Abstract

Optical fibers are inherently designed to allow no interaction between the guided light and the surrounding optical radiation. Thus, very few optical fiber-based technologies exist in the field of optical radiation sensing. Accomplishing fully-distributed optical radiation sensing appears then as even more challenging since, on top of the lack of sensitivity explained above, we should add the need of addressing thousands of measurement points in a single, continuous optical cable. Nevertheless, it is clear that there exists a number of applications which could benefit from such a distributed sensing scheme, particularly if the sensitivity was sufficiently high to be able to measure correctly variations in optical radiation levels compatible with the earth surface. Distributed optical radiation sensing over large distances could be employed in applications such as Dynamic Line Rating (DLR), where it is known that solar radiation can be an important limiting factor in energy transmission through overhead power cables, and also in other applications such as thermo-solar energy. In this work, we present the proof-of-concept of the first distributed bolometer based on optical fiber technology and capable of detecting absolute changes of irradiance. The core idea of the system is the use of a special fiber coating with high emissivity (e.g., carbon coating or black paint). The high absorption of these coatings translates into a temperature change that can be read with sufficiently high sensitivity using phase-sensitive reflectometry. To demonstrate the concept, we interrogate distinct black-coated optical fibers using a chirped-pulse ΦOTDR, and we readily demonstrate the detection of light with resolutions in the order of 1% of the reference solar irradiance, offering a high-potential technology for integration in the aforementioned applications.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

Corrections

12 April 2019: A typographical correction was made to the author listing.


OSA Recommended Articles
Long-range distributed optical fiber hot-wire anemometer based on chirped-pulse ΦOTDR

Andres Garcia-Ruiz, Alejandro Dominguez-Lopez, Juan Pastor-Graells, Hugo F. Martins, Sonia Martin-Lopez, and Miguel Gonzalez-Herraez
Opt. Express 26(1) 463-476 (2018)

Distributed photothermal spectroscopy in microstructured optical fibers: towards high-resolution mapping of gas presence over long distances

Andres Garcia-Ruiz, Juan Pastor-Graells, Hugo F. Martins, Kenny Hey Tow, Luc Thévenaz, Sonia Martin-Lopez, and Miguel Gonzalez-Herraez
Opt. Express 25(3) 1789-1805 (2017)

Real time dynamic strain monitoring of optical links using the backreflection of live PSK data

H. F. Martins, K. Shi, B. C. Thomsen, S. Martin-Lopez, M. Gonzalez-Herraez, and S. J. Savory
Opt. Express 24(19) 22303-22318 (2016)

