Abstract

In this paper, we report on a periodic metallo-dielectric structure that supports geometry-induced surface plasmons in the sub-terahertz regime. The proposed structure is made up of a dielectric-coated metallic grating sandwiched by parallel metal plates. Based on the modal analysis of 2D and 3D structures, the impact of a metal cladding and a customized dielectric coating on the dispersion relation and field distribution of the guided surface wave is investigated. It is found that modal field confinement is improved in the presence of a metal cladding without narrowing the operational bandwidth of the waveguide. Moreover, a customized subwavelength-sized dielectric coating based on high-resistivity silicon (HR-Si) can further improve the confinement. As a result, by incorporating both the HR-Si coating and the metal cladding in a conventional metallic grating, subwavelength field confinement is achieved over nearly a 2:1 frequency bandwidth. The achieved performance makes the realization of extremely-low radiation loss sharp bends possible. In particular, the achieved radiation loss is less than 0.5dB for a 90° bend of radius λ0/4 based on a waveguide cross-sectional dimension of almost λ0/10 where λ0 is the free-space wavelength at the maximum frequency of operation. The proposed waveguide is promising for the implementation of sub-terahertz guided-wave devices and circuits thanks to its outstanding field confinement and ruggedized and shielded structure.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Design of a hybrid spoof plasmonic sub-terahertz waveguide with low bending loss in a broad frequency band

Mohammad Ali Khosrovani Moghaddam and Mehdi Ahmadi-Boroujeni
Opt. Express 25(6) 6860-6873 (2017)

Domino plasmons for subwavelength terahertz circuitry

D. Martin-Cano, M. L. Nesterov, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno, and Esteban Moreno
Opt. Express 18(2) 754-764 (2010)

Experimental demonstration of subwavelength domino plasmon devices for compact high-frequency circuit

Y. G. Ma, L. Lan, S. M. Zhong, and C. K. Ong
Opt. Express 19(22) 21189-21198 (2011)

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
    [Crossref] [PubMed]
  2. B. Ng, S. M. Hanham, J. Wu, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Broadband terahertz sensing on spoof plasmon surfaces,” ACS Photonics 1(10), 1059–1067 (2014).
    [Crossref]
  3. B. Ng, J. Wu, S. M. Hanham, A. I. Fernández‐Domínguez, N. Klein, Y. F. Liew, M. B. Breese, M. Hong, and S. A. Maier, “Spoof plasmon surfaces: a novel platform for THz sensing,” Adv. Opt. Mater. 1(8), 543–548 (2013).
    [Crossref]
  4. D. Martín-Cano, M. L. Nesterov, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno, and E. Moreno, “Domino plasmons for subwavelength terahertz circuitry,” Opt. Express 18(2), 754–764 (2010).
    [Crossref] [PubMed]
  5. Y. Zhang, Y. Xu, C. Tian, Q. Xu, X. Zhang, Y. Li, X. Zhang, J. Han, and W. Zhang, “Terahertz spoof surface-plasmon-polariton subwavelength waveguide,” Photon. Res. 6(1), 18–23 (2018).
    [Crossref]
  6. Q. Zhang, H. C. Zhang, H. Wu, and T. J. Cui, “A hybrid circuit for spoof surface plasmons and spatial waveguide modes to reach controllable band-pass filters,” Sci. Rep. B, 16531 (2015).
    [Crossref]
  7. W. Zhu, A. Agrawal, and A. Nahata, “Planar plasmonic terahertz guided-wave devices,” Opt. Express 16(9), 6216–6226 (2008).
    [Crossref] [PubMed]
  8. L. Tian, Z. Zhang, J. Liu, K. Zhou, Y. Gao, and S. Liu, “Compact spoof surface plasmon polaritons waveguide drilled with L-shaped grooves,” Opt. Express 24(25), 28693–28703 (2016).
    [Crossref] [PubMed]
  9. S. Li, M. M. Jadidi, T. E. Murphy, and G. Kumar, “Terahertz surface plasmon polaritons on a semiconductor surface structured with periodic V-grooves,” Opt. Express 21(6), 7041–7049 (2013).
    [Crossref] [PubMed]
  10. D. Martin-Cano, O. Quevedo-Teruel, E. Moreno, L. Martin-Moreno, and F. J. Garcia-Vidal, “Waveguided spoof surface plasmons with deep-subwavelength lateral confinement,” Opt. Lett. 36(23), 4635–4637 (2011).
    [Crossref] [PubMed]
  11. X. Shen and T. Jun Cui, “Planar plasmonic metamaterial on a thin film with nearly zero thickness,” Appl. Phys. Lett. 102(21), 211909 (2013).
    [Crossref]
  12. Y. Zhang, P. Zhang, and Z. Han, “One-dimensional spoof surface plasmon structures for planar terahertz photonic integration,” J. Lightwave Technol. 33(18), 3796–3800 (2015).
    [Crossref]
  13. D. Wang, L. Chen, B. Fang, and Y. Zhu, “Spoof localized surface plasmons excited by plasmonic waveguide chip with corrugated disk resonator,” Plasmonics 12(4), 947–952 (2017).
    [Crossref]
  14. L. Chen, Y. Wei, X. Zang, Y. Zhu, and S. Zhuang, “Excitation of dark multipolar plasmonic resonances at terahertz frequencies,” Sci. Rep. 6(1), 22027–27324 (2016).
    [Crossref] [PubMed]
  15. L. Chen, N. Xu, L. Singh, T. Cui, R. Singh, Y. Zhu, and W. Zhang, “Defect-induced fano resonances in corrugated plasmonic metamaterials,” Adv. Opt. Mater. 5(8), 1600960 (2017).
    [Crossref]
  16. Y. Zhang, S. Li, Q. Xu, C. Tian, J. Gu, Y. Li, Z. Tian, C. Ouyang, J. Han, and W. Zhang, “Terahertz surface plasmon polariton waveguiding with periodic metallic cylinders,” Opt. Express 25(13), 14397–14405 (2017).
    [Crossref] [PubMed]
  17. A. Malekabadi, S. A. Charlebois, D. Deslandes, and F. Boone, “High-resistivity silicon dielectric ribbon waveguide for single-mode low-loss propagation at F/G-bands,” IEEE Trans. THz Sci. Technol. 4(4), 447–453 (2014).
  18. H. Amarloo, N. Ranjkesh, and S. Safavi-Naeini, “Terahertz silicon–BCB–quartz dielectric waveguide: an efficient platform for compact THz systems,” IEEE Trans. THz Sci. Technol. 8(2), 201–208 (2018).
  19. A. Malekabadi and C. Paoloni, “UV-LIGA microfabrication process for sub-terahertz waveguides utilizing multiple layered SU-8 photoresist,” J. Micromech. Microeng. 26(9), 095010 (2016).
    [Crossref]
  20. L. Liu, Z. Li, B. Xu, C. Gu, X. Chen, H. Sun, Y. Zhou, Q. Qing, P. Shum, and Y. Luo, “Ultra-low-loss high-contrast gratings based spoof surface plasmonic waveguide,” IEEE Trans. Microw. Theory Tech. 65(6), 2008–2018 (2017).
    [Crossref]
  21. E. Degirmenci, F. Surre, S. Philippe, R. Maldonado-Basilio, and P. Landais, “Improved bend waveguide design for terahertz transmission,” IEEE Trans. THz Sci. Technol. 2(1), 137–143 (2012).
  22. M. A. Moghaddam and M. Ahmadi-Boroujeni, “Design of a hybrid spoof plasmonic sub-terahertz waveguide with low bending loss in a broad frequency band,” Opt. Express 25(6), 6860–6873 (2017).
    [Crossref] [PubMed]
  23. M. Ahmadi-Boroujeni, K. Altmann, B. Scherger, C. Jansen, M. Shahabadi, and M. Koch, “Terahertz parallel-plate ladder waveguide with highly confined guided modes,” IEEE Trans. THz. Sci. Tech. (Paris) 3(1), 87–95 (2013).
  24. P. S. Kildal, E. Alfonso, A. V. Nogueira, and E. R. Iglesias, “Local metamaterial-based waveguides in gaps between parallel metal plates,” IEEE Antennas Wirel. Propag. Lett. 8, 84–87 (2009).
    [Crossref]
  25. K. M. Leong, K. Hennig, C. Zhang, R. N. Elmadjian, Z. Zhou, B. S. Gorospe, P. P. Chang-Chien, V. Radisic, and W. R. Deal, “WR1. 5 silicon micromachined waveguide components and active circuit integration methodology,” IEEE Trans. Microw. Theory Tech. 60(4), 998–1005 (2012).
    [Crossref]
  26. M. Vahidpour and K. Sarabandi, “2.5 D micromachined 240 GHz cavity-backed coplanar waveguide to rectangular waveguide transition,” IEEE Trans. THz. Sci. Tech. (Paris) 2(3), 315–322 (2012).
  27. N. Ranjkesh, M. Basha, A. Taeb, and S. Safavi-Naeini, “Silicon-on-glass dielectric waveguide—Part II: For THz applications,” IEEE Trans. THz. Sci. Tech. (Paris) 5(2), 280–287 (2015).
  28. L. Liu, Z. Li, B. Xu, C. Gu, C. Chen, P. Ning, J. Yan, and X. Chen, “High-efficiency transition between rectangular waveguide and domino plasmonic waveguide,” AIP Adv. 5(2), 027105 (2015).
    [Crossref]

