Abstract

The design and realization of two highly sensitive and easily interchangeable spectrophones based on custom quartz tuning forks, with a rectangular (S1) or T-shaped (S2) prongs geometry, is reported. The two spectrophones have been implemented in a QEPAS sensor for ethylene detection, employing a DFB-QCL emitting at 10.337 μm with an optical power of 74.2 mW. A comparison between their performances showed a signal-to-noise ratio 3.4 times higher when implementing the S2 spectrophone. For the S2-based sensor, a linear dependence of the QEPAS signal on ethylene concentration was demonstrated in the 5 ppm −100 ppm range. For a 10 s lock-in integration time, an ethylene minimum detection limit of 10 ppb was calculated.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Tuning forks with optimized geometries for quartz-enhanced photoacoustic spectroscopy

Pietro Patimisco, Angelo Sampaolo, Marilena Giglio, Stefano dello Russo, Verena Mackowiak, Hubert Rossmadl, Alex Cable, Frank K. Tittel, and Vincenzo Spagnolo
Opt. Express 27(2) 1401-1415 (2019)

Analysis of overtone flexural modes operation in quartz-enhanced photoacoustic spectroscopy

Frank K. Tittel, Angelo Sampaolo, Pietro Patimisco, Lei Dong, Antonina Geras, Tomasz Starecki, and Vincenzo Spagnolo
Opt. Express 24(6) A682-A692 (2016)

THz Quartz-enhanced photoacoustic sensor for H2S trace gas detection

Vincenzo Spagnolo, Pietro Patimisco, Riccardo Pennetta, Angelo Sampaolo, Gaetano Scamarcio, Miriam S. Vitiello, and Frank K. Tittel
Opt. Express 23(6) 7574-7582 (2015)

References

  • View by:
  • |
  • |
  • |

  1. J. Hodgkinson and R. P. Tatam, “Optical gas sensing: a review,” Meas. Sci. Technol. 24(1), 012004 (2013).
    [Crossref]
  2. D. Smith and P. Španěl, “The challenge of breath analysis for clinical diagnosis and therapeutic monitoring,” Analyst (Lond.) 132(5), 390–396 (2007).
    [Crossref] [PubMed]
  3. P. Daukantas, “Air-quality monitoring in the mid-infrared,” Opt. Photonics News 26(11), 26–33 (2015).
    [Crossref]
  4. J. G. Speight, The Chemistry and Technology of Petroleum (CRC Taylor & Francis Group, 2014).
  5. I. Galli, S. Bartalini, S. Borri, P. Cancio, D. Mazzotti, P. De Natale, and G. Giusfredi, “Molecular gas sensing below parts per trillion: radiocarbon-dioxide optical detection,” Phys. Rev. Lett. 107(27), 270802 (2011).
    [Crossref] [PubMed]
  6. T. Tomberg, M. Vainio, T. Hieta, and L. Halonen, “Sub-parts-per-trillion level sensitivity in trace gas detection by cantilever-enhanced photo-acoustic spectroscopy,” Sci. Rep. 8(1), 1848 (2018).
    [Crossref] [PubMed]
  7. M. W. Sigrist, “Trace gas monitoring by laser-photoacoustic spectroscopy,” Infrared Phys. Technol. 36(1), 415–425 (1995).
    [Crossref]
  8. L. Xiong, W. Bai, F. Chen, X. Zhao, F. Yu, and G. J. Diebold, “Photoacoustic trace detection of gases at the parts-per-quadrillion level with a moving optical grating,” Proc. Natl. Acad. Sci. U.S.A. 114(28), 7246–7249 (2017).
    [Crossref] [PubMed]
  9. P. Patimisco, A. Sampaolo, L. Dong, F. K. Tittel, and V. Spagnolo, “Recent advances in quartz enhanced photoacoustic sensing,” Appl. Phys. Rev. 5(1), 011106 (2018).
    [Crossref]
  10. A. Sampaolo, S. Csutak, P. Patimisco, M. Giglio, G. Menduni, V. Passaro, F. K. Tittel, M. Deffenbaugh, and V. Spagnolo, “Methane, ethane and propane detection using a compact quartz enhanced photoacoustic sensor and a single interband cascade laser,” Sensor Actuat. Biol. Chem. 282, 952–960 (2019).
  11. A. Sampaolo, P. Patimisco, M. Giglio, L. Chieco, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Highly sensitive gas leak detector based on a quartz-enhanced photoacoustic SF6 sensor,” Opt. Express 24(14), 15872–15881 (2016).
    [Crossref] [PubMed]
  12. P. Patimisco, A. Sampaolo, L. Dong, M. Giglio, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Analysis of the electro-elastic properties of custom quartz tuning forks for optoacoustic gas sensing,” Sensor Actuat. Biol. Chem. 227, 539–546 (2016).
  13. P. Patimisco, A. Sampaolo, M. Giglio, S. Dello Russo, V. Mackowiak, H. Rossmadl, A. Cable, F. K. Tittel, and V. Spagnolo, “Tuning forks with optimized geometries for quartz-enhanced photoacoustic spectroscopy,” Opt. Express 27(2), 1401–1415 (2019).
    [Crossref]
  14. Y. Ma, Y. He, X. Yu, C. Chen, R. Sun, and F. K. Tittel, “HCl ppb-level detection based on QEPAS sensor using a low resonance frequency quartz tuning fork,” Sensor Actuat. Biol. Chem. 233, 388–393 (2016).
  15. G. Wysocki, A. A. Kosterev, and F. K. Tittel, “Influence of molecular relaxation dynamics on quartz-enhanced photoacoustic detection of CO2 at λ = 2 μm,” Appl. Phys. B 85(2-3), 301–306 (2006).
    [Crossref]
  16. H. Zheng, L. Dong, P. Patimisco, H. Wu, A. Sampaolo, X. Yin, S. Li, W. Ma, L. Zhang, W. Yin, L. Xiao, V. Spagnolo, S. Jia, and F. K. Tittel, “Double antinode excited quartz-enhanced photoacoustic spectrophone,” Appl. Phys. Lett. 110(2), 021110 (2017).
    [Crossref]
  17. H. Wu, X. Yin, L. Dong, K. Pei, A. Sampaolo, P. Patimisco, H. Zheng, W. Ma, L. Zhang, W. Yin, L. Xiao, V. Spagnolo, S. Jia, and F. K. Tittel, “Simultaneous dual-gas QEPAS detection based on a fundamental and overtone combined vibration of quartz tuning fork,” Appl. Phys. Lett. 110(12), 121104 (2017).
    [Crossref]
  18. A. Sampaolo, P. Patimisco, M. Giglio, M. S. Vitiello, H. E. Beere, D. A. Ritchie, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Improved tuning fork for terahertz quartz-enhanced photoacoustic spectroscopy,” Sensors (Basel) 16(4), 439–446 (2016).
    [Crossref] [PubMed]
  19. H. Wu, A. Sampaolo, L. Dong, P. Patimisco, X. Liu, H. Zheng, X. Yin, W. Ma, L. Zhang, W. Yin, V. Spagnolo, S. Jia, and F. K. Tittel, “Quartz enhanced photoacoustic H2S gas sensor based on a fiber-amplifier source and a custom tuning fork with large prong spacing,” Appl. Phys. Lett. 107(11), 111104 (2015).
    [Crossref]
  20. M. Giglio, P. Patimisco, A. Sampaolo, A. Zifarelli, R. Blanchard, C. Pfluegl, M. F. Witinski, D. Vakhshoori, F. K. Tittel, and V. Spagnolo, “Nitrous oxide quartz-enhanced photoacoustic detection employing a broadband distributed-feedback quantum cascade laser array,” Appl. Phys. Lett. 113(17), 171101 (2018).
    [Crossref]
  21. H. Zimmermann, H. and R. Walzl, Ethylene, Ullmann's Encyclopedia of Industrial Chemistry (Wiley‐VCH, 2009).
  22. A. Tullo, “Petrochemicals: market will remain tight despite new capacity,” Chem. Eng. News 96, 29 (2018).
  23. J. H. Seinfeld, “Urban air pollution: state of the science,” Science 243(4892), 745–752 (1989).
    [Crossref] [PubMed]
  24. J. C. Pech, M. Bouzayen, and A. Latché, “Climacteric fruit ripening: ethylene-dependent and independent regulation of ripening pathways in melon fruit,” Plant Sci. 175(1-2), 114–120 (2008).
    [Crossref]
  25. L. M. Paardekooper, G. Bogaart, M. S. Kox, I. Dingjan, A. H. Neerincx, M. B. Bendix, M. Ter Beest, F. J. Harren, T. Risby, P. Pickkers, and N. Marczin, “Ethylene, an early marker of systemic inflammation in humans,” Sci. Rep. 7, 1–9 (2017).
  26. S. P. Burg and E. A. Burg, “Role of ethylene in fruit ripening,” Plant Physiol. 37(2), 179–189 (1962).
    [Crossref] [PubMed]
  27. ACGIH, Threshold Limit Values for Chemical Substances and Physical Agents in the Workroom Environment (ACGIH, 1986–1987).
  28. F. B. Abeles and H. E. Heggestad, “Ethylene: an urban air pollutant,” J. Air Pollut. Control Assoc. 23(6), 517–521 (1973).
    [Crossref] [PubMed]
  29. D. C. Dumitras, D. C. Dutu, C. Matei, A. M. Magureanu, M. Petrus, C. Popa, and M. Patachia, “Measurements of ethylene concentration by laser photoacoustic techniques with applications at breath analysis,” Rom. Rep. Phys. 60, 593–602 (2008).
  30. S. Schilt, A. A. Kosterev, and F. K. Tittel, “Performance evaluation of a near infrared QEPAS based ethylene sensor,” Appl. Phys. B 95(4), 813–824 (2009).
    [Crossref]
  31. Z. Wang, Z. Li, and W. Ren, “Quartz-enhanced photoacoustic detection of ethylene using a 10.5 μm quantum cascade laser,” Opt. Express 24(4), 4143–4154 (2016).
    [Crossref] [PubMed]
  32. Z. Wang, J. Geng, and W. Ren, “Quartz-enhanced photoacoustic spectroscopy (QEPAS) detection of the ν7 band of ethylene at low pressure with CO2 interference analysis,” Appl. Spectrosc. 71(8), 1834–1841 (2017).
    [Crossref] [PubMed]
  33. F. K. Tittel, A. Sampaolo, P. Patimisco, L. Dong, A. Geras, T. Starecki, and V. Spagnolo, “Analysis of overtone flexural modes operation in quartz-enhanced photoacoustic spectroscopy,” Opt. Express 24(6), A682–A692 (2016).
    [Crossref] [PubMed]
  34. P. Patimisco, A. Sampaolo, V. Mackowiak, H. Rossmadl, A. Cable, F. K. Tittel, and V. Spagnolo, “Loss mechanisms determining the quality factors in quartz tuning forks vibrating at the fundamental and first overtone modes,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(10), 1951–1957 (2018).
    [Crossref] [PubMed]
  35. P. Patimisco, A. Sampaolo, H. Zheng, L. Dong, F. K. Tittel, and V. Spagnolo, “Quartz–enhanced photoacoustic spectrophones exploiting custom tuning forks: a review,” Adv. Phys. X 2, 169–187 (2016).
  36. Y. Qin and R. Reifenberger, “Calibrating a tuning fork for use as a scanning probe microscope force sensor,” Rev. Sci. Instrum. 78(6), 063704 (2007).
    [Crossref] [PubMed]
  37. http://www.hitran.org/
  38. M. Giglio, P. Patimisco, A. Sampaolo, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Allan deviation plot as a tool for quartz enhanced photoacoustic sensors noise analysis,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 63(4), 555–560 (2016).
    [Crossref] [PubMed]

2019 (2)

A. Sampaolo, S. Csutak, P. Patimisco, M. Giglio, G. Menduni, V. Passaro, F. K. Tittel, M. Deffenbaugh, and V. Spagnolo, “Methane, ethane and propane detection using a compact quartz enhanced photoacoustic sensor and a single interband cascade laser,” Sensor Actuat. Biol. Chem. 282, 952–960 (2019).

