Abstract

This work demonstrates thermal regeneration of gratings inscribed in a new type of multi-material glass-based photosensitive fiber. And isothermal annealing procedure has been carried out on a type-I seed grating (SG) imprinted in erbium-doped zirconia-yttria-alumina-germanium (Er-ZYAG) silica glass–based fiber, which is initiated from room temperature of 25°C up to 900°C. The findings show that the created regenerated grating (RG) has an ultrahigh thermal regeneration ratio with a value of 0.72.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Thermal regenerated grating operation at temperatures up to 1400°C using new class of multimaterial glass-based photosensitive fiber

Hang Zhou Yang, Xue Guang Qiao, S. Das, and Mukul Chandra Paul
Opt. Lett. 39(22) 6438-6441 (2014)

Development of regenerated fiber Bragg grating sensors with long-term stability

Mert Celikin, David Barba, Binod Bastola, Andreas Ruediger, and Federico Rosei
Opt. Express 24(19) 21897-21909 (2016)

Effect of two annealing processes on the thermal regeneration of fiber Bragg gratings in hydrogenated standard optical fibers

Kai Lu, Hangzhou Yang, Kok-Sing Lim, Harith Ahmad, Pan Zhang, Qin Tian, Xiangzi Ding, and Xueguang Qiao
Appl. Opt. 57(24) 6971-6975 (2018)

References

  • View by:
  • |
  • |
  • |

  1. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
    [Crossref]
  2. J. Canning, S. Bandyopadhyay, P. Biswas, M. Aslund, M. Stevenson, and K. Cook, “Regenerated fibre Bragg gratings,” in Frontiers in Guided Wave Optics and Optoelectronics, (IntechOpen, 2010), pp. 363–384.
  3. Y. Shen, J. He, Y. Qiu, W. Zhao, S. Chen, T. Sun, and K. T. Grattan, “Thermal decay characteristics of strong fiber Bragg gratings showing high-temperature sustainability,” J. Opt. Soc. Am. B 24(3), 430–438 (2007).
    [Crossref]
  4. O. V. Butov, E. M. Dianov, and K. M. Golant, “Nitrogen-doped silica-core fibres for Bragg grating sensors operating at elevated temperatures,” Meas. Sci. Technol. 17(5), 975–979 (2006).
    [Crossref]
  5. S. J. Mihailov, “Fiber Bragg grating sensors for harsh environments,” Sensors (Basel) 12(2), 1898–1918 (2012).
    [Crossref] [PubMed]
  6. M. Fokine, “Thermal stability of chemical composition gratings in fluorine-germanium-doped silica fibers,” Opt. Lett. 27(12), 1016–1018 (2002).
    [Crossref] [PubMed]
  7. S. Bandyopadhyay, J. Canning, M. Stevenson, and K. Cook, “Ultrahigh-temperature regenerated gratings in boron-codoped germanosilicate optical fiber using 193 nm,” Opt. Lett. 33(16), 1917–1919 (2008).
    [Crossref] [PubMed]
  8. J. Canning, M. Stevenson, S. Bandyopadhyay, and K. Cook, “Extreme silica optical fibre gratings,” Sensors (Basel) 8(10), 6448–6452 (2008).
    [Crossref] [PubMed]
  9. H. Z. Yang, W. Y. Chong, X. G. Qiao, M. J. Lim, K. S. Lim, M. R. Islam, N. M. Ali, and H. Ahmad, “1.3 μm and 1.55 μm thermally regenerated gratings in hydrogenated boron/germanium co-doped photosensitivity fiber,” IEEE Sens. J. 14(5), 1352–1356 (2014).
    [Crossref]
  10. A. Bueno, D. Kinet, P. Mégret, and C. Caucheteur, “Fast thermal regeneration of fiber Bragg gratings,” Opt. Lett. 38(20), 4178–4181 (2013).
    [Crossref] [PubMed]
  11. B. Zhang and M. Kahrizi, “High-temperature resistance fiber Bragg grating,” IEEE Sens. J. 7(4), 586–591 (2007).
    [Crossref]
  12. M. Celikin, D. Barba, B. Bastola, A. Ruediger, and F. Rosei, “Development of regenerated fiber Bragg grating sensors with long-term stability,” Opt. Express 24(19), 21897–21909 (2016).
    [Crossref] [PubMed]
  13. P. Holmberg, F. Laurell, and M. Fokine, “Influence of pre-annealing on the thermal regeneration of fiber Bragg gratings in standard optical fibers,” Opt. Express 23(21), 27520–27535 (2015).
    [Crossref] [PubMed]
  14. E. Lindner, C. Chojetztki, S. Brueckner, M. Becker, M. Rothhardt, J. Vlekken, and H. Bartelt, “Arrays of regenerated fiber bragg gratings in non-hydrogen-loaded photosensitive fibers for high-temperature sensor networks,” Sensors (Basel) 9(10), 8377–8381 (2009).
    [Crossref] [PubMed]
  15. J. Canning, J. Fenton, and M. Stevenson, “Ultra-strong regenerated gratings,” 2009 14th Optoelectron. Commun. Conf., 9–10 (2009).
  16. D. L. Williams, B. J. Ainslie, J. R. Armitage, R. Kashyap, and R. Campbell, “Enhanced UV photosensitivity in boron codoped germanosilicate fibres,” Electron. Lett. 29(1), 45–47 (1993).
    [Crossref]
  17. M. Fokine, “Formation of thermally stable chemical composition gratings in optical fibers,” J. Opt. Soc. Am. B 19(8), 1759–1765 (2002).
    [Crossref]
  18. D. S. Gunawardena, K. A. Mat-Sharif, M. H. Lai, K. S. Lim, N. Tamchek, N. Y. M. Omar, S. D. Emami, S. Z. Muhamad-Yasin, M. I. Zulkifli, Z. Yusoff, H. Z. Yang, H. A. Abdul-Rashid, and H. Ahmad, “Thermal activation of regenerated grating in hydrogenated gallosilicate fiber,” IEEE Sens. J. 16(6), 1659–1664 (2016).
    [Crossref]
  19. J. L. Blows, P. Hambley, and L. Poladian, “Increasing fiber photosensitivity to near-UV radiation by rare earth doping,” IEEE Photonics Technol. Lett. 14(7), 938–940 (2002).
    [Crossref]
  20. H. Z. Yang, X. G. Qiao, S. Das, and M. C. Paul, “Thermal regenerated grating operation at temperatures up to 1400°C using new class of multimaterial glass-based photosensitive fiber,” Opt. Lett. 39(22), 6438–6441 (2014).
    [Crossref] [PubMed]
  21. D. E. Harrison, N. T. Melamed, and E. C. Subbarao, “A new family of self-activated phosphoros,” J. Electrochem. Soc. 110(1), 23–28 (1963).
    [Crossref]
  22. C. Urlacher, J. Dumas, J. Serughetti, J. Mugnier, and M. Munoz, “Planar ZrO2 waveguides prepared by the sol-gel process: Structural and optical properties,” J. Sol-Gel Sci. Technol. 8(1–3), 999–1005 (1997).
    [Crossref]
  23. M. Pal, M. C. Paul, S. K. Bhadra, S. Das, S. Yoo, M. P. Kalita, A. J. Boyland, and J. K. Sahu, “Study of multichannel amplification in Erbium-doped Zirconia-Yttria-Alumino-Silicate fiber,” J. Lightwave Technol. 29(14), 2109–2115 (2011).
    [Crossref]
  24. M. C. Paul, S. W. Harun, N. A. D. Huri, A. Hamzah, S. Das, M. Pal, S. K. Bhadra, H. Ahmad, S. Yoo, M. P. Kalita, A. J. Boyland, and J. K. Sahu, “Wideband EDFA based on erbium doped crystalline Zirconia Yttria Alumino Silicate Fiber,” J. Lightwave Technol. 28(20), 2919–2924 (2010).
    [Crossref]
  25. A. Gaudon, F. Lallet, A. Boulle, A. Lecomte, B. Soulestin, R. Guinebretière, and A. Dauger, “From amorphous phase separations to nanostructured materials in sol–gel derived ZrO2:Eu3+/SiO2 and ZnO/SiO2 composites,” J. Non-Cryst. Solids 352(21–22), 2152–2158 (2006).
    [Crossref]
  26. H. Kim and P. C. McIntyre, “Spinodal decomposition in amorphous metal–silicate thin films: Phase diagram analysis and interface effects on kinetics,” J. Appl. Phys. 92(9), 5094–5102 (2002).
    [Crossref]
  27. N. A. M. Nazal, K.-S. Lim, M. K. A. Zaini, H.-Z. Yang, and H. Ahmad, “Formation of enhanced regenerated grating in few-mode fiber by CO2 laser pretreatment,” Appl. Opt. 56(36), 9882–9987 (2017).
    [Crossref]
  28. H. Z. Yang, X. G. Qiao, Y. P. Wang, M. M. Ali, M. H. Lai, K. S. Lim, and H. Ahmad, “In-fiber gratings for simultaneous monitoring temperature and strain in ultra-high temperature,” IEEE Photonics Technol. Lett. 27(1), 58–61 (2015).
    [Crossref]
  29. S. Bandyopadhyay, J. Canning, P. Biswas, M. Stevenson, and K. Dasgupta, “A study of regenerated gratings produced in germanosilicate fibers by high temperature annealing,” Opt. Express 19(2), 1198–1206 (2011).
    [Crossref] [PubMed]