2018 (2)

Y. Zhang, Y. Xu, C. Tian, Q. Xu, X. Zhang, Y. Li, X. Zhang, J. Han, and W. Zhang, “Terahertz spoof surface-plasmon-polariton subwavelength waveguide,” Photon. Res. 6(1), 18–23 (2018).
[Crossref]

H. Amarloo, N. Ranjkesh, and S. Safavi-Naeini, “Terahertz silicon–BCB–quartz dielectric waveguide: an efficient platform for compact THz systems,” IEEE Trans. THz Sci. Technol. 8(2), 201–208 (2018).

2017 (5)

L. Liu, Z. Li, B. Xu, C. Gu, X. Chen, H. Sun, Y. Zhou, Q. Qing, P. Shum, and Y. Luo, “Ultra-low-loss high-contrast gratings based spoof surface plasmonic waveguide,” IEEE Trans. Microw. Theory Tech. 65(6), 2008–2018 (2017).
[Crossref]

D. Wang, L. Chen, B. Fang, and Y. Zhu, “Spoof localized surface plasmons excited by plasmonic waveguide chip with corrugated disk resonator,” Plasmonics 12(4), 947–952 (2017).
[Crossref]

L. Chen, N. Xu, L. Singh, T. Cui, R. Singh, Y. Zhu, and W. Zhang, “Defect-induced fano resonances in corrugated plasmonic metamaterials,” Adv. Opt. Mater. 5(8), 1600960 (2017).
[Crossref]

Y. Zhang, S. Li, Q. Xu, C. Tian, J. Gu, Y. Li, Z. Tian, C. Ouyang, J. Han, and W. Zhang, “Terahertz surface plasmon polariton waveguiding with periodic metallic cylinders,” Opt. Express 25(13), 14397–14405 (2017).
[Crossref] [PubMed]

M. A. Moghaddam and M. Ahmadi-Boroujeni, “Design of a hybrid spoof plasmonic sub-terahertz waveguide with low bending loss in a broad frequency band,” Opt. Express 25(6), 6860–6873 (2017).
[Crossref] [PubMed]

