Abstract

Self-absorption seriously affects the accuracy and stability of quantitative analysis in laser-induced breakdown spectroscopy (LIBS). To reduce the effect of self-absorption, we investigated the temporal evolution of the self-absorption effect by establishing exponential calibration curves. Meanwhile, the temporal evolution mechanism of the self-absorption effect was also investigated. The results indicated that self-absorption was weak at the early stage of plasma expansion. For determination of manganese (Mn) in steel, as an example, the concentration of upper bound of linearity (Cint) was 2.000 wt. % at the early stage of plasma expansion (in a time window of 0.2-0.4 μs)—much higher than 0.363 wt. % at a traditional optimization time window (2-3 μs). The accuracy and stability of quantitative analysis at the time window of 0.2-0.4 μs was also much better than at the time window of 2-3 μs. This work provides a simple method for improving quantitative analysis performance and avoiding the self-absorption effect in LIBS.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Investigation on self-absorption at reduced air pressure in quantitative analysis using laser-induced breakdown spectroscopy

Z. Q. Hao, L. Liu, M. Shen, X. Y. Yang, K.H. Li, L. B. Guo, X. Y. Li, Y. F. Lu, and X. Y. Zeng
Opt. Express 24(23) 26521-26528 (2016)

Quantitative elemental analysis of steel using calibration-free laser-induced breakdown spectroscopy

M. L. Shah, A. K. Pulhani, G. P. Gupta, and B. M. Suri
Appl. Opt. 51(20) 4612-4621 (2012)

Laser-induced breakdown spectroscopy enhanced by a micro torch

L. Liu, X. Huang, S. Li, Yao Lu, K. Chen, L. Jiang, J.F. Silvain, and Y.F. Lu
Opt. Express 23(11) 15047-15056 (2015)

References

  • View by:
  • |
  • |
  • |

  1. Y. M. Guo, L. M. Deng, X. Y. Yang, J. M. Li, K. H. Li, Z. H. Zhu, L. B. Guo, X. Y. Li, Y. F. Lu, and X. Y. Zeng, “Wavelet-based interference correction for laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 32(12), 2401–2406 (2017).
    [Crossref]
  2. Z. Zhu, J. Li, Y. Guo, X. Cheng, Y. Tang, L. Guo, X. Li, Y. Lu, and X. Zeng, “Accuracy improvement of boron by molecular emission with a genetic algorithm and partial least squares regression model in laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 33(2), 205–209 (2018).
    [Crossref]
  3. G. Nicolodelli, G. S. Senesi, I. L. de Oliveira Perazzoli, B. S. Marangoni, V. De Melo Benites, and D. M. B. P. Milori, “Double pulse laser induced breakdown spectroscopy: A potential tool for the analysis of contaminants and macro/micronutrients in organic mineral fertilizers,” Sci. Total Environ. 565, 1116–1123 (2016).
    [Crossref] [PubMed]
  4. Q. Zeng, C. Y. Pan, C. Y. Li, T. Fei, X. K. Ding, X. W. Du, and Q. P. Wang, “Online monitoring of corrosion behavior in molten metal using laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 142, 68–73 (2018).
    [Crossref]
  5. M. Yao, H. Yang, L. Huang, T. Chen, G. Rao, and M. Liu, “Detection of heavy metal Cd in polluted fresh leafy vegetables by laser-induced breakdown spectroscopy,” Appl. Opt. 56(14), 4070–4075 (2017).
    [Crossref] [PubMed]
  6. M. U. Farid, S. Jeong, D. H. Seo, R. Ahmed, C. Lau, N. K. Gali, Z. Ning, and A. K. An, “Mechanistic insight into the in vitro toxicity of graphene oxide against biofilm forming bacteria using laser-induced breakdown spectroscopy,” Nanoscale 10(9), 4475–4487 (2018).
    [Crossref] [PubMed]
  7. F. Ammari, L. Bassel, C. Ferrier, D. Lacanette, R. Chapoulie, and B. Bousquet, “Multi-block analysis coupled to laser-induced breakdown spectroscopy for sorting geological materials from caves,” Talanta 159, 287–291 (2016).
    [Crossref] [PubMed]
  8. P. J. Gasda, T. E. Acosta-Maeda, P. G. Lucey, A. K. Misra, S. K. Sharma, and G. J. Taylor, “Next generation laser-based standoff spectroscopy techniques for Mars exploration,” Appl. Spectrosc. 69(2), 173–192 (2015).
    [Crossref] [PubMed]
  9. Y. Tang, L. Guo, J. Li, S. Tang, Z. Zhu, S. Ma, X. Li, X. Zeng, J. Duan, and Y. Lu, “Investigation on self-absorption reduction in laser-induced breakdown spectroscopy assisted with spatially selective laser-stimulated absorption,” J. Anal. At. Spectrom. 33(10), 1683–1688 (2018).
    [Crossref]
  10. A. M. El Sherbini, T. M. El Sherbini, H. Hegazy, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta B At. Spectrosc. 60(12), 1573–1579 (2005).
    [Crossref]
  11. F. Rezaei and S. H. Tavassoli, “Utilizing the ratio and the summation of two spectral lines for estimation of optical depth: Focus on thick plasmas,” Spectrochim. Acta B At. Spectrosc. 125, 25–30 (2016).
    [Crossref]
  12. M. Burger, M. Skocic, and S. Bukvic, “Study of self-absorption in laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 101, 51–56 (2014).
    [Crossref]
  13. H. Y. Moon, K. K. Herrera, N. Omenetto, B. W. Smith, and J. D. Winefordner, “On the usefulness of a duplicating mirror to evaluate self-absorption effects in laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 64(7), 702–713 (2009).
    [Crossref]
  14. Y. Tang, J. Li, Z. Hao, S. Tang, Z. Zhu, L. Guo, X. Li, X. Zeng, J. Duan, and Y. Lu, “Multielemental self-absorption reduction in laser-induced breakdown spectroscopy by using microwave-assisted excitation,” Opt. Express 26(9), 12121–12130 (2018).
    [Crossref] [PubMed]
  15. J. Li, Y. Tang, Z. Hao, N. Zhao, X. Yang, H. Yu, L. Guo, X. Li, X. Zeng, and Y. Lu, “Evaluation of the self-absorption reduction of minor elements in laser-induced breakdown spectroscopy assisted with laser-stimulated absorption,” J. Anal. At. Spectrom. 32(11), 2189–2193 (2017).
    [Crossref]
  16. J. Hou, L. Zhang, W. Yin, S. Yao, Y. Zhao, W. Ma, L. Dong, L. Xiao, and S. Jia, “Development and performance evaluation of self-absorption-free laser-induced breakdown spectroscopy for directly capturing optically thin spectral line and realizing accurate chemical composition measurements,” Opt. Express 25(19), 23024–23034 (2017).
    [Crossref] [PubMed]
  17. N. M. Sabri, Z. Haider, K. Tufail, F. D. Ismail, and J. Ali, “Spectroscopic diagnostics of laser induced plasma and self-absorption effects in Al lines,” Phys. Plasmas 25(7), 073303 (2018).
    [Crossref]
  18. J. B. Ahmed and F. Fouad, “Effect of Spectral Line Self-Absorption on the Laser-Induced Plasma Diagnostics,” IEEE Trans. Plasma Sci. 42(8), 2073–2078 (2014).
    [Crossref]
  19. D. M. Diaz Pace, C. A. D’Angelo, and G. Bertuccelli, “Study of self-absorption of emission magnesium lines in laser-induced plasmas on calcium hydroxide matrix,” IEEE Trans. Plasma Sci. 40(3), 898–908 (2012).
    [Crossref]
  20. Y. Li, Y. Lu, and R. E. Zheng, “Time-resolved evaluation of self-absorption in laser induced plasma from nickel sample,” Guangpuxue Yu Guangpu Fenxi 31(3), 595–599 (2011).
    [PubMed]
  21. Q. D. Zeng, L. B. Guo, X. Y. Li, M. Shen, Y. N. Zhu, J. M. Li, X. Y. Yang, K. H. Li, J. Duan, X. Y. Zeng, and Y. F. Lu, “Quantitative analyses of Mn, V, and Si elements in steels using a portable laser-induced breakdown spectroscopy system based on a fiber laser,” J. Anal. At. Spectrom. 31(3), 767–772 (2016).
    [Crossref]
  22. P. Yaroshchyk and J. E. Eberhardt, “Automatic correction of continuum background in Laser-induced Breakdown Spectroscopy using a model-free algorithm,” Spectrochim. Acta B At. Spectrosc. 99, 138–149 (2014).
    [Crossref]
  23. L. X. Sun and H. B. Yu, “Automatic estimation of varying continuum background emission in laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 64(3), 278–287 (2009).
    [Crossref]
  24. T. Yuan, Z. Wang, Z. Li, W. Ni, and J. Liu, “A partial least squares and wavelet-transform hybrid model to analyze carbon content in coal using laser-induced breakdown spectroscopy,” Anal. Chim. Acta 807, 29–35 (2014).
    [Crossref] [PubMed]
  25. X. H. Zou, L. B. Guo, M. Shen, X. Y. Li, Z. Q. Hao, Q. D. Zeng, Y. F. Lu, Z. M. Wang, and X. Y. Zeng, “Accuracy improvement of quantitative analysis in laser-induced breakdown spectroscopy using modified wavelet transform,” Opt. Express 22(9), 10233–10238 (2014).
    [Crossref] [PubMed]
  26. C. Aragón, J. Bengoechea, and J. A. Aguilera, “Influence of the optical depth on spectral line emission from laser-induced plasmas,” Spectrochim. Acta B At. Spectrosc. 56(6), 619–628 (2001).
    [Crossref]
  27. I. B. Gornushkin, J. M. Anzano, L. A. King, B. W. Smith, N. Omenetto, and J. D. Winefordner, “Curve of growth methodology applied to laser-induced plasma emission spectroscopy,” Spectrochim. Acta B At. Spectrosc. 54(3–4), 491–503 (1999).
    [Crossref]
  28. J. A. Aguilera, J. Bengoechea, and C. Aragón, “Curves of growth of spectral lines emitted by a laser-induced plasma: Influence of the temporal evolution and spatial inhomogeneity of the plasma,” Spectrochim. Acta B At. Spectrosc. 58(2), 221–237 (2003).
    [Crossref]
  29. J. A. Aguilera and C. Aragon, “Characterization of laser-induced plasmas by emission spectroscopy with curve-of-growth measurements. Part I: Temporal evolution of plasma parameters and self-absorption,” Spectrochim. Acta B At. Spectrosc. 63(7), 784–792 (2008).
    [Crossref]
  30. F. Bredice, F. O. Borges, H. Sobral, M. Villagran-Muniz, H. O. Di Rocco, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption of manganese emission lines in Laser Induced Breakdown Spectroscopy measurements,” Spectrochim. Acta B At. Spectrosc. 61(12), 1294–1303 (2006).
    [Crossref]
  31. F. O. Bredice, H. O. Di Rocco, H. M. Sobral, M. Villagrán-Muniz, and V. Palleschi, “A new method for determination of self-absorption coefficients of emission lines in laser-induced breakdown spectroscopy experiments,” Appl. Spectrosc. 64(3), 320–323 (2010).
    [Crossref] [PubMed]
  32. Z. Q. Hao, L. Liu, M. Shen, X. Y. Yang, K. H. Li, L. B. Guo, X. Y. Li, Y. F. Lu, and X. Y. Zeng, “Investigation on self-absorption at reduced air pressure in quantitative analysis using laser-induced breakdown spectroscopy,” Opt. Express 24(23), 26521–26528 (2016).
    [Crossref] [PubMed]
  33. G. Cristoforetti and E. Tognoni, “Calculation of elemental columnar density from self-absorbed lines in laser-induced breakdown spectroscopy: A resource for quantitative analysis,” Spectrochim. Acta B At. Spectrosc. 79–80, 63–71 (2013).
    [Crossref]
  34. X. N. He, W. Hu, C. M. Li, L. B. Guo, and Y. F. Lu, “Generation of high-temperature and low-density plasmas for improved spectral resolutions in laser-induced breakdown spectroscopy,” Opt. Express 19(11), 10997–11006 (2011).
    [Crossref] [PubMed]
  35. T. Wu, X. B. Wang, S. Y. Wang, J. Tang, P. X. Lu, and H. Lu, “Time and space resolved visible spectroscopic imaging CO2 laser produced extreme ultraviolet emitting tin plasmas,” J. Appl. Phys. 111(6), 063304 (2012).
    [Crossref]

