Cook, D. B. Harper, R. A. Ferrare, T. L. Mack, W. Welch, L. R. Izquierdo, and F. E. Hovis, “Airborne high spectral resolution lidar for profiling aerosol optical properties,” Appl. Opt. 47, 6734–6752 (2008).
    [Crossref] [PubMed]
  6. R. D. Richmond and S. C. Cain, Direct-Detection LADAR Systems (SPIE, 2010).
    [Crossref]
  7. M. A. Lefsky, W. B. Cohen, G. G. Parker, and D. J. Harding, “Lidar remote sensing for ecosystem studies,” BioScience 52, 19–30 (2002).
    [Crossref]
  8. E. Næsset, T. Gobakken, J. Holmgren, H. Hyyppä, J. Hyyppä, M. Maltamo, M. Nilsson, H. Olsson, Å. Persson, and U. Söderman, “Laser scanning of forest resources: the nordic experience,” Scand. J. For. Res. 19, 482–499 (2004).
    [Crossref]
  9. J. L. Goodman, “History of space shuttle rendezvous and proximity operations,” J. Spacecr. Rockets 43, 944–959 (2006).
    [Crossref]
  10. A. Wehr and U. Lohr, “Airborne laser scanning—an introduction and overview,” ISPRS J. Photogramm. Remote Sens. 54, 68–82 (1999).
    [Crossref]
  11. B. D. Duncan, J. B. Philip, and S. Vassili, “Wide angle achromatic prism beam steering for infrared countermeasure applications,” Opt. Eng. 42, 1038–1047 (2003).
    [Crossref]
  12. M. G. da Silva, D. W. DeRoo, M. J. Tracy, A. Rybaltowski, C. G. Caflisch, and R. M. Potenza, “Ladar using mems scanning,” US Patent 20120236379 A1 (2012).
  13. U. Hofmann, J. Janes, and H. Quenzer, “High-q mems resonators for laser beam scanning displays,” Micromachines 3, 509–528 (2012).
    [Crossref]
  14. G. Römer and P. Bechtold, “Electro-optic and acousto-optic laser beam scanners,” Phys. Procedia 56, 29–39 (2014).
    [Crossref]
  15. S. R. Davis, G. Farca, S. D. Rommel, A. W. Martin, and M. H. Anderson, “Analog, non-mechanical beam-steerer with 80 degree field of regard,” Proc. SPIE 6971, 69710G1 (2008).
  16. D. P. Resler, D. S. Hobbs, R. C. Sharp, L. J. Friedman, and T. A. Dorschner, “High-efficiency liquid-crystal optical phased-array beam steering,” Opt. Lett. 21, 689–691 (1996).
    [Crossref] [PubMed]
  17. J. Kim, C. Oh, M. J. Escuti, L. Hosting, and S. Serati, “Wide-angle nonmechanical beam steering using thin liquid crystal polarization gratings,” Proc. SPIE 7093, 709302 (2008).
    [Crossref]
  18. J. Lindle, A. Watnik, and V. Cassella, “Efficient multibeam large-angle nonmechanical laser beam steering from computer-generated holograms rendered on a liquid crystal spatial light modulator,” Appl. Opt. 55, 4336–4341 (2016).
    [Crossref] [PubMed]
  19. E. J. Haellstig, L. Sjoeqvist, and M. Lindgren, “Intensity variations using a quantized spatial light modulator for nonmechanical beam steering,” Opt. Eng. 42, 612–619 (2003).
  20. J. K. Doylend, M. J. R. Heck, J. T. Bovington, J. D. Peters, L. A. Coldren, and J. E. Bowers, “Two-dimensional free-space beam steering with an optical phased array on silicon-on-insulator,” Opt. Express 19, 21595–21604 (2011).
    [Crossref] [PubMed]
  21. C. V. Poulton, A. Yaacobi, D. B. Cole, M. J. Byrd, M. Raval, D. Vermeulen, and M. R. Watts, “Coherent solid-state lidar with silicon photonic optical phased arrays,” Opt. Lett. 42, 4091–4094 (2017).
    [Crossref] [PubMed]
  22. N. R. Smith, D. C. Abeysinghe, J. W. Haus, and J. Heikenfeld, “Agile wide-angle beam steering with electrowetting microprisms,” Opt. Express 14, 6557–6563 (2006).
    [Crossref] [PubMed]
  23. S. Terrab, A. M. Watson, C. Roath, J. T. Gopinath, and V. M. Bright, “Adaptive electrowetting lens-prism element,” Opt. Express 23, 25838–25845 (2015).
    [Crossref] [PubMed]
  24. D. Kopp, L. Lehmann, and H. Zappe, “Optofluidic laser scanner based on a rotating liquid prism,” Appl. Opt. 55, 2136–2142 (2016).
    [Crossref] [PubMed]
  25. L. L. C. Liu and Q.-H. Wang, “Liquid prism for beam tracking and steering,” Opt. Eng. 51, 114002 (2012).
    [Crossref]
  26. J. Cheng and C.-L. Chen, “Adaptive beam tracking and steering via electrowetting-controlled liquid prism,” Appl. Phys. Lett. 99, 191108 (2011).
    [Crossref]
  27. C. E. Clement and S.-Y. Park, “High-performance beam steering using electrowetting-driven liquid prism fabricated by a simple dip-coating method,” Appl. Phys. Lett. 108, 191601 (2016).
    [Crossref]
  28. W. Y. Lim, O. Supekar, M. Zohrabi, J. Gopinath, and V. Bright, “A liquid combination with high refractive index contrast and fast scanning speeds for electrowetting adaptive optics,” Langmuir 34, 14511–14518 (2018).
    [Crossref]
  29. F. Mugele and J. Baret, “Electrowetting: from basics to applications,” J. Phys. Condens. Matter 17, R705–R774 (2005).
    [Crossref]
  30. J. C. Baret, M. M. J. Decré, and F. Mugele, “Self-excited drop oscillations in electrowetting,” Langmuir 23, 5173–5179 (2007).
    [Crossref] [PubMed]
  31. B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,” Eur. Phys. J. E 3, 159–163 (2000).
    [Crossref]
  32. H. Ren and S.-T. Wu, Introduction to Adaptive Lenses (John Wiley and Sons, Inc., 2012).
    [Crossref]
  33. B. H. W. Hendriks, S. Kuiper, M. A. J. V. As, C. A. Renders, and T. W. Tukker, “Electrowetting-based variable-focus lens for miniature systems,” Opt. Rev. 12, 255–259 (2005).
    [Crossref]
  34. B. N. Ozbay, J. T. Losacco, R. Cormack, R. Weir, V. M. Bright, J. T. Gopinath, D. Restrepo, and E. A. Gibson, “Miniaturized fiber-coupled confocal fluorescence microscope with an electrowetting variable focus lens using no moving parts,” Opt. Lett. 40, 2553–2556 (2015).
    [Crossref] [PubMed]
  35. Y. Fang, C. Tsai, and C. Chung, “A study of optical design and optimization of zoom optics with liquid lenses through modified genetic algorithm,” Opt. Express 19, 16291–16302 (2011).
    [Crossref] [PubMed]
  36. M. E. Pawlowski, S. Shrestha, J. Park, B. E. Applegate, J. S. Oghalai, and T. S. Tkaczyk, “Miniature, minimally invasive, tunable endoscope for investigation of the middle ear,” Biomed. Opt. Express 6, 2246–2257 (2015).
    [Crossref] [PubMed]
  37. O. D. Supekar, B. N. Ozbay, M. Zohrabi, P. D. Nystrom, G. L. Futia, D. Restrepo, E. A. Gibson, J. T. Gopinath, and V. M. Bright, “Two-photon laser scanning microscopy with electrowetting-based prism scanning,” Biomed. Opt. Express 8, 5412–5426 (2017).
    [Crossref]
  38. D. Kopp and H. Zappe, “Tubular astigmatism-tunable fluidic lens,” Opt. Lett. 41, 2735–2738 (2016).
    [Crossref] [PubMed]
  39. M. Zohrabi, R. H. Cormack, C. Mccullough, O. D. Supekar, E. A. Gibson, V. M. Bright, and J. T. Gopinath, “Numerical analysis of wavefront aberration correction using multielectrode electrowetting-based devices,” Opt. Express 25, 31451–31461 (2017).
    [Crossref] [PubMed]
  40. Radiant ZEMAX, Optical Design Program, User’s Manual (2018).
  41. I. A. I. Stamenov and J. E. Ford, “Optimization of high–performance monocentric lenses,” Appl. Opt. 52, 8287–8304 (2013).
    [Crossref]
  42. S. Karbasi, I. Stamenov, N. Motamedi, A. Arianpour, A. R. Johnson, R. A. Stack, C. LaReau, R. Tenill, R. Morrison, I. P. Agurok, and J. E. Ford, “Curved fiber bundles for monocentric lens imaging,” Proc. SPIE 9579, 95790G (2015).
  43. C. Degenhardt, G. Prescher, T. Frach, A. Thon, R. de Gruyter, A. Schmitz, and R. Ballizany, “The digital silicon photomultiplier — a novel sensor for the detection of scintillation light,” in Proceedings of IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), (IEEE, 2009), pp. 2383–2386.
  44. S. E. Mitchell and J. P. Thayer, “Ranging through shallow semitransparent media with polarization lidar,” J. Atmospheric Ocean. Technol. 31, 681–697 (2014).
    [Crossref]
  45. P. R. Patterson, D. Hah, M. Fujino, W. Piyawattanametha, and M. C. Wu, “Scanning micromirrors: an overview,” Proc. SPIE 5604, 560413 (2004).
  46. S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004).
    [Crossref]
  47. J. Hong, Y. K. Kim, K. H. Kang, J. M. Oh, and I. S. Kang, “Effects of drop size and viscosity on spreading dynamics in dc electrowetting,” Langmuir 29, 9118–9125 (2013).
    [Crossref] [PubMed]
  48. J. B. Chae, J. Hong, S. J. Lee., and S. K. Chung, “Enhancement of response speed of viscous fluids using overdrive voltage,” Sens. Actuators 209, 56–60 (2015).
    [Crossref]
  49. O. D. Supekar, M. Zohrabi, J. T. Gopinath, and V. M. Bright, “Enhanced response time of electrowetting lenses with shaped input voltage functions,” Langmuir 33, 4863–4869 (2017).
    [Crossref] [PubMed]
  50. C. U. Murade, D. van der Ende, and F. Mugele, “High speed adaptive liquid microlens array,” Opt. Express 20, 18180–18187 (2012).
    [Crossref] [PubMed]
  51. L. Hou, J. Zhang, N. Smith, J. Yang, and J. Heikenfeld, “A full description of a scalable microfabrication process for arrayed electrowetting microprisms,” J. Micromechanics Microengineering 20, 015044 (2010).
    [Crossref]
  52. Velodyne LiDAR, Velodyne Lidar HDL–64E Manual.
  53. S. Mitchell, J. P. Thayer, and M. Hayman, “Polarization lidar for shallow water depth measurement,” Appl. Opt. 49, 6995–7000 (2010).
    [Crossref] [PubMed]
  54. P. Sen and C. Kim, “A fast liquid-metal droplet microswitch using ewod-driven contact-line sliding,” J. Microelectromech. Syst. 18, 174–185 (2009).
    [Crossref]
  55. S. Millefiorini, A. H. Tkaczyk, R. Sedev, J. Efthimiadis, and J. Ralston, “Electrowetting of ionic liquids,” J. Am. Chem. Soc. 128, 3098–3101 (2006).
    [Crossref] [PubMed]