2016 (3)

L. Chen, Y. Wei, X. Zang, Y. Zhu, and S. Zhuang, “Excitation of dark multipolar plasmonic resonances at terahertz frequencies,” Sci. Rep. 6(1), 22027–27324 (2016).
[Crossref] [PubMed]

A. Malekabadi and C. Paoloni, “UV-LIGA microfabrication process for sub-terahertz waveguides utilizing multiple layered SU-8 photoresist,” J. Micromech. Microeng. 26(9), 095010 (2016).
[Crossref]

L. Tian, Z. Zhang, J. Liu, K. Zhou, Y. Gao, and S. Liu, “Compact spoof surface plasmon polaritons waveguide drilled with L-shaped grooves,” Opt. Express 24(25), 28693–28703 (2016).
[Crossref] [PubMed]

2015 (3)

N. Ranjkesh, M. Basha, A. Taeb, and S. Safavi-Naeini, “Silicon-on-glass dielectric waveguide—Part II: For THz applications,” IEEE Trans. THz. Sci. Tech. (Paris) 5(2), 280–287 (2015).

L. Liu, Z. Li, B. Xu, C. Gu, C. Chen, P. Ning, J. Yan, and X. Chen, “High-efficiency transition between rectangular waveguide and domino plasmonic waveguide,” AIP Adv. 5(2), 027105 (2015).
[Crossref]

Y. Zhang, P. Zhang, and Z. Han, “One-dimensional spoof surface plasmon structures for planar terahertz photonic integration,” J. Lightwave Technol. 33(18), 3796–3800 (2015).
[Crossref]

2014 (2)

B. Ng, S. M. Hanham, J. Wu, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Broadband terahertz sensing on spoof plasmon surfaces,” ACS Photonics 1(10), 1059–1067 (2014).
[Crossref]

A. Malekabadi, S. A. Charlebois, D. Deslandes, and F. Boone, “High-resistivity silicon dielectric ribbon waveguide for single-mode low-loss propagation at F/G-bands,” IEEE Trans. THz Sci. Technol. 4(4), 447–453 (2014).

2013 (4)

B. Ng, J. Wu, S. M. Hanham, A. I. Fernández‐Domínguez, N. Klein, Y. F. Liew, M. B. Breese, M. Hong, and S. A. Maier, “Spoof plasmon surfaces: a novel platform for THz sensing,” Adv. Opt. Mater. 1(8), 543–548 (2013).
[Crossref]

S. Li, M. M. Jadidi, T. E. Murphy, and G. Kumar, “Terahertz surface plasmon polaritons on a semiconductor surface structured with periodic V-grooves,” Opt. Express 21(6), 7041–7049 (2013).
[Crossref] [PubMed]

X. Shen and T. Jun Cui, “Planar plasmonic metamaterial on a thin film with nearly zero thickness,” Appl. Phys. Lett. 102(21), 211909 (2013).
[Crossref]

M. Ahmadi-Boroujeni, K. Altmann, B. Scherger, C. Jansen, M. Shahabadi, and M. Koch, “Terahertz parallel-plate ladder waveguide with highly confined guided modes,” IEEE Trans. THz. Sci. Tech. (Paris) 3(1), 87–95 (2013).

2012 (3)

K. M. Leong, K. Hennig, C. Zhang, R. N. Elmadjian, Z. Zhou, B. S. Gorospe, P. P. Chang-Chien, V. Radisic, and W. R. Deal, “WR1. 5 silicon micromachined waveguide components and active circuit integration methodology,” IEEE Trans. Microw. Theory Tech. 60(4), 998–1005 (2012).
[Crossref]

M. Vahidpour and K. Sarabandi, “2.5 D micromachined 240 GHz cavity-backed coplanar waveguide to rectangular waveguide transition,” IEEE Trans. THz. Sci. Tech. (Paris) 2(3), 315–322 (2012).

E. Degirmenci, F. Surre, S. Philippe, R. Maldonado-Basilio, and P. Landais, “Improved bend waveguide design for terahertz transmission,” IEEE Trans. THz Sci. Technol. 2(1), 137–143 (2012).

2011 (1)

2010 (1)

2009 (1)

P. S. Kildal, E. Alfonso, A. V. Nogueira, and E. R. Iglesias, “Local metamaterial-based waveguides in gaps between parallel metal plates,” IEEE Antennas Wirel. Propag. Lett. 8, 84–87 (2009).
[Crossref]

2008 (1)

2004 (1)

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

Agrawal, A.

Ahmadi-Boroujeni, M.

M. A. Moghaddam and M. Ahmadi-Boroujeni, “Design of a hybrid spoof plasmonic sub-terahertz waveguide with low bending loss in a broad frequency band,” Opt. Express 25(6), 6860–6873 (2017).
[Crossref] [PubMed]

M. Ahmadi-Boroujeni, K. Altmann, B. Scherger, C. Jansen, M. Shahabadi, and M. Koch, “Terahertz parallel-plate ladder waveguide with highly confined guided modes,” IEEE Trans. THz. Sci. Tech. (Paris) 3(1), 87–95 (2013).

Alfonso, E.

P. S. Kildal, E. Alfonso, A. V. Nogueira, and E. R. Iglesias, “Local metamaterial-based waveguides in gaps between parallel metal plates,” IEEE Antennas Wirel. Propag. Lett. 8, 84–87 (2009).
[Crossref]

Altmann, K.

M. Ahmadi-Boroujeni, K. Altmann, B. Scherger, C. Jansen, M. Shahabadi, and M. Koch, “Terahertz parallel-plate ladder waveguide with highly confined guided modes,” IEEE Trans. THz. Sci. Tech. (Paris) 3(1), 87–95 (2013).

Amarloo, H.