2018 (6)

Z. Zhu, J. Li, Y. Guo, X. Cheng, Y. Tang, L. Guo, X. Li, Y. Lu, and X. Zeng, “Accuracy improvement of boron by molecular emission with a genetic algorithm and partial least squares regression model in laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 33(2), 205–209 (2018).
[Crossref]

Q. Zeng, C. Y. Pan, C. Y. Li, T. Fei, X. K. Ding, X. W. Du, and Q. P. Wang, “Online monitoring of corrosion behavior in molten metal using laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 142, 68–73 (2018).
[Crossref]

M. U. Farid, S. Jeong, D. H. Seo, R. Ahmed, C. Lau, N. K. Gali, Z. Ning, and A. K. An, “Mechanistic insight into the in vitro toxicity of graphene oxide against biofilm forming bacteria using laser-induced breakdown spectroscopy,” Nanoscale 10(9), 4475–4487 (2018).
[Crossref] [PubMed]

Y. Tang, L. Guo, J. Li, S. Tang, Z. Zhu, S. Ma, X. Li, X. Zeng, J. Duan, and Y. Lu, “Investigation on self-absorption reduction in laser-induced breakdown spectroscopy assisted with spatially selective laser-stimulated absorption,” J. Anal. At. Spectrom. 33(10), 1683–1688 (2018).
[Crossref]

Y. Tang, J. Li, Z. Hao, S. Tang, Z. Zhu, L. Guo, X. Li, X. Zeng, J. Duan, and Y. Lu, “Multielemental self-absorption reduction in laser-induced breakdown spectroscopy by using microwave-assisted excitation,” Opt. Express 26(9), 12121–12130 (2018).
[Crossref] [PubMed]

N. M. Sabri, Z. Haider, K. Tufail, F. D. Ismail, and J. Ali, “Spectroscopic diagnostics of laser induced plasma and self-absorption effects in Al lines,” Phys. Plasmas 25(7), 073303 (2018).
[Crossref]

2017 (4)

J. Li, Y. Tang, Z. Hao, N. Zhao, X. Yang, H. Yu, L. Guo, X. Li, X. Zeng, and Y. Lu, “Evaluation of the self-absorption reduction of minor elements in laser-induced breakdown spectroscopy assisted with laser-stimulated absorption,” J. Anal. At. Spectrom. 32(11), 2189–2193 (2017).
[Crossref]

J. Hou, L. Zhang, W. Yin, S. Yao, Y. Zhao, W. Ma, L. Dong, L. Xiao, and S. Jia, “Development and performance evaluation of self-absorption-free laser-induced breakdown spectroscopy for directly capturing optically thin spectral line and realizing accurate chemical composition measurements,” Opt. Express 25(19), 23024–23034 (2017).
[Crossref] [PubMed]

M. Yao, H. Yang, L. Huang, T. Chen, G. Rao, and M. Liu, “Detection of heavy metal Cd in polluted fresh leafy vegetables by laser-induced breakdown spectroscopy,” Appl. Opt. 56(14), 4070–4075 (2017).
[Crossref] [PubMed]

Y. M. Guo, L. M. Deng, X. Y. Yang, J. M. Li, K. H. Li, Z. H. Zhu, L. B. Guo, X. Y. Li, Y. F. Lu, and X. Y. Zeng, “Wavelet-based interference correction for laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 32(12), 2401–2406 (2017).
[Crossref]

2016 (5)

Q. D. Zeng, L. B. Guo, X. Y. Li, M. Shen, Y. N. Zhu, J. M. Li, X. Y. Yang, K. H. Li, J. Duan, X. Y. Zeng, and Y. F. Lu, “Quantitative analyses of Mn, V, and Si elements in steels using a portable laser-induced breakdown spectroscopy system based on a fiber laser,” J. Anal. At. Spectrom. 31(3), 767–772 (2016).
[Crossref]

Z. Q. Hao, L. Liu, M. Shen, X. Y. Yang, K. H. Li, L. B. Guo, X. Y. Li, Y. F. Lu, and X. Y. Zeng, “Investigation on self-absorption at reduced air pressure in quantitative analysis using laser-induced breakdown spectroscopy,” Opt. Express 24(23), 26521–26528 (2016).
[Crossref] [PubMed]

G. Nicolodelli, G. S. Senesi, I. L. de Oliveira Perazzoli, B. S. Marangoni, V. De Melo Benites, and D. M. B. P. Milori, “Double pulse laser induced breakdown spectroscopy: A potential tool for the analysis of contaminants and macro/micronutrients in organic mineral fertilizers,” Sci. Total Environ. 565, 1116–1123 (2016).
[Crossref] [PubMed]

F. Ammari, L. Bassel, C. Ferrier, D. Lacanette, R. Chapoulie, and B. Bousquet, “Multi-block analysis coupled to laser-induced breakdown spectroscopy for sorting geological materials from caves,” Talanta 159, 287–291 (2016).
[Crossref] [PubMed]

F. Rezaei and S. H. Tavassoli, “Utilizing the ratio and the summation of two spectral lines for estimation of optical depth: Focus on thick plasmas,” Spectrochim. Acta B At. Spectrosc. 125, 25–30 (2016).
[Crossref]

2015 (1)

2014 (5)

M. Burger, M. Skocic, and S. Bukvic, “Study of self-absorption in laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 101, 51–56 (2014).
[Crossref]

J. B. Ahmed and F. Fouad, “Effect of Spectral Line Self-Absorption on the Laser-Induced Plasma Diagnostics,” IEEE Trans. Plasma Sci. 42(8), 2073–2078 (2014).
[Crossref]

P. Yaroshchyk and J. E. Eberhardt, “Automatic correction of continuum background in Laser-induced Breakdown Spectroscopy using a model-free algorithm,” Spectrochim. Acta B At. Spectrosc. 99, 138–149 (2014).
[Crossref]

T. Yuan, Z. Wang, Z. Li, W. Ni, and J. Liu, “A partial least squares and wavelet-transform hybrid model to analyze carbon content in coal using laser-induced breakdown spectroscopy,” Anal. Chim. Acta 807, 29–35 (2014).
[Crossref] [PubMed]

X. H. Zou, L. B. Guo, M. Shen, X. Y. Li, Z. Q. Hao, Q. D. Zeng, Y. F. Lu, Z. M. Wang, and X. Y. Zeng, “Accuracy improvement of quantitative analysis in laser-induced breakdown spectroscopy using modified wavelet transform,” Opt. Express 22(9), 10233–10238 (2014).
[Crossref] [PubMed]

2013 (1)

G. Cristoforetti and E. Tognoni, “Calculation of elemental columnar density from self-absorbed lines in laser-induced breakdown spectroscopy: A resource for quantitative analysis,” Spectrochim. Acta B At. Spectrosc. 79–80, 63–71 (2013).
[Crossref]

2012 (2)

T. Wu, X. B. Wang, S. Y. Wang, J. Tang, P. X. Lu, and H. Lu, “Time and space resolved visible spectroscopic imaging CO2 laser produced extreme ultraviolet emitting tin plasmas,” J. Appl. Phys. 111(6), 063304 (2012).
[Crossref]

D. M. Diaz Pace, C. A. D’Angelo, and G. Bertuccelli, “Study of self-absorption of emission magnesium lines in laser-induced plasmas on calcium hydroxide matrix,” IEEE Trans. Plasma Sci. 40(3), 898–908 (2012).
[Crossref]

2011 (2)

Y. Li, Y. Lu, and R. E. Zheng, “Time-resolved evaluation of self-absorption in laser induced plasma from nickel sample,” Guangpuxue Yu Guangpu Fenxi 31(3), 595–599 (2011).
[PubMed]

X. N. He, W. Hu, C. M. Li, L. B. Guo, and Y. F. Lu, “Generation of high-temperature and low-density plasmas for improved spectral resolutions in laser-induced breakdown spectroscopy,” Opt. Express 19(11), 10997–11006 (2011).
[Crossref] [PubMed]

2010 (1)

2009 (2)

L. X. Sun and H. B. Yu, “Automatic estimation of varying continuum background emission in laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 64(3), 278–287 (2009).
[Crossref]

H. Y. Moon, K. K. Herrera, N. Omenetto, B. W. Smith, and J. D. Winefordner, “On the usefulness of a duplicating mirror to evaluate self-absorption effects in laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 64(7), 702–713 (2009).
[Crossref]

2008 (1)

J. A. Aguilera and C. Aragon, “Characterization of laser-induced plasmas by emission spectroscopy with curve-of-growth measurements. Part I: Temporal evolution of plasma parameters and self-absorption,” Spectrochim. Acta B At. Spectrosc. 63(7), 784–792 (2008).
[Crossref]

2006 (1)

F. Bredice, F. O. Borges, H. Sobral, M. Villagran-Muniz, H. O. Di Rocco, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption of manganese emission lines in Laser Induced Breakdown Spectroscopy measurements,” Spectrochim. Acta B At. Spectrosc. 61(12), 1294–1303 (2006).
[Crossref]

2005 (1)

A. M. El Sherbini, T. M. El Sherbini, H. Hegazy, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta B At. Spectrosc. 60(12), 1573–1579 (2005).
[Crossref]

2003 (1)

J. A. Aguilera, J. Bengoechea, and C. Aragón, “Curves of growth of spectral lines emitted by a laser-induced plasma: Influence of the temporal evolution and spatial inhomogeneity of the plasma,” Spectrochim. Acta B At. Spectrosc. 58(2), 221–237 (2003).
[Crossref]

2001 (1)

C. Aragón, J. Bengoechea, and J. A. Aguilera, “Influence of the optical depth on spectral line emission from laser-induced plasmas,” Spectrochim. Acta B At. Spectrosc. 56(6), 619–628 (2001).
[Crossref]

1999 (1)

I. B. Gornushkin, J. M. Anzano, L. A. King, B. W. Smith, N. Omenetto, and J. D. Winefordner, “Curve of growth methodology applied to laser-induced plasma emission spectroscopy,” Spectrochim. Acta B At. Spectrosc. 54(3–4), 491–503 (1999).
[Crossref]

Acosta-Maeda, T. E.