2017 (1)

2016 (2)

M. Celikin, D. Barba, B. Bastola, A. Ruediger, and F. Rosei, “Development of regenerated fiber Bragg grating sensors with long-term stability,” Opt. Express 24(19), 21897–21909 (2016).
[Crossref] [PubMed]

D. S. Gunawardena, K. A. Mat-Sharif, M. H. Lai, K. S. Lim, N. Tamchek, N. Y. M. Omar, S. D. Emami, S. Z. Muhamad-Yasin, M. I. Zulkifli, Z. Yusoff, H. Z. Yang, H. A. Abdul-Rashid, and H. Ahmad, “Thermal activation of regenerated grating in hydrogenated gallosilicate fiber,” IEEE Sens. J. 16(6), 1659–1664 (2016).
[Crossref]

2015 (2)

P. Holmberg, F. Laurell, and M. Fokine, “Influence of pre-annealing on the thermal regeneration of fiber Bragg gratings in standard optical fibers,” Opt. Express 23(21), 27520–27535 (2015).
[Crossref] [PubMed]

H. Z. Yang, X. G. Qiao, Y. P. Wang, M. M. Ali, M. H. Lai, K. S. Lim, and H. Ahmad, “In-fiber gratings for simultaneous monitoring temperature and strain in ultra-high temperature,” IEEE Photonics Technol. Lett. 27(1), 58–61 (2015).
[Crossref]

2014 (2)

H. Z. Yang, X. G. Qiao, S. Das, and M. C. Paul, “Thermal regenerated grating operation at temperatures up to 1400°C using new class of multimaterial glass-based photosensitive fiber,” Opt. Lett. 39(22), 6438–6441 (2014).
[Crossref] [PubMed]

H. Z. Yang, W. Y. Chong, X. G. Qiao, M. J. Lim, K. S. Lim, M. R. Islam, N. M. Ali, and H. Ahmad, “1.3 μm and 1.55 μm thermally regenerated gratings in hydrogenated boron/germanium co-doped photosensitivity fiber,” IEEE Sens. J. 14(5), 1352–1356 (2014).
[Crossref]

2013 (1)

2012 (1)

S. J. Mihailov, “Fiber Bragg grating sensors for harsh environments,” Sensors (Basel) 12(2), 1898–1918 (2012).
[Crossref] [PubMed]

2011 (2)

2010 (1)

2009 (1)