H. Amarloo, N. Ranjkesh, and S. Safavi-Naeini, “Terahertz silicon–BCB–quartz dielectric waveguide: an efficient platform for compact THz systems,” IEEE Trans. THz Sci. Technol. 8(2), 201–208 (2018).

Basha, M.

N. Ranjkesh, M. Basha, A. Taeb, and S. Safavi-Naeini, “Silicon-on-glass dielectric waveguide—Part II: For THz applications,” IEEE Trans. THz. Sci. Tech. (Paris) 5(2), 280–287 (2015).

Boone, F.

A. Malekabadi, S. A. Charlebois, D. Deslandes, and F. Boone, “High-resistivity silicon dielectric ribbon waveguide for single-mode low-loss propagation at F/G-bands,” IEEE Trans. THz Sci. Technol. 4(4), 447–453 (2014).

Breese, M. B.

B. Ng, J. Wu, S. M. Hanham, A. I. Fernández‐Domínguez, N. Klein, Y. F. Liew, M. B. Breese, M. Hong, and S. A. Maier, “Spoof plasmon surfaces: a novel platform for THz sensing,” Adv. Opt. Mater. 1(8), 543–548 (2013).
[Crossref]

Breese, M. B. H.

B. Ng, S. M. Hanham, J. Wu, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Broadband terahertz sensing on spoof plasmon surfaces,” ACS Photonics 1(10), 1059–1067 (2014).
[Crossref]

Chang-Chien, P. P.

K. M. Leong, K. Hennig, C. Zhang, R. N. Elmadjian, Z. Zhou, B. S. Gorospe, P. P. Chang-Chien, V. Radisic, and W. R. Deal, “WR1. 5 silicon micromachined waveguide components and active circuit integration methodology,” IEEE Trans. Microw. Theory Tech. 60(4), 998–1005 (2012).
[Crossref]

Charlebois, S. A.

A. Malekabadi, S. A. Charlebois, D. Deslandes, and F. Boone, “High-resistivity silicon dielectric ribbon waveguide for single-mode low-loss propagation at F/G-bands,” IEEE Trans. THz Sci. Technol. 4(4), 447–453 (2014).

Chen, C.

L. Liu, Z. Li, B. Xu, C. Gu, C. Chen, P. Ning, J. Yan, and X. Chen, “High-efficiency transition between rectangular waveguide and domino plasmonic waveguide,” AIP Adv. 5(2), 027105 (2015).
[Crossref]

Chen, L.

D. Wang, L. Chen, B. Fang, and Y. Zhu, “Spoof localized surface plasmons excited by plasmonic waveguide chip with corrugated disk resonator,” Plasmonics 12(4), 947–952 (2017).
[Crossref]

L. Chen, N. Xu, L. Singh, T. Cui, R. Singh, Y. Zhu, and W. Zhang, “Defect-induced fano resonances in corrugated plasmonic metamaterials,” Adv. Opt. Mater. 5(8), 1600960 (2017).
[Crossref]

L. Chen, Y. Wei, X. Zang, Y. Zhu, and S. Zhuang, “Excitation of dark multipolar plasmonic resonances at terahertz frequencies,” Sci. Rep. 6(1), 22027–27324 (2016).
[Crossref] [PubMed]

Chen, X.

L. Liu, Z. Li, B. Xu, C. Gu, X. Chen, H. Sun, Y. Zhou, Q. Qing, P. Shum, and Y. Luo, “Ultra-low-loss high-contrast gratings based spoof surface plasmonic waveguide,” IEEE Trans. Microw. Theory Tech. 65(6), 2008–2018 (2017).
[Crossref]

L. Liu, Z. Li, B. Xu, C. Gu, C. Chen, P. Ning, J. Yan, and X. Chen, “High-efficiency transition between rectangular waveguide and domino plasmonic waveguide,” AIP Adv. 5(2), 027105 (2015).
[Crossref]

Cui, T.

L. Chen, N. Xu, L. Singh, T. Cui, R. Singh, Y. Zhu, and W. Zhang, “Defect-induced fano resonances in corrugated plasmonic metamaterials,” Adv. Opt. Mater. 5(8), 1600960 (2017).
[Crossref]

Deal, W. R.

K. M. Leong, K. Hennig, C. Zhang, R. N. Elmadjian, Z. Zhou, B. S. Gorospe, P. P. Chang-Chien, V. Radisic, and W. R. Deal, “WR1. 5 silicon micromachined waveguide components and active circuit integration methodology,” IEEE Trans. Microw. Theory Tech. 60(4), 998–1005 (2012).
[Crossref]

Degirmenci, E.

E. Degirmenci, F. Surre, S. Philippe, R. Maldonado-Basilio, and P. Landais, “Improved bend waveguide design for terahertz transmission,” IEEE Trans. THz Sci. Technol. 2(1), 137–143 (2012).

Deslandes, D.

A. Malekabadi, S. A. Charlebois, D. Deslandes, and F. Boone, “High-resistivity silicon dielectric ribbon waveguide for single-mode low-loss propagation at F/G-bands,” IEEE Trans. THz Sci. Technol. 4(4), 447–453 (2014).

Elmadjian, R. N.

K. M. Leong, K. Hennig, C. Zhang, R. N. Elmadjian, Z. Zhou, B. S. Gorospe, P. P. Chang-Chien, V. Radisic, and W. R. Deal, “WR1. 5 silicon micromachined waveguide components and active circuit integration methodology,” IEEE Trans. Microw. Theory Tech. 60(4), 998–1005 (2012).
[Crossref]

Fang, B.

D. Wang, L. Chen, B. Fang, and Y. Zhu, “Spoof localized surface plasmons excited by plasmonic waveguide chip with corrugated disk resonator,” Plasmonics 12(4), 947–952 (2017).
[Crossref]

Fernandez-Dominguez, A. I.