Aguilera, J. A.

J. A. Aguilera and C. Aragon, “Characterization of laser-induced plasmas by emission spectroscopy with curve-of-growth measurements. Part I: Temporal evolution of plasma parameters and self-absorption,” Spectrochim. Acta B At. Spectrosc. 63(7), 784–792 (2008).
[Crossref]

J. A. Aguilera, J. Bengoechea, and C. Aragón, “Curves of growth of spectral lines emitted by a laser-induced plasma: Influence of the temporal evolution and spatial inhomogeneity of the plasma,” Spectrochim. Acta B At. Spectrosc. 58(2), 221–237 (2003).
[Crossref]

C. Aragón, J. Bengoechea, and J. A. Aguilera, “Influence of the optical depth on spectral line emission from laser-induced plasmas,” Spectrochim. Acta B At. Spectrosc. 56(6), 619–628 (2001).
[Crossref]

Ahmed, J. B.

J. B. Ahmed and F. Fouad, “Effect of Spectral Line Self-Absorption on the Laser-Induced Plasma Diagnostics,” IEEE Trans. Plasma Sci. 42(8), 2073–2078 (2014).
[Crossref]

Ahmed, R.

M. U. Farid, S. Jeong, D. H. Seo, R. Ahmed, C. Lau, N. K. Gali, Z. Ning, and A. K. An, “Mechanistic insight into the in vitro toxicity of graphene oxide against biofilm forming bacteria using laser-induced breakdown spectroscopy,” Nanoscale 10(9), 4475–4487 (2018).
[Crossref] [PubMed]

Ali, J.

N. M. Sabri, Z. Haider, K. Tufail, F. D. Ismail, and J. Ali, “Spectroscopic diagnostics of laser induced plasma and self-absorption effects in Al lines,” Phys. Plasmas 25(7), 073303 (2018).
[Crossref]

Ammari, F.

F. Ammari, L. Bassel, C. Ferrier, D. Lacanette, R. Chapoulie, and B. Bousquet, “Multi-block analysis coupled to laser-induced breakdown spectroscopy for sorting geological materials from caves,” Talanta 159, 287–291 (2016).
[Crossref] [PubMed]

An, A. K.

M. U. Farid, S. Jeong, D. H. Seo, R. Ahmed, C. Lau, N. K. Gali, Z. Ning, and A. K. An, “Mechanistic insight into the in vitro toxicity of graphene oxide against biofilm forming bacteria using laser-induced breakdown spectroscopy,” Nanoscale 10(9), 4475–4487 (2018).
[Crossref] [PubMed]

Anzano, J. M.

I. B. Gornushkin, J. M. Anzano, L. A. King, B. W. Smith, N. Omenetto, and J. D. Winefordner, “Curve of growth methodology applied to laser-induced plasma emission spectroscopy,” Spectrochim. Acta B At. Spectrosc. 54(3–4), 491–503 (1999).
[Crossref]

Aragon, C.

J. A. Aguilera and C. Aragon, “Characterization of laser-induced plasmas by emission spectroscopy with curve-of-growth measurements. Part I: Temporal evolution of plasma parameters and self-absorption,” Spectrochim. Acta B At. Spectrosc. 63(7), 784–792 (2008).
[Crossref]

Aragón, C.

J. A. Aguilera, J. Bengoechea, and C. Aragón, “Curves of growth of spectral lines emitted by a laser-induced plasma: Influence of the temporal evolution and spatial inhomogeneity of the plasma,” Spectrochim. Acta B At. Spectrosc. 58(2), 221–237 (2003).
[Crossref]

C. Aragón, J. Bengoechea, and J. A. Aguilera, “Influence of the optical depth on spectral line emission from laser-induced plasmas,” Spectrochim. Acta B At. Spectrosc. 56(6), 619–628 (2001).
[Crossref]

Bassel, L.

F. Ammari, L. Bassel, C. Ferrier, D. Lacanette, R. Chapoulie, and B. Bousquet, “Multi-block analysis coupled to laser-induced breakdown spectroscopy for sorting geological materials from caves,” Talanta 159, 287–291 (2016).
[Crossref] [PubMed]

Bengoechea, J.

J. A. Aguilera, J. Bengoechea, and C. Aragón, “Curves of growth of spectral lines emitted by a laser-induced plasma: Influence of the temporal evolution and spatial inhomogeneity of the plasma,” Spectrochim. Acta B At. Spectrosc. 58(2), 221–237 (2003).
[Crossref]

C. Aragón, J. Bengoechea, and J. A. Aguilera, “Influence of the optical depth on spectral line emission from laser-induced plasmas,” Spectrochim. Acta B At. Spectrosc. 56(6), 619–628 (2001).
[Crossref]

Bertuccelli, G.

D. M. Diaz Pace, C. A. D’Angelo, and G. Bertuccelli, “Study of self-absorption of emission magnesium lines in laser-induced plasmas on calcium hydroxide matrix,” IEEE Trans. Plasma Sci. 40(3), 898–908 (2012).
[Crossref]

Borges, F. O.

F. Bredice, F. O. Borges, H. Sobral, M. Villagran-Muniz, H. O. Di Rocco, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption of manganese emission lines in Laser Induced Breakdown Spectroscopy measurements,” Spectrochim. Acta B At. Spectrosc. 61(12), 1294–1303 (2006).
[Crossref]

Bousquet, B.

F. Ammari, L. Bassel, C. Ferrier, D. Lacanette, R. Chapoulie, and B. Bousquet, “Multi-block analysis coupled to laser-induced breakdown spectroscopy for sorting geological materials from caves,” Talanta 159, 287–291 (2016).
[Crossref] [PubMed]

Bredice, F.

F. Bredice, F. O. Borges, H. Sobral, M. Villagran-Muniz, H. O. Di Rocco, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption of manganese emission lines in Laser Induced Breakdown Spectroscopy measurements,” Spectrochim. Acta B At. Spectrosc. 61(12), 1294–1303 (2006).
[Crossref]

Bredice, F. O.

Bukvic, S.

M. Burger, M. Skocic, and S. Bukvic, “Study of self-absorption in laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 101, 51–56 (2014).
[Crossref]

Burger, M.

M. Burger, M. Skocic, and S. Bukvic, “Study of self-absorption in laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 101, 51–56 (2014).
[Crossref]

Chapoulie, R.

F. Ammari, L. Bassel, C. Ferrier, D. Lacanette, R. Chapoulie, and B. Bousquet, “Multi-block analysis coupled to laser-induced breakdown spectroscopy for sorting geological materials from caves,” Talanta 159, 287–291 (2016).
[Crossref] [PubMed]

Chen, T.

Cheng, X.

Z. Zhu, J. Li, Y. Guo, X. Cheng, Y. Tang, L. Guo, X. Li, Y. Lu, and X. Zeng, “Accuracy improvement of boron by molecular emission with a genetic algorithm and partial least squares regression model in laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 33(2), 205–209 (2018).
[Crossref]

Cristoforetti, G.

G. Cristoforetti and E. Tognoni, “Calculation of elemental columnar density from self-absorbed lines in laser-induced breakdown spectroscopy: A resource for quantitative analysis,” Spectrochim. Acta B At. Spectrosc. 79–80, 63–71 (2013).
[Crossref]

F. Bredice, F. O. Borges, H. Sobral, M. Villagran-Muniz, H. O. Di Rocco, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption of manganese emission lines in Laser Induced Breakdown Spectroscopy measurements,” Spectrochim. Acta B At. Spectrosc. 61(12), 1294–1303 (2006).
[Crossref]

A. M. El Sherbini, T. M. El Sherbini, H. Hegazy, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta B At. Spectrosc. 60(12), 1573–1579 (2005).
[Crossref]

D’Angelo, C. A.

D. M. Diaz Pace, C. A. D’Angelo, and G. Bertuccelli, “Study of self-absorption of emission magnesium lines in laser-induced plasmas on calcium hydroxide matrix,” IEEE Trans. Plasma Sci. 40(3), 898–908 (2012).
[Crossref]

De Melo Benites, V.

G. Nicolodelli, G. S. Senesi, I. L. de Oliveira Perazzoli, B. S. Marangoni, V. De Melo Benites, and D. M. B. P. Milori, “Double pulse laser induced breakdown spectroscopy: A potential tool for the analysis of contaminants and macro/micronutrients in organic mineral fertilizers,” Sci. Total Environ. 565, 1116–1123 (2016).
[Crossref] [PubMed]

de Oliveira Perazzoli, I. L.

G. Nicolodelli, G. S. Senesi, I. L. de Oliveira Perazzoli, B. S. Marangoni, V. De Melo Benites, and D. M. B. P. Milori, “Double pulse laser induced breakdown spectroscopy: A potential tool for the analysis of contaminants and macro/micronutrients in organic mineral fertilizers,” Sci. Total Environ. 565, 1116–1123 (2016).
[Crossref] [PubMed]

Deng, L. M.

Y. M. Guo, L. M. Deng, X. Y. Yang, J. M. Li, K. H. Li, Z. H. Zhu, L. B. Guo, X. Y. Li, Y. F. Lu, and X. Y. Zeng, “Wavelet-based interference correction for laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 32(12), 2401–2406 (2017).
[Crossref]

Di Rocco, H. O.

F. O. Bredice, H. O. Di Rocco, H. M. Sobral, M. Villagrán-Muniz, and V. Palleschi, “A new method for determination of self-absorption coefficients of emission lines in laser-induced breakdown spectroscopy experiments,” Appl. Spectrosc. 64(3), 320–323 (2010).
[Crossref] [PubMed]

F. Bredice, F. O. Borges, H. Sobral, M. Villagran-Muniz, H. O. Di Rocco, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption of manganese emission lines in Laser Induced Breakdown Spectroscopy measurements,” Spectrochim. Acta B At. Spectrosc. 61(12), 1294–1303 (2006).
[Crossref]

Diaz Pace, D. M.

D. M. Diaz Pace, C. A. D’Angelo, and G. Bertuccelli, “Study of self-absorption of emission magnesium lines in laser-induced plasmas on calcium hydroxide matrix,” IEEE Trans. Plasma Sci. 40(3), 898–908 (2012).
[Crossref]

Ding, X. K.

Q. Zeng, C. Y. Pan, C. Y. Li, T. Fei, X. K. Ding, X. W. Du, and Q. P. Wang, “Online monitoring of corrosion behavior in molten metal using laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 142, 68–73 (2018).
[Crossref]

Dong, L.

Du, X. W.

Q. Zeng, C. Y. Pan, C. Y. Li, T. Fei, X. K. Ding, X. W. Du, and Q. P. Wang, “Online monitoring of corrosion behavior in molten metal using laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 142, 68–73 (2018).
[Crossref]

Duan, J.