References

  • View by:
  • |
  • |
  • |

  1. Y. Yang, D. Divan, R. G. Harley, and T. G. Habetler, “Power line sensornet - a new concept for power grid monitoring,” in Power Eng. Soc. General Meeting, (IEEE, 2006).
    [Crossref]
  2. D. Douglass, W. Chisholm, G. Davidson, I. Grant, K. Lindsey, M. Lancaster, D. Lawry, T. McCarthy, C. Nascimento, M. Pasha, J. Reding, T. Seppa, J. Toth, and P. Waltz, “Real-time overhead transmission-line monitoring for dynamic rating,” IEEE Trans. Power Deliv. 31(3), 921–927 (2016).
    [Crossref]
  3. S. Karimi, P. Musilek, and A. M. Knight, “Dynamic thermal rating of transmission lines: A review,” Renew. Sustain. Energy Rev. 91, 600–612 (2018).
    [Crossref]
  4. A. Michiorri, H. Nguyen, S. Alessandrini, J. B. Bremnes, S. Dierer, E. Ferrero, B. Nygaard, P. Pinson, N. Thomaidis, and S. Uski, “Forecasting for dynamic line rating,” Renew. Sustain. Energy Rev. 52, 1713–1730 (2015).
    [Crossref]
  5. D. Inaudi and B. Glisic, “Long-range pipeline monitoring by distributed fiber optic sensing,” J. Press. Vessel Technol. 132(1), 011701 (2010).
    [Crossref]
  6. X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors (Basel) 12(7), 8601–8639 (2012).
    [Crossref] [PubMed]
  7. G. Yilmaz and S. E. Karlik, “A distributed optical fiber sensor for temperature detection in power cables,” Sens. Actuators A Phys. 125(2), 148–155 (2006).
    [Crossref]
  8. G. Bolognini, J. Park, M. A. Soto, N. Park, and F. Di Pasquale, “Analysis of distributed temperature sensing based on Raman scattering using OTDR coding and discrete Raman amplification,” Meas. Sci. Technol. 18(10), 3211–3218 (2007).
    [Crossref]
  9. M. A. Soto, T. Nannipieri, A. Signorini, A. Lazzeri, F. Baronti, R. Roncella, G. Bolognini, and F. Di Pasquale, “Raman-based distributed temperature sensor with 1 m spatial resolution over 26 km SMF using low-repetition-rate cyclic pulse coding,” Opt. Lett. 36(13), 2557–2559 (2011).
    [Crossref] [PubMed]
  10. X. Angulo-Vinuesa, S. Martin-Lopez, J. Nuño, P. Corredera, J. D. Ania-Castañon, L. Thévenaz, and M. Gonzalez-Herraez, “Raman-assisted brillouin distributed temperature sensor over 100 km featuring 2 m resolution and 1.2°C uncertainty,” J. Lightwave Technol. 30(8), 1060–1065 (2012).
    [Crossref]
  11. S. Le Floch, F. Sauser, M. A. Soto, and L. Thévenaz, “Time/frequency coding for Brillouin distributed sensors,” Proc. SPIE 8421, 84211J (2012).
    [Crossref]
  12. M. A. Soto, G. Bolognini, and F. Di Pasquale, “Analysis of pulse modulation format in coded BOTDA sensors,” Opt. Express 18(14), 14878–14892 (2010).
    [Crossref] [PubMed]
  13. M. A. Soto, G. Bolognini, F. Di Pasquale, and L. Thévenaz, “Simplex-coded BOTDA fiber sensor with 1 m spatial resolution over a 50 km range,” Opt. Lett. 35(2), 259–261 (2010).
    [Crossref] [PubMed]
  14. J. C. Juarez, E. W. Maier, K. N. Choi, and H. F. Taylor, “Distributed fiber-optic intrusion sensor system,” J. Lightwave Technol. 23(6), 2081–2087 (2005).
    [Crossref]
  15. H. F. Martins, S. Martin-Lopez, P. Corredera, M. L. Filograno, O. Frazão, and M. González-Herráez, “Coherent noise reduction in high visibility phase-sensitive optical time domain reflectometer for distributed sensing of ultrasonic waves,” J. Lightwave Technol. 31(23), 3631–3637 (2013).
    [Crossref]
  16. Z. Qin, L. Chen, and X. Bao, “Wavelet denoising method for improving detection performance of distributed vibration sensor,” IEEE Photonics Technol. Lett. 24(7), 542–544 (2012).
    [Crossref]
  17. L. B. Liokumovich, N. A. Ushakov, O. I. Kotov, M. A. Bisyarin, and A. H. Hartog, “Fundamentals of optical fiber sensing schemes based on coherent optical time domain reflectometry: signal model under static fiber conditions,” J. Lightwave Technol. 33(17), 3660–3671 (2015).
    [Crossref]
  18. Y. Koyamada, M. Imahama, K. Kubota, and K. Hogari, “Fiber-optic distributed strain and temperature sensing with very high measurand resolution over long range using coherent OTDR,” J. Lightwave Technol. 27(9), 1142–1146 (2009).
    [Crossref]
  19. H. F. Martins, S. Martin-Lopez, P. Corredera, M. L. Filograno, O. Frazão, and M. Gonzalez-Herraez, “Phase-sensitive optical time domain reflectometer assisted by first-order Raman amplification for distributed vibration sensing over >100km,” J. Lightwave Technol. 32(8), 1510–1518 (2014).
    [Crossref]
  20. F. Tanimola and D. Hill, “Distributed fibre optic sensors for pipeline protection,” J. Nat. Gas Sci. Eng. 1(4–5), 134–143 (2009).
    [Crossref]
  21. A. Ukil, H. Braendle, and P. Krippner, “Distributed temperature sensing: review of technology and applications,” IEEE Sens. J. 12(5), 885–892 (2012).
    [Crossref]
  22. A. D. Kersey, “A review of recent developments in fiber optic sensor technology,” Opt. Fiber Technol. 2(3), 291–317 (1996).
    [Crossref]
  23. J. Pastor-Graells, H. F. Martins, A. Garcia-Ruiz, S. Martin-Lopez, and M. Gonzalez-Herraez, “Single-shot distributed temperature and strain tracking using direct detection phase-sensitive OTDR with chirped pulses,” Opt. Express 24(12), 13121–13133 (2016).
    [Crossref] [PubMed]
  24. A. Garcia-Ruiz, J. Pastor-Graells, H. F. Martins, K. H. Tow, L. Thévenaz, S. Martin-Lopez, and M. Gonzalez-Herraez, “Distributed photothermal spectroscopy in microstructured optical fibers: towards high-resolution mapping of gas presence over long distances,” Opt. Express 25(3), 1789–1805 (2017).
    [Crossref] [PubMed]
  25. ASTM, “Standard tables for reference solar spectral irradiances: direct normal and hemispherical on 37° tilted surface,” 14(4), (2012).
  26. A. Sudirman, L. Norin, and W. Margulis, “Increased sensitivity in fiber-based spectroscopy using carbon-coated fiber,” Opt. Express 20(27), 28049–28055 (2012).
    [Crossref] [PubMed]

2018 (1)

S. Karimi, P. Musilek, and A. M. Knight, “Dynamic thermal rating of transmission lines: A review,” Renew. Sustain. Energy Rev. 91, 600–612 (2018).
[Crossref]