Fernández-Domínguez, A. I.

B. Ng, S. M. Hanham, J. Wu, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Broadband terahertz sensing on spoof plasmon surfaces,” ACS Photonics 1(10), 1059–1067 (2014).
[Crossref]

B. Ng, J. Wu, S. M. Hanham, A. I. Fernández‐Domínguez, N. Klein, Y. F. Liew, M. B. Breese, M. Hong, and S. A. Maier, “Spoof plasmon surfaces: a novel platform for THz sensing,” Adv. Opt. Mater. 1(8), 543–548 (2013).
[Crossref]

Gao, Y.

Garcia-Vidal, F. J.

Gorospe, B. S.

K. M. Leong, K. Hennig, C. Zhang, R. N. Elmadjian, Z. Zhou, B. S. Gorospe, P. P. Chang-Chien, V. Radisic, and W. R. Deal, “WR1. 5 silicon micromachined waveguide components and active circuit integration methodology,” IEEE Trans. Microw. Theory Tech. 60(4), 998–1005 (2012).
[Crossref]

Gu, C.

L. Liu, Z. Li, B. Xu, C. Gu, X. Chen, H. Sun, Y. Zhou, Q. Qing, P. Shum, and Y. Luo, “Ultra-low-loss high-contrast gratings based spoof surface plasmonic waveguide,” IEEE Trans. Microw. Theory Tech. 65(6), 2008–2018 (2017).
[Crossref]

L. Liu, Z. Li, B. Xu, C. Gu, C. Chen, P. Ning, J. Yan, and X. Chen, “High-efficiency transition between rectangular waveguide and domino plasmonic waveguide,” AIP Adv. 5(2), 027105 (2015).
[Crossref]

Gu, J.

Han, J.

Han, Z.

Hanham, S. M.

B. Ng, S. M. Hanham, J. Wu, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Broadband terahertz sensing on spoof plasmon surfaces,” ACS Photonics 1(10), 1059–1067 (2014).
[Crossref]

B. Ng, J. Wu, S. M. Hanham, A. I. Fernández‐Domínguez, N. Klein, Y. F. Liew, M. B. Breese, M. Hong, and S. A. Maier, “Spoof plasmon surfaces: a novel platform for THz sensing,” Adv. Opt. Mater. 1(8), 543–548 (2013).
[Crossref]

Hennig, K.

K. M. Leong, K. Hennig, C. Zhang, R. N. Elmadjian, Z. Zhou, B. S. Gorospe, P. P. Chang-Chien, V. Radisic, and W. R. Deal, “WR1. 5 silicon micromachined waveguide components and active circuit integration methodology,” IEEE Trans. Microw. Theory Tech. 60(4), 998–1005 (2012).
[Crossref]

Hong, M.

B. Ng, S. M. Hanham, J. Wu, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Broadband terahertz sensing on spoof plasmon surfaces,” ACS Photonics 1(10), 1059–1067 (2014).
[Crossref]

B. Ng, J. Wu, S. M. Hanham, A. I. Fernández‐Domínguez, N. Klein, Y. F. Liew, M. B. Breese, M. Hong, and S. A. Maier, “Spoof plasmon surfaces: a novel platform for THz sensing,” Adv. Opt. Mater. 1(8), 543–548 (2013).
[Crossref]

Iglesias, E. R.

P. S. Kildal, E. Alfonso, A. V. Nogueira, and E. R. Iglesias, “Local metamaterial-based waveguides in gaps between parallel metal plates,” IEEE Antennas Wirel. Propag. Lett. 8, 84–87 (2009).
[Crossref]

Jadidi, M. M.

Jansen, C.

M. Ahmadi-Boroujeni, K. Altmann, B. Scherger, C. Jansen, M. Shahabadi, and M. Koch, “Terahertz parallel-plate ladder waveguide with highly confined guided modes,” IEEE Trans. THz. Sci. Tech. (Paris) 3(1), 87–95 (2013).

Jun Cui, T.

X. Shen and T. Jun Cui, “Planar plasmonic metamaterial on a thin film with nearly zero thickness,” Appl. Phys. Lett. 102(21), 211909 (2013).
[Crossref]

Kildal, P. S.

P. S. Kildal, E. Alfonso, A. V. Nogueira, and E. R. Iglesias, “Local metamaterial-based waveguides in gaps between parallel metal plates,” IEEE Antennas Wirel. Propag. Lett. 8, 84–87 (2009).
[Crossref]

Klein, N.

B. Ng, S. M. Hanham, J. Wu, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Broadband terahertz sensing on spoof plasmon surfaces,” ACS Photonics 1(10), 1059–1067 (2014).
[Crossref]

B. Ng, J. Wu, S. M. Hanham, A. I. Fernández‐Domínguez, N. Klein, Y. F. Liew, M. B. Breese, M. Hong, and S. A. Maier, “Spoof plasmon surfaces: a novel platform for THz sensing,” Adv. Opt. Mater. 1(8), 543–548 (2013).
[Crossref]

Koch, M.

M. Ahmadi-Boroujeni, K. Altmann, B. Scherger, C. Jansen, M. Shahabadi, and M. Koch, “Terahertz parallel-plate ladder waveguide with highly confined guided modes,” IEEE Trans. THz. Sci. Tech. (Paris) 3(1), 87–95 (2013).

Kumar, G.

Landais, P.

E. Degirmenci, F. Surre, S. Philippe, R. Maldonado-Basilio, and P. Landais, “Improved bend waveguide design for terahertz transmission,” IEEE Trans. THz Sci. Technol. 2(1), 137–143 (2012).

Leong, K. M.