Y. Tang, L. Guo, J. Li, S. Tang, Z. Zhu, S. Ma, X. Li, X. Zeng, J. Duan, and Y. Lu, “Investigation on self-absorption reduction in laser-induced breakdown spectroscopy assisted with spatially selective laser-stimulated absorption,” J. Anal. At. Spectrom. 33(10), 1683–1688 (2018).
[Crossref]

Y. Tang, J. Li, Z. Hao, S. Tang, Z. Zhu, L. Guo, X. Li, X. Zeng, J. Duan, and Y. Lu, “Multielemental self-absorption reduction in laser-induced breakdown spectroscopy by using microwave-assisted excitation,” Opt. Express 26(9), 12121–12130 (2018).
[Crossref] [PubMed]

Q. D. Zeng, L. B. Guo, X. Y. Li, M. Shen, Y. N. Zhu, J. M. Li, X. Y. Yang, K. H. Li, J. Duan, X. Y. Zeng, and Y. F. Lu, “Quantitative analyses of Mn, V, and Si elements in steels using a portable laser-induced breakdown spectroscopy system based on a fiber laser,” J. Anal. At. Spectrom. 31(3), 767–772 (2016).
[Crossref]

Eberhardt, J. E.

P. Yaroshchyk and J. E. Eberhardt, “Automatic correction of continuum background in Laser-induced Breakdown Spectroscopy using a model-free algorithm,” Spectrochim. Acta B At. Spectrosc. 99, 138–149 (2014).
[Crossref]

El Sherbini, A. M.

A. M. El Sherbini, T. M. El Sherbini, H. Hegazy, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta B At. Spectrosc. 60(12), 1573–1579 (2005).
[Crossref]

El Sherbini, T. M.

A. M. El Sherbini, T. M. El Sherbini, H. Hegazy, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta B At. Spectrosc. 60(12), 1573–1579 (2005).
[Crossref]

Farid, M. U.

M. U. Farid, S. Jeong, D. H. Seo, R. Ahmed, C. Lau, N. K. Gali, Z. Ning, and A. K. An, “Mechanistic insight into the in vitro toxicity of graphene oxide against biofilm forming bacteria using laser-induced breakdown spectroscopy,” Nanoscale 10(9), 4475–4487 (2018).
[Crossref] [PubMed]

Fei, T.

Q. Zeng, C. Y. Pan, C. Y. Li, T. Fei, X. K. Ding, X. W. Du, and Q. P. Wang, “Online monitoring of corrosion behavior in molten metal using laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 142, 68–73 (2018).
[Crossref]

Ferrier, C.

F. Ammari, L. Bassel, C. Ferrier, D. Lacanette, R. Chapoulie, and B. Bousquet, “Multi-block analysis coupled to laser-induced breakdown spectroscopy for sorting geological materials from caves,” Talanta 159, 287–291 (2016).
[Crossref] [PubMed]

Fouad, F.

J. B. Ahmed and F. Fouad, “Effect of Spectral Line Self-Absorption on the Laser-Induced Plasma Diagnostics,” IEEE Trans. Plasma Sci. 42(8), 2073–2078 (2014).
[Crossref]

Gali, N. K.

M. U. Farid, S. Jeong, D. H. Seo, R. Ahmed, C. Lau, N. K. Gali, Z. Ning, and A. K. An, “Mechanistic insight into the in vitro toxicity of graphene oxide against biofilm forming bacteria using laser-induced breakdown spectroscopy,” Nanoscale 10(9), 4475–4487 (2018).
[Crossref] [PubMed]

Gasda, P. J.

Gornushkin, I. B.

I. B. Gornushkin, J. M. Anzano, L. A. King, B. W. Smith, N. Omenetto, and J. D. Winefordner, “Curve of growth methodology applied to laser-induced plasma emission spectroscopy,” Spectrochim. Acta B At. Spectrosc. 54(3–4), 491–503 (1999).
[Crossref]

Guo, L.

Y. Tang, L. Guo, J. Li, S. Tang, Z. Zhu, S. Ma, X. Li, X. Zeng, J. Duan, and Y. Lu, “Investigation on self-absorption reduction in laser-induced breakdown spectroscopy assisted with spatially selective laser-stimulated absorption,” J. Anal. At. Spectrom. 33(10), 1683–1688 (2018).
[Crossref]

Z. Zhu, J. Li, Y. Guo, X. Cheng, Y. Tang, L. Guo, X. Li, Y. Lu, and X. Zeng, “Accuracy improvement of boron by molecular emission with a genetic algorithm and partial least squares regression model in laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 33(2), 205–209 (2018).
[Crossref]

Y. Tang, J. Li, Z. Hao, S. Tang, Z. Zhu, L. Guo, X. Li, X. Zeng, J. Duan, and Y. Lu, “Multielemental self-absorption reduction in laser-induced breakdown spectroscopy by using microwave-assisted excitation,” Opt. Express 26(9), 12121–12130 (2018).
[Crossref] [PubMed]

J. Li, Y. Tang, Z. Hao, N. Zhao, X. Yang, H. Yu, L. Guo, X. Li, X. Zeng, and Y. Lu, “Evaluation of the self-absorption reduction of minor elements in laser-induced breakdown spectroscopy assisted with laser-stimulated absorption,” J. Anal. At. Spectrom. 32(11), 2189–2193 (2017).
[Crossref]

Guo, L. B.

Y. M. Guo, L. M. Deng, X. Y. Yang, J. M. Li, K. H. Li, Z. H. Zhu, L. B. Guo, X. Y. Li, Y. F. Lu, and X. Y. Zeng, “Wavelet-based interference correction for laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 32(12), 2401–2406 (2017).
[Crossref]

Q. D. Zeng, L. B. Guo, X. Y. Li, M. Shen, Y. N. Zhu, J. M. Li, X. Y. Yang, K. H. Li, J. Duan, X. Y. Zeng, and Y. F. Lu, “Quantitative analyses of Mn, V, and Si elements in steels using a portable laser-induced breakdown spectroscopy system based on a fiber laser,” J. Anal. At. Spectrom. 31(3), 767–772 (2016).
[Crossref]

Z. Q. Hao, L. Liu, M. Shen, X. Y. Yang, K. H. Li, L. B. Guo, X. Y. Li, Y. F. Lu, and X. Y. Zeng, “Investigation on self-absorption at reduced air pressure in quantitative analysis using laser-induced breakdown spectroscopy,” Opt. Express 24(23), 26521–26528 (2016).
[Crossref] [PubMed]

X. H. Zou, L. B. Guo, M. Shen, X. Y. Li, Z. Q. Hao, Q. D. Zeng, Y. F. Lu, Z. M. Wang, and X. Y. Zeng, “Accuracy improvement of quantitative analysis in laser-induced breakdown spectroscopy using modified wavelet transform,” Opt. Express 22(9), 10233–10238 (2014).
[Crossref] [PubMed]

X. N. He, W. Hu, C. M. Li, L. B. Guo, and Y. F. Lu, “Generation of high-temperature and low-density plasmas for improved spectral resolutions in laser-induced breakdown spectroscopy,” Opt. Express 19(11), 10997–11006 (2011).
[Crossref] [PubMed]

Guo, Y.

Z. Zhu, J. Li, Y. Guo, X. Cheng, Y. Tang, L. Guo, X. Li, Y. Lu, and X. Zeng, “Accuracy improvement of boron by molecular emission with a genetic algorithm and partial least squares regression model in laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 33(2), 205–209 (2018).
[Crossref]

Guo, Y. M.

Y. M. Guo, L. M. Deng, X. Y. Yang, J. M. Li, K. H. Li, Z. H. Zhu, L. B. Guo, X. Y. Li, Y. F. Lu, and X. Y. Zeng, “Wavelet-based interference correction for laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 32(12), 2401–2406 (2017).
[Crossref]

Haider, Z.

N. M. Sabri, Z. Haider, K. Tufail, F. D. Ismail, and J. Ali, “Spectroscopic diagnostics of laser induced plasma and self-absorption effects in Al lines,” Phys. Plasmas 25(7), 073303 (2018).
[Crossref]

Hao, Z.

Y. Tang, J. Li, Z. Hao, S. Tang, Z. Zhu, L. Guo, X. Li, X. Zeng, J. Duan, and Y. Lu, “Multielemental self-absorption reduction in laser-induced breakdown spectroscopy by using microwave-assisted excitation,” Opt. Express 26(9), 12121–12130 (2018).
[Crossref] [PubMed]

J. Li, Y. Tang, Z. Hao, N. Zhao, X. Yang, H. Yu, L. Guo, X. Li, X. Zeng, and Y. Lu, “Evaluation of the self-absorption reduction of minor elements in laser-induced breakdown spectroscopy assisted with laser-stimulated absorption,” J. Anal. At. Spectrom. 32(11), 2189–2193 (2017).
[Crossref]

Hao, Z. Q.

He, X. N.

Hegazy, H.

A. M. El Sherbini, T. M. El Sherbini, H. Hegazy, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta B At. Spectrosc. 60(12), 1573–1579 (2005).
[Crossref]

Herrera, K. K.

H. Y. Moon, K. K. Herrera, N. Omenetto, B. W. Smith, and J. D. Winefordner, “On the usefulness of a duplicating mirror to evaluate self-absorption effects in laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 64(7), 702–713 (2009).
[Crossref]

Hou, J.

Hu, W.

Huang, L.

Ismail, F. D.

N. M. Sabri, Z. Haider, K. Tufail, F. D. Ismail, and J. Ali, “Spectroscopic diagnostics of laser induced plasma and self-absorption effects in Al lines,” Phys. Plasmas 25(7), 073303 (2018).
[Crossref]

Jeong, S.

M. U. Farid, S. Jeong, D. H. Seo, R. Ahmed, C. Lau, N. K. Gali, Z. Ning, and A. K. An, “Mechanistic insight into the in vitro toxicity of graphene oxide against biofilm forming bacteria using laser-induced breakdown spectroscopy,” Nanoscale 10(9), 4475–4487 (2018).
[Crossref] [PubMed]

Jia, S.

King, L. A.

I. B. Gornushkin, J. M. Anzano, L. A. King, B. W. Smith, N. Omenetto, and J. D. Winefordner, “Curve of growth methodology applied to laser-induced plasma emission spectroscopy,” Spectrochim. Acta B At. Spectrosc. 54(3–4), 491–503 (1999).
[Crossref]

Lacanette, D.

F. Ammari, L. Bassel, C. Ferrier, D. Lacanette, R. Chapoulie, and B. Bousquet, “Multi-block analysis coupled to laser-induced breakdown spectroscopy for sorting geological materials from caves,” Talanta 159, 287–291 (2016).
[Crossref] [PubMed]

Lau, C.

M. U. Farid, S. Jeong, D. H. Seo, R. Ahmed, C. Lau, N. K. Gali, Z. Ning, and A. K. An, “Mechanistic insight into the in vitro toxicity of graphene oxide against biofilm forming bacteria using laser-induced breakdown spectroscopy,” Nanoscale 10(9), 4475–4487 (2018).
[Crossref] [PubMed]

Legnaioli, S.

F. Bredice, F. O. Borges, H. Sobral, M. Villagran-Muniz, H. O. Di Rocco, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption of manganese emission lines in Laser Induced Breakdown Spectroscopy measurements,” Spectrochim. Acta B At. Spectrosc. 61(12), 1294–1303 (2006).
[Crossref]

A. M. El Sherbini, T. M. El Sherbini, H. Hegazy, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta B At. Spectrosc. 60(12), 1573–1579 (2005).
[Crossref]

Li, C. M.

Li, C. Y.

Q. Zeng, C. Y. Pan, C. Y. Li, T. Fei, X. K. Ding, X. W. Du, and Q. P. Wang, “Online monitoring of corrosion behavior in molten metal using laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 142, 68–73 (2018).
[Crossref]

Li, J.