2018 (1)

W. Y. Lim, O. Supekar, M. Zohrabi, J. Gopinath, and V. Bright, “A liquid combination with high refractive index contrast and fast scanning speeds for electrowetting adaptive optics,” Langmuir 34, 14511–14518 (2018).
[Crossref]

2017 (4)

2016 (4)

2015 (5)

2014 (2)

S. E. Mitchell and J. P. Thayer, “Ranging through shallow semitransparent media with polarization lidar,” J. Atmospheric Ocean. Technol. 31, 681–697 (2014).
[Crossref]

G. Römer and P. Bechtold, “Electro-optic and acousto-optic laser beam scanners,” Phys. Procedia 56, 29–39 (2014).
[Crossref]

2013 (2)

J. Hong, Y. K. Kim, K. H. Kang, J. M. Oh, and I. S. Kang, “Effects of drop size and viscosity on spreading dynamics in dc electrowetting,” Langmuir 29, 9118–9125 (2013).
[Crossref] [PubMed]

I. A. I. Stamenov and J. E. Ford, “Optimization of high–performance monocentric lenses,” Appl. Opt. 52, 8287–8304 (2013).
[Crossref]

2012 (3)

C. U. Murade, D. van der Ende, and F. Mugele, “High speed adaptive liquid microlens array,” Opt. Express 20, 18180–18187 (2012).
[Crossref] [PubMed]

U. Hofmann, J. Janes, and H. Quenzer, “High-q mems resonators for laser beam scanning displays,” Micromachines 3, 509–528 (2012).
[Crossref]

L. L. C. Liu and Q.-H. Wang, “Liquid prism for beam tracking and steering,” Opt. Eng. 51, 114002 (2012).
[Crossref]

2011 (3)

2010 (2)

S. Mitchell, J. P. Thayer, and M. Hayman, “Polarization lidar for shallow water depth measurement,” Appl. Opt. 49, 6995–7000 (2010).
[Crossref] [PubMed]

L. Hou, J. Zhang, N. Smith, J. Yang, and J. Heikenfeld, “A full description of a scalable microfabrication process for arrayed electrowetting microprisms,” J. Micromechanics Microengineering 20, 015044 (2010).
[Crossref]

2009 (1)

P. Sen and C. Kim, “A fast liquid-metal droplet microswitch using ewod-driven contact-line sliding,” J. Microelectromech. Syst. 18, 174–185 (2009).
[Crossref]

2008 (3)

J. W. Hair, C. A. Hostetler, A. L. Cook, D. B. Harper, R. A. Ferrare, T. L. Mack, W. Welch, L. R. Izquierdo, and F. E. Hovis, “Airborne high spectral resolution lidar for profiling aerosol optical properties,” Appl. Opt. 47, 6734–6752 (2008).
[Crossref] [PubMed]

S. R. Davis, G. Farca, S. D. Rommel, A. W. Martin, and M. H. Anderson, “Analog, non-mechanical beam-steerer with 80 degree field of regard,” Proc. SPIE 6971, 69710G1 (2008).

J. Kim, C. Oh, M. J. Escuti, L. Hosting, and S. Serati, “Wide-angle nonmechanical beam steering using thin liquid crystal polarization gratings,” Proc. SPIE 7093, 709302 (2008).
[Crossref]

2007 (1)

J. C. Baret, M. M. J. Decré, and F. Mugele, “Self-excited drop oscillations in electrowetting,” Langmuir 23, 5173–5179 (2007).
[Crossref] [PubMed]

2006 (3)

J. L. Goodman, “History of space shuttle rendezvous and proximity operations,” J. Spacecr. Rockets 43, 944–959 (2006).
[Crossref]

N. R. Smith, D. C. Abeysinghe, J. W. Haus, and J. Heikenfeld, “Agile wide-angle beam steering with electrowetting microprisms,” Opt. Express 14, 6557–6563 (2006).
[Crossref] [PubMed]

S. Millefiorini, A. H. Tkaczyk, R. Sedev, J. Efthimiadis, and J. Ralston, “Electrowetting of ionic liquids,” J. Am. Chem. Soc. 128, 3098–3101 (2006).
[Crossref] [PubMed]

2005 (2)

B. H. W. Hendriks, S. Kuiper, M. A. J. V. As, C. A. Renders, and T. W. Tukker, “Electrowetting-based variable-focus lens for miniature systems,” Opt. Rev. 12, 255–259 (2005).
[Crossref]

F. Mugele and J. Baret, “Electrowetting: from basics to applications,” J. Phys. Condens. Matter 17, R705–R774 (2005).
[Crossref]

2004 (3)

E. Næsset, T. Gobakken, J. Holmgren, H. Hyyppä, J. Hyyppä, M. Maltamo, M. Nilsson, H. Olsson, Å. Persson, and U. Söderman, “Laser scanning of forest resources: the nordic experience,” Scand. J. For. Res. 19, 482–499 (2004).
[Crossref]

P. R. Patterson, D. Hah, M. Fujino, W. Piyawattanametha, and M. C. Wu, “Scanning micromirrors: an overview,” Proc. SPIE 5604, 560413 (2004).

