Abstract

Terahertz (THz) broadband spoof surface plasmon polaritons (SSPPs) using new structure of ultra-compact split-ring grooves are proposed. The high-order mode propagation is highly concentrated around the proposed structure with lower radiation loss implying improved operating bandwidth. More importantly, a size reduction of 83.5% can be realized as compared to the traditional grounded SSPP structure with the same high-order asymptotic frequency. To further verify the proposed idea, a similar structure in microwave regime is designed and measured, where the excitation is easily achieved by directly connecting the microstrip line to the proposed SSPP waveguide. The gradient transition section, such as flaring ground, can be avoided, which decreases the waveguide’s longitudinal and transversal lengths and simplifies the design procedure. The measured results of the microwave prototype illustrate that it has good lowpass filtering performance, in which the reflection coefficient is better than −10 dB up to 13 GHz, with the smallest and worst insertion losses of 0.5 dB and 4.5 dB, respectively. To the best of the authors’ knowledge, this work presents THz high-order broadband SSPP propagation for the first time, having significant potential for plasmonic integrated circuits application at microwave/THz frequencies.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Broadband high-order mode of spoof surface plasmon polaritons supported by compact complementary structure with high efficiency

Dawei Zhang, Kuang Zhang, Qun Wu, Ruiwei Dai, and Xuejun Sha
Opt. Lett. 43(13) 3176-3179 (2018)

High-efficiency surface plasmonic polariton waveguides with enhanced low-frequency performance in microwave frequencies

Dawei Zhang, Kuang Zhang, Qun Wu, Xumin Ding, and Xuejun Sha
Opt. Express 25(3) 2121-2129 (2017)

References

  • View by:
  • |
  • |
  • |

  1. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  2. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
    [Crossref] [PubMed]
  3. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
    [Crossref] [PubMed]
  4. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
    [Crossref] [PubMed]
  5. C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
    [Crossref]
  6. W. X. Tang, H. C. Zhang, H. F. Ma, W. X. Jiang, and T. J. Cui, “Concept, theory, design, and applications of spoof surface plasmon polaritons at microwave frequencies,” Adv. Opt. Mater. 7(1), 1800421 (2019).
    [Crossref]
  7. H. F. Ma, X. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photonics Rev. 8(1), 146–151 (2014).
    [Crossref]
  8. D. Zhang, K. Zhang, Q. Wu, G. Yang, and X. Sha, “High-efficiency broadband excitation and propagation of second-mode spoof surface plasmon polaritons by a complementary structure,” Opt. Lett. 42(14), 2766–2769 (2017).
    [Crossref] [PubMed]
  9. D. Zhang, K. Zhang, Q. Wu, X. Ding, and X. Sha, “High-efficiency surface plasmonic polariton waveguides with enhanced low-frequency performance in microwave frequencies,” Opt. Express 25(3), 2121–2129 (2017).
    [Crossref] [PubMed]
  10. X. Gao, L. Zhou, Z. Liao, H. F. Ma, and T. J. Cui, “An ultra-wideband surface plasmonic filter in microwave frequency,” Appl. Phys. Lett. 104(19), 191603 (2014).
    [Crossref]
  11. Y. J. Guo, K. D. Xu, Y. Liu, and X. Tang, “Novel surface plasmon polariton waveguides with enhanced field confinement for microwave-frequency ultra-wideband bandpass filters,” IEEE Access 6, 10249–10256 (2018).
    [Crossref]
  12. J. Wang, L. Zhao, Z. C. Hao, and T. J. Cui, “An ultra-thin coplanar waveguide filter based on the spoof surface plasmon polaritons,” Appl. Phys. Lett. 113(7), 071101 (2018).
    [Crossref]
  13. Y. J. Guo, K. D. Xu, and X. Tang, “Spoof plasmonic waveguide developed from coplanar stripline for strongly confined terahertz propagation and its application in microwave filters,” Opt. Express 26(8), 10589–10598 (2018).
    [Crossref] [PubMed]
  14. Y. J. Zhou, C. Zhang, L. Yang, and Q. Xiao, “Electronically controllable spoof localized surface plasmons,” J. Phys. D Appl. Phys. 50(42), 425102 (2017).
    [Crossref]
  15. Z. Li, J. Xu, C. Chen, Y. Sun, B. Xu, L. Liu, and C. Gu, “Coplanar waveguide wideband band-stop filter based on localized spoof surface plasmons,” Appl. Opt. 55(36), 10323–10328 (2016).
    [Crossref] [PubMed]
  16. G. S. Kong, H. F. Ma, B. G. Cai, and T. J. Cui, “Continuous leaky-wave scanning using periodically modulated spoof plasmonic waveguide,” Sci. Rep. 6(1), 29600 (2016).
    [Crossref] [PubMed]
  17. Y. J. Zhou and B. J. Yang, “A 4-way wavelength demultiplexer based on the plasmonic broadband slow wave system,” Opt. Express 22(18), 21589–21599 (2014).
    [Crossref] [PubMed]
  18. X. Gao, J. Hui Shi, X. Shen, H. Feng Ma, W. Xiang Jiang, L. Li, and T. Jun Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).
    [Crossref]
  19. C. Qi, S. Liao, and Q. Xue, “Frequency splitter based on spoof surface plasmon polariton transmission lines,” Appl. Phys. Lett. 113(16), 161902 (2018).
    [Crossref]
  20. M. Wang, H. F. Ma, W. X. Tang, H. C. Zhang, Z. X. Wang, and T. J. Cui, “Programmable controls of multiple modes of spoof surface plasmon polaritons to reach reconfigurable plasmonic devices,” Adv. Mater. Technol. 4, 1800603 (2019).
    [Crossref]
  21. X. Shi, J. Qin, and Z. Han, “Enhanced terahertz sensing with a coupled comb-shaped spoof surface plasmon waveguide,” Opt. Express 25(1), 278–283 (2017).
    [Crossref] [PubMed]
  22. D. Zhang, K. Zhang, Q. Wu, R. Dai, and X. Sha, “Broadband high-order mode of spoof surface plasmon polaritons supported by compact complementary structure with high efficiency,” Opt. Lett. 43(13), 3176–3179 (2018).
    [Crossref] [PubMed]