Y. Tang, L. Guo, J. Li, S. Tang, Z. Zhu, S. Ma, X. Li, X. Zeng, J. Duan, and Y. Lu, “Investigation on self-absorption reduction in laser-induced breakdown spectroscopy assisted with spatially selective laser-stimulated absorption,” J. Anal. At. Spectrom. 33(10), 1683–1688 (2018).
[Crossref]

Z. Zhu, J. Li, Y. Guo, X. Cheng, Y. Tang, L. Guo, X. Li, Y. Lu, and X. Zeng, “Accuracy improvement of boron by molecular emission with a genetic algorithm and partial least squares regression model in laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 33(2), 205–209 (2018).
[Crossref]

Y. Tang, J. Li, Z. Hao, S. Tang, Z. Zhu, L. Guo, X. Li, X. Zeng, J. Duan, and Y. Lu, “Multielemental self-absorption reduction in laser-induced breakdown spectroscopy by using microwave-assisted excitation,” Opt. Express 26(9), 12121–12130 (2018).
[Crossref] [PubMed]

J. Li, Y. Tang, Z. Hao, N. Zhao, X. Yang, H. Yu, L. Guo, X. Li, X. Zeng, and Y. Lu, “Evaluation of the self-absorption reduction of minor elements in laser-induced breakdown spectroscopy assisted with laser-stimulated absorption,” J. Anal. At. Spectrom. 32(11), 2189–2193 (2017).
[Crossref]

Li, J. M.

Y. M. Guo, L. M. Deng, X. Y. Yang, J. M. Li, K. H. Li, Z. H. Zhu, L. B. Guo, X. Y. Li, Y. F. Lu, and X. Y. Zeng, “Wavelet-based interference correction for laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 32(12), 2401–2406 (2017).
[Crossref]

Q. D. Zeng, L. B. Guo, X. Y. Li, M. Shen, Y. N. Zhu, J. M. Li, X. Y. Yang, K. H. Li, J. Duan, X. Y. Zeng, and Y. F. Lu, “Quantitative analyses of Mn, V, and Si elements in steels using a portable laser-induced breakdown spectroscopy system based on a fiber laser,” J. Anal. At. Spectrom. 31(3), 767–772 (2016).
[Crossref]

Li, K. H.

Y. M. Guo, L. M. Deng, X. Y. Yang, J. M. Li, K. H. Li, Z. H. Zhu, L. B. Guo, X. Y. Li, Y. F. Lu, and X. Y. Zeng, “Wavelet-based interference correction for laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 32(12), 2401–2406 (2017).
[Crossref]

Q. D. Zeng, L. B. Guo, X. Y. Li, M. Shen, Y. N. Zhu, J. M. Li, X. Y. Yang, K. H. Li, J. Duan, X. Y. Zeng, and Y. F. Lu, “Quantitative analyses of Mn, V, and Si elements in steels using a portable laser-induced breakdown spectroscopy system based on a fiber laser,” J. Anal. At. Spectrom. 31(3), 767–772 (2016).
[Crossref]

Z. Q. Hao, L. Liu, M. Shen, X. Y. Yang, K. H. Li, L. B. Guo, X. Y. Li, Y. F. Lu, and X. Y. Zeng, “Investigation on self-absorption at reduced air pressure in quantitative analysis using laser-induced breakdown spectroscopy,” Opt. Express 24(23), 26521–26528 (2016).
[Crossref] [PubMed]

Li, X.

Y. Tang, J. Li, Z. Hao, S. Tang, Z. Zhu, L. Guo, X. Li, X. Zeng, J. Duan, and Y. Lu, “Multielemental self-absorption reduction in laser-induced breakdown spectroscopy by using microwave-assisted excitation,” Opt. Express 26(9), 12121–12130 (2018).
[Crossref] [PubMed]

Z. Zhu, J. Li, Y. Guo, X. Cheng, Y. Tang, L. Guo, X. Li, Y. Lu, and X. Zeng, “Accuracy improvement of boron by molecular emission with a genetic algorithm and partial least squares regression model in laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 33(2), 205–209 (2018).
[Crossref]

Y. Tang, L. Guo, J. Li, S. Tang, Z. Zhu, S. Ma, X. Li, X. Zeng, J. Duan, and Y. Lu, “Investigation on self-absorption reduction in laser-induced breakdown spectroscopy assisted with spatially selective laser-stimulated absorption,” J. Anal. At. Spectrom. 33(10), 1683–1688 (2018).
[Crossref]

J. Li, Y. Tang, Z. Hao, N. Zhao, X. Yang, H. Yu, L. Guo, X. Li, X. Zeng, and Y. Lu, “Evaluation of the self-absorption reduction of minor elements in laser-induced breakdown spectroscopy assisted with laser-stimulated absorption,” J. Anal. At. Spectrom. 32(11), 2189–2193 (2017).
[Crossref]

Li, X. Y.

Y. M. Guo, L. M. Deng, X. Y. Yang, J. M. Li, K. H. Li, Z. H. Zhu, L. B. Guo, X. Y. Li, Y. F. Lu, and X. Y. Zeng, “Wavelet-based interference correction for laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 32(12), 2401–2406 (2017).
[Crossref]

Q. D. Zeng, L. B. Guo, X. Y. Li, M. Shen, Y. N. Zhu, J. M. Li, X. Y. Yang, K. H. Li, J. Duan, X. Y. Zeng, and Y. F. Lu, “Quantitative analyses of Mn, V, and Si elements in steels using a portable laser-induced breakdown spectroscopy system based on a fiber laser,” J. Anal. At. Spectrom. 31(3), 767–772 (2016).
[Crossref]

Z. Q. Hao, L. Liu, M. Shen, X. Y. Yang, K. H. Li, L. B. Guo, X. Y. Li, Y. F. Lu, and X. Y. Zeng, “Investigation on self-absorption at reduced air pressure in quantitative analysis using laser-induced breakdown spectroscopy,” Opt. Express 24(23), 26521–26528 (2016).
[Crossref] [PubMed]

X. H. Zou, L. B. Guo, M. Shen, X. Y. Li, Z. Q. Hao, Q. D. Zeng, Y. F. Lu, Z. M. Wang, and X. Y. Zeng, “Accuracy improvement of quantitative analysis in laser-induced breakdown spectroscopy using modified wavelet transform,” Opt. Express 22(9), 10233–10238 (2014).
[Crossref] [PubMed]

Li, Y.

Y. Li, Y. Lu, and R. E. Zheng, “Time-resolved evaluation of self-absorption in laser induced plasma from nickel sample,” Guangpuxue Yu Guangpu Fenxi 31(3), 595–599 (2011).
[PubMed]

Li, Z.

T. Yuan, Z. Wang, Z. Li, W. Ni, and J. Liu, “A partial least squares and wavelet-transform hybrid model to analyze carbon content in coal using laser-induced breakdown spectroscopy,” Anal. Chim. Acta 807, 29–35 (2014).
[Crossref] [PubMed]

Liu, J.

T. Yuan, Z. Wang, Z. Li, W. Ni, and J. Liu, “A partial least squares and wavelet-transform hybrid model to analyze carbon content in coal using laser-induced breakdown spectroscopy,” Anal. Chim. Acta 807, 29–35 (2014).
[Crossref] [PubMed]

Liu, L.

Liu, M.

Lu, H.

T. Wu, X. B. Wang, S. Y. Wang, J. Tang, P. X. Lu, and H. Lu, “Time and space resolved visible spectroscopic imaging CO2 laser produced extreme ultraviolet emitting tin plasmas,” J. Appl. Phys. 111(6), 063304 (2012).
[Crossref]

Lu, P. X.

T. Wu, X. B. Wang, S. Y. Wang, J. Tang, P. X. Lu, and H. Lu, “Time and space resolved visible spectroscopic imaging CO2 laser produced extreme ultraviolet emitting tin plasmas,” J. Appl. Phys. 111(6), 063304 (2012).
[Crossref]

Lu, Y.

Y. Tang, J. Li, Z. Hao, S. Tang, Z. Zhu, L. Guo, X. Li, X. Zeng, J. Duan, and Y. Lu, “Multielemental self-absorption reduction in laser-induced breakdown spectroscopy by using microwave-assisted excitation,” Opt. Express 26(9), 12121–12130 (2018).
[Crossref] [PubMed]

Z. Zhu, J. Li, Y. Guo, X. Cheng, Y. Tang, L. Guo, X. Li, Y. Lu, and X. Zeng, “Accuracy improvement of boron by molecular emission with a genetic algorithm and partial least squares regression model in laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 33(2), 205–209 (2018).
[Crossref]

Y. Tang, L. Guo, J. Li, S. Tang, Z. Zhu, S. Ma, X. Li, X. Zeng, J. Duan, and Y. Lu, “Investigation on self-absorption reduction in laser-induced breakdown spectroscopy assisted with spatially selective laser-stimulated absorption,” J. Anal. At. Spectrom. 33(10), 1683–1688 (2018).
[Crossref]

J. Li, Y. Tang, Z. Hao, N. Zhao, X. Yang, H. Yu, L. Guo, X. Li, X. Zeng, and Y. Lu, “Evaluation of the self-absorption reduction of minor elements in laser-induced breakdown spectroscopy assisted with laser-stimulated absorption,” J. Anal. At. Spectrom. 32(11), 2189–2193 (2017).
[Crossref]

Y. Li, Y. Lu, and R. E. Zheng, “Time-resolved evaluation of self-absorption in laser induced plasma from nickel sample,” Guangpuxue Yu Guangpu Fenxi 31(3), 595–599 (2011).
[PubMed]

Lu, Y. F.

Y. M. Guo, L. M. Deng, X. Y. Yang, J. M. Li, K. H. Li, Z. H. Zhu, L. B. Guo, X. Y. Li, Y. F. Lu, and X. Y. Zeng, “Wavelet-based interference correction for laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 32(12), 2401–2406 (2017).
[Crossref]

Q. D. Zeng, L. B. Guo, X. Y. Li, M. Shen, Y. N. Zhu, J. M. Li, X. Y. Yang, K. H. Li, J. Duan, X. Y. Zeng, and Y. F. Lu, “Quantitative analyses of Mn, V, and Si elements in steels using a portable laser-induced breakdown spectroscopy system based on a fiber laser,” J. Anal. At. Spectrom. 31(3), 767–772 (2016).
[Crossref]

Z. Q. Hao, L. Liu, M. Shen, X. Y. Yang, K. H. Li, L. B. Guo, X. Y. Li, Y. F. Lu, and X. Y. Zeng, “Investigation on self-absorption at reduced air pressure in quantitative analysis using laser-induced breakdown spectroscopy,” Opt. Express 24(23), 26521–26528 (2016).
[Crossref] [PubMed]

X. H. Zou, L. B. Guo, M. Shen, X. Y. Li, Z. Q. Hao, Q. D. Zeng, Y. F. Lu, Z. M. Wang, and X. Y. Zeng, “Accuracy improvement of quantitative analysis in laser-induced breakdown spectroscopy using modified wavelet transform,” Opt. Express 22(9), 10233–10238 (2014).
[Crossref] [PubMed]

X. N. He, W. Hu, C. M. Li, L. B. Guo, and Y. F. Lu, “Generation of high-temperature and low-density plasmas for improved spectral resolutions in laser-induced breakdown spectroscopy,” Opt. Express 19(11), 10997–11006 (2011).
[Crossref] [PubMed]

Lucey, P. G.