K. M. Leong, K. Hennig, C. Zhang, R. N. Elmadjian, Z. Zhou, B. S. Gorospe, P. P. Chang-Chien, V. Radisic, and W. R. Deal, “WR1. 5 silicon micromachined waveguide components and active circuit integration methodology,” IEEE Trans. Microw. Theory Tech. 60(4), 998–1005 (2012).
[Crossref]

Li, S.

Li, Y.

Li, Z.

L. Liu, Z. Li, B. Xu, C. Gu, X. Chen, H. Sun, Y. Zhou, Q. Qing, P. Shum, and Y. Luo, “Ultra-low-loss high-contrast gratings based spoof surface plasmonic waveguide,” IEEE Trans. Microw. Theory Tech. 65(6), 2008–2018 (2017).
[Crossref]

L. Liu, Z. Li, B. Xu, C. Gu, C. Chen, P. Ning, J. Yan, and X. Chen, “High-efficiency transition between rectangular waveguide and domino plasmonic waveguide,” AIP Adv. 5(2), 027105 (2015).
[Crossref]

Liew, Y. F.

B. Ng, S. M. Hanham, J. Wu, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Broadband terahertz sensing on spoof plasmon surfaces,” ACS Photonics 1(10), 1059–1067 (2014).
[Crossref]

B. Ng, J. Wu, S. M. Hanham, A. I. Fernández‐Domínguez, N. Klein, Y. F. Liew, M. B. Breese, M. Hong, and S. A. Maier, “Spoof plasmon surfaces: a novel platform for THz sensing,” Adv. Opt. Mater. 1(8), 543–548 (2013).
[Crossref]

Liu, J.

Liu, L.

L. Liu, Z. Li, B. Xu, C. Gu, X. Chen, H. Sun, Y. Zhou, Q. Qing, P. Shum, and Y. Luo, “Ultra-low-loss high-contrast gratings based spoof surface plasmonic waveguide,” IEEE Trans. Microw. Theory Tech. 65(6), 2008–2018 (2017).
[Crossref]

L. Liu, Z. Li, B. Xu, C. Gu, C. Chen, P. Ning, J. Yan, and X. Chen, “High-efficiency transition between rectangular waveguide and domino plasmonic waveguide,” AIP Adv. 5(2), 027105 (2015).
[Crossref]

Liu, S.

Luo, Y.

L. Liu, Z. Li, B. Xu, C. Gu, X. Chen, H. Sun, Y. Zhou, Q. Qing, P. Shum, and Y. Luo, “Ultra-low-loss high-contrast gratings based spoof surface plasmonic waveguide,” IEEE Trans. Microw. Theory Tech. 65(6), 2008–2018 (2017).
[Crossref]

Maier, S. A.

B. Ng, S. M. Hanham, J. Wu, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Broadband terahertz sensing on spoof plasmon surfaces,” ACS Photonics 1(10), 1059–1067 (2014).
[Crossref]

B. Ng, J. Wu, S. M. Hanham, A. I. Fernández‐Domínguez, N. Klein, Y. F. Liew, M. B. Breese, M. Hong, and S. A. Maier, “Spoof plasmon surfaces: a novel platform for THz sensing,” Adv. Opt. Mater. 1(8), 543–548 (2013).
[Crossref]

Maldonado-Basilio, R.

E. Degirmenci, F. Surre, S. Philippe, R. Maldonado-Basilio, and P. Landais, “Improved bend waveguide design for terahertz transmission,” IEEE Trans. THz Sci. Technol. 2(1), 137–143 (2012).

Malekabadi, A.

A. Malekabadi and C. Paoloni, “UV-LIGA microfabrication process for sub-terahertz waveguides utilizing multiple layered SU-8 photoresist,” J. Micromech. Microeng. 26(9), 095010 (2016).
[Crossref]

A. Malekabadi, S. A. Charlebois, D. Deslandes, and F. Boone, “High-resistivity silicon dielectric ribbon waveguide for single-mode low-loss propagation at F/G-bands,” IEEE Trans. THz Sci. Technol. 4(4), 447–453 (2014).

Martin-Cano, D.

Martín-Cano, D.

Martin-Moreno, L.

Martín-Moreno, L.

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

Moghaddam, M. A.

Moreno, E.

Murphy, T. E.

Nahata, A.

Nesterov, M. L.

Ng, B.

B. Ng, S. M. Hanham, J. Wu, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Broadband terahertz sensing on spoof plasmon surfaces,” ACS Photonics 1(10), 1059–1067 (2014).
[Crossref]

B. Ng, J. Wu, S. M. Hanham, A. I. Fernández‐Domínguez, N. Klein, Y. F. Liew, M. B. Breese, M. Hong, and S. A. Maier, “Spoof plasmon surfaces: a novel platform for THz sensing,” Adv. Opt. Mater. 1(8), 543–548 (2013).
[Crossref]

Ning, P.

L. Liu, Z. Li, B. Xu, C. Gu, C. Chen, P. Ning, J. Yan, and X. Chen, “High-efficiency transition between rectangular waveguide and domino plasmonic waveguide,” AIP Adv. 5(2), 027105 (2015).
[Crossref]

Nogueira, A. V.

P. S. Kildal, E. Alfonso, A. V. Nogueira, and E. R. Iglesias, “Local metamaterial-based waveguides in gaps between parallel metal plates,” IEEE Antennas Wirel. Propag. Lett. 8, 84–87 (2009).
[Crossref]

Ouyang, C.

Paoloni, C.

A. Malekabadi and C. Paoloni, “UV-LIGA microfabrication process for sub-terahertz waveguides utilizing multiple layered SU-8 photoresist,” J. Micromech. Microeng. 26(9), 095010 (2016).
[Crossref]

Pendry, J. B.

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

Philippe, S.