E. Lindner, C. Chojetztki, S. Brueckner, M. Becker, M. Rothhardt, J. Vlekken, and H. Bartelt, “Arrays of regenerated fiber bragg gratings in non-hydrogen-loaded photosensitive fibers for high-temperature sensor networks,” Sensors (Basel) 9(10), 8377–8381 (2009).
[Crossref] [PubMed]

2008 (2)

2007 (2)

2006 (2)

O. V. Butov, E. M. Dianov, and K. M. Golant, “Nitrogen-doped silica-core fibres for Bragg grating sensors operating at elevated temperatures,” Meas. Sci. Technol. 17(5), 975–979 (2006).
[Crossref]

A. Gaudon, F. Lallet, A. Boulle, A. Lecomte, B. Soulestin, R. Guinebretière, and A. Dauger, “From amorphous phase separations to nanostructured materials in sol–gel derived ZrO2:Eu3+/SiO2 and ZnO/SiO2 composites,” J. Non-Cryst. Solids 352(21–22), 2152–2158 (2006).
[Crossref]

2002 (4)

H. Kim and P. C. McIntyre, “Spinodal decomposition in amorphous metal–silicate thin films: Phase diagram analysis and interface effects on kinetics,” J. Appl. Phys. 92(9), 5094–5102 (2002).
[Crossref]

M. Fokine, “Thermal stability of chemical composition gratings in fluorine-germanium-doped silica fibers,” Opt. Lett. 27(12), 1016–1018 (2002).
[Crossref] [PubMed]

J. L. Blows, P. Hambley, and L. Poladian, “Increasing fiber photosensitivity to near-UV radiation by rare earth doping,” IEEE Photonics Technol. Lett. 14(7), 938–940 (2002).
[Crossref]

M. Fokine, “Formation of thermally stable chemical composition gratings in optical fibers,” J. Opt. Soc. Am. B 19(8), 1759–1765 (2002).
[Crossref]

1997 (2)

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

C. Urlacher, J. Dumas, J. Serughetti, J. Mugnier, and M. Munoz, “Planar ZrO2 waveguides prepared by the sol-gel process: Structural and optical properties,” J. Sol-Gel Sci. Technol. 8(1–3), 999–1005 (1997).
[Crossref]

1993 (1)

D. L. Williams, B. J. Ainslie, J. R. Armitage, R. Kashyap, and R. Campbell, “Enhanced UV photosensitivity in boron codoped germanosilicate fibres,” Electron. Lett. 29(1), 45–47 (1993).
[Crossref]

1963 (1)

D. E. Harrison, N. T. Melamed, and E. C. Subbarao, “A new family of self-activated phosphoros,” J. Electrochem. Soc. 110(1), 23–28 (1963).
[Crossref]

Abdul-Rashid, H. A.

D. S. Gunawardena, K. A. Mat-Sharif, M. H. Lai, K. S. Lim, N. Tamchek, N. Y. M. Omar, S. D. Emami, S. Z. Muhamad-Yasin, M. I. Zulkifli, Z. Yusoff, H. Z. Yang, H. A. Abdul-Rashid, and H. Ahmad, “Thermal activation of regenerated grating in hydrogenated gallosilicate fiber,” IEEE Sens. J. 16(6), 1659–1664 (2016).
[Crossref]

Ahmad, H.

N. A. M. Nazal, K.-S. Lim, M. K. A. Zaini, H.-Z. Yang, and H. Ahmad, “Formation of enhanced regenerated grating in few-mode fiber by CO2 laser pretreatment,” Appl. Opt. 56(36), 9882–9987 (2017).
[Crossref]

D. S. Gunawardena, K. A. Mat-Sharif, M. H. Lai, K. S. Lim, N. Tamchek, N. Y. M. Omar, S. D. Emami, S. Z. Muhamad-Yasin, M. I. Zulkifli, Z. Yusoff, H. Z. Yang, H. A. Abdul-Rashid, and H. Ahmad, “Thermal activation of regenerated grating in hydrogenated gallosilicate fiber,” IEEE Sens. J. 16(6), 1659–1664 (2016).
[Crossref]

H. Z. Yang, X. G. Qiao, Y. P. Wang, M. M. Ali, M. H. Lai, K. S. Lim, and H. Ahmad, “In-fiber gratings for simultaneous monitoring temperature and strain in ultra-high temperature,” IEEE Photonics Technol. Lett. 27(1), 58–61 (2015).
[Crossref]

H. Z. Yang, W. Y. Chong, X. G. Qiao, M. J. Lim, K. S. Lim, M. R. Islam, N. M. Ali, and H. Ahmad, “1.3 μm and 1.55 μm thermally regenerated gratings in hydrogenated boron/germanium co-doped photosensitivity fiber,” IEEE Sens. J. 14(5), 1352–1356 (2014).
[Crossref]

M. C. Paul, S. W. Harun, N. A. D. Huri, A. Hamzah, S. Das, M. Pal, S. K. Bhadra, H. Ahmad, S. Yoo, M. P. Kalita, A. J. Boyland, and J. K. Sahu, “Wideband EDFA based on erbium doped crystalline Zirconia Yttria Alumino Silicate Fiber,” J. Lightwave Technol. 28(20), 2919–2924 (2010).
[Crossref]

Ainslie, B. J.

D. L. Williams, B. J. Ainslie, J. R. Armitage, R. Kashyap, and R. Campbell, “Enhanced UV photosensitivity in boron codoped germanosilicate fibres,” Electron. Lett. 29(1), 45–47 (1993).
[Crossref]

Ali, M. M.

H. Z. Yang, X. G. Qiao, Y. P. Wang, M. M. Ali, M. H. Lai, K. S. Lim, and H. Ahmad, “In-fiber gratings for simultaneous monitoring temperature and strain in ultra-high temperature,” IEEE Photonics Technol. Lett. 27(1), 58–61 (2015).
[Crossref]

Ali, N. M.