Ma, S.

Y. Tang, L. Guo, J. Li, S. Tang, Z. Zhu, S. Ma, X. Li, X. Zeng, J. Duan, and Y. Lu, “Investigation on self-absorption reduction in laser-induced breakdown spectroscopy assisted with spatially selective laser-stimulated absorption,” J. Anal. At. Spectrom. 33(10), 1683–1688 (2018).
[Crossref]

Ma, W.

Marangoni, B. S.

G. Nicolodelli, G. S. Senesi, I. L. de Oliveira Perazzoli, B. S. Marangoni, V. De Melo Benites, and D. M. B. P. Milori, “Double pulse laser induced breakdown spectroscopy: A potential tool for the analysis of contaminants and macro/micronutrients in organic mineral fertilizers,” Sci. Total Environ. 565, 1116–1123 (2016).
[Crossref] [PubMed]

Milori, D. M. B. P.

G. Nicolodelli, G. S. Senesi, I. L. de Oliveira Perazzoli, B. S. Marangoni, V. De Melo Benites, and D. M. B. P. Milori, “Double pulse laser induced breakdown spectroscopy: A potential tool for the analysis of contaminants and macro/micronutrients in organic mineral fertilizers,” Sci. Total Environ. 565, 1116–1123 (2016).
[Crossref] [PubMed]

Misra, A. K.

Moon, H. Y.

H. Y. Moon, K. K. Herrera, N. Omenetto, B. W. Smith, and J. D. Winefordner, “On the usefulness of a duplicating mirror to evaluate self-absorption effects in laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 64(7), 702–713 (2009).
[Crossref]

Ni, W.

T. Yuan, Z. Wang, Z. Li, W. Ni, and J. Liu, “A partial least squares and wavelet-transform hybrid model to analyze carbon content in coal using laser-induced breakdown spectroscopy,” Anal. Chim. Acta 807, 29–35 (2014).
[Crossref] [PubMed]

Nicolodelli, G.

G. Nicolodelli, G. S. Senesi, I. L. de Oliveira Perazzoli, B. S. Marangoni, V. De Melo Benites, and D. M. B. P. Milori, “Double pulse laser induced breakdown spectroscopy: A potential tool for the analysis of contaminants and macro/micronutrients in organic mineral fertilizers,” Sci. Total Environ. 565, 1116–1123 (2016).
[Crossref] [PubMed]

Ning, Z.

M. U. Farid, S. Jeong, D. H. Seo, R. Ahmed, C. Lau, N. K. Gali, Z. Ning, and A. K. An, “Mechanistic insight into the in vitro toxicity of graphene oxide against biofilm forming bacteria using laser-induced breakdown spectroscopy,” Nanoscale 10(9), 4475–4487 (2018).
[Crossref] [PubMed]

Omenetto, N.

H. Y. Moon, K. K. Herrera, N. Omenetto, B. W. Smith, and J. D. Winefordner, “On the usefulness of a duplicating mirror to evaluate self-absorption effects in laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 64(7), 702–713 (2009).
[Crossref]

I. B. Gornushkin, J. M. Anzano, L. A. King, B. W. Smith, N. Omenetto, and J. D. Winefordner, “Curve of growth methodology applied to laser-induced plasma emission spectroscopy,” Spectrochim. Acta B At. Spectrosc. 54(3–4), 491–503 (1999).
[Crossref]

Palleschi, V.

F. O. Bredice, H. O. Di Rocco, H. M. Sobral, M. Villagrán-Muniz, and V. Palleschi, “A new method for determination of self-absorption coefficients of emission lines in laser-induced breakdown spectroscopy experiments,” Appl. Spectrosc. 64(3), 320–323 (2010).
[Crossref] [PubMed]

F. Bredice, F. O. Borges, H. Sobral, M. Villagran-Muniz, H. O. Di Rocco, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption of manganese emission lines in Laser Induced Breakdown Spectroscopy measurements,” Spectrochim. Acta B At. Spectrosc. 61(12), 1294–1303 (2006).
[Crossref]

A. M. El Sherbini, T. M. El Sherbini, H. Hegazy, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta B At. Spectrosc. 60(12), 1573–1579 (2005).
[Crossref]

Pan, C. Y.

Q. Zeng, C. Y. Pan, C. Y. Li, T. Fei, X. K. Ding, X. W. Du, and Q. P. Wang, “Online monitoring of corrosion behavior in molten metal using laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 142, 68–73 (2018).
[Crossref]

Pardini, L.

F. Bredice, F. O. Borges, H. Sobral, M. Villagran-Muniz, H. O. Di Rocco, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption of manganese emission lines in Laser Induced Breakdown Spectroscopy measurements,” Spectrochim. Acta B At. Spectrosc. 61(12), 1294–1303 (2006).
[Crossref]

A. M. El Sherbini, T. M. El Sherbini, H. Hegazy, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta B At. Spectrosc. 60(12), 1573–1579 (2005).
[Crossref]

Rao, G.

Rezaei, F.

F. Rezaei and S. H. Tavassoli, “Utilizing the ratio and the summation of two spectral lines for estimation of optical depth: Focus on thick plasmas,” Spectrochim. Acta B At. Spectrosc. 125, 25–30 (2016).
[Crossref]

Sabri, N. M.

N. M. Sabri, Z. Haider, K. Tufail, F. D. Ismail, and J. Ali, “Spectroscopic diagnostics of laser induced plasma and self-absorption effects in Al lines,” Phys. Plasmas 25(7), 073303 (2018).
[Crossref]

Salvetti, A.

F. Bredice, F. O. Borges, H. Sobral, M. Villagran-Muniz, H. O. Di Rocco, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption of manganese emission lines in Laser Induced Breakdown Spectroscopy measurements,” Spectrochim. Acta B At. Spectrosc. 61(12), 1294–1303 (2006).
[Crossref]

A. M. El Sherbini, T. M. El Sherbini, H. Hegazy, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta B At. Spectrosc. 60(12), 1573–1579 (2005).
[Crossref]

Senesi, G. S.

G. Nicolodelli, G. S. Senesi, I. L. de Oliveira Perazzoli, B. S. Marangoni, V. De Melo Benites, and D. M. B. P. Milori, “Double pulse laser induced breakdown spectroscopy: A potential tool for the analysis of contaminants and macro/micronutrients in organic mineral fertilizers,” Sci. Total Environ. 565, 1116–1123 (2016).
[Crossref] [PubMed]

Seo, D. H.

M. U. Farid, S. Jeong, D. H. Seo, R. Ahmed, C. Lau, N. K. Gali, Z. Ning, and A. K. An, “Mechanistic insight into the in vitro toxicity of graphene oxide against biofilm forming bacteria using laser-induced breakdown spectroscopy,” Nanoscale 10(9), 4475–4487 (2018).
[Crossref] [PubMed]

Sharma, S. K.

Shen, M.

Skocic, M.

M. Burger, M. Skocic, and S. Bukvic, “Study of self-absorption in laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 101, 51–56 (2014).
[Crossref]

Smith, B. W.

H. Y. Moon, K. K. Herrera, N. Omenetto, B. W. Smith, and J. D. Winefordner, “On the usefulness of a duplicating mirror to evaluate self-absorption effects in laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 64(7), 702–713 (2009).
[Crossref]

I. B. Gornushkin, J. M. Anzano, L. A. King, B. W. Smith, N. Omenetto, and J. D. Winefordner, “Curve of growth methodology applied to laser-induced plasma emission spectroscopy,” Spectrochim. Acta B At. Spectrosc. 54(3–4), 491–503 (1999).
[Crossref]

Sobral, H.

F. Bredice, F. O. Borges, H. Sobral, M. Villagran-Muniz, H. O. Di Rocco, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption of manganese emission lines in Laser Induced Breakdown Spectroscopy measurements,” Spectrochim. Acta B At. Spectrosc. 61(12), 1294–1303 (2006).
[Crossref]

Sobral, H. M.

Sun, L. X.

L. X. Sun and H. B. Yu, “Automatic estimation of varying continuum background emission in laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 64(3), 278–287 (2009).
[Crossref]

Tang, J.

T. Wu, X. B. Wang, S. Y. Wang, J. Tang, P. X. Lu, and H. Lu, “Time and space resolved visible spectroscopic imaging CO2 laser produced extreme ultraviolet emitting tin plasmas,” J. Appl. Phys. 111(6), 063304 (2012).
[Crossref]

Tang, S.

Y. Tang, J. Li, Z. Hao, S. Tang, Z. Zhu, L. Guo, X. Li, X. Zeng, J. Duan, and Y. Lu, “Multielemental self-absorption reduction in laser-induced breakdown spectroscopy by using microwave-assisted excitation,” Opt. Express 26(9), 12121–12130 (2018).
[Crossref] [PubMed]

Y. Tang, L. Guo, J. Li, S. Tang, Z. Zhu, S. Ma, X. Li, X. Zeng, J. Duan, and Y. Lu, “Investigation on self-absorption reduction in laser-induced breakdown spectroscopy assisted with spatially selective laser-stimulated absorption,” J. Anal. At. Spectrom. 33(10), 1683–1688 (2018).
[Crossref]

Tang, Y.

Z. Zhu, J. Li, Y. Guo, X. Cheng, Y. Tang, L. Guo, X. Li, Y. Lu, and X. Zeng, “Accuracy improvement of boron by molecular emission with a genetic algorithm and partial least squares regression model in laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 33(2), 205–209 (2018).
[Crossref]

Y. Tang, L. Guo, J. Li, S. Tang, Z. Zhu, S. Ma, X. Li, X. Zeng, J. Duan, and Y. Lu, “Investigation on self-absorption reduction in laser-induced breakdown spectroscopy assisted with spatially selective laser-stimulated absorption,” J. Anal. At. Spectrom. 33(10), 1683–1688 (2018).
[Crossref]

Y. Tang, J. Li, Z. Hao, S. Tang, Z. Zhu, L. Guo, X. Li, X. Zeng, J. Duan, and Y. Lu, “Multielemental self-absorption reduction in laser-induced breakdown spectroscopy by using microwave-assisted excitation,” Opt. Express 26(9), 12121–12130 (2018).
[Crossref] [PubMed]

J. Li, Y. Tang, Z. Hao, N. Zhao, X. Yang, H. Yu, L. Guo, X. Li, X. Zeng, and Y. Lu, “Evaluation of the self-absorption reduction of minor elements in laser-induced breakdown spectroscopy assisted with laser-stimulated absorption,” J. Anal. At. Spectrom. 32(11), 2189–2193 (2017).
[Crossref]

Tavassoli, S. H.

F. Rezaei and S. H. Tavassoli, “Utilizing the ratio and the summation of two spectral lines for estimation of optical depth: Focus on thick plasmas,” Spectrochim. Acta B At. Spectrosc. 125, 25–30 (2016).
[Crossref]

Taylor, G. J.

Tognoni, E.