P. Patimisco, A. Sampaolo, M. Giglio, S. Dello Russo, V. Mackowiak, H. Rossmadl, A. Cable, F. K. Tittel, and V. Spagnolo, “Tuning forks with optimized geometries for quartz-enhanced photoacoustic spectroscopy,” Opt. Express 27(2), 1401–1415 (2019).
[Crossref]

2018 (5)

P. Patimisco, A. Sampaolo, L. Dong, F. K. Tittel, and V. Spagnolo, “Recent advances in quartz enhanced photoacoustic sensing,” Appl. Phys. Rev. 5(1), 011106 (2018).
[Crossref]

P. Patimisco, A. Sampaolo, V. Mackowiak, H. Rossmadl, A. Cable, F. K. Tittel, and V. Spagnolo, “Loss mechanisms determining the quality factors in quartz tuning forks vibrating at the fundamental and first overtone modes,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(10), 1951–1957 (2018).
[Crossref] [PubMed]

T. Tomberg, M. Vainio, T. Hieta, and L. Halonen, “Sub-parts-per-trillion level sensitivity in trace gas detection by cantilever-enhanced photo-acoustic spectroscopy,” Sci. Rep. 8(1), 1848 (2018).
[Crossref] [PubMed]

M. Giglio, P. Patimisco, A. Sampaolo, A. Zifarelli, R. Blanchard, C. Pfluegl, M. F. Witinski, D. Vakhshoori, F. K. Tittel, and V. Spagnolo, “Nitrous oxide quartz-enhanced photoacoustic detection employing a broadband distributed-feedback quantum cascade laser array,” Appl. Phys. Lett. 113(17), 171101 (2018).
[Crossref]

A. Tullo, “Petrochemicals: market will remain tight despite new capacity,” Chem. Eng. News 96, 29 (2018).

2017 (5)

H. Zheng, L. Dong, P. Patimisco, H. Wu, A. Sampaolo, X. Yin, S. Li, W. Ma, L. Zhang, W. Yin, L. Xiao, V. Spagnolo, S. Jia, and F. K. Tittel, “Double antinode excited quartz-enhanced photoacoustic spectrophone,” Appl. Phys. Lett. 110(2), 021110 (2017).
[Crossref]

H. Wu, X. Yin, L. Dong, K. Pei, A. Sampaolo, P. Patimisco, H. Zheng, W. Ma, L. Zhang, W. Yin, L. Xiao, V. Spagnolo, S. Jia, and F. K. Tittel, “Simultaneous dual-gas QEPAS detection based on a fundamental and overtone combined vibration of quartz tuning fork,” Appl. Phys. Lett. 110(12), 121104 (2017).
[Crossref]

L. M. Paardekooper, G. Bogaart, M. S. Kox, I. Dingjan, A. H. Neerincx, M. B. Bendix, M. Ter Beest, F. J. Harren, T. Risby, P. Pickkers, and N. Marczin, “Ethylene, an early marker of systemic inflammation in humans,” Sci. Rep. 7, 1–9 (2017).

L. Xiong, W. Bai, F. Chen, X. Zhao, F. Yu, and G. J. Diebold, “Photoacoustic trace detection of gases at the parts-per-quadrillion level with a moving optical grating,” Proc. Natl. Acad. Sci. U.S.A. 114(28), 7246–7249 (2017).
[Crossref] [PubMed]

Z. Wang, J. Geng, and W. Ren, “Quartz-enhanced photoacoustic spectroscopy (QEPAS) detection of the ν7 band of ethylene at low pressure with CO2 interference analysis,” Appl. Spectrosc. 71(8), 1834–1841 (2017).
[Crossref] [PubMed]

2016 (8)

M. Giglio, P. Patimisco, A. Sampaolo, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Allan deviation plot as a tool for quartz enhanced photoacoustic sensors noise analysis,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 63(4), 555–560 (2016).
[Crossref] [PubMed]

P. Patimisco, A. Sampaolo, L. Dong, M. Giglio, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Analysis of the electro-elastic properties of custom quartz tuning forks for optoacoustic gas sensing,” Sensor Actuat. Biol. Chem. 227, 539–546 (2016).

Z. Wang, Z. Li, and W. Ren, “Quartz-enhanced photoacoustic detection of ethylene using a 10.5 μm quantum cascade laser,” Opt. Express 24(4), 4143–4154 (2016).
[Crossref] [PubMed]

F. K. Tittel, A. Sampaolo, P. Patimisco, L. Dong, A. Geras, T. Starecki, and V. Spagnolo, “Analysis of overtone flexural modes operation in quartz-enhanced photoacoustic spectroscopy,” Opt. Express 24(6), A682–A692 (2016).
[Crossref] [PubMed]

A. Sampaolo, P. Patimisco, M. Giglio, L. Chieco, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Highly sensitive gas leak detector based on a quartz-enhanced photoacoustic SF6 sensor,” Opt. Express 24(14), 15872–15881 (2016).
[Crossref] [PubMed]

P. Patimisco, A. Sampaolo, H. Zheng, L. Dong, F. K. Tittel, and V. Spagnolo, “Quartz–enhanced photoacoustic spectrophones exploiting custom tuning forks: a review,” Adv. Phys. X 2, 169–187 (2016).

A. Sampaolo, P. Patimisco, M. Giglio, M. S. Vitiello, H. E. Beere, D. A. Ritchie, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Improved tuning fork for terahertz quartz-enhanced photoacoustic spectroscopy,” Sensors (Basel) 16(4), 439–446 (2016).
[Crossref] [PubMed]

Y. Ma, Y. He, X. Yu, C. Chen, R. Sun, and F. K. Tittel, “HCl ppb-level detection based on QEPAS sensor using a low resonance frequency quartz tuning fork,” Sensor Actuat. Biol. Chem. 233, 388–393 (2016).

2015 (2)

H. Wu, A. Sampaolo, L. Dong, P. Patimisco, X. Liu, H. Zheng, X. Yin, W. Ma, L. Zhang, W. Yin, V. Spagnolo, S. Jia, and F. K. Tittel, “Quartz enhanced photoacoustic H2S gas sensor based on a fiber-amplifier source and a custom tuning fork with large prong spacing,” Appl. Phys. Lett. 107(11), 111104 (2015).
[Crossref]

P. Daukantas, “Air-quality monitoring in the mid-infrared,” Opt. Photonics News 26(11), 26–33 (2015).
[Crossref]

2013 (1)

J. Hodgkinson and R. P. Tatam, “Optical gas sensing: a review,” Meas. Sci. Technol. 24(1), 012004 (2013).
[Crossref]

2011 (1)

I. Galli, S. Bartalini, S. Borri, P. Cancio, D. Mazzotti, P. De Natale, and G. Giusfredi, “Molecular gas sensing below parts per trillion: radiocarbon-dioxide optical detection,” Phys. Rev. Lett. 107(27), 270802 (2011).
[Crossref] [PubMed]

2009 (1)

S. Schilt, A. A. Kosterev, and F. K. Tittel, “Performance evaluation of a near infrared QEPAS based ethylene sensor,” Appl. Phys. B 95(4), 813–824 (2009).
[Crossref]

2008 (2)

D. C. Dumitras, D. C. Dutu, C. Matei, A. M. Magureanu, M. Petrus, C. Popa, and M. Patachia, “Measurements of ethylene concentration by laser photoacoustic techniques with applications at breath analysis,” Rom. Rep. Phys. 60, 593–602 (2008).

J. C. Pech, M. Bouzayen, and A. Latché, “Climacteric fruit ripening: ethylene-dependent and independent regulation of ripening pathways in melon fruit,” Plant Sci. 175(1-2), 114–120 (2008).
[Crossref]

2007 (2)

D. Smith and P. Španěl, “The challenge of breath analysis for clinical diagnosis and therapeutic monitoring,” Analyst (Lond.) 132(5), 390–396 (2007).
[Crossref] [PubMed]

Y. Qin and R. Reifenberger, “Calibrating a tuning fork for use as a scanning probe microscope force sensor,” Rev. Sci. Instrum. 78(6), 063704 (2007).
[Crossref] [PubMed]

2006 (1)

G. Wysocki, A. A. Kosterev, and F. K. Tittel, “Influence of molecular relaxation dynamics on quartz-enhanced photoacoustic detection of CO2 at λ = 2 μm,” Appl. Phys. B 85(2-3), 301–306 (2006).
[Crossref]

1995 (1)

M. W. Sigrist, “Trace gas monitoring by laser-photoacoustic spectroscopy,” Infrared Phys. Technol. 36(1), 415–425 (1995).
[Crossref]

1989 (1)

J. H. Seinfeld, “Urban air pollution: state of the science,” Science 243(4892), 745–752 (1989).
[Crossref] [PubMed]

1973 (1)

F. B. Abeles and H. E. Heggestad, “Ethylene: an urban air pollutant,” J. Air Pollut. Control Assoc. 23(6), 517–521 (1973).
[Crossref] [PubMed]

1962 (1)

S. P. Burg and E. A. Burg, “Role of ethylene in fruit ripening,” Plant Physiol. 37(2), 179–189 (1962).
[Crossref] [PubMed]

Abeles, F. B.

F. B. Abeles and H. E. Heggestad, “Ethylene: an urban air pollutant,” J. Air Pollut. Control Assoc. 23(6), 517–521 (1973).
[Crossref] [PubMed]

Bai, W.

L. Xiong, W. Bai, F. Chen, X. Zhao, F. Yu, and G. J. Diebold, “Photoacoustic trace detection of gases at the parts-per-quadrillion level with a moving optical grating,” Proc. Natl. Acad. Sci. U.S.A. 114(28), 7246–7249 (2017).
[Crossref] [PubMed]

Bartalini, S.

I. Galli, S. Bartalini, S. Borri, P. Cancio, D. Mazzotti, P. De Natale, and G. Giusfredi, “Molecular gas sensing below parts per trillion: radiocarbon-dioxide optical detection,” Phys. Rev. Lett. 107(27), 270802 (2011).
[Crossref] [PubMed]

Beere, H. E.

A. Sampaolo, P. Patimisco, M. Giglio, M. S. Vitiello, H. E. Beere, D. A. Ritchie, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Improved tuning fork for terahertz quartz-enhanced photoacoustic spectroscopy,” Sensors (Basel) 16(4), 439–446 (2016).
[Crossref] [PubMed]

Bendix, M. B.

L. M. Paardekooper, G. Bogaart, M. S. Kox, I. Dingjan, A. H. Neerincx, M. B. Bendix, M. Ter Beest, F. J. Harren, T. Risby, P. Pickkers, and N. Marczin, “Ethylene, an early marker of systemic inflammation in humans,” Sci. Rep. 7, 1–9 (2017).

Blanchard, R.

M. Giglio, P. Patimisco, A. Sampaolo, A. Zifarelli, R. Blanchard, C. Pfluegl, M. F. Witinski, D. Vakhshoori, F. K. Tittel, and V. Spagnolo, “Nitrous oxide quartz-enhanced photoacoustic detection employing a broadband distributed-feedback quantum cascade laser array,” Appl. Phys. Lett. 113(17), 171101 (2018).
[Crossref]

Bogaart, G.