H. Z. Yang, W. Y. Chong, X. G. Qiao, M. J. Lim, K. S. Lim, M. R. Islam, N. M. Ali, and H. Ahmad, “1.3 μm and 1.55 μm thermally regenerated gratings in hydrogenated boron/germanium co-doped photosensitivity fiber,” IEEE Sens. J. 14(5), 1352–1356 (2014).
[Crossref]

Armitage, J. R.

D. L. Williams, B. J. Ainslie, J. R. Armitage, R. Kashyap, and R. Campbell, “Enhanced UV photosensitivity in boron codoped germanosilicate fibres,” Electron. Lett. 29(1), 45–47 (1993).
[Crossref]

Askins, C. G.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Bandyopadhyay, S.

Barba, D.

Bartelt, H.

E. Lindner, C. Chojetztki, S. Brueckner, M. Becker, M. Rothhardt, J. Vlekken, and H. Bartelt, “Arrays of regenerated fiber bragg gratings in non-hydrogen-loaded photosensitive fibers for high-temperature sensor networks,” Sensors (Basel) 9(10), 8377–8381 (2009).
[Crossref] [PubMed]

Bastola, B.

Becker, M.

E. Lindner, C. Chojetztki, S. Brueckner, M. Becker, M. Rothhardt, J. Vlekken, and H. Bartelt, “Arrays of regenerated fiber bragg gratings in non-hydrogen-loaded photosensitive fibers for high-temperature sensor networks,” Sensors (Basel) 9(10), 8377–8381 (2009).
[Crossref] [PubMed]

Bhadra, S. K.

Biswas, P.

Blows, J. L.

J. L. Blows, P. Hambley, and L. Poladian, “Increasing fiber photosensitivity to near-UV radiation by rare earth doping,” IEEE Photonics Technol. Lett. 14(7), 938–940 (2002).
[Crossref]

Boulle, A.

A. Gaudon, F. Lallet, A. Boulle, A. Lecomte, B. Soulestin, R. Guinebretière, and A. Dauger, “From amorphous phase separations to nanostructured materials in sol–gel derived ZrO2:Eu3+/SiO2 and ZnO/SiO2 composites,” J. Non-Cryst. Solids 352(21–22), 2152–2158 (2006).
[Crossref]

Boyland, A. J.

Brueckner, S.

E. Lindner, C. Chojetztki, S. Brueckner, M. Becker, M. Rothhardt, J. Vlekken, and H. Bartelt, “Arrays of regenerated fiber bragg gratings in non-hydrogen-loaded photosensitive fibers for high-temperature sensor networks,” Sensors (Basel) 9(10), 8377–8381 (2009).
[Crossref] [PubMed]

Bueno, A.

Butov, O. V.

O. V. Butov, E. M. Dianov, and K. M. Golant, “Nitrogen-doped silica-core fibres for Bragg grating sensors operating at elevated temperatures,” Meas. Sci. Technol. 17(5), 975–979 (2006).
[Crossref]

Campbell, R.

D. L. Williams, B. J. Ainslie, J. R. Armitage, R. Kashyap, and R. Campbell, “Enhanced UV photosensitivity in boron codoped germanosilicate fibres,” Electron. Lett. 29(1), 45–47 (1993).
[Crossref]

Canning, J.

Caucheteur, C.

Celikin, M.

Chen, S.

Chojetztki, C.

E. Lindner, C. Chojetztki, S. Brueckner, M. Becker, M. Rothhardt, J. Vlekken, and H. Bartelt, “Arrays of regenerated fiber bragg gratings in non-hydrogen-loaded photosensitive fibers for high-temperature sensor networks,” Sensors (Basel) 9(10), 8377–8381 (2009).
[Crossref] [PubMed]

Chong, W. Y.

H. Z. Yang, W. Y. Chong, X. G. Qiao, M. J. Lim, K. S. Lim, M. R. Islam, N. M. Ali, and H. Ahmad, “1.3 μm and 1.55 μm thermally regenerated gratings in hydrogenated boron/germanium co-doped photosensitivity fiber,” IEEE Sens. J. 14(5), 1352–1356 (2014).
[Crossref]

Cook, K.

Das, S.

Dasgupta, K.

Dauger, A.

A. Gaudon, F. Lallet, A. Boulle, A. Lecomte, B. Soulestin, R. Guinebretière, and A. Dauger, “From amorphous phase separations to nanostructured materials in sol–gel derived ZrO2:Eu3+/SiO2 and ZnO/SiO2 composites,” J. Non-Cryst. Solids 352(21–22), 2152–2158 (2006).
[Crossref]

Davis, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Dianov, E. M.

O. V. Butov, E. M. Dianov, and K. M. Golant, “Nitrogen-doped silica-core fibres for Bragg grating sensors operating at elevated temperatures,” Meas. Sci. Technol. 17(5), 975–979 (2006).
[Crossref]

Dumas, J.

C. Urlacher, J. Dumas, J. Serughetti, J. Mugnier, and M. Munoz, “Planar ZrO2 waveguides prepared by the sol-gel process: Structural and optical properties,” J. Sol-Gel Sci. Technol. 8(1–3), 999–1005 (1997).
[Crossref]

Emami, S. D.

D. S. Gunawardena, K. A. Mat-Sharif, M. H. Lai, K. S. Lim, N. Tamchek, N. Y. M. Omar, S. D. Emami, S. Z. Muhamad-Yasin, M. I. Zulkifli, Z. Yusoff, H. Z. Yang, H. A. Abdul-Rashid, and H. Ahmad, “Thermal activation of regenerated grating in hydrogenated gallosilicate fiber,” IEEE Sens. J. 16(6), 1659–1664 (2016).
[Crossref]

Fenton, J.

J. Canning, J. Fenton, and M. Stevenson, “Ultra-strong regenerated gratings,” 2009 14th Optoelectron. Commun. Conf., 9–10 (2009).

Fokine, M.

Friebele, E. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Gaudon, A.