2017 (1)

2016 (2)

J. Pastor-Graells, H. F. Martins, A. Garcia-Ruiz, S. Martin-Lopez, and M. Gonzalez-Herraez, “Single-shot distributed temperature and strain tracking using direct detection phase-sensitive OTDR with chirped pulses,” Opt. Express 24(12), 13121–13133 (2016).
[Crossref] [PubMed]

D. Douglass, W. Chisholm, G. Davidson, I. Grant, K. Lindsey, M. Lancaster, D. Lawry, T. McCarthy, C. Nascimento, M. Pasha, J. Reding, T. Seppa, J. Toth, and P. Waltz, “Real-time overhead transmission-line monitoring for dynamic rating,” IEEE Trans. Power Deliv. 31(3), 921–927 (2016).
[Crossref]

2015 (2)

L. B. Liokumovich, N. A. Ushakov, O. I. Kotov, M. A. Bisyarin, and A. H. Hartog, “Fundamentals of optical fiber sensing schemes based on coherent optical time domain reflectometry: signal model under static fiber conditions,” J. Lightwave Technol. 33(17), 3660–3671 (2015).
[Crossref]

A. Michiorri, H. Nguyen, S. Alessandrini, J. B. Bremnes, S. Dierer, E. Ferrero, B. Nygaard, P. Pinson, N. Thomaidis, and S. Uski, “Forecasting for dynamic line rating,” Renew. Sustain. Energy Rev. 52, 1713–1730 (2015).
[Crossref]

2014 (1)

2013 (1)

2012 (6)

Z. Qin, L. Chen, and X. Bao, “Wavelet denoising method for improving detection performance of distributed vibration sensor,” IEEE Photonics Technol. Lett. 24(7), 542–544 (2012).
[Crossref]

X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors (Basel) 12(7), 8601–8639 (2012).
[Crossref] [PubMed]

X. Angulo-Vinuesa, S. Martin-Lopez, J. Nuño, P. Corredera, J. D. Ania-Castañon, L. Thévenaz, and M. Gonzalez-Herraez, “Raman-assisted brillouin distributed temperature sensor over 100 km featuring 2 m resolution and 1.2°C uncertainty,” J. Lightwave Technol. 30(8), 1060–1065 (2012).
[Crossref]

S. Le Floch, F. Sauser, M. A. Soto, and L. Thévenaz, “Time/frequency coding for Brillouin distributed sensors,” Proc. SPIE 8421, 84211J (2012).
[Crossref]

A. Ukil, H. Braendle, and P. Krippner, “Distributed temperature sensing: review of technology and applications,” IEEE Sens. J. 12(5), 885–892 (2012).
[Crossref]

A. Sudirman, L. Norin, and W. Margulis, “Increased sensitivity in fiber-based spectroscopy using carbon-coated fiber,” Opt. Express 20(27), 28049–28055 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (3)

2009 (2)

2007 (1)

G. Bolognini, J. Park, M. A. Soto, N. Park, and F. Di Pasquale, “Analysis of distributed temperature sensing based on Raman scattering using OTDR coding and discrete Raman amplification,” Meas. Sci. Technol. 18(10), 3211–3218 (2007).
[Crossref]

2006 (1)

G. Yilmaz and S. E. Karlik, “A distributed optical fiber sensor for temperature detection in power cables,” Sens. Actuators A Phys. 125(2), 148–155 (2006).
[Crossref]

2005 (1)

1996 (1)

A. D. Kersey, “A review of recent developments in fiber optic sensor technology,” Opt. Fiber Technol. 2(3), 291–317 (1996).
[Crossref]

Alessandrini, S.

A. Michiorri, H. Nguyen, S. Alessandrini, J. B. Bremnes, S. Dierer, E. Ferrero, B. Nygaard, P. Pinson, N. Thomaidis, and S. Uski, “Forecasting for dynamic line rating,” Renew. Sustain. Energy Rev. 52, 1713–1730 (2015).
[Crossref]

Angulo-Vinuesa, X.

Ania-Castañon, J. D.

Bao, X.

X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors (Basel) 12(7), 8601–8639 (2012).
[Crossref] [PubMed]

Z. Qin, L. Chen, and X. Bao, “Wavelet denoising method for improving detection performance of distributed vibration sensor,” IEEE Photonics Technol. Lett. 24(7), 542–544 (2012).
[Crossref]

Baronti, F.

Bisyarin, M. A.

Bolognini, G.

Braendle, H.

A. Ukil, H. Braendle, and P. Krippner, “Distributed temperature sensing: review of technology and applications,” IEEE Sens. J. 12(5), 885–892 (2012).
[Crossref]

Bremnes, J. B.