G. Cristoforetti and E. Tognoni, “Calculation of elemental columnar density from self-absorbed lines in laser-induced breakdown spectroscopy: A resource for quantitative analysis,” Spectrochim. Acta B At. Spectrosc. 79–80, 63–71 (2013).
[Crossref]

F. Bredice, F. O. Borges, H. Sobral, M. Villagran-Muniz, H. O. Di Rocco, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption of manganese emission lines in Laser Induced Breakdown Spectroscopy measurements,” Spectrochim. Acta B At. Spectrosc. 61(12), 1294–1303 (2006).
[Crossref]

A. M. El Sherbini, T. M. El Sherbini, H. Hegazy, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta B At. Spectrosc. 60(12), 1573–1579 (2005).
[Crossref]

Tufail, K.

N. M. Sabri, Z. Haider, K. Tufail, F. D. Ismail, and J. Ali, “Spectroscopic diagnostics of laser induced plasma and self-absorption effects in Al lines,” Phys. Plasmas 25(7), 073303 (2018).
[Crossref]

Villagran-Muniz, M.

F. Bredice, F. O. Borges, H. Sobral, M. Villagran-Muniz, H. O. Di Rocco, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption of manganese emission lines in Laser Induced Breakdown Spectroscopy measurements,” Spectrochim. Acta B At. Spectrosc. 61(12), 1294–1303 (2006).
[Crossref]

Villagrán-Muniz, M.

Wang, Q. P.

Q. Zeng, C. Y. Pan, C. Y. Li, T. Fei, X. K. Ding, X. W. Du, and Q. P. Wang, “Online monitoring of corrosion behavior in molten metal using laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 142, 68–73 (2018).
[Crossref]

Wang, S. Y.

T. Wu, X. B. Wang, S. Y. Wang, J. Tang, P. X. Lu, and H. Lu, “Time and space resolved visible spectroscopic imaging CO2 laser produced extreme ultraviolet emitting tin plasmas,” J. Appl. Phys. 111(6), 063304 (2012).
[Crossref]

Wang, X. B.

T. Wu, X. B. Wang, S. Y. Wang, J. Tang, P. X. Lu, and H. Lu, “Time and space resolved visible spectroscopic imaging CO2 laser produced extreme ultraviolet emitting tin plasmas,” J. Appl. Phys. 111(6), 063304 (2012).
[Crossref]

Wang, Z.

T. Yuan, Z. Wang, Z. Li, W. Ni, and J. Liu, “A partial least squares and wavelet-transform hybrid model to analyze carbon content in coal using laser-induced breakdown spectroscopy,” Anal. Chim. Acta 807, 29–35 (2014).
[Crossref] [PubMed]

Wang, Z. M.

Winefordner, J. D.

H. Y. Moon, K. K. Herrera, N. Omenetto, B. W. Smith, and J. D. Winefordner, “On the usefulness of a duplicating mirror to evaluate self-absorption effects in laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 64(7), 702–713 (2009).
[Crossref]

I. B. Gornushkin, J. M. Anzano, L. A. King, B. W. Smith, N. Omenetto, and J. D. Winefordner, “Curve of growth methodology applied to laser-induced plasma emission spectroscopy,” Spectrochim. Acta B At. Spectrosc. 54(3–4), 491–503 (1999).
[Crossref]

Wu, T.

T. Wu, X. B. Wang, S. Y. Wang, J. Tang, P. X. Lu, and H. Lu, “Time and space resolved visible spectroscopic imaging CO2 laser produced extreme ultraviolet emitting tin plasmas,” J. Appl. Phys. 111(6), 063304 (2012).
[Crossref]

Xiao, L.

Yang, H.

Yang, X.

J. Li, Y. Tang, Z. Hao, N. Zhao, X. Yang, H. Yu, L. Guo, X. Li, X. Zeng, and Y. Lu, “Evaluation of the self-absorption reduction of minor elements in laser-induced breakdown spectroscopy assisted with laser-stimulated absorption,” J. Anal. At. Spectrom. 32(11), 2189–2193 (2017).
[Crossref]

Yang, X. Y.

Y. M. Guo, L. M. Deng, X. Y. Yang, J. M. Li, K. H. Li, Z. H. Zhu, L. B. Guo, X. Y. Li, Y. F. Lu, and X. Y. Zeng, “Wavelet-based interference correction for laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 32(12), 2401–2406 (2017).
[Crossref]

Q. D. Zeng, L. B. Guo, X. Y. Li, M. Shen, Y. N. Zhu, J. M. Li, X. Y. Yang, K. H. Li, J. Duan, X. Y. Zeng, and Y. F. Lu, “Quantitative analyses of Mn, V, and Si elements in steels using a portable laser-induced breakdown spectroscopy system based on a fiber laser,” J. Anal. At. Spectrom. 31(3), 767–772 (2016).
[Crossref]

Z. Q. Hao, L. Liu, M. Shen, X. Y. Yang, K. H. Li, L. B. Guo, X. Y. Li, Y. F. Lu, and X. Y. Zeng, “Investigation on self-absorption at reduced air pressure in quantitative analysis using laser-induced breakdown spectroscopy,” Opt. Express 24(23), 26521–26528 (2016).
[Crossref] [PubMed]

Yao, M.

Yao, S.

Yaroshchyk, P.

P. Yaroshchyk and J. E. Eberhardt, “Automatic correction of continuum background in Laser-induced Breakdown Spectroscopy using a model-free algorithm,” Spectrochim. Acta B At. Spectrosc. 99, 138–149 (2014).
[Crossref]

Yin, W.

Yu, H.

J. Li, Y. Tang, Z. Hao, N. Zhao, X. Yang, H. Yu, L. Guo, X. Li, X. Zeng, and Y. Lu, “Evaluation of the self-absorption reduction of minor elements in laser-induced breakdown spectroscopy assisted with laser-stimulated absorption,” J. Anal. At. Spectrom. 32(11), 2189–2193 (2017).
[Crossref]

Yu, H. B.

L. X. Sun and H. B. Yu, “Automatic estimation of varying continuum background emission in laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 64(3), 278–287 (2009).
[Crossref]

Yuan, T.

T. Yuan, Z. Wang, Z. Li, W. Ni, and J. Liu, “A partial least squares and wavelet-transform hybrid model to analyze carbon content in coal using laser-induced breakdown spectroscopy,” Anal. Chim. Acta 807, 29–35 (2014).
[Crossref] [PubMed]

Zeng, Q.

Q. Zeng, C. Y. Pan, C. Y. Li, T. Fei, X. K. Ding, X. W. Du, and Q. P. Wang, “Online monitoring of corrosion behavior in molten metal using laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 142, 68–73 (2018).
[Crossref]

Zeng, Q. D.

Q. D. Zeng, L. B. Guo, X. Y. Li, M. Shen, Y. N. Zhu, J. M. Li, X. Y. Yang, K. H. Li, J. Duan, X. Y. Zeng, and Y. F. Lu, “Quantitative analyses of Mn, V, and Si elements in steels using a portable laser-induced breakdown spectroscopy system based on a fiber laser,” J. Anal. At. Spectrom. 31(3), 767–772 (2016).
[Crossref]

X. H. Zou, L. B. Guo, M. Shen, X. Y. Li, Z. Q. Hao, Q. D. Zeng, Y. F. Lu, Z. M. Wang, and X. Y. Zeng, “Accuracy improvement of quantitative analysis in laser-induced breakdown spectroscopy using modified wavelet transform,” Opt. Express 22(9), 10233–10238 (2014).
[Crossref] [PubMed]

Zeng, X.

Y. Tang, J. Li, Z. Hao, S. Tang, Z. Zhu, L. Guo, X. Li, X. Zeng, J. Duan, and Y. Lu, “Multielemental self-absorption reduction in laser-induced breakdown spectroscopy by using microwave-assisted excitation,” Opt. Express 26(9), 12121–12130 (2018).
[Crossref] [PubMed]

Z. Zhu, J. Li, Y. Guo, X. Cheng, Y. Tang, L. Guo, X. Li, Y. Lu, and X. Zeng, “Accuracy improvement of boron by molecular emission with a genetic algorithm and partial least squares regression model in laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 33(2), 205–209 (2018).
[Crossref]

Y. Tang, L. Guo, J. Li, S. Tang, Z. Zhu, S. Ma, X. Li, X. Zeng, J. Duan, and Y. Lu, “Investigation on self-absorption reduction in laser-induced breakdown spectroscopy assisted with spatially selective laser-stimulated absorption,” J. Anal. At. Spectrom. 33(10), 1683–1688 (2018).
[Crossref]

J. Li, Y. Tang, Z. Hao, N. Zhao, X. Yang, H. Yu, L. Guo, X. Li, X. Zeng, and Y. Lu, “Evaluation of the self-absorption reduction of minor elements in laser-induced breakdown spectroscopy assisted with laser-stimulated absorption,” J. Anal. At. Spectrom. 32(11), 2189–2193 (2017).
[Crossref]

Zeng, X. Y.

Y. M. Guo, L. M. Deng, X. Y. Yang, J. M. Li, K. H. Li, Z. H. Zhu, L. B. Guo, X. Y. Li, Y. F. Lu, and X. Y. Zeng, “Wavelet-based interference correction for laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 32(12), 2401–2406 (2017).
[Crossref]

Q. D. Zeng, L. B. Guo, X. Y. Li, M. Shen, Y. N. Zhu, J. M. Li, X. Y. Yang, K. H. Li, J. Duan, X. Y. Zeng, and Y. F. Lu, “Quantitative analyses of Mn, V, and Si elements in steels using a portable laser-induced breakdown spectroscopy system based on a fiber laser,” J. Anal. At. Spectrom. 31(3), 767–772 (2016).
[Crossref]

Z. Q. Hao, L. Liu, M. Shen, X. Y. Yang, K. H. Li, L. B. Guo, X. Y. Li, Y. F. Lu, and X. Y. Zeng, “Investigation on self-absorption at reduced air pressure in quantitative analysis using laser-induced breakdown spectroscopy,” Opt. Express 24(23), 26521–26528 (2016).
[Crossref] [PubMed]

X. H. Zou, L. B. Guo, M. Shen, X. Y. Li, Z. Q. Hao, Q. D. Zeng, Y. F. Lu, Z. M. Wang, and X. Y. Zeng, “Accuracy improvement of quantitative analysis in laser-induced breakdown spectroscopy using modified wavelet transform,” Opt. Express 22(9), 10233–10238 (2014).
[Crossref] [PubMed]

Zhang, L.

Zhao, N.

J. Li, Y. Tang, Z. Hao, N. Zhao, X. Yang, H. Yu, L. Guo, X. Li, X. Zeng, and Y. Lu, “Evaluation of the self-absorption reduction of minor elements in laser-induced breakdown spectroscopy assisted with laser-stimulated absorption,” J. Anal. At. Spectrom. 32(11), 2189–2193 (2017).
[Crossref]

Zhao, Y.

Zheng, R. E.

Y. Li, Y. Lu, and R. E. Zheng, “Time-resolved evaluation of self-absorption in laser induced plasma from nickel sample,” Guangpuxue Yu Guangpu Fenxi 31(3), 595–599 (2011).
[PubMed]

Zhu, Y. N.

Q. D. Zeng, L. B. Guo, X. Y. Li, M. Shen, Y. N. Zhu, J. M. Li, X. Y. Yang, K. H. Li, J. Duan, X. Y. Zeng, and Y. F. Lu, “Quantitative analyses of Mn, V, and Si elements in steels using a portable laser-induced breakdown spectroscopy system based on a fiber laser,” J. Anal. At. Spectrom. 31(3), 767–772 (2016).
[Crossref]

Zhu, Z.