E. Degirmenci, F. Surre, S. Philippe, R. Maldonado-Basilio, and P. Landais, “Improved bend waveguide design for terahertz transmission,” IEEE Trans. THz Sci. Technol. 2(1), 137–143 (2012).

Qing, Q.

L. Liu, Z. Li, B. Xu, C. Gu, X. Chen, H. Sun, Y. Zhou, Q. Qing, P. Shum, and Y. Luo, “Ultra-low-loss high-contrast gratings based spoof surface plasmonic waveguide,” IEEE Trans. Microw. Theory Tech. 65(6), 2008–2018 (2017).
[Crossref]

Quevedo-Teruel, O.

Radisic, V.

K. M. Leong, K. Hennig, C. Zhang, R. N. Elmadjian, Z. Zhou, B. S. Gorospe, P. P. Chang-Chien, V. Radisic, and W. R. Deal, “WR1. 5 silicon micromachined waveguide components and active circuit integration methodology,” IEEE Trans. Microw. Theory Tech. 60(4), 998–1005 (2012).
[Crossref]

Ranjkesh, N.

H. Amarloo, N. Ranjkesh, and S. Safavi-Naeini, “Terahertz silicon–BCB–quartz dielectric waveguide: an efficient platform for compact THz systems,” IEEE Trans. THz Sci. Technol. 8(2), 201–208 (2018).

N. Ranjkesh, M. Basha, A. Taeb, and S. Safavi-Naeini, “Silicon-on-glass dielectric waveguide—Part II: For THz applications,” IEEE Trans. THz. Sci. Tech. (Paris) 5(2), 280–287 (2015).

Safavi-Naeini, S.

H. Amarloo, N. Ranjkesh, and S. Safavi-Naeini, “Terahertz silicon–BCB–quartz dielectric waveguide: an efficient platform for compact THz systems,” IEEE Trans. THz Sci. Technol. 8(2), 201–208 (2018).

N. Ranjkesh, M. Basha, A. Taeb, and S. Safavi-Naeini, “Silicon-on-glass dielectric waveguide—Part II: For THz applications,” IEEE Trans. THz. Sci. Tech. (Paris) 5(2), 280–287 (2015).

Sarabandi, K.

M. Vahidpour and K. Sarabandi, “2.5 D micromachined 240 GHz cavity-backed coplanar waveguide to rectangular waveguide transition,” IEEE Trans. THz. Sci. Tech. (Paris) 2(3), 315–322 (2012).

Scherger, B.

M. Ahmadi-Boroujeni, K. Altmann, B. Scherger, C. Jansen, M. Shahabadi, and M. Koch, “Terahertz parallel-plate ladder waveguide with highly confined guided modes,” IEEE Trans. THz. Sci. Tech. (Paris) 3(1), 87–95 (2013).

Shahabadi, M.

M. Ahmadi-Boroujeni, K. Altmann, B. Scherger, C. Jansen, M. Shahabadi, and M. Koch, “Terahertz parallel-plate ladder waveguide with highly confined guided modes,” IEEE Trans. THz. Sci. Tech. (Paris) 3(1), 87–95 (2013).

Shen, X.

X. Shen and T. Jun Cui, “Planar plasmonic metamaterial on a thin film with nearly zero thickness,” Appl. Phys. Lett. 102(21), 211909 (2013).
[Crossref]

Shum, P.

L. Liu, Z. Li, B. Xu, C. Gu, X. Chen, H. Sun, Y. Zhou, Q. Qing, P. Shum, and Y. Luo, “Ultra-low-loss high-contrast gratings based spoof surface plasmonic waveguide,” IEEE Trans. Microw. Theory Tech. 65(6), 2008–2018 (2017).
[Crossref]

Singh, L.

L. Chen, N. Xu, L. Singh, T. Cui, R. Singh, Y. Zhu, and W. Zhang, “Defect-induced fano resonances in corrugated plasmonic metamaterials,” Adv. Opt. Mater. 5(8), 1600960 (2017).
[Crossref]

Singh, R.

L. Chen, N. Xu, L. Singh, T. Cui, R. Singh, Y. Zhu, and W. Zhang, “Defect-induced fano resonances in corrugated plasmonic metamaterials,” Adv. Opt. Mater. 5(8), 1600960 (2017).
[Crossref]

Sun, H.

L. Liu, Z. Li, B. Xu, C. Gu, X. Chen, H. Sun, Y. Zhou, Q. Qing, P. Shum, and Y. Luo, “Ultra-low-loss high-contrast gratings based spoof surface plasmonic waveguide,” IEEE Trans. Microw. Theory Tech. 65(6), 2008–2018 (2017).
[Crossref]

Surre, F.

E. Degirmenci, F. Surre, S. Philippe, R. Maldonado-Basilio, and P. Landais, “Improved bend waveguide design for terahertz transmission,” IEEE Trans. THz Sci. Technol. 2(1), 137–143 (2012).

Taeb, A.

N. Ranjkesh, M. Basha, A. Taeb, and S. Safavi-Naeini, “Silicon-on-glass dielectric waveguide—Part II: For THz applications,” IEEE Trans. THz. Sci. Tech. (Paris) 5(2), 280–287 (2015).

Tian, C.

Tian, L.

Tian, Z.

Vahidpour, M.

M. Vahidpour and K. Sarabandi, “2.5 D micromachined 240 GHz cavity-backed coplanar waveguide to rectangular waveguide transition,” IEEE Trans. THz. Sci. Tech. (Paris) 2(3), 315–322 (2012).

Wang, D.

D. Wang, L. Chen, B. Fang, and Y. Zhu, “Spoof localized surface plasmons excited by plasmonic waveguide chip with corrugated disk resonator,” Plasmonics 12(4), 947–952 (2017).
[Crossref]

Wei, Y.