A. Michiorri, H. Nguyen, S. Alessandrini, J. B. Bremnes, S. Dierer, E. Ferrero, B. Nygaard, P. Pinson, N. Thomaidis, and S. Uski, “Forecasting for dynamic line rating,” Renew. Sustain. Energy Rev. 52, 1713–1730 (2015).
[Crossref]

Chen, L.

X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors (Basel) 12(7), 8601–8639 (2012).
[Crossref] [PubMed]

Z. Qin, L. Chen, and X. Bao, “Wavelet denoising method for improving detection performance of distributed vibration sensor,” IEEE Photonics Technol. Lett. 24(7), 542–544 (2012).
[Crossref]

Chisholm, W.

D. Douglass, W. Chisholm, G. Davidson, I. Grant, K. Lindsey, M. Lancaster, D. Lawry, T. McCarthy, C. Nascimento, M. Pasha, J. Reding, T. Seppa, J. Toth, and P. Waltz, “Real-time overhead transmission-line monitoring for dynamic rating,” IEEE Trans. Power Deliv. 31(3), 921–927 (2016).
[Crossref]

Choi, K. N.

Corredera, P.

Davidson, G.

D. Douglass, W. Chisholm, G. Davidson, I. Grant, K. Lindsey, M. Lancaster, D. Lawry, T. McCarthy, C. Nascimento, M. Pasha, J. Reding, T. Seppa, J. Toth, and P. Waltz, “Real-time overhead transmission-line monitoring for dynamic rating,” IEEE Trans. Power Deliv. 31(3), 921–927 (2016).
[Crossref]

Di Pasquale, F.

Dierer, S.

A. Michiorri, H. Nguyen, S. Alessandrini, J. B. Bremnes, S. Dierer, E. Ferrero, B. Nygaard, P. Pinson, N. Thomaidis, and S. Uski, “Forecasting for dynamic line rating,” Renew. Sustain. Energy Rev. 52, 1713–1730 (2015).
[Crossref]

Douglass, D.

D. Douglass, W. Chisholm, G. Davidson, I. Grant, K. Lindsey, M. Lancaster, D. Lawry, T. McCarthy, C. Nascimento, M. Pasha, J. Reding, T. Seppa, J. Toth, and P. Waltz, “Real-time overhead transmission-line monitoring for dynamic rating,” IEEE Trans. Power Deliv. 31(3), 921–927 (2016).
[Crossref]

Ferrero, E.

A. Michiorri, H. Nguyen, S. Alessandrini, J. B. Bremnes, S. Dierer, E. Ferrero, B. Nygaard, P. Pinson, N. Thomaidis, and S. Uski, “Forecasting for dynamic line rating,” Renew. Sustain. Energy Rev. 52, 1713–1730 (2015).
[Crossref]

Filograno, M. L.

Frazão, O.

Garcia-Ruiz, A.

Glisic, B.

D. Inaudi and B. Glisic, “Long-range pipeline monitoring by distributed fiber optic sensing,” J. Press. Vessel Technol. 132(1), 011701 (2010).
[Crossref]

Gonzalez-Herraez, M.

González-Herráez, M.

Grant, I.

D. Douglass, W. Chisholm, G. Davidson, I. Grant, K. Lindsey, M. Lancaster, D. Lawry, T. McCarthy, C. Nascimento, M. Pasha, J. Reding, T. Seppa, J. Toth, and P. Waltz, “Real-time overhead transmission-line monitoring for dynamic rating,” IEEE Trans. Power Deliv. 31(3), 921–927 (2016).
[Crossref]

Hartog, A. H.

Hill, D.

F. Tanimola and D. Hill, “Distributed fibre optic sensors for pipeline protection,” J. Nat. Gas Sci. Eng. 1(4–5), 134–143 (2009).
[Crossref]

Hogari, K.

Imahama, M.

Inaudi, D.

D. Inaudi and B. Glisic, “Long-range pipeline monitoring by distributed fiber optic sensing,” J. Press. Vessel Technol. 132(1), 011701 (2010).
[Crossref]

Juarez, J. C.

Karimi, S.

S. Karimi, P. Musilek, and A. M. Knight, “Dynamic thermal rating of transmission lines: A review,” Renew. Sustain. Energy Rev. 91, 600–612 (2018).
[Crossref]

Karlik, S. E.

G. Yilmaz and S. E. Karlik, “A distributed optical fiber sensor for temperature detection in power cables,” Sens. Actuators A Phys. 125(2), 148–155 (2006).
[Crossref]

Kersey, A. D.

A. D. Kersey, “A review of recent developments in fiber optic sensor technology,” Opt. Fiber Technol. 2(3), 291–317 (1996).
[Crossref]

Knight, A. M.

S. Karimi, P. Musilek, and A. M. Knight, “Dynamic thermal rating of transmission lines: A review,” Renew. Sustain. Energy Rev. 91, 600–612 (2018).
[Crossref]

Kotov, O. I.

Koyamada, Y.

Krippner, P.