L. M. Paardekooper, G. Bogaart, M. S. Kox, I. Dingjan, A. H. Neerincx, M. B. Bendix, M. Ter Beest, F. J. Harren, T. Risby, P. Pickkers, and N. Marczin, “Ethylene, an early marker of systemic inflammation in humans,” Sci. Rep. 7, 1–9 (2017).

Borri, S.

I. Galli, S. Bartalini, S. Borri, P. Cancio, D. Mazzotti, P. De Natale, and G. Giusfredi, “Molecular gas sensing below parts per trillion: radiocarbon-dioxide optical detection,” Phys. Rev. Lett. 107(27), 270802 (2011).
[Crossref] [PubMed]

Bouzayen, M.

J. C. Pech, M. Bouzayen, and A. Latché, “Climacteric fruit ripening: ethylene-dependent and independent regulation of ripening pathways in melon fruit,” Plant Sci. 175(1-2), 114–120 (2008).
[Crossref]

Burg, E. A.

S. P. Burg and E. A. Burg, “Role of ethylene in fruit ripening,” Plant Physiol. 37(2), 179–189 (1962).
[Crossref] [PubMed]

Burg, S. P.

S. P. Burg and E. A. Burg, “Role of ethylene in fruit ripening,” Plant Physiol. 37(2), 179–189 (1962).
[Crossref] [PubMed]

Cable, A.

P. Patimisco, A. Sampaolo, M. Giglio, S. Dello Russo, V. Mackowiak, H. Rossmadl, A. Cable, F. K. Tittel, and V. Spagnolo, “Tuning forks with optimized geometries for quartz-enhanced photoacoustic spectroscopy,” Opt. Express 27(2), 1401–1415 (2019).
[Crossref]

P. Patimisco, A. Sampaolo, V. Mackowiak, H. Rossmadl, A. Cable, F. K. Tittel, and V. Spagnolo, “Loss mechanisms determining the quality factors in quartz tuning forks vibrating at the fundamental and first overtone modes,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(10), 1951–1957 (2018).
[Crossref] [PubMed]

Cancio, P.

I. Galli, S. Bartalini, S. Borri, P. Cancio, D. Mazzotti, P. De Natale, and G. Giusfredi, “Molecular gas sensing below parts per trillion: radiocarbon-dioxide optical detection,” Phys. Rev. Lett. 107(27), 270802 (2011).
[Crossref] [PubMed]

Chen, C.

Y. Ma, Y. He, X. Yu, C. Chen, R. Sun, and F. K. Tittel, “HCl ppb-level detection based on QEPAS sensor using a low resonance frequency quartz tuning fork,” Sensor Actuat. Biol. Chem. 233, 388–393 (2016).

Chen, F.

L. Xiong, W. Bai, F. Chen, X. Zhao, F. Yu, and G. J. Diebold, “Photoacoustic trace detection of gases at the parts-per-quadrillion level with a moving optical grating,” Proc. Natl. Acad. Sci. U.S.A. 114(28), 7246–7249 (2017).
[Crossref] [PubMed]

Chieco, L.

Csutak, S.

A. Sampaolo, S. Csutak, P. Patimisco, M. Giglio, G. Menduni, V. Passaro, F. K. Tittel, M. Deffenbaugh, and V. Spagnolo, “Methane, ethane and propane detection using a compact quartz enhanced photoacoustic sensor and a single interband cascade laser,” Sensor Actuat. Biol. Chem. 282, 952–960 (2019).

Daukantas, P.

P. Daukantas, “Air-quality monitoring in the mid-infrared,” Opt. Photonics News 26(11), 26–33 (2015).
[Crossref]

De Natale, P.

I. Galli, S. Bartalini, S. Borri, P. Cancio, D. Mazzotti, P. De Natale, and G. Giusfredi, “Molecular gas sensing below parts per trillion: radiocarbon-dioxide optical detection,” Phys. Rev. Lett. 107(27), 270802 (2011).
[Crossref] [PubMed]

Deffenbaugh, M.

A. Sampaolo, S. Csutak, P. Patimisco, M. Giglio, G. Menduni, V. Passaro, F. K. Tittel, M. Deffenbaugh, and V. Spagnolo, “Methane, ethane and propane detection using a compact quartz enhanced photoacoustic sensor and a single interband cascade laser,” Sensor Actuat. Biol. Chem. 282, 952–960 (2019).

Dello Russo, S.

Diebold, G. J.

L. Xiong, W. Bai, F. Chen, X. Zhao, F. Yu, and G. J. Diebold, “Photoacoustic trace detection of gases at the parts-per-quadrillion level with a moving optical grating,” Proc. Natl. Acad. Sci. U.S.A. 114(28), 7246–7249 (2017).
[Crossref] [PubMed]

Dingjan, I.

L. M. Paardekooper, G. Bogaart, M. S. Kox, I. Dingjan, A. H. Neerincx, M. B. Bendix, M. Ter Beest, F. J. Harren, T. Risby, P. Pickkers, and N. Marczin, “Ethylene, an early marker of systemic inflammation in humans,” Sci. Rep. 7, 1–9 (2017).

Dong, L.

P. Patimisco, A. Sampaolo, L. Dong, F. K. Tittel, and V. Spagnolo, “Recent advances in quartz enhanced photoacoustic sensing,” Appl. Phys. Rev. 5(1), 011106 (2018).
[Crossref]

H. Zheng, L. Dong, P. Patimisco, H. Wu, A. Sampaolo, X. Yin, S. Li, W. Ma, L. Zhang, W. Yin, L. Xiao, V. Spagnolo, S. Jia, and F. K. Tittel, “Double antinode excited quartz-enhanced photoacoustic spectrophone,” Appl. Phys. Lett. 110(2), 021110 (2017).
[Crossref]

H. Wu, X. Yin, L. Dong, K. Pei, A. Sampaolo, P. Patimisco, H. Zheng, W. Ma, L. Zhang, W. Yin, L. Xiao, V. Spagnolo, S. Jia, and F. K. Tittel, “Simultaneous dual-gas QEPAS detection based on a fundamental and overtone combined vibration of quartz tuning fork,” Appl. Phys. Lett. 110(12), 121104 (2017).
[Crossref]

P. Patimisco, A. Sampaolo, L. Dong, M. Giglio, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Analysis of the electro-elastic properties of custom quartz tuning forks for optoacoustic gas sensing,” Sensor Actuat. Biol. Chem. 227, 539–546 (2016).

P. Patimisco, A. Sampaolo, H. Zheng, L. Dong, F. K. Tittel, and V. Spagnolo, “Quartz–enhanced photoacoustic spectrophones exploiting custom tuning forks: a review,” Adv. Phys. X 2, 169–187 (2016).

F. K. Tittel, A. Sampaolo, P. Patimisco, L. Dong, A. Geras, T. Starecki, and V. Spagnolo, “Analysis of overtone flexural modes operation in quartz-enhanced photoacoustic spectroscopy,” Opt. Express 24(6), A682–A692 (2016).
[Crossref] [PubMed]

H. Wu, A. Sampaolo, L. Dong, P. Patimisco, X. Liu, H. Zheng, X. Yin, W. Ma, L. Zhang, W. Yin, V. Spagnolo, S. Jia, and F. K. Tittel, “Quartz enhanced photoacoustic H2S gas sensor based on a fiber-amplifier source and a custom tuning fork with large prong spacing,” Appl. Phys. Lett. 107(11), 111104 (2015).
[Crossref]

Dumitras, D. C.

D. C. Dumitras, D. C. Dutu, C. Matei, A. M. Magureanu, M. Petrus, C. Popa, and M. Patachia, “Measurements of ethylene concentration by laser photoacoustic techniques with applications at breath analysis,” Rom. Rep. Phys. 60, 593–602 (2008).

Dutu, D. C.

D. C. Dumitras, D. C. Dutu, C. Matei, A. M. Magureanu, M. Petrus, C. Popa, and M. Patachia, “Measurements of ethylene concentration by laser photoacoustic techniques with applications at breath analysis,” Rom. Rep. Phys. 60, 593–602 (2008).

Galli, I.

I. Galli, S. Bartalini, S. Borri, P. Cancio, D. Mazzotti, P. De Natale, and G. Giusfredi, “Molecular gas sensing below parts per trillion: radiocarbon-dioxide optical detection,” Phys. Rev. Lett. 107(27), 270802 (2011).
[Crossref] [PubMed]

Geng, J.

Geras, A.

Giglio, M.

P. Patimisco, A. Sampaolo, M. Giglio, S. Dello Russo, V. Mackowiak, H. Rossmadl, A. Cable, F. K. Tittel, and V. Spagnolo, “Tuning forks with optimized geometries for quartz-enhanced photoacoustic spectroscopy,” Opt. Express 27(2), 1401–1415 (2019).
[Crossref]

A. Sampaolo, S. Csutak, P. Patimisco, M. Giglio, G. Menduni, V. Passaro, F. K. Tittel, M. Deffenbaugh, and V. Spagnolo, “Methane, ethane and propane detection using a compact quartz enhanced photoacoustic sensor and a single interband cascade laser,” Sensor Actuat. Biol. Chem. 282, 952–960 (2019).

M. Giglio, P. Patimisco, A. Sampaolo, A. Zifarelli, R. Blanchard, C. Pfluegl, M. F. Witinski, D. Vakhshoori, F. K. Tittel, and V. Spagnolo, “Nitrous oxide quartz-enhanced photoacoustic detection employing a broadband distributed-feedback quantum cascade laser array,” Appl. Phys. Lett. 113(17), 171101 (2018).
[Crossref]

A. Sampaolo, P. Patimisco, M. Giglio, M. S. Vitiello, H. E. Beere, D. A. Ritchie, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Improved tuning fork for terahertz quartz-enhanced photoacoustic spectroscopy,” Sensors (Basel) 16(4), 439–446 (2016).
[Crossref] [PubMed]

P. Patimisco, A. Sampaolo, L. Dong, M. Giglio, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Analysis of the electro-elastic properties of custom quartz tuning forks for optoacoustic gas sensing,” Sensor Actuat. Biol. Chem. 227, 539–546 (2016).

A. Sampaolo, P. Patimisco, M. Giglio, L. Chieco, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Highly sensitive gas leak detector based on a quartz-enhanced photoacoustic SF6 sensor,” Opt. Express 24(14), 15872–15881 (2016).
[Crossref] [PubMed]

M. Giglio, P. Patimisco, A. Sampaolo, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Allan deviation plot as a tool for quartz enhanced photoacoustic sensors noise analysis,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 63(4), 555–560 (2016).
[Crossref] [PubMed]

Giusfredi, G.

I. Galli, S. Bartalini, S. Borri, P. Cancio, D. Mazzotti, P. De Natale, and G. Giusfredi, “Molecular gas sensing below parts per trillion: radiocarbon-dioxide optical detection,” Phys. Rev. Lett. 107(27), 270802 (2011).
[Crossref] [PubMed]

Halonen, L.

T. Tomberg, M. Vainio, T. Hieta, and L. Halonen, “Sub-parts-per-trillion level sensitivity in trace gas detection by cantilever-enhanced photo-acoustic spectroscopy,” Sci. Rep. 8(1), 1848 (2018).
[Crossref] [PubMed]

Harren, F. J.

L. M. Paardekooper, G. Bogaart, M. S. Kox, I. Dingjan, A. H. Neerincx, M. B. Bendix, M. Ter Beest, F. J. Harren, T. Risby, P. Pickkers, and N. Marczin, “Ethylene, an early marker of systemic inflammation in humans,” Sci. Rep. 7, 1–9 (2017).

He, Y.

Y. Ma, Y. He, X. Yu, C. Chen, R. Sun, and F. K. Tittel, “HCl ppb-level detection based on QEPAS sensor using a low resonance frequency quartz tuning fork,” Sensor Actuat. Biol. Chem. 233, 388–393 (2016).