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004).
[Crossref]

2003 (2)

E. J. Haellstig, L. Sjoeqvist, and M. Lindgren, “Intensity variations using a quantized spatial light modulator for nonmechanical beam steering,” Opt. Eng. 42, 612–619 (2003).

B. D. Duncan, J. B. Philip, and S. Vassili, “Wide angle achromatic prism beam steering for infrared countermeasure applications,” Opt. Eng. 42, 1038–1047 (2003).
[Crossref]

2002 (1)

M. A. Lefsky, W. B. Cohen, G. G. Parker, and D. J. Harding, “Lidar remote sensing for ecosystem studies,” BioScience 52, 19–30 (2002).
[Crossref]

2000 (1)

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,” Eur. Phys. J. E 3, 159–163 (2000).
[Crossref]

1999 (1)

A. Wehr and U. Lohr, “Airborne laser scanning—an introduction and overview,” ISPRS J. Photogramm. Remote Sens. 54, 68–82 (1999).
[Crossref]

1996 (1)

1972 (1)

1970 (1)

Abeysinghe, D. C.

Agurok, I. P.

S. Karbasi, I. Stamenov, N. Motamedi, A. Arianpour, A. R. Johnson, R. A. Stack, C. LaReau, R. Tenill, R. Morrison, I. P. Agurok, and J. E. Ford, “Curved fiber bundles for monocentric lens imaging,” Proc. SPIE 9579, 95790G (2015).

Anderson, M. H.

S. R. Davis, G. Farca, S. D. Rommel, A. W. Martin, and M. H. Anderson, “Analog, non-mechanical beam-steerer with 80 degree field of regard,” Proc. SPIE 6971, 69710G1 (2008).

Applegate, B. E.

Arianpour, A.

S. Karbasi, I. Stamenov, N. Motamedi, A. Arianpour, A. R. Johnson, R. A. Stack, C. LaReau, R. Tenill, R. Morrison, I. P. Agurok, and J. E. Ford, “Curved fiber bundles for monocentric lens imaging,” Proc. SPIE 9579, 95790G (2015).

As, M. A. J. V.

B. H. W. Hendriks, S. Kuiper, M. A. J. V. As, C. A. Renders, and T. W. Tukker, “Electrowetting-based variable-focus lens for miniature systems,” Opt. Rev. 12, 255–259 (2005).
[Crossref]

Bachman, C. G.

C. G. Bachman, Laser Radar Systems and Techniques (Artech House, 1979).

Ballizany, R.

C. Degenhardt, G. Prescher, T. Frach, A. Thon, R. de Gruyter, A. Schmitz, and R. Ballizany, “The digital silicon photomultiplier — a novel sensor for the detection of scintillation light,” in Proceedings of IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), (IEEE, 2009), pp. 2383–2386.

Baret, J.

F. Mugele and J. Baret, “Electrowetting: from basics to applications,” J. Phys. Condens. Matter 17, R705–R774 (2005).
[Crossref]

Baret, J. C.

J. C. Baret, M. M. J. Decré, and F. Mugele, “Self-excited drop oscillations in electrowetting,” Langmuir 23, 5173–5179 (2007).
[Crossref] [PubMed]

Bechtold, P.

G. Römer and P. Bechtold, “Electro-optic and acousto-optic laser beam scanners,” Phys. Procedia 56, 29–39 (2014).
[Crossref]

Berge, B.

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,” Eur. Phys. J. E 3, 159–163 (2000).
[Crossref]

Bovington, J. T.

Bowers, J. E.

Bright, V.

W. Y. Lim, O. Supekar, M. Zohrabi, J. Gopinath, and V. Bright, “A liquid combination with high refractive index contrast and fast scanning speeds for electrowetting adaptive optics,” Langmuir 34, 14511–14518 (2018).
[Crossref]

Bright, V. M.

Byrd, M. J.

Caflisch, C. G.

M. G. da Silva, D. W. DeRoo, M. J. Tracy, A. Rybaltowski, C. G. Caflisch, and R. M. Potenza, “Ladar using mems scanning,” US Patent 20120236379 A1 (2012).

Cain, S. C.

R. D. Richmond and S. C. Cain, Direct-Detection LADAR Systems (SPIE, 2010).
[Crossref]

Cassella, V.

Chae, J. B.

J. B. Chae, J. Hong, S. J. Lee., and S. K. Chung, “Enhancement of response speed of viscous fluids using overdrive voltage,” Sens. Actuators 209, 56–60 (2015).
[Crossref]

Chen, C.-L.

J. Cheng and C.-L. Chen, “Adaptive beam tracking and steering via electrowetting-controlled liquid prism,” Appl. Phys. Lett. 99, 191108 (2011).
[Crossref]

Cheng, J.

J. Cheng and C.-L. Chen, “Adaptive beam tracking and steering via electrowetting-controlled liquid prism,” Appl. Phys. Lett. 99, 191108 (2011).
[Crossref]

Chung, C.

Chung, S. K.

J. B. Chae, J. Hong, S. J. Lee., and S. K. Chung, “Enhancement of response speed of viscous fluids using overdrive voltage,” Sens. Actuators 209, 56–60 (2015).
[Crossref]

Clement, C. E.

C. E. Clement and S.-Y. Park, “High-performance beam steering using electrowetting-driven liquid prism fabricated by a simple dip-coating method,” Appl. Phys. Lett. 108, 191601 (2016).
[Crossref]

Cohen, W. B.

M. A. Lefsky, W. B. Cohen, G. G. Parker, and D. J. Harding, “Lidar remote sensing for ecosystem studies,” BioScience 52, 19–30 (2002).
[Crossref]

Coldren, L. A.

Cole, D. B.

Collis, R. T. H.

Cook, A. L.

Cormack, R.

Cormack, R. H.

da Silva, M. G.

M. G. da Silva, D. W. DeRoo, M. J. Tracy, A. Rybaltowski, C. G. Caflisch, and R. M. Potenza, “Ladar using mems scanning,” US Patent 20120236379 A1 (2012).

Davis, S. R.

S. R. Davis, G. Farca, S. D. Rommel, A. W. Martin, and M. H. Anderson, “Analog, non-mechanical beam-steerer with 80 degree field of regard,” Proc. SPIE 6971, 69710G1 (2008).

de Gruyter, R.

C. Degenhardt, G. Prescher, T. Frach, A. Thon, R. de Gruyter, A. Schmitz, and R. Ballizany, “The digital silicon photomultiplier — a novel sensor for the detection of scintillation light,” in Proceedings of IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), (IEEE, 2009), pp. 2383–2386.

Decré, M. M. J.

J. C. Baret, M. M. J. Decré, and F. Mugele, “Self-excited drop oscillations in electrowetting,” Langmuir 23, 5173–5179 (2007).
[Crossref] [PubMed]

Degenhardt, C.