2019 (2)

W. X. Tang, H. C. Zhang, H. F. Ma, W. X. Jiang, and T. J. Cui, “Concept, theory, design, and applications of spoof surface plasmon polaritons at microwave frequencies,” Adv. Opt. Mater. 7(1), 1800421 (2019).
[Crossref]

M. Wang, H. F. Ma, W. X. Tang, H. C. Zhang, Z. X. Wang, and T. J. Cui, “Programmable controls of multiple modes of spoof surface plasmon polaritons to reach reconfigurable plasmonic devices,” Adv. Mater. Technol. 4, 1800603 (2019).
[Crossref]

2018 (5)

C. Qi, S. Liao, and Q. Xue, “Frequency splitter based on spoof surface plasmon polariton transmission lines,” Appl. Phys. Lett. 113(16), 161902 (2018).
[Crossref]

D. Zhang, K. Zhang, Q. Wu, R. Dai, and X. Sha, “Broadband high-order mode of spoof surface plasmon polaritons supported by compact complementary structure with high efficiency,” Opt. Lett. 43(13), 3176–3179 (2018).
[Crossref] [PubMed]

Y. J. Guo, K. D. Xu, Y. Liu, and X. Tang, “Novel surface plasmon polariton waveguides with enhanced field confinement for microwave-frequency ultra-wideband bandpass filters,” IEEE Access 6, 10249–10256 (2018).
[Crossref]

J. Wang, L. Zhao, Z. C. Hao, and T. J. Cui, “An ultra-thin coplanar waveguide filter based on the spoof surface plasmon polaritons,” Appl. Phys. Lett. 113(7), 071101 (2018).
[Crossref]

Y. J. Guo, K. D. Xu, and X. Tang, “Spoof plasmonic waveguide developed from coplanar stripline for strongly confined terahertz propagation and its application in microwave filters,” Opt. Express 26(8), 10589–10598 (2018).
[Crossref] [PubMed]

2017 (4)

2016 (2)