Z. Zhu, J. Li, Y. Guo, X. Cheng, Y. Tang, L. Guo, X. Li, Y. Lu, and X. Zeng, “Accuracy improvement of boron by molecular emission with a genetic algorithm and partial least squares regression model in laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 33(2), 205–209 (2018).
[Crossref]

Y. Tang, L. Guo, J. Li, S. Tang, Z. Zhu, S. Ma, X. Li, X. Zeng, J. Duan, and Y. Lu, “Investigation on self-absorption reduction in laser-induced breakdown spectroscopy assisted with spatially selective laser-stimulated absorption,” J. Anal. At. Spectrom. 33(10), 1683–1688 (2018).
[Crossref]

Y. Tang, J. Li, Z. Hao, S. Tang, Z. Zhu, L. Guo, X. Li, X. Zeng, J. Duan, and Y. Lu, “Multielemental self-absorption reduction in laser-induced breakdown spectroscopy by using microwave-assisted excitation,” Opt. Express 26(9), 12121–12130 (2018).
[Crossref] [PubMed]

Zhu, Z. H.

Y. M. Guo, L. M. Deng, X. Y. Yang, J. M. Li, K. H. Li, Z. H. Zhu, L. B. Guo, X. Y. Li, Y. F. Lu, and X. Y. Zeng, “Wavelet-based interference correction for laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 32(12), 2401–2406 (2017).
[Crossref]

Zou, X. H.

Anal. Chim. Acta (1)

T. Yuan, Z. Wang, Z. Li, W. Ni, and J. Liu, “A partial least squares and wavelet-transform hybrid model to analyze carbon content in coal using laser-induced breakdown spectroscopy,” Anal. Chim. Acta 807, 29–35 (2014).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Spectrosc. (2)

Guangpuxue Yu Guangpu Fenxi (1)

Y. Li, Y. Lu, and R. E. Zheng, “Time-resolved evaluation of self-absorption in laser induced plasma from nickel sample,” Guangpuxue Yu Guangpu Fenxi 31(3), 595–599 (2011).
[PubMed]

IEEE Trans. Plasma Sci. (2)

J. B. Ahmed and F. Fouad, “Effect of Spectral Line Self-Absorption on the Laser-Induced Plasma Diagnostics,” IEEE Trans. Plasma Sci. 42(8), 2073–2078 (2014).
[Crossref]

D. M. Diaz Pace, C. A. D’Angelo, and G. Bertuccelli, “Study of self-absorption of emission magnesium lines in laser-induced plasmas on calcium hydroxide matrix,” IEEE Trans. Plasma Sci. 40(3), 898–908 (2012).
[Crossref]

J. Anal. At. Spectrom. (5)

Q. D. Zeng, L. B. Guo, X. Y. Li, M. Shen, Y. N. Zhu, J. M. Li, X. Y. Yang, K. H. Li, J. Duan, X. Y. Zeng, and Y. F. Lu, “Quantitative analyses of Mn, V, and Si elements in steels using a portable laser-induced breakdown spectroscopy system based on a fiber laser,” J. Anal. At. Spectrom. 31(3), 767–772 (2016).
[Crossref]

J. Li, Y. Tang, Z. Hao, N. Zhao, X. Yang, H. Yu, L. Guo, X. Li, X. Zeng, and Y. Lu, “Evaluation of the self-absorption reduction of minor elements in laser-induced breakdown spectroscopy assisted with laser-stimulated absorption,” J. Anal. At. Spectrom. 32(11), 2189–2193 (2017).
[Crossref]

Y. Tang, L. Guo, J. Li, S. Tang, Z. Zhu, S. Ma, X. Li, X. Zeng, J. Duan, and Y. Lu, “Investigation on self-absorption reduction in laser-induced breakdown spectroscopy assisted with spatially selective laser-stimulated absorption,” J. Anal. At. Spectrom. 33(10), 1683–1688 (2018).
[Crossref]

Y. M. Guo, L. M. Deng, X. Y. Yang, J. M. Li, K. H. Li, Z. H. Zhu, L. B. Guo, X. Y. Li, Y. F. Lu, and X. Y. Zeng, “Wavelet-based interference correction for laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 32(12), 2401–2406 (2017).
[Crossref]

Z. Zhu, J. Li, Y. Guo, X. Cheng, Y. Tang, L. Guo, X. Li, Y. Lu, and X. Zeng, “Accuracy improvement of boron by molecular emission with a genetic algorithm and partial least squares regression model in laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 33(2), 205–209 (2018).
[Crossref]

J. Appl. Phys. (1)

T. Wu, X. B. Wang, S. Y. Wang, J. Tang, P. X. Lu, and H. Lu, “Time and space resolved visible spectroscopic imaging CO2 laser produced extreme ultraviolet emitting tin plasmas,” J. Appl. Phys. 111(6), 063304 (2012).
[Crossref]

Nanoscale (1)

M. U. Farid, S. Jeong, D. H. Seo, R. Ahmed, C. Lau, N. K. Gali, Z. Ning, and A. K. An, “Mechanistic insight into the in vitro toxicity of graphene oxide against biofilm forming bacteria using laser-induced breakdown spectroscopy,” Nanoscale 10(9), 4475–4487 (2018).
[Crossref] [PubMed]

Opt. Express (5)

Phys. Plasmas (1)

N. M. Sabri, Z. Haider, K. Tufail, F. D. Ismail, and J. Ali, “Spectroscopic diagnostics of laser induced plasma and self-absorption effects in Al lines,” Phys. Plasmas 25(7), 073303 (2018).
[Crossref]

Sci. Total Environ. (1)

G. Nicolodelli, G. S. Senesi, I. L. de Oliveira Perazzoli, B. S. Marangoni, V. De Melo Benites, and D. M. B. P. Milori, “Double pulse laser induced breakdown spectroscopy: A potential tool for the analysis of contaminants and macro/micronutrients in organic mineral fertilizers,” Sci. Total Environ. 565, 1116–1123 (2016).
[Crossref] [PubMed]

Spectrochim. Acta B At. Spectrosc. (13)

Q. Zeng, C. Y. Pan, C. Y. Li, T. Fei, X. K. Ding, X. W. Du, and Q. P. Wang, “Online monitoring of corrosion behavior in molten metal using laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 142, 68–73 (2018).
[Crossref]

A. M. El Sherbini, T. M. El Sherbini, H. Hegazy, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta B At. Spectrosc. 60(12), 1573–1579 (2005).
[Crossref]

F. Rezaei and S. H. Tavassoli, “Utilizing the ratio and the summation of two spectral lines for estimation of optical depth: Focus on thick plasmas,” Spectrochim. Acta B At. Spectrosc. 125, 25–30 (2016).
[Crossref]

M. Burger, M. Skocic, and S. Bukvic, “Study of self-absorption in laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 101, 51–56 (2014).
[Crossref]

H. Y. Moon, K. K. Herrera, N. Omenetto, B. W. Smith, and J. D. Winefordner, “On the usefulness of a duplicating mirror to evaluate self-absorption effects in laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 64(7), 702–713 (2009).
[Crossref]

P. Yaroshchyk and J. E. Eberhardt, “Automatic correction of continuum background in Laser-induced Breakdown Spectroscopy using a model-free algorithm,” Spectrochim. Acta B At. Spectrosc. 99, 138–149 (2014).
[Crossref]

L. X. Sun and H. B. Yu, “Automatic estimation of varying continuum background emission in laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 64(3), 278–287 (2009).
[Crossref]

C. Aragón, J. Bengoechea, and J. A. Aguilera, “Influence of the optical depth on spectral line emission from laser-induced plasmas,” Spectrochim. Acta B At. Spectrosc. 56(6), 619–628 (2001).
[Crossref]

I. B. Gornushkin, J. M. Anzano, L. A. King, B. W. Smith, N. Omenetto, and J. D. Winefordner, “Curve of growth methodology applied to laser-induced plasma emission spectroscopy,” Spectrochim. Acta B At. Spectrosc. 54(3–4), 491–503 (1999).
[Crossref]

J. A. Aguilera, J. Bengoechea, and C. Aragón, “Curves of growth of spectral lines emitted by a laser-induced plasma: Influence of the temporal evolution and spatial inhomogeneity of the plasma,” Spectrochim. Acta B At. Spectrosc. 58(2), 221–237 (2003).
[Crossref]

J. A. Aguilera and C. Aragon, “Characterization of laser-induced plasmas by emission spectroscopy with curve-of-growth measurements. Part I: Temporal evolution of plasma parameters and self-absorption,” Spectrochim. Acta B At. Spectrosc. 63(7), 784–792 (2008).
[Crossref]

F. Bredice, F. O. Borges, H. Sobral, M. Villagran-Muniz, H. O. Di Rocco, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption of manganese emission lines in Laser Induced Breakdown Spectroscopy measurements,” Spectrochim. Acta B At. Spectrosc. 61(12), 1294–1303 (2006).
[Crossref]

G. Cristoforetti and E. Tognoni, “Calculation of elemental columnar density from self-absorbed lines in laser-induced breakdown spectroscopy: A resource for quantitative analysis,” Spectrochim. Acta B At. Spectrosc. 79–80, 63–71 (2013).
[Crossref]

Talanta (1)

F. Ammari, L. Bassel, C. Ferrier, D. Lacanette, R. Chapoulie, and B. Bousquet, “Multi-block analysis coupled to laser-induced breakdown spectroscopy for sorting geological materials from caves,” Talanta 159, 287–291 (2016).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic diagram of the experimental setup.
Fig. 2
Fig. 2 The original (a) and background corrected and (b) LIBS spectra of samples No.1-7 under a gate delay of 0.2 μs.
Fig. 3
Fig. 3 The calibration curves of Cu I 327.40 nm (a) and Mn I 403.31 nm (b) with different gate delay times.
Fig. 4
Fig. 4 α and SA of Cu I 327.40 nm (a) and Mn I 403.31 nm (b) with different gate delay times.
Fig. 5
Fig. 5 The calibration curves of Cu I 327.40 nm (a) and Mn I 403.31 nm (b) with different gate widths.
Fig. 6
Fig. 6 α and SA of Cu I 327.40 nm (a) and Mn I 403.31 nm (b) with different gate widths.
Fig. 7
Fig. 7 Fast images of the plasma plumes in LIBS under different gate delay times.
Fig. 8
Fig. 8 The calibration curves of Cu I 327.40 nm (a) and Mn I 403.31 nm (b) at time windows of 2-3 and 0.2-0.4 μs.

Tables (3)

Tables Icon

Table 1 The certified concentration of Cu and Mn elements in the steel samples (wt. %).

Tables Icon

Table 2 Comparison of quantitative analyses at a time window of 0.2-0.4 and 2-3 μs.

Tables Icon

Table 3 Comparison between self-absorption reduction in this work and other works.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I ( C ) = A ( 1 e α C ) + I b ,
S A = 1 e α C α C ,
K = 1 4 π 2 c N g k U ( T ) e E i k T λ 0 4 A k i l ,
K = B N l U ( T ) ,
N = N 0 g 0 U ( T ) ,
K = B 0 N 0 l ,

Metrics