C. Degenhardt, G. Prescher, T. Frach, A. Thon, R. de Gruyter, A. Schmitz, and R. Ballizany, “The digital silicon photomultiplier — a novel sensor for the detection of scintillation light,” in Proceedings of IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), (IEEE, 2009), pp. 2383–2386.

DeRoo, D. W.

M. G. da Silva, D. W. DeRoo, M. J. Tracy, A. Rybaltowski, C. G. Caflisch, and R. M. Potenza, “Ladar using mems scanning,” US Patent 20120236379 A1 (2012).

Dorschner, T. A.

Doylend, J. K.

Driggers, R. G.

R. G. Driggers, Encyclopedia of Optical Engineering - Volume 2 (CRC, 2003).

Duncan, B. D.

B. D. Duncan, J. B. Philip, and S. Vassili, “Wide angle achromatic prism beam steering for infrared countermeasure applications,” Opt. Eng. 42, 1038–1047 (2003).
[Crossref]

Efthimiadis, J.

S. Millefiorini, A. H. Tkaczyk, R. Sedev, J. Efthimiadis, and J. Ralston, “Electrowetting of ionic liquids,” J. Am. Chem. Soc. 128, 3098–3101 (2006).
[Crossref] [PubMed]

Escuti, M. J.

J. Kim, C. Oh, M. J. Escuti, L. Hosting, and S. Serati, “Wide-angle nonmechanical beam steering using thin liquid crystal polarization gratings,” Proc. SPIE 7093, 709302 (2008).
[Crossref]

Fang, Y.

Farca, G.

S. R. Davis, G. Farca, S. D. Rommel, A. W. Martin, and M. H. Anderson, “Analog, non-mechanical beam-steerer with 80 degree field of regard,” Proc. SPIE 6971, 69710G1 (2008).

Ferrare, R. A.

Ford, J. E.

S. Karbasi, I. Stamenov, N. Motamedi, A. Arianpour, A. R. Johnson, R. A. Stack, C. LaReau, R. Tenill, R. Morrison, I. P. Agurok, and J. E. Ford, “Curved fiber bundles for monocentric lens imaging,” Proc. SPIE 9579, 95790G (2015).

I. A. I. Stamenov and J. E. Ford, “Optimization of high–performance monocentric lenses,” Appl. Opt. 52, 8287–8304 (2013).
[Crossref]

Frach, T.

C. Degenhardt, G. Prescher, T. Frach, A. Thon, R. de Gruyter, A. Schmitz, and R. Ballizany, “The digital silicon photomultiplier — a novel sensor for the detection of scintillation light,” in Proceedings of IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), (IEEE, 2009), pp. 2383–2386.

Friedman, L. J.

Fujino, M.

P. R. Patterson, D. Hah, M. Fujino, W. Piyawattanametha, and M. C. Wu, “Scanning micromirrors: an overview,” Proc. SPIE 5604, 560413 (2004).

Futia, G. L.

Gibson, E. A.

Gobakken, T.

E. Næsset, T. Gobakken, J. Holmgren, H. Hyyppä, J. Hyyppä, M. Maltamo, M. Nilsson, H. Olsson, Å. Persson, and U. Söderman, “Laser scanning of forest resources: the nordic experience,” Scand. J. For. Res. 19, 482–499 (2004).
[Crossref]

Goodman, J. L.

J. L. Goodman, “History of space shuttle rendezvous and proximity operations,” J. Spacecr. Rockets 43, 944–959 (2006).
[Crossref]

Gopinath, J.

W. Y. Lim, O. Supekar, M. Zohrabi, J. Gopinath, and V. Bright, “A liquid combination with high refractive index contrast and fast scanning speeds for electrowetting adaptive optics,” Langmuir 34, 14511–14518 (2018).
[Crossref]

Gopinath, J. T.

Haellstig, E. J.

E. J. Haellstig, L. Sjoeqvist, and M. Lindgren, “Intensity variations using a quantized spatial light modulator for nonmechanical beam steering,” Opt. Eng. 42, 612–619 (2003).

Hah, D.

P. R. Patterson, D. Hah, M. Fujino, W. Piyawattanametha, and M. C. Wu, “Scanning micromirrors: an overview,” Proc. SPIE 5604, 560413 (2004).

Hair, J. W.

Harding, D. J.

M. A. Lefsky, W. B. Cohen, G. G. Parker, and D. J. Harding, “Lidar remote sensing for ecosystem studies,” BioScience 52, 19–30 (2002).
[Crossref]

Harper, D. B.

Haus, J. W.

Hayman, M.

Heck, M. J. R.

Heikenfeld, J.

L. Hou, J. Zhang, N. Smith, J. Yang, and J. Heikenfeld, “A full description of a scalable microfabrication process for arrayed electrowetting microprisms,” J. Micromechanics Microengineering 20, 015044 (2010).
[Crossref]

N. R. Smith, D. C. Abeysinghe, J. W. Haus, and J. Heikenfeld, “Agile wide-angle beam steering with electrowetting microprisms,” Opt. Express 14, 6557–6563 (2006).
[Crossref] [PubMed]

Hendriks, B. H. W.

B. H. W. Hendriks, S. Kuiper, M. A. J. V. As, C. A. Renders, and T. W. Tukker, “Electrowetting-based variable-focus lens for miniature systems,” Opt. Rev. 12, 255–259 (2005).
[Crossref]

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004).
[Crossref]

Hobbs, D. S.

Hofmann, U.

U. Hofmann, J. Janes, and H. Quenzer, “High-q mems resonators for laser beam scanning displays,” Micromachines 3, 509–528 (2012).
[Crossref]

Holmgren, J.

E. Næsset, T. Gobakken, J. Holmgren, H. Hyyppä, J. Hyyppä, M. Maltamo, M. Nilsson, H. Olsson, Å. Persson, and U. Söderman, “Laser scanning of forest resources: the nordic experience,” Scand. J. For. Res. 19, 482–499 (2004).
[Crossref]

Hong, J.

J. B. Chae, J. Hong, S. J. Lee., and S. K. Chung, “Enhancement of response speed of viscous fluids using overdrive voltage,” Sens. Actuators 209, 56–60 (2015).
[Crossref]

J. Hong, Y. K. Kim, K. H. Kang, J. M. Oh, and I. S. Kang, “Effects of drop size and viscosity on spreading dynamics in dc electrowetting,” Langmuir 29, 9118–9125 (2013).
[Crossref] [PubMed]

Hostetler, C. A.

Hosting, L.

J. Kim, C. Oh, M. J. Escuti, L. Hosting, and S. Serati, “Wide-angle nonmechanical beam steering using thin liquid crystal polarization gratings,” Proc. SPIE 7093, 709302 (2008).
[Crossref]

Hou, L.

L. Hou, J. Zhang, N. Smith, J. Yang, and J. Heikenfeld, “A full description of a scalable microfabrication process for arrayed electrowetting microprisms,” J. Micromechanics Microengineering 20, 015044 (2010).
[Crossref]

Hovis, F. E.

Hyyppä, H.

E. Næsset, T. Gobakken, J. Holmgren, H. Hyyppä, J. Hyyppä, M. Maltamo, M. Nilsson, H. Olsson, Å. Persson, and U. Söderman, “Laser scanning of forest resources: the nordic experience,” Scand. J. For. Res. 19, 482–499 (2004).
[Crossref]

Hyyppä, J.

E. Næsset, T. Gobakken, J. Holmgren, H. Hyyppä, J. Hyyppä, M. Maltamo, M. Nilsson, H. Olsson, Å. Persson, and U. Söderman, “Laser scanning of forest resources: the nordic experience,” Scand. J. For. Res. 19, 482–499 (2004).
[Crossref]

Izquierdo, L. R.

Janes, J.

U. Hofmann, J. Janes, and H. Quenzer, “High-q mems resonators for laser beam scanning displays,” Micromachines 3, 509–528 (2012).
[Crossref]

Johnson, A. R.