Z. Li, J. Xu, C. Chen, Y. Sun, B. Xu, L. Liu, and C. Gu, “Coplanar waveguide wideband band-stop filter based on localized spoof surface plasmons,” Appl. Opt. 55(36), 10323–10328 (2016).
[Crossref] [PubMed]

G. S. Kong, H. F. Ma, B. G. Cai, and T. J. Cui, “Continuous leaky-wave scanning using periodically modulated spoof plasmonic waveguide,” Sci. Rep. 6(1), 29600 (2016).
[Crossref] [PubMed]

2014 (3)

Y. J. Zhou and B. J. Yang, “A 4-way wavelength demultiplexer based on the plasmonic broadband slow wave system,” Opt. Express 22(18), 21589–21599 (2014).
[Crossref] [PubMed]

X. Gao, L. Zhou, Z. Liao, H. F. Ma, and T. J. Cui, “An ultra-wideband surface plasmonic filter in microwave frequency,” Appl. Phys. Lett. 104(19), 191603 (2014).
[Crossref]

H. F. Ma, X. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photonics Rev. 8(1), 146–151 (2014).
[Crossref]

2013 (1)

X. Gao, J. Hui Shi, X. Shen, H. Feng Ma, W. Xiang Jiang, L. Li, and T. Jun Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).
[Crossref]

2010 (1)

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

2008 (1)

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[Crossref]

2005 (1)

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[Crossref] [PubMed]

2004 (1)

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

Andrews, S. R.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[Crossref]

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Brongersma, M. L.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Brown, D. E.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[Crossref] [PubMed]

Cai, B. G.

G. S. Kong, H. F. Ma, B. G. Cai, and T. J. Cui, “Continuous leaky-wave scanning using periodically modulated spoof plasmonic waveguide,” Sci. Rep. 6(1), 29600 (2016).
[Crossref] [PubMed]

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Chen, C.

Cheng, Q.

H. F. Ma, X. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photonics Rev. 8(1), 146–151 (2014).
[Crossref]

Cui, T. J.

W. X. Tang, H. C. Zhang, H. F. Ma, W. X. Jiang, and T. J. Cui, “Concept, theory, design, and applications of spoof surface plasmon polaritons at microwave frequencies,” Adv. Opt. Mater. 7(1), 1800421 (2019).
[Crossref]

M. Wang, H. F. Ma, W. X. Tang, H. C. Zhang, Z. X. Wang, and T. J. Cui, “Programmable controls of multiple modes of spoof surface plasmon polaritons to reach reconfigurable plasmonic devices,” Adv. Mater. Technol. 4, 1800603 (2019).
[Crossref]

J. Wang, L. Zhao, Z. C. Hao, and T. J. Cui, “An ultra-thin coplanar waveguide filter based on the spoof surface plasmon polaritons,” Appl. Phys. Lett. 113(7), 071101 (2018).
[Crossref]

G. S. Kong, H. F. Ma, B. G. Cai, and T. J. Cui, “Continuous leaky-wave scanning using periodically modulated spoof plasmonic waveguide,” Sci. Rep. 6(1), 29600 (2016).
[Crossref] [PubMed]

X. Gao, L. Zhou, Z. Liao, H. F. Ma, and T. J. Cui, “An ultra-wideband surface plasmonic filter in microwave frequency,” Appl. Phys. Lett. 104(19), 191603 (2014).
[Crossref]

H. F. Ma, X. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photonics Rev. 8(1), 146–151 (2014).
[Crossref]

Dai, R.

Ding, X.

Feng Ma, H.

X. Gao, J. Hui Shi, X. Shen, H. Feng Ma, W. Xiang Jiang, L. Li, and T. Jun Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).
[Crossref]

Fernández-Domínguez, A. I.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[Crossref]

Gao, X.

X. Gao, L. Zhou, Z. Liao, H. F. Ma, and T. J. Cui, “An ultra-wideband surface plasmonic filter in microwave frequency,” Appl. Phys. Lett. 104(19), 191603 (2014).
[Crossref]

X. Gao, J. Hui Shi, X. Shen, H. Feng Ma, W. Xiang Jiang, L. Li, and T. Jun Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).
[Crossref]

Garcia-Vidal, F. J.

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

García-Vidal, F. J.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[Crossref]

Gu, C.