Heggestad, H. E.

F. B. Abeles and H. E. Heggestad, “Ethylene: an urban air pollutant,” J. Air Pollut. Control Assoc. 23(6), 517–521 (1973).
[Crossref] [PubMed]

Hieta, T.

T. Tomberg, M. Vainio, T. Hieta, and L. Halonen, “Sub-parts-per-trillion level sensitivity in trace gas detection by cantilever-enhanced photo-acoustic spectroscopy,” Sci. Rep. 8(1), 1848 (2018).
[Crossref] [PubMed]

Hodgkinson, J.

J. Hodgkinson and R. P. Tatam, “Optical gas sensing: a review,” Meas. Sci. Technol. 24(1), 012004 (2013).
[Crossref]

Jia, S.

H. Zheng, L. Dong, P. Patimisco, H. Wu, A. Sampaolo, X. Yin, S. Li, W. Ma, L. Zhang, W. Yin, L. Xiao, V. Spagnolo, S. Jia, and F. K. Tittel, “Double antinode excited quartz-enhanced photoacoustic spectrophone,” Appl. Phys. Lett. 110(2), 021110 (2017).
[Crossref]

H. Wu, X. Yin, L. Dong, K. Pei, A. Sampaolo, P. Patimisco, H. Zheng, W. Ma, L. Zhang, W. Yin, L. Xiao, V. Spagnolo, S. Jia, and F. K. Tittel, “Simultaneous dual-gas QEPAS detection based on a fundamental and overtone combined vibration of quartz tuning fork,” Appl. Phys. Lett. 110(12), 121104 (2017).
[Crossref]

H. Wu, A. Sampaolo, L. Dong, P. Patimisco, X. Liu, H. Zheng, X. Yin, W. Ma, L. Zhang, W. Yin, V. Spagnolo, S. Jia, and F. K. Tittel, “Quartz enhanced photoacoustic H2S gas sensor based on a fiber-amplifier source and a custom tuning fork with large prong spacing,” Appl. Phys. Lett. 107(11), 111104 (2015).
[Crossref]

Kosterev, A. A.

S. Schilt, A. A. Kosterev, and F. K. Tittel, “Performance evaluation of a near infrared QEPAS based ethylene sensor,” Appl. Phys. B 95(4), 813–824 (2009).
[Crossref]

G. Wysocki, A. A. Kosterev, and F. K. Tittel, “Influence of molecular relaxation dynamics on quartz-enhanced photoacoustic detection of CO2 at λ = 2 μm,” Appl. Phys. B 85(2-3), 301–306 (2006).
[Crossref]

Kox, M. S.

L. M. Paardekooper, G. Bogaart, M. S. Kox, I. Dingjan, A. H. Neerincx, M. B. Bendix, M. Ter Beest, F. J. Harren, T. Risby, P. Pickkers, and N. Marczin, “Ethylene, an early marker of systemic inflammation in humans,” Sci. Rep. 7, 1–9 (2017).

Latché, A.

J. C. Pech, M. Bouzayen, and A. Latché, “Climacteric fruit ripening: ethylene-dependent and independent regulation of ripening pathways in melon fruit,” Plant Sci. 175(1-2), 114–120 (2008).
[Crossref]

Li, S.

H. Zheng, L. Dong, P. Patimisco, H. Wu, A. Sampaolo, X. Yin, S. Li, W. Ma, L. Zhang, W. Yin, L. Xiao, V. Spagnolo, S. Jia, and F. K. Tittel, “Double antinode excited quartz-enhanced photoacoustic spectrophone,” Appl. Phys. Lett. 110(2), 021110 (2017).
[Crossref]

Li, Z.

Liu, X.

H. Wu, A. Sampaolo, L. Dong, P. Patimisco, X. Liu, H. Zheng, X. Yin, W. Ma, L. Zhang, W. Yin, V. Spagnolo, S. Jia, and F. K. Tittel, “Quartz enhanced photoacoustic H2S gas sensor based on a fiber-amplifier source and a custom tuning fork with large prong spacing,” Appl. Phys. Lett. 107(11), 111104 (2015).
[Crossref]

Ma, W.

H. Zheng, L. Dong, P. Patimisco, H. Wu, A. Sampaolo, X. Yin, S. Li, W. Ma, L. Zhang, W. Yin, L. Xiao, V. Spagnolo, S. Jia, and F. K. Tittel, “Double antinode excited quartz-enhanced photoacoustic spectrophone,” Appl. Phys. Lett. 110(2), 021110 (2017).
[Crossref]

H. Wu, X. Yin, L. Dong, K. Pei, A. Sampaolo, P. Patimisco, H. Zheng, W. Ma, L. Zhang, W. Yin, L. Xiao, V. Spagnolo, S. Jia, and F. K. Tittel, “Simultaneous dual-gas QEPAS detection based on a fundamental and overtone combined vibration of quartz tuning fork,” Appl. Phys. Lett. 110(12), 121104 (2017).
[Crossref]

H. Wu, A. Sampaolo, L. Dong, P. Patimisco, X. Liu, H. Zheng, X. Yin, W. Ma, L. Zhang, W. Yin, V. Spagnolo, S. Jia, and F. K. Tittel, “Quartz enhanced photoacoustic H2S gas sensor based on a fiber-amplifier source and a custom tuning fork with large prong spacing,” Appl. Phys. Lett. 107(11), 111104 (2015).
[Crossref]

Ma, Y.

Y. Ma, Y. He, X. Yu, C. Chen, R. Sun, and F. K. Tittel, “HCl ppb-level detection based on QEPAS sensor using a low resonance frequency quartz tuning fork,” Sensor Actuat. Biol. Chem. 233, 388–393 (2016).

Mackowiak, V.

P. Patimisco, A. Sampaolo, M. Giglio, S. Dello Russo, V. Mackowiak, H. Rossmadl, A. Cable, F. K. Tittel, and V. Spagnolo, “Tuning forks with optimized geometries for quartz-enhanced photoacoustic spectroscopy,” Opt. Express 27(2), 1401–1415 (2019).
[Crossref]

P. Patimisco, A. Sampaolo, V. Mackowiak, H. Rossmadl, A. Cable, F. K. Tittel, and V. Spagnolo, “Loss mechanisms determining the quality factors in quartz tuning forks vibrating at the fundamental and first overtone modes,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(10), 1951–1957 (2018).
[Crossref] [PubMed]

Magureanu, A. M.

D. C. Dumitras, D. C. Dutu, C. Matei, A. M. Magureanu, M. Petrus, C. Popa, and M. Patachia, “Measurements of ethylene concentration by laser photoacoustic techniques with applications at breath analysis,” Rom. Rep. Phys. 60, 593–602 (2008).

Marczin, N.

L. M. Paardekooper, G. Bogaart, M. S. Kox, I. Dingjan, A. H. Neerincx, M. B. Bendix, M. Ter Beest, F. J. Harren, T. Risby, P. Pickkers, and N. Marczin, “Ethylene, an early marker of systemic inflammation in humans,” Sci. Rep. 7, 1–9 (2017).

Matei, C.

D. C. Dumitras, D. C. Dutu, C. Matei, A. M. Magureanu, M. Petrus, C. Popa, and M. Patachia, “Measurements of ethylene concentration by laser photoacoustic techniques with applications at breath analysis,” Rom. Rep. Phys. 60, 593–602 (2008).

Mazzotti, D.

I. Galli, S. Bartalini, S. Borri, P. Cancio, D. Mazzotti, P. De Natale, and G. Giusfredi, “Molecular gas sensing below parts per trillion: radiocarbon-dioxide optical detection,” Phys. Rev. Lett. 107(27), 270802 (2011).
[Crossref] [PubMed]

Menduni, G.

A. Sampaolo, S. Csutak, P. Patimisco, M. Giglio, G. Menduni, V. Passaro, F. K. Tittel, M. Deffenbaugh, and V. Spagnolo, “Methane, ethane and propane detection using a compact quartz enhanced photoacoustic sensor and a single interband cascade laser,” Sensor Actuat. Biol. Chem. 282, 952–960 (2019).

Neerincx, A. H.

L. M. Paardekooper, G. Bogaart, M. S. Kox, I. Dingjan, A. H. Neerincx, M. B. Bendix, M. Ter Beest, F. J. Harren, T. Risby, P. Pickkers, and N. Marczin, “Ethylene, an early marker of systemic inflammation in humans,” Sci. Rep. 7, 1–9 (2017).

Paardekooper, L. M.

L. M. Paardekooper, G. Bogaart, M. S. Kox, I. Dingjan, A. H. Neerincx, M. B. Bendix, M. Ter Beest, F. J. Harren, T. Risby, P. Pickkers, and N. Marczin, “Ethylene, an early marker of systemic inflammation in humans,” Sci. Rep. 7, 1–9 (2017).

Passaro, V.

A. Sampaolo, S. Csutak, P. Patimisco, M. Giglio, G. Menduni, V. Passaro, F. K. Tittel, M. Deffenbaugh, and V. Spagnolo, “Methane, ethane and propane detection using a compact quartz enhanced photoacoustic sensor and a single interband cascade laser,” Sensor Actuat. Biol. Chem. 282, 952–960 (2019).

Patachia, M.

D. C. Dumitras, D. C. Dutu, C. Matei, A. M. Magureanu, M. Petrus, C. Popa, and M. Patachia, “Measurements of ethylene concentration by laser photoacoustic techniques with applications at breath analysis,” Rom. Rep. Phys. 60, 593–602 (2008).

Patimisco, P.

A. Sampaolo, S. Csutak, P. Patimisco, M. Giglio, G. Menduni, V. Passaro, F. K. Tittel, M. Deffenbaugh, and V. Spagnolo, “Methane, ethane and propane detection using a compact quartz enhanced photoacoustic sensor and a single interband cascade laser,” Sensor Actuat. Biol. Chem. 282, 952–960 (2019).

P. Patimisco, A. Sampaolo, M. Giglio, S. Dello Russo, V. Mackowiak, H. Rossmadl, A. Cable, F. K. Tittel, and V. Spagnolo, “Tuning forks with optimized geometries for quartz-enhanced photoacoustic spectroscopy,” Opt. Express 27(2), 1401–1415 (2019).
[Crossref]

P. Patimisco, A. Sampaolo, V. Mackowiak, H. Rossmadl, A. Cable, F. K. Tittel, and V. Spagnolo, “Loss mechanisms determining the quality factors in quartz tuning forks vibrating at the fundamental and first overtone modes,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(10), 1951–1957 (2018).
[Crossref] [PubMed]

P. Patimisco, A. Sampaolo, L. Dong, F. K. Tittel, and V. Spagnolo, “Recent advances in quartz enhanced photoacoustic sensing,” Appl. Phys. Rev. 5(1), 011106 (2018).
[Crossref]

M. Giglio, P. Patimisco, A. Sampaolo, A. Zifarelli, R. Blanchard, C. Pfluegl, M. F. Witinski, D. Vakhshoori, F. K. Tittel, and V. Spagnolo, “Nitrous oxide quartz-enhanced photoacoustic detection employing a broadband distributed-feedback quantum cascade laser array,” Appl. Phys. Lett. 113(17), 171101 (2018).
[Crossref]

H. Zheng, L. Dong, P. Patimisco, H. Wu, A. Sampaolo, X. Yin, S. Li, W. Ma, L. Zhang, W. Yin, L. Xiao, V. Spagnolo, S. Jia, and F. K. Tittel, “Double antinode excited quartz-enhanced photoacoustic spectrophone,” Appl. Phys. Lett. 110(2), 021110 (2017).
[Crossref]

H. Wu, X. Yin, L. Dong, K. Pei, A. Sampaolo, P. Patimisco, H. Zheng, W. Ma, L. Zhang, W. Yin, L. Xiao, V. Spagnolo, S. Jia, and F. K. Tittel, “Simultaneous dual-gas QEPAS detection based on a fundamental and overtone combined vibration of quartz tuning fork,” Appl. Phys. Lett. 110(12), 121104 (2017).
[Crossref]

A. Sampaolo, P. Patimisco, M. Giglio, M. S. Vitiello, H. E. Beere, D. A. Ritchie, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Improved tuning fork for terahertz quartz-enhanced photoacoustic spectroscopy,” Sensors (Basel) 16(4), 439–446 (2016).
[Crossref] [PubMed]

P. Patimisco, A. Sampaolo, L. Dong, M. Giglio, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Analysis of the electro-elastic properties of custom quartz tuning forks for optoacoustic gas sensing,” Sensor Actuat. Biol. Chem. 227, 539–546 (2016).