S. Karbasi, I. Stamenov, N. Motamedi, A. Arianpour, A. R. Johnson, R. A. Stack, C. LaReau, R. Tenill, R. Morrison, I. P. Agurok, and J. E. Ford, “Curved fiber bundles for monocentric lens imaging,” Proc. SPIE 9579, 95790G (2015).

Kang, I. S.

J. Hong, Y. K. Kim, K. H. Kang, J. M. Oh, and I. S. Kang, “Effects of drop size and viscosity on spreading dynamics in dc electrowetting,” Langmuir 29, 9118–9125 (2013).
[Crossref] [PubMed]

Kang, K. H.

J. Hong, Y. K. Kim, K. H. Kang, J. M. Oh, and I. S. Kang, “Effects of drop size and viscosity on spreading dynamics in dc electrowetting,” Langmuir 29, 9118–9125 (2013).
[Crossref] [PubMed]

Karbasi, S.

S. Karbasi, I. Stamenov, N. Motamedi, A. Arianpour, A. R. Johnson, R. A. Stack, C. LaReau, R. Tenill, R. Morrison, I. P. Agurok, and J. E. Ford, “Curved fiber bundles for monocentric lens imaging,” Proc. SPIE 9579, 95790G (2015).

Kattawar, G. W.

Kim, C.

P. Sen and C. Kim, “A fast liquid-metal droplet microswitch using ewod-driven contact-line sliding,” J. Microelectromech. Syst. 18, 174–185 (2009).
[Crossref]

Kim, J.

J. Kim, C. Oh, M. J. Escuti, L. Hosting, and S. Serati, “Wide-angle nonmechanical beam steering using thin liquid crystal polarization gratings,” Proc. SPIE 7093, 709302 (2008).
[Crossref]

Kim, Y. K.

J. Hong, Y. K. Kim, K. H. Kang, J. M. Oh, and I. S. Kang, “Effects of drop size and viscosity on spreading dynamics in dc electrowetting,” Langmuir 29, 9118–9125 (2013).
[Crossref] [PubMed]

Kopp, D.

Kuiper, S.

B. H. W. Hendriks, S. Kuiper, M. A. J. V. As, C. A. Renders, and T. W. Tukker, “Electrowetting-based variable-focus lens for miniature systems,” Opt. Rev. 12, 255–259 (2005).
[Crossref]

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004).
[Crossref]

LaReau, C.

S. Karbasi, I. Stamenov, N. Motamedi, A. Arianpour, A. R. Johnson, R. A. Stack, C. LaReau, R. Tenill, R. Morrison, I. P. Agurok, and J. E. Ford, “Curved fiber bundles for monocentric lens imaging,” Proc. SPIE 9579, 95790G (2015).

Lee., S. J.

J. B. Chae, J. Hong, S. J. Lee., and S. K. Chung, “Enhancement of response speed of viscous fluids using overdrive voltage,” Sens. Actuators 209, 56–60 (2015).
[Crossref]

Lefsky, M. A.

M. A. Lefsky, W. B. Cohen, G. G. Parker, and D. J. Harding, “Lidar remote sensing for ecosystem studies,” BioScience 52, 19–30 (2002).
[Crossref]

Lehmann, L.

Lim, W. Y.

W. Y. Lim, O. Supekar, M. Zohrabi, J. Gopinath, and V. Bright, “A liquid combination with high refractive index contrast and fast scanning speeds for electrowetting adaptive optics,” Langmuir 34, 14511–14518 (2018).
[Crossref]

Lindgren, M.

E. J. Haellstig, L. Sjoeqvist, and M. Lindgren, “Intensity variations using a quantized spatial light modulator for nonmechanical beam steering,” Opt. Eng. 42, 612–619 (2003).

Lindle, J.

Liu, L. L. C.

L. L. C. Liu and Q.-H. Wang, “Liquid prism for beam tracking and steering,” Opt. Eng. 51, 114002 (2012).
[Crossref]

Lohr, U.

A. Wehr and U. Lohr, “Airborne laser scanning—an introduction and overview,” ISPRS J. Photogramm. Remote Sens. 54, 68–82 (1999).
[Crossref]

Losacco, J. T.

Mack, T. L.

Maltamo, M.

E. Næsset, T. Gobakken, J. Holmgren, H. Hyyppä, J. Hyyppä, M. Maltamo, M. Nilsson, H. Olsson, Å. Persson, and U. Söderman, “Laser scanning of forest resources: the nordic experience,” Scand. J. For. Res. 19, 482–499 (2004).
[Crossref]

Martin, A. W.

S. R. Davis, G. Farca, S. D. Rommel, A. W. Martin, and M. H. Anderson, “Analog, non-mechanical beam-steerer with 80 degree field of regard,” Proc. SPIE 6971, 69710G1 (2008).

Mccullough, C.

Millefiorini, S.

S. Millefiorini, A. H. Tkaczyk, R. Sedev, J. Efthimiadis, and J. Ralston, “Electrowetting of ionic liquids,” J. Am. Chem. Soc. 128, 3098–3101 (2006).
[Crossref] [PubMed]

Mitchell, S.

Mitchell, S. E.

S. E. Mitchell and J. P. Thayer, “Ranging through shallow semitransparent media with polarization lidar,” J. Atmospheric Ocean. Technol. 31, 681–697 (2014).
[Crossref]

Morrison, R.

S. Karbasi, I. Stamenov, N. Motamedi, A. Arianpour, A. R. Johnson, R. A. Stack, C. LaReau, R. Tenill, R. Morrison, I. P. Agurok, and J. E. Ford, “Curved fiber bundles for monocentric lens imaging,” Proc. SPIE 9579, 95790G (2015).

Motamedi, N.

S. Karbasi, I. Stamenov, N. Motamedi, A. Arianpour, A. R. Johnson, R. A. Stack, C. LaReau, R. Tenill, R. Morrison, I. P. Agurok, and J. E. Ford, “Curved fiber bundles for monocentric lens imaging,” Proc. SPIE 9579, 95790G (2015).

Mugele, F.

C. U. Murade, D. van der Ende, and F. Mugele, “High speed adaptive liquid microlens array,” Opt. Express 20, 18180–18187 (2012).
[Crossref] [PubMed]

J. C. Baret, M. M. J. Decré, and F. Mugele, “Self-excited drop oscillations in electrowetting,” Langmuir 23, 5173–5179 (2007).
[Crossref] [PubMed]

F. Mugele and J. Baret, “Electrowetting: from basics to applications,” J. Phys. Condens. Matter 17, R705–R774 (2005).
[Crossref]

Murade, C. U.

Næsset, E.

E. Næsset, T. Gobakken, J. Holmgren, H. Hyyppä, J. Hyyppä, M. Maltamo, M. Nilsson, H. Olsson, Å. Persson, and U. Söderman, “Laser scanning of forest resources: the nordic experience,” Scand. J. For. Res. 19, 482–499 (2004).
[Crossref]

Nilsson, M.

E. Næsset, T. Gobakken, J. Holmgren, H. Hyyppä, J. Hyyppä, M. Maltamo, M. Nilsson, H. Olsson, Å. Persson, and U. Söderman, “Laser scanning of forest resources: the nordic experience,” Scand. J. For. Res. 19, 482–499 (2004).
[Crossref]

Nystrom, P. D.

Oghalai, J. S.

Oh, C.

J. Kim, C. Oh, M. J. Escuti, L. Hosting, and S. Serati, “Wide-angle nonmechanical beam steering using thin liquid crystal polarization gratings,” Proc. SPIE 7093, 709302 (2008).
[Crossref]

Oh, J. M.

J. Hong, Y. K. Kim, K. H. Kang, J. M. Oh, and I. S. Kang, “Effects of drop size and viscosity on spreading dynamics in dc electrowetting,” Langmuir 29, 9118–9125 (2013).
[Crossref] [PubMed]

Olsson, H.