A. Gaudon, F. Lallet, A. Boulle, A. Lecomte, B. Soulestin, R. Guinebretière, and A. Dauger, “From amorphous phase separations to nanostructured materials in sol–gel derived ZrO2:Eu3+/SiO2 and ZnO/SiO2 composites,” J. Non-Cryst. Solids 352(21–22), 2152–2158 (2006).
[Crossref]

Golant, K. M.

O. V. Butov, E. M. Dianov, and K. M. Golant, “Nitrogen-doped silica-core fibres for Bragg grating sensors operating at elevated temperatures,” Meas. Sci. Technol. 17(5), 975–979 (2006).
[Crossref]

Grattan, K. T.

Guinebretière, R.

A. Gaudon, F. Lallet, A. Boulle, A. Lecomte, B. Soulestin, R. Guinebretière, and A. Dauger, “From amorphous phase separations to nanostructured materials in sol–gel derived ZrO2:Eu3+/SiO2 and ZnO/SiO2 composites,” J. Non-Cryst. Solids 352(21–22), 2152–2158 (2006).
[Crossref]

Gunawardena, D. S.

D. S. Gunawardena, K. A. Mat-Sharif, M. H. Lai, K. S. Lim, N. Tamchek, N. Y. M. Omar, S. D. Emami, S. Z. Muhamad-Yasin, M. I. Zulkifli, Z. Yusoff, H. Z. Yang, H. A. Abdul-Rashid, and H. Ahmad, “Thermal activation of regenerated grating in hydrogenated gallosilicate fiber,” IEEE Sens. J. 16(6), 1659–1664 (2016).
[Crossref]

Hambley, P.

J. L. Blows, P. Hambley, and L. Poladian, “Increasing fiber photosensitivity to near-UV radiation by rare earth doping,” IEEE Photonics Technol. Lett. 14(7), 938–940 (2002).
[Crossref]

Hamzah, A.

Harrison, D. E.

D. E. Harrison, N. T. Melamed, and E. C. Subbarao, “A new family of self-activated phosphoros,” J. Electrochem. Soc. 110(1), 23–28 (1963).
[Crossref]

Harun, S. W.

He, J.

Holmberg, P.

Huri, N. A. D.

Islam, M. R.

H. Z. Yang, W. Y. Chong, X. G. Qiao, M. J. Lim, K. S. Lim, M. R. Islam, N. M. Ali, and H. Ahmad, “1.3 μm and 1.55 μm thermally regenerated gratings in hydrogenated boron/germanium co-doped photosensitivity fiber,” IEEE Sens. J. 14(5), 1352–1356 (2014).
[Crossref]

Kahrizi, M.

B. Zhang and M. Kahrizi, “High-temperature resistance fiber Bragg grating,” IEEE Sens. J. 7(4), 586–591 (2007).
[Crossref]

Kalita, M. P.

Kashyap, R.

D. L. Williams, B. J. Ainslie, J. R. Armitage, R. Kashyap, and R. Campbell, “Enhanced UV photosensitivity in boron codoped germanosilicate fibres,” Electron. Lett. 29(1), 45–47 (1993).
[Crossref]

Kersey, A. D.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Kim, H.

H. Kim and P. C. McIntyre, “Spinodal decomposition in amorphous metal–silicate thin films: Phase diagram analysis and interface effects on kinetics,” J. Appl. Phys. 92(9), 5094–5102 (2002).
[Crossref]

Kinet, D.

Koo, K. P.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Lai, M. H.

D. S. Gunawardena, K. A. Mat-Sharif, M. H. Lai, K. S. Lim, N. Tamchek, N. Y. M. Omar, S. D. Emami, S. Z. Muhamad-Yasin, M. I. Zulkifli, Z. Yusoff, H. Z. Yang, H. A. Abdul-Rashid, and H. Ahmad, “Thermal activation of regenerated grating in hydrogenated gallosilicate fiber,” IEEE Sens. J. 16(6), 1659–1664 (2016).
[Crossref]

H. Z. Yang, X. G. Qiao, Y. P. Wang, M. M. Ali, M. H. Lai, K. S. Lim, and H. Ahmad, “In-fiber gratings for simultaneous monitoring temperature and strain in ultra-high temperature,” IEEE Photonics Technol. Lett. 27(1), 58–61 (2015).
[Crossref]

Lallet, F.

A. Gaudon, F. Lallet, A. Boulle, A. Lecomte, B. Soulestin, R. Guinebretière, and A. Dauger, “From amorphous phase separations to nanostructured materials in sol–gel derived ZrO2:Eu3+/SiO2 and ZnO/SiO2 composites,” J. Non-Cryst. Solids 352(21–22), 2152–2158 (2006).
[Crossref]

Laurell, F.

LeBlanc, M.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Lecomte, A.

A. Gaudon, F. Lallet, A. Boulle, A. Lecomte, B. Soulestin, R. Guinebretière, and A. Dauger, “From amorphous phase separations to nanostructured materials in sol–gel derived ZrO2:Eu3+/SiO2 and ZnO/SiO2 composites,” J. Non-Cryst. Solids 352(21–22), 2152–2158 (2006).
[Crossref]

Lim, K. S.

D. S. Gunawardena, K. A. Mat-Sharif, M. H. Lai, K. S. Lim, N. Tamchek, N. Y. M. Omar, S. D. Emami, S. Z. Muhamad-Yasin, M. I. Zulkifli, Z. Yusoff, H. Z. Yang, H. A. Abdul-Rashid, and H. Ahmad, “Thermal activation of regenerated grating in hydrogenated gallosilicate fiber,” IEEE Sens. J. 16(6), 1659–1664 (2016).
[Crossref]

H. Z. Yang, X. G. Qiao, Y. P. Wang, M. M. Ali, M. H. Lai, K. S. Lim, and H. Ahmad, “In-fiber gratings for simultaneous monitoring temperature and strain in ultra-high temperature,” IEEE Photonics Technol. Lett. 27(1), 58–61 (2015).
[Crossref]

H. Z. Yang, W. Y. Chong, X. G. Qiao, M. J. Lim, K. S. Lim, M. R. Islam, N. M. Ali, and H. Ahmad, “1.3 μm and 1.55 μm thermally regenerated gratings in hydrogenated boron/germanium co-doped photosensitivity fiber,” IEEE Sens. J. 14(5), 1352–1356 (2014).
[Crossref]

Lim, K.-S.