A. Ukil, H. Braendle, and P. Krippner, “Distributed temperature sensing: review of technology and applications,” IEEE Sens. J. 12(5), 885–892 (2012).
[Crossref]

Kubota, K.

Lancaster, M.

D. Douglass, W. Chisholm, G. Davidson, I. Grant, K. Lindsey, M. Lancaster, D. Lawry, T. McCarthy, C. Nascimento, M. Pasha, J. Reding, T. Seppa, J. Toth, and P. Waltz, “Real-time overhead transmission-line monitoring for dynamic rating,” IEEE Trans. Power Deliv. 31(3), 921–927 (2016).
[Crossref]

Lawry, D.

D. Douglass, W. Chisholm, G. Davidson, I. Grant, K. Lindsey, M. Lancaster, D. Lawry, T. McCarthy, C. Nascimento, M. Pasha, J. Reding, T. Seppa, J. Toth, and P. Waltz, “Real-time overhead transmission-line monitoring for dynamic rating,” IEEE Trans. Power Deliv. 31(3), 921–927 (2016).
[Crossref]

Lazzeri, A.

Le Floch, S.

S. Le Floch, F. Sauser, M. A. Soto, and L. Thévenaz, “Time/frequency coding for Brillouin distributed sensors,” Proc. SPIE 8421, 84211J (2012).
[Crossref]

Lindsey, K.

D. Douglass, W. Chisholm, G. Davidson, I. Grant, K. Lindsey, M. Lancaster, D. Lawry, T. McCarthy, C. Nascimento, M. Pasha, J. Reding, T. Seppa, J. Toth, and P. Waltz, “Real-time overhead transmission-line monitoring for dynamic rating,” IEEE Trans. Power Deliv. 31(3), 921–927 (2016).
[Crossref]

Liokumovich, L. B.

Maier, E. W.

Margulis, W.

Martin-Lopez, S.

A. Garcia-Ruiz, J. Pastor-Graells, H. F. Martins, K. H. Tow, L. Thévenaz, S. Martin-Lopez, and M. Gonzalez-Herraez, “Distributed photothermal spectroscopy in microstructured optical fibers: towards high-resolution mapping of gas presence over long distances,” Opt. Express 25(3), 1789–1805 (2017).
[Crossref] [PubMed]

J. Pastor-Graells, H. F. Martins, A. Garcia-Ruiz, S. Martin-Lopez, and M. Gonzalez-Herraez, “Single-shot distributed temperature and strain tracking using direct detection phase-sensitive OTDR with chirped pulses,” Opt. Express 24(12), 13121–13133 (2016).
[Crossref] [PubMed]

H. F. Martins, S. Martin-Lopez, P. Corredera, M. L. Filograno, O. Frazão, and M. Gonzalez-Herraez, “Phase-sensitive optical time domain reflectometer assisted by first-order Raman amplification for distributed vibration sensing over >100km,” J. Lightwave Technol. 32(8), 1510–1518 (2014).
[Crossref]

H. F. Martins, S. Martin-Lopez, P. Corredera, M. L. Filograno, O. Frazão, and M. González-Herráez, “Coherent noise reduction in high visibility phase-sensitive optical time domain reflectometer for distributed sensing of ultrasonic waves,” J. Lightwave Technol. 31(23), 3631–3637 (2013).
[Crossref]

X. Angulo-Vinuesa, S. Martin-Lopez, J. Nuño, P. Corredera, J. D. Ania-Castañon, L. Thévenaz, and M. Gonzalez-Herraez, “Raman-assisted brillouin distributed temperature sensor over 100 km featuring 2 m resolution and 1.2°C uncertainty,” J. Lightwave Technol. 30(8), 1060–1065 (2012).
[Crossref]

Martins, H. F.

McCarthy, T.

D. Douglass, W. Chisholm, G. Davidson, I. Grant, K. Lindsey, M. Lancaster, D. Lawry, T. McCarthy, C. Nascimento, M. Pasha, J. Reding, T. Seppa, J. Toth, and P. Waltz, “Real-time overhead transmission-line monitoring for dynamic rating,” IEEE Trans. Power Deliv. 31(3), 921–927 (2016).
[Crossref]

Michiorri, A.

A. Michiorri, H. Nguyen, S. Alessandrini, J. B. Bremnes, S. Dierer, E. Ferrero, B. Nygaard, P. Pinson, N. Thomaidis, and S. Uski, “Forecasting for dynamic line rating,” Renew. Sustain. Energy Rev. 52, 1713–1730 (2015).
[Crossref]

Musilek, P.

S. Karimi, P. Musilek, and A. M. Knight, “Dynamic thermal rating of transmission lines: A review,” Renew. Sustain. Energy Rev. 91, 600–612 (2018).
[Crossref]

Nannipieri, T.

Nascimento, C.

D. Douglass, W. Chisholm, G. Davidson, I. Grant, K. Lindsey, M. Lancaster, D. Lawry, T. McCarthy, C. Nascimento, M. Pasha, J. Reding, T. Seppa, J. Toth, and P. Waltz, “Real-time overhead transmission-line monitoring for dynamic rating,” IEEE Trans. Power Deliv. 31(3), 921–927 (2016).
[Crossref]

Nguyen, H.