Guo, Y. J.

Y. J. Guo, K. D. Xu, and X. Tang, “Spoof plasmonic waveguide developed from coplanar stripline for strongly confined terahertz propagation and its application in microwave filters,” Opt. Express 26(8), 10589–10598 (2018).
[Crossref] [PubMed]

Y. J. Guo, K. D. Xu, Y. Liu, and X. Tang, “Novel surface plasmon polariton waveguides with enhanced field confinement for microwave-frequency ultra-wideband bandpass filters,” IEEE Access 6, 10249–10256 (2018).
[Crossref]

Han, Z.

Hao, Z. C.

J. Wang, L. Zhao, Z. C. Hao, and T. J. Cui, “An ultra-thin coplanar waveguide filter based on the spoof surface plasmon polaritons,” Appl. Phys. Lett. 113(7), 071101 (2018).
[Crossref]

Hiller, J. M.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[Crossref] [PubMed]

Hua, J.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[Crossref] [PubMed]

Hui Shi, J.

X. Gao, J. Hui Shi, X. Shen, H. Feng Ma, W. Xiang Jiang, L. Li, and T. Jun Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).
[Crossref]

Jiang, W. X.

W. X. Tang, H. C. Zhang, H. F. Ma, W. X. Jiang, and T. J. Cui, “Concept, theory, design, and applications of spoof surface plasmon polaritons at microwave frequencies,” Adv. Opt. Mater. 7(1), 1800421 (2019).
[Crossref]

H. F. Ma, X. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photonics Rev. 8(1), 146–151 (2014).
[Crossref]

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Jun Cui, T.

X. Gao, J. Hui Shi, X. Shen, H. Feng Ma, W. Xiang Jiang, L. Li, and T. Jun Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).
[Crossref]

Kimball, C. W.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[Crossref] [PubMed]

Kong, G. S.

G. S. Kong, H. F. Ma, B. G. Cai, and T. J. Cui, “Continuous leaky-wave scanning using periodically modulated spoof plasmonic waveguide,” Sci. Rep. 6(1), 29600 (2016).
[Crossref] [PubMed]

Li, L.

X. Gao, J. Hui Shi, X. Shen, H. Feng Ma, W. Xiang Jiang, L. Li, and T. Jun Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).
[Crossref]

Li, Z.

Liao, S.

C. Qi, S. Liao, and Q. Xue, “Frequency splitter based on spoof surface plasmon polariton transmission lines,” Appl. Phys. Lett. 113(16), 161902 (2018).
[Crossref]

Liao, Z.

X. Gao, L. Zhou, Z. Liao, H. F. Ma, and T. J. Cui, “An ultra-wideband surface plasmonic filter in microwave frequency,” Appl. Phys. Lett. 104(19), 191603 (2014).
[Crossref]

Liu, L.

Liu, Y.

Y. J. Guo, K. D. Xu, Y. Liu, and X. Tang, “Novel surface plasmon polariton waveguides with enhanced field confinement for microwave-frequency ultra-wideband bandpass filters,” IEEE Access 6, 10249–10256 (2018).
[Crossref]

Ma, H. F.

W. X. Tang, H. C. Zhang, H. F. Ma, W. X. Jiang, and T. J. Cui, “Concept, theory, design, and applications of spoof surface plasmon polaritons at microwave frequencies,” Adv. Opt. Mater. 7(1), 1800421 (2019).
[Crossref]

M. Wang, H. F. Ma, W. X. Tang, H. C. Zhang, Z. X. Wang, and T. J. Cui, “Programmable controls of multiple modes of spoof surface plasmon polaritons to reach reconfigurable plasmonic devices,” Adv. Mater. Technol. 4, 1800603 (2019).
[Crossref]

G. S. Kong, H. F. Ma, B. G. Cai, and T. J. Cui, “Continuous leaky-wave scanning using periodically modulated spoof plasmonic waveguide,” Sci. Rep. 6(1), 29600 (2016).
[Crossref] [PubMed]

X. Gao, L. Zhou, Z. Liao, H. F. Ma, and T. J. Cui, “An ultra-wideband surface plasmonic filter in microwave frequency,” Appl. Phys. Lett. 104(19), 191603 (2014).
[Crossref]

H. F. Ma, X. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photonics Rev. 8(1), 146–151 (2014).
[Crossref]

Maier, S. A.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[Crossref]

Martín-Moreno, L.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[Crossref]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

Pearson, J.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[Crossref] [PubMed]

Pendry, J. B.