E. Næsset, T. Gobakken, J. Holmgren, H. Hyyppä, J. Hyyppä, M. Maltamo, M. Nilsson, H. Olsson, Å. Persson, and U. Söderman, “Laser scanning of forest resources: the nordic experience,” Scand. J. For. Res. 19, 482–499 (2004).
[Crossref]

Ozbay, B. N.

Park, J.

Park, S.-Y.

C. E. Clement and S.-Y. Park, “High-performance beam steering using electrowetting-driven liquid prism fabricated by a simple dip-coating method,” Appl. Phys. Lett. 108, 191601 (2016).
[Crossref]

Parker, G. G.

M. A. Lefsky, W. B. Cohen, G. G. Parker, and D. J. Harding, “Lidar remote sensing for ecosystem studies,” BioScience 52, 19–30 (2002).
[Crossref]

Patterson, P. R.

P. R. Patterson, D. Hah, M. Fujino, W. Piyawattanametha, and M. C. Wu, “Scanning micromirrors: an overview,” Proc. SPIE 5604, 560413 (2004).

Pawlowski, M. E.

Persson, Å.

E. Næsset, T. Gobakken, J. Holmgren, H. Hyyppä, J. Hyyppä, M. Maltamo, M. Nilsson, H. Olsson, Å. Persson, and U. Söderman, “Laser scanning of forest resources: the nordic experience,” Scand. J. For. Res. 19, 482–499 (2004).
[Crossref]

Peseux, J.

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,” Eur. Phys. J. E 3, 159–163 (2000).
[Crossref]

Peters, J. D.

Philip, J. B.

B. D. Duncan, J. B. Philip, and S. Vassili, “Wide angle achromatic prism beam steering for infrared countermeasure applications,” Opt. Eng. 42, 1038–1047 (2003).
[Crossref]

Piyawattanametha, W.

P. R. Patterson, D. Hah, M. Fujino, W. Piyawattanametha, and M. C. Wu, “Scanning micromirrors: an overview,” Proc. SPIE 5604, 560413 (2004).

Plass, G. N.

Potenza, R. M.

M. G. da Silva, D. W. DeRoo, M. J. Tracy, A. Rybaltowski, C. G. Caflisch, and R. M. Potenza, “Ladar using mems scanning,” US Patent 20120236379 A1 (2012).

Poulton, C. V.

Prescher, G.

C. Degenhardt, G. Prescher, T. Frach, A. Thon, R. de Gruyter, A. Schmitz, and R. Ballizany, “The digital silicon photomultiplier — a novel sensor for the detection of scintillation light,” in Proceedings of IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), (IEEE, 2009), pp. 2383–2386.

Quenzer, H.

U. Hofmann, J. Janes, and H. Quenzer, “High-q mems resonators for laser beam scanning displays,” Micromachines 3, 509–528 (2012).
[Crossref]

Ralston, J.

S. Millefiorini, A. H. Tkaczyk, R. Sedev, J. Efthimiadis, and J. Ralston, “Electrowetting of ionic liquids,” J. Am. Chem. Soc. 128, 3098–3101 (2006).
[Crossref] [PubMed]

Raval, M.

Ren, H.

H. Ren and S.-T. Wu, Introduction to Adaptive Lenses (John Wiley and Sons, Inc., 2012).
[Crossref]

Renders, C. A.

B. H. W. Hendriks, S. Kuiper, M. A. J. V. As, C. A. Renders, and T. W. Tukker, “Electrowetting-based variable-focus lens for miniature systems,” Opt. Rev. 12, 255–259 (2005).
[Crossref]

Resler, D. P.

Restrepo, D.

Richmond, R. D.

R. D. Richmond and S. C. Cain, Direct-Detection LADAR Systems (SPIE, 2010).
[Crossref]

Roath, C.

Römer, G.

G. Römer and P. Bechtold, “Electro-optic and acousto-optic laser beam scanners,” Phys. Procedia 56, 29–39 (2014).
[Crossref]

Rommel, S. D.

S. R. Davis, G. Farca, S. D. Rommel, A. W. Martin, and M. H. Anderson, “Analog, non-mechanical beam-steerer with 80 degree field of regard,” Proc. SPIE 6971, 69710G1 (2008).

Rybaltowski, A.

M. G. da Silva, D. W. DeRoo, M. J. Tracy, A. Rybaltowski, C. G. Caflisch, and R. M. Potenza, “Ladar using mems scanning,” US Patent 20120236379 A1 (2012).

Schmitz, A.

C. Degenhardt, G. Prescher, T. Frach, A. Thon, R. de Gruyter, A. Schmitz, and R. Ballizany, “The digital silicon photomultiplier — a novel sensor for the detection of scintillation light,” in Proceedings of IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), (IEEE, 2009), pp. 2383–2386.

Sedev, R.

S. Millefiorini, A. H. Tkaczyk, R. Sedev, J. Efthimiadis, and J. Ralston, “Electrowetting of ionic liquids,” J. Am. Chem. Soc. 128, 3098–3101 (2006).
[Crossref] [PubMed]

Sen, P.

P. Sen and C. Kim, “A fast liquid-metal droplet microswitch using ewod-driven contact-line sliding,” J. Microelectromech. Syst. 18, 174–185 (2009).
[Crossref]

Serati, S.

J. Kim, C. Oh, M. J. Escuti, L. Hosting, and S. Serati, “Wide-angle nonmechanical beam steering using thin liquid crystal polarization gratings,” Proc. SPIE 7093, 709302 (2008).
[Crossref]

Sharp, R. C.

Shrestha, S.

Sjoeqvist, L.

E. J. Haellstig, L. Sjoeqvist, and M. Lindgren, “Intensity variations using a quantized spatial light modulator for nonmechanical beam steering,” Opt. Eng. 42, 612–619 (2003).

Smith, N.

L. Hou, J. Zhang, N. Smith, J. Yang, and J. Heikenfeld, “A full description of a scalable microfabrication process for arrayed electrowetting microprisms,” J. Micromechanics Microengineering 20, 015044 (2010).
[Crossref]

Smith, N. R.

Söderman, U.

E. Næsset, T. Gobakken, J. Holmgren, H. Hyyppä, J. Hyyppä, M. Maltamo, M. Nilsson, H. Olsson, Å. Persson, and U. Söderman, “Laser scanning of forest resources: the nordic experience,” Scand. J. For. Res. 19, 482–499 (2004).
[Crossref]

Stack, R. A.

S. Karbasi, I. Stamenov, N. Motamedi, A. Arianpour, A. R. Johnson, R. A. Stack, C. LaReau, R. Tenill, R. Morrison, I. P. Agurok, and J. E. Ford, “Curved fiber bundles for monocentric lens imaging,” Proc. SPIE 9579, 95790G (2015).

Stamenov, I.

S. Karbasi, I. Stamenov, N. Motamedi, A. Arianpour, A. R. Johnson, R. A. Stack, C. LaReau, R. Tenill, R. Morrison, I. P. Agurok, and J. E. Ford, “Curved fiber bundles for monocentric lens imaging,” Proc. SPIE 9579, 95790G (2015).

Stamenov, I. A. I.

Supekar, O.

W. Y. Lim, O. Supekar, M. Zohrabi, J. Gopinath, and V. Bright, “A liquid combination with high refractive index contrast and fast scanning speeds for electrowetting adaptive optics,” Langmuir 34, 14511–14518 (2018).
[Crossref]

Supekar, O. D.

Tenill, R.

S. Karbasi, I. Stamenov, N. Motamedi, A. Arianpour, A. R. Johnson, R. A. Stack, C. LaReau, R. Tenill, R. Morrison, I. P. Agurok, and J. E. Ford, “Curved fiber bundles for monocentric lens imaging,” Proc. SPIE 9579, 95790G (2015).

Terrab, S.

Thayer, J. P.