P. Patimisco, A. Sampaolo, H. Zheng, L. Dong, F. K. Tittel, and V. Spagnolo, “Quartz–enhanced photoacoustic spectrophones exploiting custom tuning forks: a review,” Adv. Phys. X 2, 169–187 (2016).

F. K. Tittel, A. Sampaolo, P. Patimisco, L. Dong, A. Geras, T. Starecki, and V. Spagnolo, “Analysis of overtone flexural modes operation in quartz-enhanced photoacoustic spectroscopy,” Opt. Express 24(6), A682–A692 (2016).
[Crossref] [PubMed]

M. Giglio, P. Patimisco, A. Sampaolo, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Allan deviation plot as a tool for quartz enhanced photoacoustic sensors noise analysis,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 63(4), 555–560 (2016).
[Crossref] [PubMed]

A. Sampaolo, P. Patimisco, M. Giglio, L. Chieco, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Highly sensitive gas leak detector based on a quartz-enhanced photoacoustic SF6 sensor,” Opt. Express 24(14), 15872–15881 (2016).
[Crossref] [PubMed]

H. Wu, A. Sampaolo, L. Dong, P. Patimisco, X. Liu, H. Zheng, X. Yin, W. Ma, L. Zhang, W. Yin, V. Spagnolo, S. Jia, and F. K. Tittel, “Quartz enhanced photoacoustic H2S gas sensor based on a fiber-amplifier source and a custom tuning fork with large prong spacing,” Appl. Phys. Lett. 107(11), 111104 (2015).
[Crossref]

Pech, J. C.

J. C. Pech, M. Bouzayen, and A. Latché, “Climacteric fruit ripening: ethylene-dependent and independent regulation of ripening pathways in melon fruit,” Plant Sci. 175(1-2), 114–120 (2008).
[Crossref]

Pei, K.

H. Wu, X. Yin, L. Dong, K. Pei, A. Sampaolo, P. Patimisco, H. Zheng, W. Ma, L. Zhang, W. Yin, L. Xiao, V. Spagnolo, S. Jia, and F. K. Tittel, “Simultaneous dual-gas QEPAS detection based on a fundamental and overtone combined vibration of quartz tuning fork,” Appl. Phys. Lett. 110(12), 121104 (2017).
[Crossref]

Petrus, M.

D. C. Dumitras, D. C. Dutu, C. Matei, A. M. Magureanu, M. Petrus, C. Popa, and M. Patachia, “Measurements of ethylene concentration by laser photoacoustic techniques with applications at breath analysis,” Rom. Rep. Phys. 60, 593–602 (2008).

Pfluegl, C.

M. Giglio, P. Patimisco, A. Sampaolo, A. Zifarelli, R. Blanchard, C. Pfluegl, M. F. Witinski, D. Vakhshoori, F. K. Tittel, and V. Spagnolo, “Nitrous oxide quartz-enhanced photoacoustic detection employing a broadband distributed-feedback quantum cascade laser array,” Appl. Phys. Lett. 113(17), 171101 (2018).
[Crossref]

Pickkers, P.

L. M. Paardekooper, G. Bogaart, M. S. Kox, I. Dingjan, A. H. Neerincx, M. B. Bendix, M. Ter Beest, F. J. Harren, T. Risby, P. Pickkers, and N. Marczin, “Ethylene, an early marker of systemic inflammation in humans,” Sci. Rep. 7, 1–9 (2017).

Popa, C.

D. C. Dumitras, D. C. Dutu, C. Matei, A. M. Magureanu, M. Petrus, C. Popa, and M. Patachia, “Measurements of ethylene concentration by laser photoacoustic techniques with applications at breath analysis,” Rom. Rep. Phys. 60, 593–602 (2008).

Qin, Y.

Y. Qin and R. Reifenberger, “Calibrating a tuning fork for use as a scanning probe microscope force sensor,” Rev. Sci. Instrum. 78(6), 063704 (2007).
[Crossref] [PubMed]

Reifenberger, R.

Y. Qin and R. Reifenberger, “Calibrating a tuning fork for use as a scanning probe microscope force sensor,” Rev. Sci. Instrum. 78(6), 063704 (2007).
[Crossref] [PubMed]

Ren, W.

Risby, T.

L. M. Paardekooper, G. Bogaart, M. S. Kox, I. Dingjan, A. H. Neerincx, M. B. Bendix, M. Ter Beest, F. J. Harren, T. Risby, P. Pickkers, and N. Marczin, “Ethylene, an early marker of systemic inflammation in humans,” Sci. Rep. 7, 1–9 (2017).

Ritchie, D. A.

A. Sampaolo, P. Patimisco, M. Giglio, M. S. Vitiello, H. E. Beere, D. A. Ritchie, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Improved tuning fork for terahertz quartz-enhanced photoacoustic spectroscopy,” Sensors (Basel) 16(4), 439–446 (2016).
[Crossref] [PubMed]

Rossmadl, H.

P. Patimisco, A. Sampaolo, M. Giglio, S. Dello Russo, V. Mackowiak, H. Rossmadl, A. Cable, F. K. Tittel, and V. Spagnolo, “Tuning forks with optimized geometries for quartz-enhanced photoacoustic spectroscopy,” Opt. Express 27(2), 1401–1415 (2019).
[Crossref]

P. Patimisco, A. Sampaolo, V. Mackowiak, H. Rossmadl, A. Cable, F. K. Tittel, and V. Spagnolo, “Loss mechanisms determining the quality factors in quartz tuning forks vibrating at the fundamental and first overtone modes,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(10), 1951–1957 (2018).
[Crossref] [PubMed]

Sampaolo, A.

A. Sampaolo, S. Csutak, P. Patimisco, M. Giglio, G. Menduni, V. Passaro, F. K. Tittel, M. Deffenbaugh, and V. Spagnolo, “Methane, ethane and propane detection using a compact quartz enhanced photoacoustic sensor and a single interband cascade laser,” Sensor Actuat. Biol. Chem. 282, 952–960 (2019).

P. Patimisco, A. Sampaolo, M. Giglio, S. Dello Russo, V. Mackowiak, H. Rossmadl, A. Cable, F. K. Tittel, and V. Spagnolo, “Tuning forks with optimized geometries for quartz-enhanced photoacoustic spectroscopy,” Opt. Express 27(2), 1401–1415 (2019).
[Crossref]

P. Patimisco, A. Sampaolo, V. Mackowiak, H. Rossmadl, A. Cable, F. K. Tittel, and V. Spagnolo, “Loss mechanisms determining the quality factors in quartz tuning forks vibrating at the fundamental and first overtone modes,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(10), 1951–1957 (2018).
[Crossref] [PubMed]

M. Giglio, P. Patimisco, A. Sampaolo, A. Zifarelli, R. Blanchard, C. Pfluegl, M. F. Witinski, D. Vakhshoori, F. K. Tittel, and V. Spagnolo, “Nitrous oxide quartz-enhanced photoacoustic detection employing a broadband distributed-feedback quantum cascade laser array,” Appl. Phys. Lett. 113(17), 171101 (2018).
[Crossref]

P. Patimisco, A. Sampaolo, L. Dong, F. K. Tittel, and V. Spagnolo, “Recent advances in quartz enhanced photoacoustic sensing,” Appl. Phys. Rev. 5(1), 011106 (2018).
[Crossref]

H. Wu, X. Yin, L. Dong, K. Pei, A. Sampaolo, P. Patimisco, H. Zheng, W. Ma, L. Zhang, W. Yin, L. Xiao, V. Spagnolo, S. Jia, and F. K. Tittel, “Simultaneous dual-gas QEPAS detection based on a fundamental and overtone combined vibration of quartz tuning fork,” Appl. Phys. Lett. 110(12), 121104 (2017).
[Crossref]

H. Zheng, L. Dong, P. Patimisco, H. Wu, A. Sampaolo, X. Yin, S. Li, W. Ma, L. Zhang, W. Yin, L. Xiao, V. Spagnolo, S. Jia, and F. K. Tittel, “Double antinode excited quartz-enhanced photoacoustic spectrophone,” Appl. Phys. Lett. 110(2), 021110 (2017).
[Crossref]

A. Sampaolo, P. Patimisco, M. Giglio, M. S. Vitiello, H. E. Beere, D. A. Ritchie, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Improved tuning fork for terahertz quartz-enhanced photoacoustic spectroscopy,” Sensors (Basel) 16(4), 439–446 (2016).
[Crossref] [PubMed]

P. Patimisco, A. Sampaolo, L. Dong, M. Giglio, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Analysis of the electro-elastic properties of custom quartz tuning forks for optoacoustic gas sensing,” Sensor Actuat. Biol. Chem. 227, 539–546 (2016).

P. Patimisco, A. Sampaolo, H. Zheng, L. Dong, F. K. Tittel, and V. Spagnolo, “Quartz–enhanced photoacoustic spectrophones exploiting custom tuning forks: a review,” Adv. Phys. X 2, 169–187 (2016).

F. K. Tittel, A. Sampaolo, P. Patimisco, L. Dong, A. Geras, T. Starecki, and V. Spagnolo, “Analysis of overtone flexural modes operation in quartz-enhanced photoacoustic spectroscopy,” Opt. Express 24(6), A682–A692 (2016).
[Crossref] [PubMed]

A. Sampaolo, P. Patimisco, M. Giglio, L. Chieco, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Highly sensitive gas leak detector based on a quartz-enhanced photoacoustic SF6 sensor,” Opt. Express 24(14), 15872–15881 (2016).
[Crossref] [PubMed]

M. Giglio, P. Patimisco, A. Sampaolo, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Allan deviation plot as a tool for quartz enhanced photoacoustic sensors noise analysis,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 63(4), 555–560 (2016).
[Crossref] [PubMed]

H. Wu, A. Sampaolo, L. Dong, P. Patimisco, X. Liu, H. Zheng, X. Yin, W. Ma, L. Zhang, W. Yin, V. Spagnolo, S. Jia, and F. K. Tittel, “Quartz enhanced photoacoustic H2S gas sensor based on a fiber-amplifier source and a custom tuning fork with large prong spacing,” Appl. Phys. Lett. 107(11), 111104 (2015).
[Crossref]

Scamarcio, G.

A. Sampaolo, P. Patimisco, M. Giglio, M. S. Vitiello, H. E. Beere, D. A. Ritchie, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Improved tuning fork for terahertz quartz-enhanced photoacoustic spectroscopy,” Sensors (Basel) 16(4), 439–446 (2016).
[Crossref] [PubMed]

P. Patimisco, A. Sampaolo, L. Dong, M. Giglio, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Analysis of the electro-elastic properties of custom quartz tuning forks for optoacoustic gas sensing,” Sensor Actuat. Biol. Chem. 227, 539–546 (2016).