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

Qi, C.

C. Qi, S. Liao, and Q. Xue, “Frequency splitter based on spoof surface plasmon polariton transmission lines,” Appl. Phys. Lett. 113(16), 161902 (2018).
[Crossref]

Qin, J.

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Sha, X.

Shen, X.

H. F. Ma, X. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photonics Rev. 8(1), 146–151 (2014).
[Crossref]

X. Gao, J. Hui Shi, X. Shen, H. Feng Ma, W. Xiang Jiang, L. Li, and T. Jun Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).
[Crossref]

Shi, X.

Sun, Y.

Tang, W. X.

W. X. Tang, H. C. Zhang, H. F. Ma, W. X. Jiang, and T. J. Cui, “Concept, theory, design, and applications of spoof surface plasmon polaritons at microwave frequencies,” Adv. Opt. Mater. 7(1), 1800421 (2019).
[Crossref]

M. Wang, H. F. Ma, W. X. Tang, H. C. Zhang, Z. X. Wang, and T. J. Cui, “Programmable controls of multiple modes of spoof surface plasmon polaritons to reach reconfigurable plasmonic devices,” Adv. Mater. Technol. 4, 1800603 (2019).
[Crossref]

Tang, X.

Y. J. Guo, K. D. Xu, and X. Tang, “Spoof plasmonic waveguide developed from coplanar stripline for strongly confined terahertz propagation and its application in microwave filters,” Opt. Express 26(8), 10589–10598 (2018).
[Crossref] [PubMed]

Y. J. Guo, K. D. Xu, Y. Liu, and X. Tang, “Novel surface plasmon polariton waveguides with enhanced field confinement for microwave-frequency ultra-wideband bandpass filters,” IEEE Access 6, 10249–10256 (2018).
[Crossref]

Vlasko-Vlasov, V. K.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[Crossref] [PubMed]

Wang, J.

J. Wang, L. Zhao, Z. C. Hao, and T. J. Cui, “An ultra-thin coplanar waveguide filter based on the spoof surface plasmon polaritons,” Appl. Phys. Lett. 113(7), 071101 (2018).
[Crossref]

Wang, M.

M. Wang, H. F. Ma, W. X. Tang, H. C. Zhang, Z. X. Wang, and T. J. Cui, “Programmable controls of multiple modes of spoof surface plasmon polaritons to reach reconfigurable plasmonic devices,” Adv. Mater. Technol. 4, 1800603 (2019).
[Crossref]

Wang, Z. X.

M. Wang, H. F. Ma, W. X. Tang, H. C. Zhang, Z. X. Wang, and T. J. Cui, “Programmable controls of multiple modes of spoof surface plasmon polaritons to reach reconfigurable plasmonic devices,” Adv. Mater. Technol. 4, 1800603 (2019).
[Crossref]

Welp, U.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[Crossref] [PubMed]

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Williams, C. R.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[Crossref]

Wu, Q.

Xiang Jiang, W.

X. Gao, J. Hui Shi, X. Shen, H. Feng Ma, W. Xiang Jiang, L. Li, and T. Jun Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).
[Crossref]

Xiao, Q.

Y. J. Zhou, C. Zhang, L. Yang, and Q. Xiao, “Electronically controllable spoof localized surface plasmons,” J. Phys. D Appl. Phys. 50(42), 425102 (2017).
[Crossref]

Xu, B.

Xu, J.

Xu, K. D.

Y. J. Guo, K. D. Xu, and X. Tang, “Spoof plasmonic waveguide developed from coplanar stripline for strongly confined terahertz propagation and its application in microwave filters,” Opt. Express 26(8), 10589–10598 (2018).
[Crossref] [PubMed]

Y. J. Guo, K. D. Xu, Y. Liu, and X. Tang, “Novel surface plasmon polariton waveguides with enhanced field confinement for microwave-frequency ultra-wideband bandpass filters,” IEEE Access 6, 10249–10256 (2018).
[Crossref]

Xue, Q.