Lim, M. J.

H. Z. Yang, W. Y. Chong, X. G. Qiao, M. J. Lim, K. S. Lim, M. R. Islam, N. M. Ali, and H. Ahmad, “1.3 μm and 1.55 μm thermally regenerated gratings in hydrogenated boron/germanium co-doped photosensitivity fiber,” IEEE Sens. J. 14(5), 1352–1356 (2014).
[Crossref]

Lindner, E.

E. Lindner, C. Chojetztki, S. Brueckner, M. Becker, M. Rothhardt, J. Vlekken, and H. Bartelt, “Arrays of regenerated fiber bragg gratings in non-hydrogen-loaded photosensitive fibers for high-temperature sensor networks,” Sensors (Basel) 9(10), 8377–8381 (2009).
[Crossref] [PubMed]

Mat-Sharif, K. A.

D. S. Gunawardena, K. A. Mat-Sharif, M. H. Lai, K. S. Lim, N. Tamchek, N. Y. M. Omar, S. D. Emami, S. Z. Muhamad-Yasin, M. I. Zulkifli, Z. Yusoff, H. Z. Yang, H. A. Abdul-Rashid, and H. Ahmad, “Thermal activation of regenerated grating in hydrogenated gallosilicate fiber,” IEEE Sens. J. 16(6), 1659–1664 (2016).
[Crossref]

McIntyre, P. C.

H. Kim and P. C. McIntyre, “Spinodal decomposition in amorphous metal–silicate thin films: Phase diagram analysis and interface effects on kinetics,” J. Appl. Phys. 92(9), 5094–5102 (2002).
[Crossref]

Mégret, P.

Melamed, N. T.

D. E. Harrison, N. T. Melamed, and E. C. Subbarao, “A new family of self-activated phosphoros,” J. Electrochem. Soc. 110(1), 23–28 (1963).
[Crossref]

Mihailov, S. J.

S. J. Mihailov, “Fiber Bragg grating sensors for harsh environments,” Sensors (Basel) 12(2), 1898–1918 (2012).
[Crossref] [PubMed]

Mugnier, J.

C. Urlacher, J. Dumas, J. Serughetti, J. Mugnier, and M. Munoz, “Planar ZrO2 waveguides prepared by the sol-gel process: Structural and optical properties,” J. Sol-Gel Sci. Technol. 8(1–3), 999–1005 (1997).
[Crossref]

Muhamad-Yasin, S. Z.

D. S. Gunawardena, K. A. Mat-Sharif, M. H. Lai, K. S. Lim, N. Tamchek, N. Y. M. Omar, S. D. Emami, S. Z. Muhamad-Yasin, M. I. Zulkifli, Z. Yusoff, H. Z. Yang, H. A. Abdul-Rashid, and H. Ahmad, “Thermal activation of regenerated grating in hydrogenated gallosilicate fiber,” IEEE Sens. J. 16(6), 1659–1664 (2016).
[Crossref]

Munoz, M.

C. Urlacher, J. Dumas, J. Serughetti, J. Mugnier, and M. Munoz, “Planar ZrO2 waveguides prepared by the sol-gel process: Structural and optical properties,” J. Sol-Gel Sci. Technol. 8(1–3), 999–1005 (1997).
[Crossref]

Nazal, N. A. M.

Omar, N. Y. M.

D. S. Gunawardena, K. A. Mat-Sharif, M. H. Lai, K. S. Lim, N. Tamchek, N. Y. M. Omar, S. D. Emami, S. Z. Muhamad-Yasin, M. I. Zulkifli, Z. Yusoff, H. Z. Yang, H. A. Abdul-Rashid, and H. Ahmad, “Thermal activation of regenerated grating in hydrogenated gallosilicate fiber,” IEEE Sens. J. 16(6), 1659–1664 (2016).
[Crossref]

Pal, M.

Patrick, H. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Paul, M. C.

Poladian, L.

J. L. Blows, P. Hambley, and L. Poladian, “Increasing fiber photosensitivity to near-UV radiation by rare earth doping,” IEEE Photonics Technol. Lett. 14(7), 938–940 (2002).
[Crossref]

Putnam, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Qiao, X. G.

H. Z. Yang, X. G. Qiao, Y. P. Wang, M. M. Ali, M. H. Lai, K. S. Lim, and H. Ahmad, “In-fiber gratings for simultaneous monitoring temperature and strain in ultra-high temperature,” IEEE Photonics Technol. Lett. 27(1), 58–61 (2015).
[Crossref]

H. Z. Yang, X. G. Qiao, S. Das, and M. C. Paul, “Thermal regenerated grating operation at temperatures up to 1400°C using new class of multimaterial glass-based photosensitive fiber,” Opt. Lett. 39(22), 6438–6441 (2014).
[Crossref] [PubMed]

H. Z. Yang, W. Y. Chong, X. G. Qiao, M. J. Lim, K. S. Lim, M. R. Islam, N. M. Ali, and H. Ahmad, “1.3 μm and 1.55 μm thermally regenerated gratings in hydrogenated boron/germanium co-doped photosensitivity fiber,” IEEE Sens. J. 14(5), 1352–1356 (2014).
[Crossref]

Qiu, Y.

Rosei, F.

Rothhardt, M.

E. Lindner, C. Chojetztki, S. Brueckner, M. Becker, M. Rothhardt, J. Vlekken, and H. Bartelt, “Arrays of regenerated fiber bragg gratings in non-hydrogen-loaded photosensitive fibers for high-temperature sensor networks,” Sensors (Basel) 9(10), 8377–8381 (2009).
[Crossref] [PubMed]

Ruediger, A.

Sahu, J. K.

Serughetti, J.