S. E. Mitchell and J. P. Thayer, “Ranging through shallow semitransparent media with polarization lidar,” J. Atmospheric Ocean. Technol. 31, 681–697 (2014).
[Crossref]

S. Mitchell, J. P. Thayer, and M. Hayman, “Polarization lidar for shallow water depth measurement,” Appl. Opt. 49, 6995–7000 (2010).
[Crossref] [PubMed]

Thon, A.

C. Degenhardt, G. Prescher, T. Frach, A. Thon, R. de Gruyter, A. Schmitz, and R. Ballizany, “The digital silicon photomultiplier — a novel sensor for the detection of scintillation light,” in Proceedings of IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), (IEEE, 2009), pp. 2383–2386.

Tkaczyk, A. H.

S. Millefiorini, A. H. Tkaczyk, R. Sedev, J. Efthimiadis, and J. Ralston, “Electrowetting of ionic liquids,” J. Am. Chem. Soc. 128, 3098–3101 (2006).
[Crossref] [PubMed]

Tkaczyk, T. S.

Tracy, M. J.

M. G. da Silva, D. W. DeRoo, M. J. Tracy, A. Rybaltowski, C. G. Caflisch, and R. M. Potenza, “Ladar using mems scanning,” US Patent 20120236379 A1 (2012).

Tsai, C.

Tukker, T. W.

B. H. W. Hendriks, S. Kuiper, M. A. J. V. As, C. A. Renders, and T. W. Tukker, “Electrowetting-based variable-focus lens for miniature systems,” Opt. Rev. 12, 255–259 (2005).
[Crossref]

van der Ende, D.

Vassili, S.

B. D. Duncan, J. B. Philip, and S. Vassili, “Wide angle achromatic prism beam steering for infrared countermeasure applications,” Opt. Eng. 42, 1038–1047 (2003).
[Crossref]

Vermeulen, D.

Wang, Q.-H.

L. L. C. Liu and Q.-H. Wang, “Liquid prism for beam tracking and steering,” Opt. Eng. 51, 114002 (2012).
[Crossref]

Watnik, A.

Watson, A. M.

Watts, M. R.

Wehr, A.

A. Wehr and U. Lohr, “Airborne laser scanning—an introduction and overview,” ISPRS J. Photogramm. Remote Sens. 54, 68–82 (1999).
[Crossref]

Weir, R.

Welch, W.

Wu, M. C.

P. R. Patterson, D. Hah, M. Fujino, W. Piyawattanametha, and M. C. Wu, “Scanning micromirrors: an overview,” Proc. SPIE 5604, 560413 (2004).

Wu, S.-T.

H. Ren and S.-T. Wu, Introduction to Adaptive Lenses (John Wiley and Sons, Inc., 2012).
[Crossref]

Yaacobi, A.

Yang, J.

L. Hou, J. Zhang, N. Smith, J. Yang, and J. Heikenfeld, “A full description of a scalable microfabrication process for arrayed electrowetting microprisms,” J. Micromechanics Microengineering 20, 015044 (2010).
[Crossref]

Zappe, H.

Zhang, J.

L. Hou, J. Zhang, N. Smith, J. Yang, and J. Heikenfeld, “A full description of a scalable microfabrication process for arrayed electrowetting microprisms,” J. Micromechanics Microengineering 20, 015044 (2010).
[Crossref]

Zohrabi, M.

W. Y. Lim, O. Supekar, M. Zohrabi, J. Gopinath, and V. Bright, “A liquid combination with high refractive index contrast and fast scanning speeds for electrowetting adaptive optics,” Langmuir 34, 14511–14518 (2018).
[Crossref]

O. D. Supekar, M. Zohrabi, J. T. Gopinath, and V. M. Bright, “Enhanced response time of electrowetting lenses with shaped input voltage functions,” Langmuir 33, 4863–4869 (2017).
[Crossref] [PubMed]

O. D. Supekar, B. N. Ozbay, M. Zohrabi, P. D. Nystrom, G. L. Futia, D. Restrepo, E. A. Gibson, J. T. Gopinath, and V. M. Bright, “Two-photon laser scanning microscopy with electrowetting-based prism scanning,” Biomed. Opt. Express 8, 5412–5426 (2017).
[Crossref]

M. Zohrabi, R. H. Cormack, C. Mccullough, O. D. Supekar, E. A. Gibson, V. M. Bright, and J. T. Gopinath, “Numerical analysis of wavefront aberration correction using multielectrode electrowetting-based devices,” Opt. Express 25, 31451–31461 (2017).
[Crossref] [PubMed]

Appl. Opt. (7)

Appl. Phys. Lett. (3)

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004).
[Crossref]

J. Cheng and C.-L. Chen, “Adaptive beam tracking and steering via electrowetting-controlled liquid prism,” Appl. Phys. Lett. 99, 191108 (2011).
[Crossref]

C. E. Clement and S.-Y. Park, “High-performance beam steering using electrowetting-driven liquid prism fabricated by a simple dip-coating method,” Appl. Phys. Lett. 108, 191601 (2016).
[Crossref]

Biomed. Opt. Express (2)

BioScience (1)

M. A. Lefsky, W. B. Cohen, G. G. Parker, and D. J. Harding, “Lidar remote sensing for ecosystem studies,” BioScience 52, 19–30 (2002).
[Crossref]

Eur. Phys. J. E (1)

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,” Eur. Phys. J. E 3, 159–163 (2000).
[Crossref]

ISPRS J. Photogramm. Remote Sens. (1)

A. Wehr and U. Lohr, “Airborne laser scanning—an introduction and overview,” ISPRS J. Photogramm. Remote Sens. 54, 68–82 (1999).
[Crossref]

J. Am. Chem. Soc. (1)

S. Millefiorini, A. H. Tkaczyk, R. Sedev, J. Efthimiadis, and J. Ralston, “Electrowetting of ionic liquids,” J. Am. Chem. Soc. 128, 3098–3101 (2006).
[Crossref] [PubMed]

J. Atmospheric Ocean. Technol. (1)

S. E. Mitchell and J. P. Thayer, “Ranging through shallow semitransparent media with polarization lidar,” J. Atmospheric Ocean. Technol. 31, 681–697 (2014).
[Crossref]

J. Microelectromech. Syst. (1)

P. Sen and C. Kim, “A fast liquid-metal droplet microswitch using ewod-driven contact-line sliding,” J. Microelectromech. Syst. 18, 174–185 (2009).
[Crossref]

J. Micromechanics Microengineering (1)

L. Hou, J. Zhang, N. Smith, J. Yang, and J. Heikenfeld, “A full description of a scalable microfabrication process for arrayed electrowetting microprisms,” J. Micromechanics Microengineering 20, 015044 (2010).
[Crossref]

J. Phys. Condens. Matter (1)

F. Mugele and J. Baret, “Electrowetting: from basics to applications,” J. Phys. Condens. Matter 17, R705–R774 (2005).
[Crossref]

J. Spacecr. Rockets (1)

J. L. Goodman, “History of space shuttle rendezvous and proximity operations,” J. Spacecr. Rockets 43, 944–959 (2006).
[Crossref]

Langmuir (4)

J. C. Baret, M. M. J. Decré, and F. Mugele, “Self-excited drop oscillations in electrowetting,” Langmuir 23, 5173–5179 (2007).
[Crossref] [PubMed]

W. Y. Lim, O. Supekar, M. Zohrabi, J. Gopinath, and V. Bright, “A liquid combination with high refractive index contrast and fast scanning speeds for electrowetting adaptive optics,” Langmuir 34, 14511–14518 (2018).
[Crossref]

O. D. Supekar, M. Zohrabi, J. T. Gopinath, and V. M. Bright, “Enhanced response time of electrowetting lenses with shaped input voltage functions,” Langmuir 33, 4863–4869 (2017).
[Crossref] [PubMed]

J. Hong, Y. K. Kim, K. H. Kang, J. M. Oh, and I. S. Kang, “Effects of drop size and viscosity on spreading dynamics in dc electrowetting,” Langmuir 29, 9118–9125 (2013).
[Crossref] [PubMed]

Micromachines (1)

U. Hofmann, J. Janes, and H. Quenzer, “High-q mems resonators for laser beam scanning displays,” Micromachines 3, 509–528 (2012).
[Crossref]

Opt. Eng. (3)

E. J. Haellstig, L. Sjoeqvist, and M. Lindgren, “Intensity variations using a quantized spatial light modulator for nonmechanical beam steering,” Opt. Eng. 42, 612–619 (2003).