C. Qi, S. Liao, and Q. Xue, “Frequency splitter based on spoof surface plasmon polariton transmission lines,” Appl. Phys. Lett. 113(16), 161902 (2018).
[Crossref]

Yang, B. J.

Yang, G.

Yang, L.

Y. J. Zhou, C. Zhang, L. Yang, and Q. Xiao, “Electronically controllable spoof localized surface plasmons,” J. Phys. D Appl. Phys. 50(42), 425102 (2017).
[Crossref]

Yin, L.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[Crossref] [PubMed]

Zhang, C.

Y. J. Zhou, C. Zhang, L. Yang, and Q. Xiao, “Electronically controllable spoof localized surface plasmons,” J. Phys. D Appl. Phys. 50(42), 425102 (2017).
[Crossref]

Zhang, D.

Zhang, H. C.

W. X. Tang, H. C. Zhang, H. F. Ma, W. X. Jiang, and T. J. Cui, “Concept, theory, design, and applications of spoof surface plasmon polaritons at microwave frequencies,” Adv. Opt. Mater. 7(1), 1800421 (2019).
[Crossref]

M. Wang, H. F. Ma, W. X. Tang, H. C. Zhang, Z. X. Wang, and T. J. Cui, “Programmable controls of multiple modes of spoof surface plasmon polaritons to reach reconfigurable plasmonic devices,” Adv. Mater. Technol. 4, 1800603 (2019).
[Crossref]

Zhang, K.

Zhao, L.

J. Wang, L. Zhao, Z. C. Hao, and T. J. Cui, “An ultra-thin coplanar waveguide filter based on the spoof surface plasmon polaritons,” Appl. Phys. Lett. 113(7), 071101 (2018).
[Crossref]

Zhou, L.

X. Gao, L. Zhou, Z. Liao, H. F. Ma, and T. J. Cui, “An ultra-wideband surface plasmonic filter in microwave frequency,” Appl. Phys. Lett. 104(19), 191603 (2014).
[Crossref]

Zhou, Y. J.

Y. J. Zhou, C. Zhang, L. Yang, and Q. Xiao, “Electronically controllable spoof localized surface plasmons,” J. Phys. D Appl. Phys. 50(42), 425102 (2017).
[Crossref]

Y. J. Zhou and B. J. Yang, “A 4-way wavelength demultiplexer based on the plasmonic broadband slow wave system,” Opt. Express 22(18), 21589–21599 (2014).
[Crossref] [PubMed]

Adv. Mater. Technol. (1)

M. Wang, H. F. Ma, W. X. Tang, H. C. Zhang, Z. X. Wang, and T. J. Cui, “Programmable controls of multiple modes of spoof surface plasmon polaritons to reach reconfigurable plasmonic devices,” Adv. Mater. Technol. 4, 1800603 (2019).
[Crossref]

Adv. Opt. Mater. (1)

W. X. Tang, H. C. Zhang, H. F. Ma, W. X. Jiang, and T. J. Cui, “Concept, theory, design, and applications of spoof surface plasmon polaritons at microwave frequencies,” Adv. Opt. Mater. 7(1), 1800421 (2019).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

X. Gao, J. Hui Shi, X. Shen, H. Feng Ma, W. Xiang Jiang, L. Li, and T. Jun Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).
[Crossref]

C. Qi, S. Liao, and Q. Xue, “Frequency splitter based on spoof surface plasmon polariton transmission lines,” Appl. Phys. Lett. 113(16), 161902 (2018).
[Crossref]

J. Wang, L. Zhao, Z. C. Hao, and T. J. Cui, “An ultra-thin coplanar waveguide filter based on the spoof surface plasmon polaritons,” Appl. Phys. Lett. 113(7), 071101 (2018).
[Crossref]

X. Gao, L. Zhou, Z. Liao, H. F. Ma, and T. J. Cui, “An ultra-wideband surface plasmonic filter in microwave frequency,” Appl. Phys. Lett. 104(19), 191603 (2014).
[Crossref]