A. Michiorri, H. Nguyen, S. Alessandrini, J. B. Bremnes, S. Dierer, E. Ferrero, B. Nygaard, P. Pinson, N. Thomaidis, and S. Uski, “Forecasting for dynamic line rating,” Renew. Sustain. Energy Rev. 52, 1713–1730 (2015).
[Crossref]

Norin, L.

Nuño, J.

Nygaard, B.

A. Michiorri, H. Nguyen, S. Alessandrini, J. B. Bremnes, S. Dierer, E. Ferrero, B. Nygaard, P. Pinson, N. Thomaidis, and S. Uski, “Forecasting for dynamic line rating,” Renew. Sustain. Energy Rev. 52, 1713–1730 (2015).
[Crossref]

Park, J.

G. Bolognini, J. Park, M. A. Soto, N. Park, and F. Di Pasquale, “Analysis of distributed temperature sensing based on Raman scattering using OTDR coding and discrete Raman amplification,” Meas. Sci. Technol. 18(10), 3211–3218 (2007).
[Crossref]

Park, N.

G. Bolognini, J. Park, M. A. Soto, N. Park, and F. Di Pasquale, “Analysis of distributed temperature sensing based on Raman scattering using OTDR coding and discrete Raman amplification,” Meas. Sci. Technol. 18(10), 3211–3218 (2007).
[Crossref]

Pasha, M.

D. Douglass, W. Chisholm, G. Davidson, I. Grant, K. Lindsey, M. Lancaster, D. Lawry, T. McCarthy, C. Nascimento, M. Pasha, J. Reding, T. Seppa, J. Toth, and P. Waltz, “Real-time overhead transmission-line monitoring for dynamic rating,” IEEE Trans. Power Deliv. 31(3), 921–927 (2016).
[Crossref]

Pastor-Graells, J.

Pinson, P.

A. Michiorri, H. Nguyen, S. Alessandrini, J. B. Bremnes, S. Dierer, E. Ferrero, B. Nygaard, P. Pinson, N. Thomaidis, and S. Uski, “Forecasting for dynamic line rating,” Renew. Sustain. Energy Rev. 52, 1713–1730 (2015).
[Crossref]

Qin, Z.

Z. Qin, L. Chen, and X. Bao, “Wavelet denoising method for improving detection performance of distributed vibration sensor,” IEEE Photonics Technol. Lett. 24(7), 542–544 (2012).
[Crossref]

Reding, J.

D. Douglass, W. Chisholm, G. Davidson, I. Grant, K. Lindsey, M. Lancaster, D. Lawry, T. McCarthy, C. Nascimento, M. Pasha, J. Reding, T. Seppa, J. Toth, and P. Waltz, “Real-time overhead transmission-line monitoring for dynamic rating,” IEEE Trans. Power Deliv. 31(3), 921–927 (2016).
[Crossref]

Roncella, R.

Sauser, F.

S. Le Floch, F. Sauser, M. A. Soto, and L. Thévenaz, “Time/frequency coding for Brillouin distributed sensors,” Proc. SPIE 8421, 84211J (2012).
[Crossref]

Seppa, T.

D. Douglass, W. Chisholm, G. Davidson, I. Grant, K. Lindsey, M. Lancaster, D. Lawry, T. McCarthy, C. Nascimento, M. Pasha, J. Reding, T. Seppa, J. Toth, and P. Waltz, “Real-time overhead transmission-line monitoring for dynamic rating,” IEEE Trans. Power Deliv. 31(3), 921–927 (2016).
[Crossref]

Signorini, A.

Soto, M. A.

Sudirman, A.

Tanimola, F.

F. Tanimola and D. Hill, “Distributed fibre optic sensors for pipeline protection,” J. Nat. Gas Sci. Eng. 1(4–5), 134–143 (2009).
[Crossref]

Taylor, H. F.

Thévenaz, L.

Thomaidis, N.

A. Michiorri, H. Nguyen, S. Alessandrini, J. B. Bremnes, S. Dierer, E. Ferrero, B. Nygaard, P. Pinson, N. Thomaidis, and S. Uski, “Forecasting for dynamic line rating,” Renew. Sustain. Energy Rev. 52, 1713–1730 (2015).
[Crossref]

Toth, J.

D. Douglass, W. Chisholm, G. Davidson, I. Grant, K. Lindsey, M. Lancaster, D. Lawry, T. McCarthy, C. Nascimento, M. Pasha, J. Reding, T. Seppa, J. Toth, and P. Waltz, “Real-time overhead transmission-line monitoring for dynamic rating,” IEEE Trans. Power Deliv. 31(3), 921–927 (2016).
[Crossref]

Tow, K. H.

Ukil, A.