M. Giglio, P. Patimisco, A. Sampaolo, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Allan deviation plot as a tool for quartz enhanced photoacoustic sensors noise analysis,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 63(4), 555–560 (2016).
[Crossref] [PubMed]

A. Sampaolo, P. Patimisco, M. Giglio, L. Chieco, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Highly sensitive gas leak detector based on a quartz-enhanced photoacoustic SF6 sensor,” Opt. Express 24(14), 15872–15881 (2016).
[Crossref] [PubMed]

Schilt, S.

S. Schilt, A. A. Kosterev, and F. K. Tittel, “Performance evaluation of a near infrared QEPAS based ethylene sensor,” Appl. Phys. B 95(4), 813–824 (2009).
[Crossref]

Seinfeld, J. H.

J. H. Seinfeld, “Urban air pollution: state of the science,” Science 243(4892), 745–752 (1989).
[Crossref] [PubMed]

Sigrist, M. W.

M. W. Sigrist, “Trace gas monitoring by laser-photoacoustic spectroscopy,” Infrared Phys. Technol. 36(1), 415–425 (1995).
[Crossref]

Smith, D.

D. Smith and P. Španěl, “The challenge of breath analysis for clinical diagnosis and therapeutic monitoring,” Analyst (Lond.) 132(5), 390–396 (2007).
[Crossref] [PubMed]

Spagnolo, V.

A. Sampaolo, S. Csutak, P. Patimisco, M. Giglio, G. Menduni, V. Passaro, F. K. Tittel, M. Deffenbaugh, and V. Spagnolo, “Methane, ethane and propane detection using a compact quartz enhanced photoacoustic sensor and a single interband cascade laser,” Sensor Actuat. Biol. Chem. 282, 952–960 (2019).

P. Patimisco, A. Sampaolo, M. Giglio, S. Dello Russo, V. Mackowiak, H. Rossmadl, A. Cable, F. K. Tittel, and V. Spagnolo, “Tuning forks with optimized geometries for quartz-enhanced photoacoustic spectroscopy,” Opt. Express 27(2), 1401–1415 (2019).
[Crossref]

P. Patimisco, A. Sampaolo, V. Mackowiak, H. Rossmadl, A. Cable, F. K. Tittel, and V. Spagnolo, “Loss mechanisms determining the quality factors in quartz tuning forks vibrating at the fundamental and first overtone modes,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(10), 1951–1957 (2018).
[Crossref] [PubMed]

P. Patimisco, A. Sampaolo, L. Dong, F. K. Tittel, and V. Spagnolo, “Recent advances in quartz enhanced photoacoustic sensing,” Appl. Phys. Rev. 5(1), 011106 (2018).
[Crossref]

M. Giglio, P. Patimisco, A. Sampaolo, A. Zifarelli, R. Blanchard, C. Pfluegl, M. F. Witinski, D. Vakhshoori, F. K. Tittel, and V. Spagnolo, “Nitrous oxide quartz-enhanced photoacoustic detection employing a broadband distributed-feedback quantum cascade laser array,” Appl. Phys. Lett. 113(17), 171101 (2018).
[Crossref]

H. Wu, X. Yin, L. Dong, K. Pei, A. Sampaolo, P. Patimisco, H. Zheng, W. Ma, L. Zhang, W. Yin, L. Xiao, V. Spagnolo, S. Jia, and F. K. Tittel, “Simultaneous dual-gas QEPAS detection based on a fundamental and overtone combined vibration of quartz tuning fork,” Appl. Phys. Lett. 110(12), 121104 (2017).
[Crossref]

H. Zheng, L. Dong, P. Patimisco, H. Wu, A. Sampaolo, X. Yin, S. Li, W. Ma, L. Zhang, W. Yin, L. Xiao, V. Spagnolo, S. Jia, and F. K. Tittel, “Double antinode excited quartz-enhanced photoacoustic spectrophone,” Appl. Phys. Lett. 110(2), 021110 (2017).
[Crossref]

A. Sampaolo, P. Patimisco, M. Giglio, M. S. Vitiello, H. E. Beere, D. A. Ritchie, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Improved tuning fork for terahertz quartz-enhanced photoacoustic spectroscopy,” Sensors (Basel) 16(4), 439–446 (2016).
[Crossref] [PubMed]

P. Patimisco, A. Sampaolo, H. Zheng, L. Dong, F. K. Tittel, and V. Spagnolo, “Quartz–enhanced photoacoustic spectrophones exploiting custom tuning forks: a review,” Adv. Phys. X 2, 169–187 (2016).

P. Patimisco, A. Sampaolo, L. Dong, M. Giglio, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Analysis of the electro-elastic properties of custom quartz tuning forks for optoacoustic gas sensing,” Sensor Actuat. Biol. Chem. 227, 539–546 (2016).

M. Giglio, P. Patimisco, A. Sampaolo, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Allan deviation plot as a tool for quartz enhanced photoacoustic sensors noise analysis,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 63(4), 555–560 (2016).
[Crossref] [PubMed]

F. K. Tittel, A. Sampaolo, P. Patimisco, L. Dong, A. Geras, T. Starecki, and V. Spagnolo, “Analysis of overtone flexural modes operation in quartz-enhanced photoacoustic spectroscopy,” Opt. Express 24(6), A682–A692 (2016).
[Crossref] [PubMed]

A. Sampaolo, P. Patimisco, M. Giglio, L. Chieco, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Highly sensitive gas leak detector based on a quartz-enhanced photoacoustic SF6 sensor,” Opt. Express 24(14), 15872–15881 (2016).
[Crossref] [PubMed]

H. Wu, A. Sampaolo, L. Dong, P. Patimisco, X. Liu, H. Zheng, X. Yin, W. Ma, L. Zhang, W. Yin, V. Spagnolo, S. Jia, and F. K. Tittel, “Quartz enhanced photoacoustic H2S gas sensor based on a fiber-amplifier source and a custom tuning fork with large prong spacing,” Appl. Phys. Lett. 107(11), 111104 (2015).
[Crossref]

Španel, P.

D. Smith and P. Španěl, “The challenge of breath analysis for clinical diagnosis and therapeutic monitoring,” Analyst (Lond.) 132(5), 390–396 (2007).
[Crossref] [PubMed]

Starecki, T.

Sun, R.

Y. Ma, Y. He, X. Yu, C. Chen, R. Sun, and F. K. Tittel, “HCl ppb-level detection based on QEPAS sensor using a low resonance frequency quartz tuning fork,” Sensor Actuat. Biol. Chem. 233, 388–393 (2016).

Tatam, R. P.

J. Hodgkinson and R. P. Tatam, “Optical gas sensing: a review,” Meas. Sci. Technol. 24(1), 012004 (2013).
[Crossref]

Ter Beest, M.

L. M. Paardekooper, G. Bogaart, M. S. Kox, I. Dingjan, A. H. Neerincx, M. B. Bendix, M. Ter Beest, F. J. Harren, T. Risby, P. Pickkers, and N. Marczin, “Ethylene, an early marker of systemic inflammation in humans,” Sci. Rep. 7, 1–9 (2017).

Tittel, F. K.

A. Sampaolo, S. Csutak, P. Patimisco, M. Giglio, G. Menduni, V. Passaro, F. K. Tittel, M. Deffenbaugh, and V. Spagnolo, “Methane, ethane and propane detection using a compact quartz enhanced photoacoustic sensor and a single interband cascade laser,” Sensor Actuat. Biol. Chem. 282, 952–960 (2019).

P. Patimisco, A. Sampaolo, M. Giglio, S. Dello Russo, V. Mackowiak, H. Rossmadl, A. Cable, F. K. Tittel, and V. Spagnolo, “Tuning forks with optimized geometries for quartz-enhanced photoacoustic spectroscopy,” Opt. Express 27(2), 1401–1415 (2019).
[Crossref]

P. Patimisco, A. Sampaolo, V. Mackowiak, H. Rossmadl, A. Cable, F. K. Tittel, and V. Spagnolo, “Loss mechanisms determining the quality factors in quartz tuning forks vibrating at the fundamental and first overtone modes,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(10), 1951–1957 (2018).
[Crossref] [PubMed]

P. Patimisco, A. Sampaolo, L. Dong, F. K. Tittel, and V. Spagnolo, “Recent advances in quartz enhanced photoacoustic sensing,” Appl. Phys. Rev. 5(1), 011106 (2018).
[Crossref]

M. Giglio, P. Patimisco, A. Sampaolo, A. Zifarelli, R. Blanchard, C. Pfluegl, M. F. Witinski, D. Vakhshoori, F. K. Tittel, and V. Spagnolo, “Nitrous oxide quartz-enhanced photoacoustic detection employing a broadband distributed-feedback quantum cascade laser array,” Appl. Phys. Lett. 113(17), 171101 (2018).
[Crossref]

H. Zheng, L. Dong, P. Patimisco, H. Wu, A. Sampaolo, X. Yin, S. Li, W. Ma, L. Zhang, W. Yin, L. Xiao, V. Spagnolo, S. Jia, and F. K. Tittel, “Double antinode excited quartz-enhanced photoacoustic spectrophone,” Appl. Phys. Lett. 110(2), 021110 (2017).
[Crossref]

H. Wu, X. Yin, L. Dong, K. Pei, A. Sampaolo, P. Patimisco, H. Zheng, W. Ma, L. Zhang, W. Yin, L. Xiao, V. Spagnolo, S. Jia, and F. K. Tittel, “Simultaneous dual-gas QEPAS detection based on a fundamental and overtone combined vibration of quartz tuning fork,” Appl. Phys. Lett. 110(12), 121104 (2017).
[Crossref]

Y. Ma, Y. He, X. Yu, C. Chen, R. Sun, and F. K. Tittel, “HCl ppb-level detection based on QEPAS sensor using a low resonance frequency quartz tuning fork,” Sensor Actuat. Biol. Chem. 233, 388–393 (2016).

A. Sampaolo, P. Patimisco, M. Giglio, M. S. Vitiello, H. E. Beere, D. A. Ritchie, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Improved tuning fork for terahertz quartz-enhanced photoacoustic spectroscopy,” Sensors (Basel) 16(4), 439–446 (2016).
[Crossref] [PubMed]

P. Patimisco, A. Sampaolo, L. Dong, M. Giglio, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Analysis of the electro-elastic properties of custom quartz tuning forks for optoacoustic gas sensing,” Sensor Actuat. Biol. Chem. 227, 539–546 (2016).

P. Patimisco, A. Sampaolo, H. Zheng, L. Dong, F. K. Tittel, and V. Spagnolo, “Quartz–enhanced photoacoustic spectrophones exploiting custom tuning forks: a review,” Adv. Phys. X 2, 169–187 (2016).

F. K. Tittel, A. Sampaolo, P. Patimisco, L. Dong, A. Geras, T. Starecki, and V. Spagnolo, “Analysis of overtone flexural modes operation in quartz-enhanced photoacoustic spectroscopy,” Opt. Express 24(6), A682–A692 (2016).
[Crossref] [PubMed]

M. Giglio, P. Patimisco, A. Sampaolo, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Allan deviation plot as a tool for quartz enhanced photoacoustic sensors noise analysis,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 63(4), 555–560 (2016).
[Crossref] [PubMed]

A. Sampaolo, P. Patimisco, M. Giglio, L. Chieco, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Highly sensitive gas leak detector based on a quartz-enhanced photoacoustic SF6 sensor,” Opt. Express 24(14), 15872–15881 (2016).
[Crossref] [PubMed]

H. Wu, A. Sampaolo, L. Dong, P. Patimisco, X. Liu, H. Zheng, X. Yin, W. Ma, L. Zhang, W. Yin, V. Spagnolo, S. Jia, and F. K. Tittel, “Quartz enhanced photoacoustic H2S gas sensor based on a fiber-amplifier source and a custom tuning fork with large prong spacing,” Appl. Phys. Lett. 107(11), 111104 (2015).
[Crossref]

S. Schilt, A. A. Kosterev, and F. K. Tittel, “Performance evaluation of a near infrared QEPAS based ethylene sensor,” Appl. Phys. B 95(4), 813–824 (2009).
[Crossref]

G. Wysocki, A. A. Kosterev, and F. K. Tittel, “Influence of molecular relaxation dynamics on quartz-enhanced photoacoustic detection of CO2 at λ = 2 μm,” Appl. Phys. B 85(2-3), 301–306 (2006).
[Crossref]

Tomberg, T.