C. Urlacher, J. Dumas, J. Serughetti, J. Mugnier, and M. Munoz, “Planar ZrO2 waveguides prepared by the sol-gel process: Structural and optical properties,” J. Sol-Gel Sci. Technol. 8(1–3), 999–1005 (1997).
[Crossref]

Shen, Y.

Soulestin, B.

A. Gaudon, F. Lallet, A. Boulle, A. Lecomte, B. Soulestin, R. Guinebretière, and A. Dauger, “From amorphous phase separations to nanostructured materials in sol–gel derived ZrO2:Eu3+/SiO2 and ZnO/SiO2 composites,” J. Non-Cryst. Solids 352(21–22), 2152–2158 (2006).
[Crossref]

Stevenson, M.

Subbarao, E. C.

D. E. Harrison, N. T. Melamed, and E. C. Subbarao, “A new family of self-activated phosphoros,” J. Electrochem. Soc. 110(1), 23–28 (1963).
[Crossref]

Sun, T.

Tamchek, N.

D. S. Gunawardena, K. A. Mat-Sharif, M. H. Lai, K. S. Lim, N. Tamchek, N. Y. M. Omar, S. D. Emami, S. Z. Muhamad-Yasin, M. I. Zulkifli, Z. Yusoff, H. Z. Yang, H. A. Abdul-Rashid, and H. Ahmad, “Thermal activation of regenerated grating in hydrogenated gallosilicate fiber,” IEEE Sens. J. 16(6), 1659–1664 (2016).
[Crossref]

Urlacher, C.

C. Urlacher, J. Dumas, J. Serughetti, J. Mugnier, and M. Munoz, “Planar ZrO2 waveguides prepared by the sol-gel process: Structural and optical properties,” J. Sol-Gel Sci. Technol. 8(1–3), 999–1005 (1997).
[Crossref]

Vlekken, J.

E. Lindner, C. Chojetztki, S. Brueckner, M. Becker, M. Rothhardt, J. Vlekken, and H. Bartelt, “Arrays of regenerated fiber bragg gratings in non-hydrogen-loaded photosensitive fibers for high-temperature sensor networks,” Sensors (Basel) 9(10), 8377–8381 (2009).
[Crossref] [PubMed]

Wang, Y. P.

H. Z. Yang, X. G. Qiao, Y. P. Wang, M. M. Ali, M. H. Lai, K. S. Lim, and H. Ahmad, “In-fiber gratings for simultaneous monitoring temperature and strain in ultra-high temperature,” IEEE Photonics Technol. Lett. 27(1), 58–61 (2015).
[Crossref]

Williams, D. L.

D. L. Williams, B. J. Ainslie, J. R. Armitage, R. Kashyap, and R. Campbell, “Enhanced UV photosensitivity in boron codoped germanosilicate fibres,” Electron. Lett. 29(1), 45–47 (1993).
[Crossref]

Yang, H. Z.

D. S. Gunawardena, K. A. Mat-Sharif, M. H. Lai, K. S. Lim, N. Tamchek, N. Y. M. Omar, S. D. Emami, S. Z. Muhamad-Yasin, M. I. Zulkifli, Z. Yusoff, H. Z. Yang, H. A. Abdul-Rashid, and H. Ahmad, “Thermal activation of regenerated grating in hydrogenated gallosilicate fiber,” IEEE Sens. J. 16(6), 1659–1664 (2016).
[Crossref]

H. Z. Yang, X. G. Qiao, Y. P. Wang, M. M. Ali, M. H. Lai, K. S. Lim, and H. Ahmad, “In-fiber gratings for simultaneous monitoring temperature and strain in ultra-high temperature,” IEEE Photonics Technol. Lett. 27(1), 58–61 (2015).
[Crossref]

H. Z. Yang, X. G. Qiao, S. Das, and M. C. Paul, “Thermal regenerated grating operation at temperatures up to 1400°C using new class of multimaterial glass-based photosensitive fiber,” Opt. Lett. 39(22), 6438–6441 (2014).
[Crossref] [PubMed]

H. Z. Yang, W. Y. Chong, X. G. Qiao, M. J. Lim, K. S. Lim, M. R. Islam, N. M. Ali, and H. Ahmad, “1.3 μm and 1.55 μm thermally regenerated gratings in hydrogenated boron/germanium co-doped photosensitivity fiber,” IEEE Sens. J. 14(5), 1352–1356 (2014).
[Crossref]

Yang, H.-Z.

Yoo, S.

Yusoff, Z.

D. S. Gunawardena, K. A. Mat-Sharif, M. H. Lai, K. S. Lim, N. Tamchek, N. Y. M. Omar, S. D. Emami, S. Z. Muhamad-Yasin, M. I. Zulkifli, Z. Yusoff, H. Z. Yang, H. A. Abdul-Rashid, and H. Ahmad, “Thermal activation of regenerated grating in hydrogenated gallosilicate fiber,” IEEE Sens. J. 16(6), 1659–1664 (2016).
[Crossref]

Zaini, M. K. A.

Zhang, B.

B. Zhang and M. Kahrizi, “High-temperature resistance fiber Bragg grating,” IEEE Sens. J. 7(4), 586–591 (2007).
[Crossref]

Zhao, W.

Zulkifli, M. I.