A. Ukil, H. Braendle, and P. Krippner, “Distributed temperature sensing: review of technology and applications,” IEEE Sens. J. 12(5), 885–892 (2012).
[Crossref]

Ushakov, N. A.

Uski, S.

A. Michiorri, H. Nguyen, S. Alessandrini, J. B. Bremnes, S. Dierer, E. Ferrero, B. Nygaard, P. Pinson, N. Thomaidis, and S. Uski, “Forecasting for dynamic line rating,” Renew. Sustain. Energy Rev. 52, 1713–1730 (2015).
[Crossref]

Waltz, P.

D. Douglass, W. Chisholm, G. Davidson, I. Grant, K. Lindsey, M. Lancaster, D. Lawry, T. McCarthy, C. Nascimento, M. Pasha, J. Reding, T. Seppa, J. Toth, and P. Waltz, “Real-time overhead transmission-line monitoring for dynamic rating,” IEEE Trans. Power Deliv. 31(3), 921–927 (2016).
[Crossref]

Yilmaz, G.

G. Yilmaz and S. E. Karlik, “A distributed optical fiber sensor for temperature detection in power cables,” Sens. Actuators A Phys. 125(2), 148–155 (2006).
[Crossref]

IEEE Photonics Technol. Lett. (1)

Z. Qin, L. Chen, and X. Bao, “Wavelet denoising method for improving detection performance of distributed vibration sensor,” IEEE Photonics Technol. Lett. 24(7), 542–544 (2012).
[Crossref]

IEEE Sens. J. (1)

A. Ukil, H. Braendle, and P. Krippner, “Distributed temperature sensing: review of technology and applications,” IEEE Sens. J. 12(5), 885–892 (2012).
[Crossref]

IEEE Trans. Power Deliv. (1)

D. Douglass, W. Chisholm, G. Davidson, I. Grant, K. Lindsey, M. Lancaster, D. Lawry, T. McCarthy, C. Nascimento, M. Pasha, J. Reding, T. Seppa, J. Toth, and P. Waltz, “Real-time overhead transmission-line monitoring for dynamic rating,” IEEE Trans. Power Deliv. 31(3), 921–927 (2016).
[Crossref]

J. Lightwave Technol. (6)

L. B. Liokumovich, N. A. Ushakov, O. I. Kotov, M. A. Bisyarin, and A. H. Hartog, “Fundamentals of optical fiber sensing schemes based on coherent optical time domain reflectometry: signal model under static fiber conditions,” J. Lightwave Technol. 33(17), 3660–3671 (2015).
[Crossref]

Y. Koyamada, M. Imahama, K. Kubota, and K. Hogari, “Fiber-optic distributed strain and temperature sensing with very high measurand resolution over long range using coherent OTDR,” J. Lightwave Technol. 27(9), 1142–1146 (2009).
[Crossref]

H. F. Martins, S. Martin-Lopez, P. Corredera, M. L. Filograno, O. Frazão, and M. Gonzalez-Herraez, “Phase-sensitive optical time domain reflectometer assisted by first-order Raman amplification for distributed vibration sensing over >100km,” J. Lightwave Technol. 32(8), 1510–1518 (2014).
[Crossref]

X. Angulo-Vinuesa, S. Martin-Lopez, J. Nuño, P. Corredera, J. D. Ania-Castañon, L. Thévenaz, and M. Gonzalez-Herraez, “Raman-assisted brillouin distributed temperature sensor over 100 km featuring 2 m resolution and 1.2°C uncertainty,” J. Lightwave Technol. 30(8), 1060–1065 (2012).
[Crossref]

J. C. Juarez, E. W. Maier, K. N. Choi, and H. F. Taylor, “Distributed fiber-optic intrusion sensor system,” J. Lightwave Technol. 23(6), 2081–2087 (2005).
[Crossref]

H. F. Martins, S. Martin-Lopez, P. Corredera, M. L. Filograno, O. Frazão, and M. González-Herráez, “Coherent noise reduction in high visibility phase-sensitive optical time domain reflectometer for distributed sensing of ultrasonic waves,” J. Lightwave Technol. 31(23), 3631–3637 (2013).
[Crossref]

J. Nat. Gas Sci. Eng. (1)

F. Tanimola and D. Hill, “Distributed fibre optic sensors for pipeline protection,” J. Nat. Gas Sci. Eng. 1(4–5), 134–143 (2009).
[Crossref]

J. Press. Vessel Technol. (1)

D. Inaudi and B. Glisic, “Long-range pipeline monitoring by distributed fiber optic sensing,” J. Press. Vessel Technol. 132(1), 011701 (2010).
[Crossref]

Meas. Sci. Technol. (1)

G. Bolognini, J. Park, M. A. Soto, N. Park, and F. Di Pasquale, “Analysis of distributed temperature sensing based on Raman scattering using OTDR coding and discrete Raman amplification,” Meas. Sci. Technol. 18(10), 3211–3218 (2007).
[Crossref]