T. Tomberg, M. Vainio, T. Hieta, and L. Halonen, “Sub-parts-per-trillion level sensitivity in trace gas detection by cantilever-enhanced photo-acoustic spectroscopy,” Sci. Rep. 8(1), 1848 (2018).
[Crossref] [PubMed]

Tullo, A.

A. Tullo, “Petrochemicals: market will remain tight despite new capacity,” Chem. Eng. News 96, 29 (2018).

Vainio, M.

T. Tomberg, M. Vainio, T. Hieta, and L. Halonen, “Sub-parts-per-trillion level sensitivity in trace gas detection by cantilever-enhanced photo-acoustic spectroscopy,” Sci. Rep. 8(1), 1848 (2018).
[Crossref] [PubMed]

Vakhshoori, D.

M. Giglio, P. Patimisco, A. Sampaolo, A. Zifarelli, R. Blanchard, C. Pfluegl, M. F. Witinski, D. Vakhshoori, F. K. Tittel, and V. Spagnolo, “Nitrous oxide quartz-enhanced photoacoustic detection employing a broadband distributed-feedback quantum cascade laser array,” Appl. Phys. Lett. 113(17), 171101 (2018).
[Crossref]

Vitiello, M. S.

A. Sampaolo, P. Patimisco, M. Giglio, M. S. Vitiello, H. E. Beere, D. A. Ritchie, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Improved tuning fork for terahertz quartz-enhanced photoacoustic spectroscopy,” Sensors (Basel) 16(4), 439–446 (2016).
[Crossref] [PubMed]

Wang, Z.

Witinski, M. F.

M. Giglio, P. Patimisco, A. Sampaolo, A. Zifarelli, R. Blanchard, C. Pfluegl, M. F. Witinski, D. Vakhshoori, F. K. Tittel, and V. Spagnolo, “Nitrous oxide quartz-enhanced photoacoustic detection employing a broadband distributed-feedback quantum cascade laser array,” Appl. Phys. Lett. 113(17), 171101 (2018).
[Crossref]

Wu, H.

H. Zheng, L. Dong, P. Patimisco, H. Wu, A. Sampaolo, X. Yin, S. Li, W. Ma, L. Zhang, W. Yin, L. Xiao, V. Spagnolo, S. Jia, and F. K. Tittel, “Double antinode excited quartz-enhanced photoacoustic spectrophone,” Appl. Phys. Lett. 110(2), 021110 (2017).
[Crossref]

H. Wu, X. Yin, L. Dong, K. Pei, A. Sampaolo, P. Patimisco, H. Zheng, W. Ma, L. Zhang, W. Yin, L. Xiao, V. Spagnolo, S. Jia, and F. K. Tittel, “Simultaneous dual-gas QEPAS detection based on a fundamental and overtone combined vibration of quartz tuning fork,” Appl. Phys. Lett. 110(12), 121104 (2017).
[Crossref]

H. Wu, A. Sampaolo, L. Dong, P. Patimisco, X. Liu, H. Zheng, X. Yin, W. Ma, L. Zhang, W. Yin, V. Spagnolo, S. Jia, and F. K. Tittel, “Quartz enhanced photoacoustic H2S gas sensor based on a fiber-amplifier source and a custom tuning fork with large prong spacing,” Appl. Phys. Lett. 107(11), 111104 (2015).
[Crossref]

Wysocki, G.

G. Wysocki, A. A. Kosterev, and F. K. Tittel, “Influence of molecular relaxation dynamics on quartz-enhanced photoacoustic detection of CO2 at λ = 2 μm,” Appl. Phys. B 85(2-3), 301–306 (2006).
[Crossref]

Xiao, L.

H. Zheng, L. Dong, P. Patimisco, H. Wu, A. Sampaolo, X. Yin, S. Li, W. Ma, L. Zhang, W. Yin, L. Xiao, V. Spagnolo, S. Jia, and F. K. Tittel, “Double antinode excited quartz-enhanced photoacoustic spectrophone,” Appl. Phys. Lett. 110(2), 021110 (2017).
[Crossref]

H. Wu, X. Yin, L. Dong, K. Pei, A. Sampaolo, P. Patimisco, H. Zheng, W. Ma, L. Zhang, W. Yin, L. Xiao, V. Spagnolo, S. Jia, and F. K. Tittel, “Simultaneous dual-gas QEPAS detection based on a fundamental and overtone combined vibration of quartz tuning fork,” Appl. Phys. Lett. 110(12), 121104 (2017).
[Crossref]

Xiong, L.

L. Xiong, W. Bai, F. Chen, X. Zhao, F. Yu, and G. J. Diebold, “Photoacoustic trace detection of gases at the parts-per-quadrillion level with a moving optical grating,” Proc. Natl. Acad. Sci. U.S.A. 114(28), 7246–7249 (2017).
[Crossref] [PubMed]

Yin, W.

H. Wu, X. Yin, L. Dong, K. Pei, A. Sampaolo, P. Patimisco, H. Zheng, W. Ma, L. Zhang, W. Yin, L. Xiao, V. Spagnolo, S. Jia, and F. K. Tittel, “Simultaneous dual-gas QEPAS detection based on a fundamental and overtone combined vibration of quartz tuning fork,” Appl. Phys. Lett. 110(12), 121104 (2017).
[Crossref]

H. Zheng, L. Dong, P. Patimisco, H. Wu, A. Sampaolo, X. Yin, S. Li, W. Ma, L. Zhang, W. Yin, L. Xiao, V. Spagnolo, S. Jia, and F. K. Tittel, “Double antinode excited quartz-enhanced photoacoustic spectrophone,” Appl. Phys. Lett. 110(2), 021110 (2017).
[Crossref]

H. Wu, A. Sampaolo, L. Dong, P. Patimisco, X. Liu, H. Zheng, X. Yin, W. Ma, L. Zhang, W. Yin, V. Spagnolo, S. Jia, and F. K. Tittel, “Quartz enhanced photoacoustic H2S gas sensor based on a fiber-amplifier source and a custom tuning fork with large prong spacing,” Appl. Phys. Lett. 107(11), 111104 (2015).
[Crossref]

Yin, X.

H. Zheng, L. Dong, P. Patimisco, H. Wu, A. Sampaolo, X. Yin, S. Li, W. Ma, L. Zhang, W. Yin, L. Xiao, V. Spagnolo, S. Jia, and F. K. Tittel, “Double antinode excited quartz-enhanced photoacoustic spectrophone,” Appl. Phys. Lett. 110(2), 021110 (2017).
[Crossref]

H. Wu, X. Yin, L. Dong, K. Pei, A. Sampaolo, P. Patimisco, H. Zheng, W. Ma, L. Zhang, W. Yin, L. Xiao, V. Spagnolo, S. Jia, and F. K. Tittel, “Simultaneous dual-gas QEPAS detection based on a fundamental and overtone combined vibration of quartz tuning fork,” Appl. Phys. Lett. 110(12), 121104 (2017).
[Crossref]

H. Wu, A. Sampaolo, L. Dong, P. Patimisco, X. Liu, H. Zheng, X. Yin, W. Ma, L. Zhang, W. Yin, V. Spagnolo, S. Jia, and F. K. Tittel, “Quartz enhanced photoacoustic H2S gas sensor based on a fiber-amplifier source and a custom tuning fork with large prong spacing,” Appl. Phys. Lett. 107(11), 111104 (2015).
[Crossref]

Yu, F.

L. Xiong, W. Bai, F. Chen, X. Zhao, F. Yu, and G. J. Diebold, “Photoacoustic trace detection of gases at the parts-per-quadrillion level with a moving optical grating,” Proc. Natl. Acad. Sci. U.S.A. 114(28), 7246–7249 (2017).
[Crossref] [PubMed]

Yu, X.

Y. Ma, Y. He, X. Yu, C. Chen, R. Sun, and F. K. Tittel, “HCl ppb-level detection based on QEPAS sensor using a low resonance frequency quartz tuning fork,” Sensor Actuat. Biol. Chem. 233, 388–393 (2016).

Zhang, L.

H. Zheng, L. Dong, P. Patimisco, H. Wu, A. Sampaolo, X. Yin, S. Li, W. Ma, L. Zhang, W. Yin, L. Xiao, V. Spagnolo, S. Jia, and F. K. Tittel, “Double antinode excited quartz-enhanced photoacoustic spectrophone,” Appl. Phys. Lett. 110(2), 021110 (2017).
[Crossref]

H. Wu, X. Yin, L. Dong, K. Pei, A. Sampaolo, P. Patimisco, H. Zheng, W. Ma, L. Zhang, W. Yin, L. Xiao, V. Spagnolo, S. Jia, and F. K. Tittel, “Simultaneous dual-gas QEPAS detection based on a fundamental and overtone combined vibration of quartz tuning fork,” Appl. Phys. Lett. 110(12), 121104 (2017).
[Crossref]

H. Wu, A. Sampaolo, L. Dong, P. Patimisco, X. Liu, H. Zheng, X. Yin, W. Ma, L. Zhang, W. Yin, V. Spagnolo, S. Jia, and F. K. Tittel, “Quartz enhanced photoacoustic H2S gas sensor based on a fiber-amplifier source and a custom tuning fork with large prong spacing,” Appl. Phys. Lett. 107(11), 111104 (2015).
[Crossref]

Zhao, X.

L. Xiong, W. Bai, F. Chen, X. Zhao, F. Yu, and G. J. Diebold, “Photoacoustic trace detection of gases at the parts-per-quadrillion level with a moving optical grating,” Proc. Natl. Acad. Sci. U.S.A. 114(28), 7246–7249 (2017).
[Crossref] [PubMed]

Zheng, H.

H. Wu, X. Yin, L. Dong, K. Pei, A. Sampaolo, P. Patimisco, H. Zheng, W. Ma, L. Zhang, W. Yin, L. Xiao, V. Spagnolo, S. Jia, and F. K. Tittel, “Simultaneous dual-gas QEPAS detection based on a fundamental and overtone combined vibration of quartz tuning fork,” Appl. Phys. Lett. 110(12), 121104 (2017).
[Crossref]

H. Zheng, L. Dong, P. Patimisco, H. Wu, A. Sampaolo, X. Yin, S. Li, W. Ma, L. Zhang, W. Yin, L. Xiao, V. Spagnolo, S. Jia, and F. K. Tittel, “Double antinode excited quartz-enhanced photoacoustic spectrophone,” Appl. Phys. Lett. 110(2), 021110 (2017).
[Crossref]

P. Patimisco, A. Sampaolo, H. Zheng, L. Dong, F. K. Tittel, and V. Spagnolo, “Quartz–enhanced photoacoustic spectrophones exploiting custom tuning forks: a review,” Adv. Phys. X 2, 169–187 (2016).