B. D. Duncan, J. B. Philip, and S. Vassili, “Wide angle achromatic prism beam steering for infrared countermeasure applications,” Opt. Eng. 42, 1038–1047 (2003).
[Crossref]

L. L. C. Liu and Q.-H. Wang, “Liquid prism for beam tracking and steering,” Opt. Eng. 51, 114002 (2012).
[Crossref]

Opt. Express (6)

Opt. Lett. (4)

Opt. Rev. (1)

B. H. W. Hendriks, S. Kuiper, M. A. J. V. As, C. A. Renders, and T. W. Tukker, “Electrowetting-based variable-focus lens for miniature systems,” Opt. Rev. 12, 255–259 (2005).
[Crossref]

Phys. Procedia (1)

G. Römer and P. Bechtold, “Electro-optic and acousto-optic laser beam scanners,” Phys. Procedia 56, 29–39 (2014).
[Crossref]

Proc. SPIE (4)

S. R. Davis, G. Farca, S. D. Rommel, A. W. Martin, and M. H. Anderson, “Analog, non-mechanical beam-steerer with 80 degree field of regard,” Proc. SPIE 6971, 69710G1 (2008).

J. Kim, C. Oh, M. J. Escuti, L. Hosting, and S. Serati, “Wide-angle nonmechanical beam steering using thin liquid crystal polarization gratings,” Proc. SPIE 7093, 709302 (2008).
[Crossref]

S. Karbasi, I. Stamenov, N. Motamedi, A. Arianpour, A. R. Johnson, R. A. Stack, C. LaReau, R. Tenill, R. Morrison, I. P. Agurok, and J. E. Ford, “Curved fiber bundles for monocentric lens imaging,” Proc. SPIE 9579, 95790G (2015).

P. R. Patterson, D. Hah, M. Fujino, W. Piyawattanametha, and M. C. Wu, “Scanning micromirrors: an overview,” Proc. SPIE 5604, 560413 (2004).

Scand. J. For. Res. (1)

E. Næsset, T. Gobakken, J. Holmgren, H. Hyyppä, J. Hyyppä, M. Maltamo, M. Nilsson, H. Olsson, Å. Persson, and U. Söderman, “Laser scanning of forest resources: the nordic experience,” Scand. J. For. Res. 19, 482–499 (2004).
[Crossref]

Sens. Actuators (1)

J. B. Chae, J. Hong, S. J. Lee., and S. K. Chung, “Enhancement of response speed of viscous fluids using overdrive voltage,” Sens. Actuators 209, 56–60 (2015).
[Crossref]

Other (8)

C. Degenhardt, G. Prescher, T. Frach, A. Thon, R. de Gruyter, A. Schmitz, and R. Ballizany, “The digital silicon photomultiplier — a novel sensor for the detection of scintillation light,” in Proceedings of IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), (IEEE, 2009), pp. 2383–2386.

Radiant ZEMAX, Optical Design Program, User’s Manual (2018).

Velodyne LiDAR, Velodyne Lidar HDL–64E Manual.

M. G. da Silva, D. W. DeRoo, M. J. Tracy, A. Rybaltowski, C. G. Caflisch, and R. M. Potenza, “Ladar using mems scanning,” US Patent 20120236379 A1 (2012).

R. D. Richmond and S. C. Cain, Direct-Detection LADAR Systems (SPIE, 2010).
[Crossref]

R. G. Driggers, Encyclopedia of Optical Engineering - Volume 2 (CRC, 2003).

C. G. Bachman, Laser Radar Systems and Techniques (Artech House, 1979).

H. Ren and S.-T. Wu, Introduction to Adaptive Lenses (John Wiley and Sons, Inc., 2012).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Schematic of the two-electrode prism device, with components labeled. The device is constructed in a cylindrical glass tube with Indium Tin Oxide (ITO) sidewall electrodes, Parylene HT as the dielectric and Cytop as the hydrophobic layer. An optical window patterned with an annular pattern of Ti/Au/Ti serves as the ground electrode. (b) An image of the two-electrode EWOD prism at initial state (0 V on both electrodes) filled with de-ionized water (DI water) and 1-Phenyl-1-cyclohexene (PCH). (c) Driving voltages with carrier frequency of 3 kHz modulated with a linear function at 1 Hz frequency between the two electrodes. (d) Series of images of the two-electrode EWOD prism, demonstrating its functionality as a tunable prism. The tilt angle of the liquid-liquid interface is labeled in each image corresponding to steering angles of 5°, 4°, and 1°, respectively.
Fig. 2
Fig. 2 Schematic optical design of the lidar transmitter modeled in Zemax for a collimated input beam width of 1 mm (1/e2), λ = 532 nm. The transmitter consists of an electrowetting prism, Hastings achromatic triplet lens (Thorlabs TRH127-020-A, focal length 20 mm), and a miniature fisheye lens (Sunex DSL419, f/2, focal length 1.6 mm). The fisheye lens is adopted from ZEBASE library (F004) and scaled down to match the imaging circle of the commercially bought miniature fisheye lens (Sunex DSL419 image circle 4.5 mm). The EWOD prism produced a ±7.8° scanning beam. Different ray colors represent five different tilts from the EWOD prism. The triple lens is used to generate a telecentric scan on the imaging circle of the fisheye lens. The spot diagram at the focal plane after the triplet lens is shown at the bottom for different scanning configurations. The spot diagrams are all well below Airy diffraction limit (black circle).
Fig. 3
Fig. 3 Schematic optical design of the lidar receiver modeled in Zemax for backscattered return beam on axis and at ±90°. The receiver consists of a model fisheye lens (adopted from ZEBASE library, F004), two aspherical condenser lenses (Thorlabs ACL12708U and ACL25416U) with focal lengths of 8 and 16 mm and a 3 × 3 mm2 imaging plane as a detector (KETEK PE3325-WB-AX, 3 × 3 mm2). The focal length and distance are optimized in Zemax to ensure the returning rays at large angles are focused on a 3 × 3 mm2 plane. The spot diagrams for three different configurations are shown.
Fig. 4
Fig. 4 (a) Lidar transmitter and receiver based on the Zemax model shown in Figs. 2 and 3. A barrier is assembled in the lab to limit the scan range as shown and highlighted by dashed lines. The insets are zoomed images of the transmitter and receiver. The distance between the optical components for the transmitter and receiver is 60.6 and 46 mm, respectively. (b)–(f) Snapshots of the outgoing beam from the transmitter scanned using EWOD prism at various steering angles. The images clearly show a ±90° nonmechanical scan. The angle θ represent the scanning angle originating from the right barrier.
Fig. 5
Fig. 5 (a) The measured range as a function of scan angle (nonmechanical beam scanning with EWOD prism) within a laboratory environment. (b) The lidar data presented in (a) is transformed to Cartesian coordinates. The distance from the transmitter to the barricade is accurately measured using the nonmechanical beam scanner. For instance, the range value at 0° and 180°, corresponds to the left and right barricade positions, respectively. (c) The measured ranges as a function of scan angle with an extra obstacle introduced in the scanning path. (d) The lidar data presented in (c) is transformed to Cartesian coordinates. The obstacle with the width of 20 cm is clearly measured at 90° scan angle with the range value of 30 cm.

Metrics