Opt. Express (4)

Opt. Fiber Technol. (1)

A. D. Kersey, “A review of recent developments in fiber optic sensor technology,” Opt. Fiber Technol. 2(3), 291–317 (1996).
[Crossref]

Opt. Lett. (2)

Proc. SPIE (1)

S. Le Floch, F. Sauser, M. A. Soto, and L. Thévenaz, “Time/frequency coding for Brillouin distributed sensors,” Proc. SPIE 8421, 84211J (2012).
[Crossref]

Renew. Sustain. Energy Rev. (2)

S. Karimi, P. Musilek, and A. M. Knight, “Dynamic thermal rating of transmission lines: A review,” Renew. Sustain. Energy Rev. 91, 600–612 (2018).
[Crossref]

A. Michiorri, H. Nguyen, S. Alessandrini, J. B. Bremnes, S. Dierer, E. Ferrero, B. Nygaard, P. Pinson, N. Thomaidis, and S. Uski, “Forecasting for dynamic line rating,” Renew. Sustain. Energy Rev. 52, 1713–1730 (2015).
[Crossref]

Sens. Actuators A Phys. (1)

G. Yilmaz and S. E. Karlik, “A distributed optical fiber sensor for temperature detection in power cables,” Sens. Actuators A Phys. 125(2), 148–155 (2006).
[Crossref]

Sensors (Basel) (1)

X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors (Basel) 12(7), 8601–8639 (2012).
[Crossref] [PubMed]

Other (2)

Y. Yang, D. Divan, R. G. Harley, and T. G. Habetler, “Power line sensornet - a new concept for power grid monitoring,” in Power Eng. Soc. General Meeting, (IEEE, 2006).
[Crossref]

ASTM, “Standard tables for reference solar spectral irradiances: direct normal and hemispherical on 37° tilted surface,” 14(4), (2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Experimental setup: acronyms are explained in the text.
Fig. 2
Fig. 2 Representation of the optical radiation emission/absorption mechanism.
Fig. 3
Fig. 3 Example of a carbon-coated optical fiber employed in the proposed setup.
Fig. 4
Fig. 4 (a) - Temperature shift experienced by the reference fiber, FUT1 (red line), and by the carbon-coated multi-mode FUT2 (blue line), when submitted to irradiances of I ≈43.8 W/m2, II ≈30.3 W/m2 and III ≈14.8 W/m2, at room temperature. (b) – Difference between the FUT’s temperature shifted signals (temperature calibration), vs the applied irradiance.
Fig. 5
Fig. 5 (a) - Temperature shift experienced by the reference fiber, FUT1 (red line), and by the carbon-coated single-mode FUT2 (blue line), when submitted to irradiances of I ≈43.8 W/m2, II ≈30.3 W/m2 and III ≈14.8 W/m2, at room temperature. (b) – Difference between the FUT’s temperature shifted signals (temperature calibration), vs the applied irradiance.
Fig. 6
Fig. 6 (a) - Temperature shift experienced by the reference fiber, FUT1 (red line), and by the black-painted single-mode FUT2 (blue line), when submitted to irradiances of I ≈43.8 W/m2, II ≈30.3 W/m2 and III ≈14.8 W/m2, at room temperature. (b) – Difference between the FUT’s temperature shifted signals (temperature calibration), vs the applied irradiance.
Fig. 7
Fig. 7 Amplitude of the temperature sensor oscillations vs the applied Irradiance, which was applied through a square wave with the periods of 10, 5 and 3.33 s. Results attained for the (a) – multi-mode carbon-coated fiber, (b) single-mode carbon-coated fiber and (c) - black-painted single-mode fiber.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

P d i s s i p a t e d = h A ( T - T 0 ) ,
d E g a i n e d d E l o s t = c m d T ,
d E g a i n e d = P a b s d t = E i n c A i n c α d t
d E l o s t = P d i s s i p a t e d d t = h A ( T T 0 ) d t .
E i n c A i n c α d t h A ( T T 0 ) d t = c m d T ,
d T d t = b T a ,
T ( t ) = E i n c A i n c α + h A T 0 h A + K exp ( h A c m t ) .
K = E i n c A i n c α h A .
T ( t ) = T 0 + ( E i n c A i n c α h A ) ( 1 exp ( h A c m t ) ) .
E i n c ( T - T 0 ) ( h A ) ( A i n c α ) = ( T - T 0 ) ¢ ,
E i n c = ( T 1 - T 0 ) ( h 1 A ) A i n c α 1 = ( T 1 - T 0 ) ¢ 1 T 0 = T 1 ( E i n c ¢ 1 )
E i n c = ( T 2 - T 0 ) ( h 2 A ) A i n c α 2 = ( T 2 - T 0 ) ¢ 2 T 0 = T 2 ( E i n c ¢ 2 ) .
E i n c = ( T 2 - T 1 ) ( ¢ 2 ¢ 1 ) .

Metrics