H. Wu, A. Sampaolo, L. Dong, P. Patimisco, X. Liu, H. Zheng, X. Yin, W. Ma, L. Zhang, W. Yin, V. Spagnolo, S. Jia, and F. K. Tittel, “Quartz enhanced photoacoustic H2S gas sensor based on a fiber-amplifier source and a custom tuning fork with large prong spacing,” Appl. Phys. Lett. 107(11), 111104 (2015).
[Crossref]

Zifarelli, A.

M. Giglio, P. Patimisco, A. Sampaolo, A. Zifarelli, R. Blanchard, C. Pfluegl, M. F. Witinski, D. Vakhshoori, F. K. Tittel, and V. Spagnolo, “Nitrous oxide quartz-enhanced photoacoustic detection employing a broadband distributed-feedback quantum cascade laser array,” Appl. Phys. Lett. 113(17), 171101 (2018).
[Crossref]

Adv. Phys. X (1)

P. Patimisco, A. Sampaolo, H. Zheng, L. Dong, F. K. Tittel, and V. Spagnolo, “Quartz–enhanced photoacoustic spectrophones exploiting custom tuning forks: a review,” Adv. Phys. X 2, 169–187 (2016).

Analyst (Lond.) (1)

D. Smith and P. Španěl, “The challenge of breath analysis for clinical diagnosis and therapeutic monitoring,” Analyst (Lond.) 132(5), 390–396 (2007).
[Crossref] [PubMed]

Appl. Phys. B (2)

G. Wysocki, A. A. Kosterev, and F. K. Tittel, “Influence of molecular relaxation dynamics on quartz-enhanced photoacoustic detection of CO2 at λ = 2 μm,” Appl. Phys. B 85(2-3), 301–306 (2006).
[Crossref]

S. Schilt, A. A. Kosterev, and F. K. Tittel, “Performance evaluation of a near infrared QEPAS based ethylene sensor,” Appl. Phys. B 95(4), 813–824 (2009).
[Crossref]

Appl. Phys. Lett. (4)

H. Wu, A. Sampaolo, L. Dong, P. Patimisco, X. Liu, H. Zheng, X. Yin, W. Ma, L. Zhang, W. Yin, V. Spagnolo, S. Jia, and F. K. Tittel, “Quartz enhanced photoacoustic H2S gas sensor based on a fiber-amplifier source and a custom tuning fork with large prong spacing,” Appl. Phys. Lett. 107(11), 111104 (2015).
[Crossref]

M. Giglio, P. Patimisco, A. Sampaolo, A. Zifarelli, R. Blanchard, C. Pfluegl, M. F. Witinski, D. Vakhshoori, F. K. Tittel, and V. Spagnolo, “Nitrous oxide quartz-enhanced photoacoustic detection employing a broadband distributed-feedback quantum cascade laser array,” Appl. Phys. Lett. 113(17), 171101 (2018).
[Crossref]

H. Zheng, L. Dong, P. Patimisco, H. Wu, A. Sampaolo, X. Yin, S. Li, W. Ma, L. Zhang, W. Yin, L. Xiao, V. Spagnolo, S. Jia, and F. K. Tittel, “Double antinode excited quartz-enhanced photoacoustic spectrophone,” Appl. Phys. Lett. 110(2), 021110 (2017).
[Crossref]

H. Wu, X. Yin, L. Dong, K. Pei, A. Sampaolo, P. Patimisco, H. Zheng, W. Ma, L. Zhang, W. Yin, L. Xiao, V. Spagnolo, S. Jia, and F. K. Tittel, “Simultaneous dual-gas QEPAS detection based on a fundamental and overtone combined vibration of quartz tuning fork,” Appl. Phys. Lett. 110(12), 121104 (2017).
[Crossref]

Appl. Phys. Rev. (1)

P. Patimisco, A. Sampaolo, L. Dong, F. K. Tittel, and V. Spagnolo, “Recent advances in quartz enhanced photoacoustic sensing,” Appl. Phys. Rev. 5(1), 011106 (2018).
[Crossref]

Appl. Spectrosc. (1)

Chem. Eng. News (1)

A. Tullo, “Petrochemicals: market will remain tight despite new capacity,” Chem. Eng. News 96, 29 (2018).

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (2)

P. Patimisco, A. Sampaolo, V. Mackowiak, H. Rossmadl, A. Cable, F. K. Tittel, and V. Spagnolo, “Loss mechanisms determining the quality factors in quartz tuning forks vibrating at the fundamental and first overtone modes,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(10), 1951–1957 (2018).
[Crossref] [PubMed]

M. Giglio, P. Patimisco, A. Sampaolo, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Allan deviation plot as a tool for quartz enhanced photoacoustic sensors noise analysis,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 63(4), 555–560 (2016).
[Crossref] [PubMed]

Infrared Phys. Technol. (1)

M. W. Sigrist, “Trace gas monitoring by laser-photoacoustic spectroscopy,” Infrared Phys. Technol. 36(1), 415–425 (1995).
[Crossref]

J. Air Pollut. Control Assoc. (1)

F. B. Abeles and H. E. Heggestad, “Ethylene: an urban air pollutant,” J. Air Pollut. Control Assoc. 23(6), 517–521 (1973).
[Crossref] [PubMed]

Meas. Sci. Technol. (1)

J. Hodgkinson and R. P. Tatam, “Optical gas sensing: a review,” Meas. Sci. Technol. 24(1), 012004 (2013).
[Crossref]

Opt. Express (4)

Opt. Photonics News (1)

P. Daukantas, “Air-quality monitoring in the mid-infrared,” Opt. Photonics News 26(11), 26–33 (2015).
[Crossref]

Phys. Rev. Lett. (1)

I. Galli, S. Bartalini, S. Borri, P. Cancio, D. Mazzotti, P. De Natale, and G. Giusfredi, “Molecular gas sensing below parts per trillion: radiocarbon-dioxide optical detection,” Phys. Rev. Lett. 107(27), 270802 (2011).
[Crossref] [PubMed]

Plant Physiol. (1)

S. P. Burg and E. A. Burg, “Role of ethylene in fruit ripening,” Plant Physiol. 37(2), 179–189 (1962).
[Crossref] [PubMed]

Plant Sci. (1)

J. C. Pech, M. Bouzayen, and A. Latché, “Climacteric fruit ripening: ethylene-dependent and independent regulation of ripening pathways in melon fruit,” Plant Sci. 175(1-2), 114–120 (2008).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

L. Xiong, W. Bai, F. Chen, X. Zhao, F. Yu, and G. J. Diebold, “Photoacoustic trace detection of gases at the parts-per-quadrillion level with a moving optical grating,” Proc. Natl. Acad. Sci. U.S.A. 114(28), 7246–7249 (2017).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

Y. Qin and R. Reifenberger, “Calibrating a tuning fork for use as a scanning probe microscope force sensor,” Rev. Sci. Instrum. 78(6), 063704 (2007).
[Crossref] [PubMed]

Rom. Rep. Phys. (1)

D. C. Dumitras, D. C. Dutu, C. Matei, A. M. Magureanu, M. Petrus, C. Popa, and M. Patachia, “Measurements of ethylene concentration by laser photoacoustic techniques with applications at breath analysis,” Rom. Rep. Phys. 60, 593–602 (2008).

Sci. Rep. (2)

L. M. Paardekooper, G. Bogaart, M. S. Kox, I. Dingjan, A. H. Neerincx, M. B. Bendix, M. Ter Beest, F. J. Harren, T. Risby, P. Pickkers, and N. Marczin, “Ethylene, an early marker of systemic inflammation in humans,” Sci. Rep. 7, 1–9 (2017).

T. Tomberg, M. Vainio, T. Hieta, and L. Halonen, “Sub-parts-per-trillion level sensitivity in trace gas detection by cantilever-enhanced photo-acoustic spectroscopy,” Sci. Rep. 8(1), 1848 (2018).
[Crossref] [PubMed]

Science (1)

J. H. Seinfeld, “Urban air pollution: state of the science,” Science 243(4892), 745–752 (1989).
[Crossref] [PubMed]

Sensor Actuat. Biol. Chem. (3)

A. Sampaolo, S. Csutak, P. Patimisco, M. Giglio, G. Menduni, V. Passaro, F. K. Tittel, M. Deffenbaugh, and V. Spagnolo, “Methane, ethane and propane detection using a compact quartz enhanced photoacoustic sensor and a single interband cascade laser,” Sensor Actuat. Biol. Chem. 282, 952–960 (2019).

Y. Ma, Y. He, X. Yu, C. Chen, R. Sun, and F. K. Tittel, “HCl ppb-level detection based on QEPAS sensor using a low resonance frequency quartz tuning fork,” Sensor Actuat. Biol. Chem. 233, 388–393 (2016).

P. Patimisco, A. Sampaolo, L. Dong, M. Giglio, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Analysis of the electro-elastic properties of custom quartz tuning forks for optoacoustic gas sensing,” Sensor Actuat. Biol. Chem. 227, 539–546 (2016).

Sensors (Basel) (1)

A. Sampaolo, P. Patimisco, M. Giglio, M. S. Vitiello, H. E. Beere, D. A. Ritchie, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Improved tuning fork for terahertz quartz-enhanced photoacoustic spectroscopy,” Sensors (Basel) 16(4), 439–446 (2016).
[Crossref] [PubMed]

Other (4)

J. G. Speight, The Chemistry and Technology of Petroleum (CRC Taylor & Francis Group, 2014).

H. Zimmermann, H. and R. Walzl, Ethylene, Ullmann's Encyclopedia of Industrial Chemistry (Wiley‐VCH, 2009).

ACGIH, Threshold Limit Values for Chemical Substances and Physical Agents in the Workroom Environment (ACGIH, 1986–1987).

http://www.hitran.org/

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic of S1 and S2 spectrophones (a) and experimental setup for electrical characterization (b). V – sinusoidal Voltage; TIA – Transimpedance amplifier; ADM – Acoustic Detection Module.
Fig. 2
Fig. 2 Normalized resonance curves (blue squares) of the spectrophone S1 employing QTF #3 (a) and S2 employing QTF-S08-T (b) at 120 Torr. The red solid curves are the best Lorentzian fit [36].
Fig. 3
Fig. 3 Schematic of the QEPAS sensor for ethylene detection. QCL – Quantum Cascade laser; L – Lens; P – Pinhole; ADM – Acoustic Detection Module; DAQ – Data Acquisition board; PC – Personal Computer.
Fig. 4
Fig. 4 100 ppm C2H4:N2 absorption spectrum simulated by using HITRAN database (a) and QEPAS spectral scan obtained at the same concentration over the QCL tunability range acquired by employing the spectrophone S1 (b).
Fig. 5
Fig. 5 QEPAS signal of 100 ppm C2H4:N2 acquired when S1 (orange solid line) or S2 (green solid line) are implemented in the system. Both spectra were acquired at 100 ms lock-in integration time.
Fig. 6
Fig. 6 QEPAS spectral scans measured for (a) 40 ppm, 30 ppm, 20 ppm, 10 ppm and 5 ppm C2H4:N2 and pure N2 and peak values (b) measured for each ethylene concentration (blue squares) with the corresponding best linear fit (red line).
Fig. 7
Fig. 7 Allan-Werle deviation plot of the QEPAS signal in ppb units as a function of the lock-in integration time. For a 10 s integration time, a minimum detection limit of ~10 ppb was achieved (red dashed line).

Tables (2)

Tables Icon

Table 1 Total height (H), fundamental and first overtone flexural mode resonance frequency (f0, f1), and quality factor (Q0, Q1) of second- and first-generation QTFs and operation surrounding air pressure, as reported in [13] and [33,34], respectively.

Tables Icon

Table 2 Prongs’ length Lprong, thickness Tprong and spacing sprong of the QTF and length Ltube and inner diameter IDtube of the mR tubes composing the two spectrophones.

Metrics