IEEE Access (1)

Y. J. Guo, K. D. Xu, Y. Liu, and X. Tang, “Novel surface plasmon polariton waveguides with enhanced field confinement for microwave-frequency ultra-wideband bandpass filters,” IEEE Access 6, 10249–10256 (2018).
[Crossref]

J. Phys. D Appl. Phys. (1)

Y. J. Zhou, C. Zhang, L. Yang, and Q. Xiao, “Electronically controllable spoof localized surface plasmons,” J. Phys. D Appl. Phys. 50(42), 425102 (2017).
[Crossref]

Laser Photonics Rev. (1)

H. F. Ma, X. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photonics Rev. 8(1), 146–151 (2014).
[Crossref]

Nano Lett. (1)

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[Crossref] [PubMed]

Nat. Mater. (1)

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Nat. Photonics (1)

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Sci. Rep. (1)

G. S. Kong, H. F. Ma, B. G. Cai, and T. J. Cui, “Continuous leaky-wave scanning using periodically modulated spoof plasmonic waveguide,” Sci. Rep. 6(1), 29600 (2016).
[Crossref] [PubMed]

Science (1)

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

Other (1)

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic configuration of the proposed THz SSPP unit cell. (a) Slotline with two-side transversal grooves (Structure A). (b) Grounded slotline with two-side transversal grooves (Structure B). (c) Grounded slotline with two-side split-ring grooves (Structure C). The detailed dimensions are D = 20 µm, L2 = 36.2 µm, L3 = 43 µm, W0 = 1.5 µm, W1 = 1 µm, W2 = 220 µm, W3 = 75.9 µm, W4 = 12.5 µm, W5 = 1 µm, and W6 = 1 µm. (d) Dispersion curves of the fundamental and high-order modes of different SSPP unit cells. The inset is the z-component electric field distributions of the first two modes of the Structure C unit cell.
Fig. 2
Fig. 2 (a) Schematic configuration of the proposed THz SSPP waveguide. (b) Electric field intensities along x direction when y = 0 um and z = 2 µm. The dimensions of the proposed unit cells in the waveguide is the same as that in Fig. 1(c), and the number of the periodic unit cells N is set as 21. The inset of Fig. 2(b) shows the electric field distributions of 1 THz and 1.3 THz on the x-y plane when z = 2 µm.
Fig. 3
Fig. 3 Simulated S-parameters of the proposed THz SSPP waveguide (a) with different groove lengths (L3 = 42, 43, 44 μm) and (b) with different periods (N = 21, 23, 25).
Fig. 4
Fig. 4 Schematic configuration of the proposed microwave SSPP waveguide with the input and output microstrip excitations and mode conversions. The detailed dimensions are D = 2.8 mm, L2 = 4 mm, L3 = 11.5 mm, W0 = 0.2 mm, W1 = 0.1 mm, W2 = 25.9 mm, W3 = 15 mm, W4 = 1.3 mm, W5 = 0.1 mm, and W6 = 0.2 mm. The number of the periodic unit cells N is set as 7.
Fig. 5
Fig. 5 Mode conversion principle between guided wave and SSPPs wave. (a) Dispersion characteristics of the second mode and (b) normalized impedances of the proposed unit cell with different parameters of W6.
Fig. 6
Fig. 6 (a) Top view and (b) bottom view of the fabricated prototype. Simulated z-component electric field distributions of the proposed waveguide with N = 7 at (c) 10 and (d) 13.5 GHz, respectively.
Fig. 7
Fig. 7 Simulated amplitude comparisons of the electric field distributions |E| along the y direction between the frequencies of 10 GHz and 13.5 GHz, where x = 0 mm and z = 0.1 mm. The two insets show the power distribution at 10 GHz on the y-z plane when x = 0 mm and x = 10 mm.
Fig. 8
Fig. 8 (a) Comparisons between the measured (i.e., Mea.) and simulated (i.e., Sim.) S-parameters of the proposed waveguide when N = 7. (b) Comparisons among the measured S-parameters of the proposed waveguides with different N (i.e., N = 7, 9, 11). The insets in Figs. 8(a) and 8(b) are the top view of the proposed waveguides.

Metrics