D. S. Gunawardena, K. A. Mat-Sharif, M. H. Lai, K. S. Lim, N. Tamchek, N. Y. M. Omar, S. D. Emami, S. Z. Muhamad-Yasin, M. I. Zulkifli, Z. Yusoff, H. Z. Yang, H. A. Abdul-Rashid, and H. Ahmad, “Thermal activation of regenerated grating in hydrogenated gallosilicate fiber,” IEEE Sens. J. 16(6), 1659–1664 (2016).
[Crossref]

Appl. Opt. (1)

Electron. Lett. (1)

D. L. Williams, B. J. Ainslie, J. R. Armitage, R. Kashyap, and R. Campbell, “Enhanced UV photosensitivity in boron codoped germanosilicate fibres,” Electron. Lett. 29(1), 45–47 (1993).
[Crossref]

IEEE Photonics Technol. Lett. (2)

J. L. Blows, P. Hambley, and L. Poladian, “Increasing fiber photosensitivity to near-UV radiation by rare earth doping,” IEEE Photonics Technol. Lett. 14(7), 938–940 (2002).
[Crossref]

H. Z. Yang, X. G. Qiao, Y. P. Wang, M. M. Ali, M. H. Lai, K. S. Lim, and H. Ahmad, “In-fiber gratings for simultaneous monitoring temperature and strain in ultra-high temperature,” IEEE Photonics Technol. Lett. 27(1), 58–61 (2015).
[Crossref]

IEEE Sens. J. (3)

D. S. Gunawardena, K. A. Mat-Sharif, M. H. Lai, K. S. Lim, N. Tamchek, N. Y. M. Omar, S. D. Emami, S. Z. Muhamad-Yasin, M. I. Zulkifli, Z. Yusoff, H. Z. Yang, H. A. Abdul-Rashid, and H. Ahmad, “Thermal activation of regenerated grating in hydrogenated gallosilicate fiber,” IEEE Sens. J. 16(6), 1659–1664 (2016).
[Crossref]

B. Zhang and M. Kahrizi, “High-temperature resistance fiber Bragg grating,” IEEE Sens. J. 7(4), 586–591 (2007).
[Crossref]

H. Z. Yang, W. Y. Chong, X. G. Qiao, M. J. Lim, K. S. Lim, M. R. Islam, N. M. Ali, and H. Ahmad, “1.3 μm and 1.55 μm thermally regenerated gratings in hydrogenated boron/germanium co-doped photosensitivity fiber,” IEEE Sens. J. 14(5), 1352–1356 (2014).
[Crossref]

J. Appl. Phys. (1)

H. Kim and P. C. McIntyre, “Spinodal decomposition in amorphous metal–silicate thin films: Phase diagram analysis and interface effects on kinetics,” J. Appl. Phys. 92(9), 5094–5102 (2002).
[Crossref]

J. Electrochem. Soc. (1)

D. E. Harrison, N. T. Melamed, and E. C. Subbarao, “A new family of self-activated phosphoros,” J. Electrochem. Soc. 110(1), 23–28 (1963).
[Crossref]

J. Lightwave Technol. (3)

J. Non-Cryst. Solids (1)

A. Gaudon, F. Lallet, A. Boulle, A. Lecomte, B. Soulestin, R. Guinebretière, and A. Dauger, “From amorphous phase separations to nanostructured materials in sol–gel derived ZrO2:Eu3+/SiO2 and ZnO/SiO2 composites,” J. Non-Cryst. Solids 352(21–22), 2152–2158 (2006).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Sol-Gel Sci. Technol. (1)

C. Urlacher, J. Dumas, J. Serughetti, J. Mugnier, and M. Munoz, “Planar ZrO2 waveguides prepared by the sol-gel process: Structural and optical properties,” J. Sol-Gel Sci. Technol. 8(1–3), 999–1005 (1997).
[Crossref]

Meas. Sci. Technol. (1)

O. V. Butov, E. M. Dianov, and K. M. Golant, “Nitrogen-doped silica-core fibres for Bragg grating sensors operating at elevated temperatures,” Meas. Sci. Technol. 17(5), 975–979 (2006).
[Crossref]

Opt. Express (3)

Opt. Lett. (4)

Sensors (Basel) (3)

J. Canning, M. Stevenson, S. Bandyopadhyay, and K. Cook, “Extreme silica optical fibre gratings,” Sensors (Basel) 8(10), 6448–6452 (2008).
[Crossref] [PubMed]

S. J. Mihailov, “Fiber Bragg grating sensors for harsh environments,” Sensors (Basel) 12(2), 1898–1918 (2012).
[Crossref] [PubMed]

E. Lindner, C. Chojetztki, S. Brueckner, M. Becker, M. Rothhardt, J. Vlekken, and H. Bartelt, “Arrays of regenerated fiber bragg gratings in non-hydrogen-loaded photosensitive fibers for high-temperature sensor networks,” Sensors (Basel) 9(10), 8377–8381 (2009).
[Crossref] [PubMed]

Other (2)

J. Canning, J. Fenton, and M. Stevenson, “Ultra-strong regenerated gratings,” 2009 14th Optoelectron. Commun. Conf., 9–10 (2009).

J. Canning, S. Bandyopadhyay, P. Biswas, M. Aslund, M. Stevenson, and K. Cook, “Regenerated fibre Bragg gratings,” in Frontiers in Guided Wave Optics and Optoelectronics, (IntechOpen, 2010), pp. 363–384.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Cross sectional view of photosensitive multi-material glass based fiber (Er-ZYAG).
Fig. 2
Fig. 2 Elemental distribution curve of photosensitive multi-material glass based fiber (Er-ZYAG) measured by EPMA.
Fig. 3
Fig. 3 Refractive index profile of photosensitive multi-material glass based fiber (Er-ZYAG).
Fig. 4
Fig. 4 The experimental setup for the isothermal annealing process.
Fig. 5
Fig. 5 Reflection and transmission spectra of SG and RG at room temperature 25°C.
Fig. 6
Fig. 6 Evolution of grating reflectivity during thermal regeneration process.
Fig. 7
Fig. 7 Wavelength stability of proposed RG over 3 hours.
Fig. 8
Fig. 8 Evolution of coupling coefficient, κ during thermal regeneration process.
Fig. 9
Fig. 9 TEM along with ED pattern of Er-ZYAG fiber (a) before and (b) after thermal annealing, EDX spectra taken on the (c) amorphous particle and (d) crystalline particle.

Tables (2)

Tables Icon

Table 1 Specifications of the developed new class of photosensitive optical fiber (Er-ZYAG).

Tables Icon

Table 2 The summary of the regeneration ratio of fundamental mode of Er-ZYAG compared to other types of fibers.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

κ= tan h 1 R peak l

Metrics