L. Chen, Y. Wei, X. Zang, Y. Zhu, and S. Zhuang, “Excitation of dark multipolar plasmonic resonances at terahertz frequencies,” Sci. Rep. 6(1), 22027–27324 (2016).
[Crossref] [PubMed]

Wu, J.

B. Ng, S. M. Hanham, J. Wu, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Broadband terahertz sensing on spoof plasmon surfaces,” ACS Photonics 1(10), 1059–1067 (2014).
[Crossref]

B. Ng, J. Wu, S. M. Hanham, A. I. Fernández‐Domínguez, N. Klein, Y. F. Liew, M. B. Breese, M. Hong, and S. A. Maier, “Spoof plasmon surfaces: a novel platform for THz sensing,” Adv. Opt. Mater. 1(8), 543–548 (2013).
[Crossref]

Xu, B.

L. Liu, Z. Li, B. Xu, C. Gu, X. Chen, H. Sun, Y. Zhou, Q. Qing, P. Shum, and Y. Luo, “Ultra-low-loss high-contrast gratings based spoof surface plasmonic waveguide,” IEEE Trans. Microw. Theory Tech. 65(6), 2008–2018 (2017).
[Crossref]

L. Liu, Z. Li, B. Xu, C. Gu, C. Chen, P. Ning, J. Yan, and X. Chen, “High-efficiency transition between rectangular waveguide and domino plasmonic waveguide,” AIP Adv. 5(2), 027105 (2015).
[Crossref]

Xu, N.

L. Chen, N. Xu, L. Singh, T. Cui, R. Singh, Y. Zhu, and W. Zhang, “Defect-induced fano resonances in corrugated plasmonic metamaterials,” Adv. Opt. Mater. 5(8), 1600960 (2017).
[Crossref]

Xu, Q.

Xu, Y.

Yan, J.

L. Liu, Z. Li, B. Xu, C. Gu, C. Chen, P. Ning, J. Yan, and X. Chen, “High-efficiency transition between rectangular waveguide and domino plasmonic waveguide,” AIP Adv. 5(2), 027105 (2015).
[Crossref]

Zang, X.

L. Chen, Y. Wei, X. Zang, Y. Zhu, and S. Zhuang, “Excitation of dark multipolar plasmonic resonances at terahertz frequencies,” Sci. Rep. 6(1), 22027–27324 (2016).
[Crossref] [PubMed]

Zhang, C.

K. M. Leong, K. Hennig, C. Zhang, R. N. Elmadjian, Z. Zhou, B. S. Gorospe, P. P. Chang-Chien, V. Radisic, and W. R. Deal, “WR1. 5 silicon micromachined waveguide components and active circuit integration methodology,” IEEE Trans. Microw. Theory Tech. 60(4), 998–1005 (2012).
[Crossref]

Zhang, P.

Zhang, W.

Zhang, X.

Zhang, Y.

Zhang, Z.

Zhou, K.

Zhou, Y.

L. Liu, Z. Li, B. Xu, C. Gu, X. Chen, H. Sun, Y. Zhou, Q. Qing, P. Shum, and Y. Luo, “Ultra-low-loss high-contrast gratings based spoof surface plasmonic waveguide,” IEEE Trans. Microw. Theory Tech. 65(6), 2008–2018 (2017).
[Crossref]

Zhou, Z.

K. M. Leong, K. Hennig, C. Zhang, R. N. Elmadjian, Z. Zhou, B. S. Gorospe, P. P. Chang-Chien, V. Radisic, and W. R. Deal, “WR1. 5 silicon micromachined waveguide components and active circuit integration methodology,” IEEE Trans. Microw. Theory Tech. 60(4), 998–1005 (2012).
[Crossref]

Zhu, W.

Zhu, Y.

L. Chen, N. Xu, L. Singh, T. Cui, R. Singh, Y. Zhu, and W. Zhang, “Defect-induced fano resonances in corrugated plasmonic metamaterials,” Adv. Opt. Mater. 5(8), 1600960 (2017).
[Crossref]

D. Wang, L. Chen, B. Fang, and Y. Zhu, “Spoof localized surface plasmons excited by plasmonic waveguide chip with corrugated disk resonator,” Plasmonics 12(4), 947–952 (2017).
[Crossref]

L. Chen, Y. Wei, X. Zang, Y. Zhu, and S. Zhuang, “Excitation of dark multipolar plasmonic resonances at terahertz frequencies,” Sci. Rep. 6(1), 22027–27324 (2016).
[Crossref] [PubMed]

Zhuang, S.

L. Chen, Y. Wei, X. Zang, Y. Zhu, and S. Zhuang, “Excitation of dark multipolar plasmonic resonances at terahertz frequencies,” Sci. Rep. 6(1), 22027–27324 (2016).
[Crossref] [PubMed]

ACS Photonics (1)

B. Ng, S. M. Hanham, J. Wu, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Broadband terahertz sensing on spoof plasmon surfaces,” ACS Photonics 1(10), 1059–1067 (2014).
[Crossref]

Adv. Opt. Mater. (2)

B. Ng, J. Wu, S. M. Hanham, A. I. Fernández‐Domínguez, N. Klein, Y. F. Liew, M. B. Breese, M. Hong, and S. A. Maier, “Spoof plasmon surfaces: a novel platform for THz sensing,” Adv. Opt. Mater. 1(8), 543–548 (2013).
[Crossref]

L. Chen, N. Xu, L. Singh, T. Cui, R. Singh, Y. Zhu, and W. Zhang, “Defect-induced fano resonances in corrugated plasmonic metamaterials,” Adv. Opt. Mater. 5(8), 1600960 (2017).
[Crossref]

AIP Adv. (1)

L. Liu, Z. Li, B. Xu, C. Gu, C. Chen, P. Ning, J. Yan, and X. Chen, “High-efficiency transition between rectangular waveguide and domino plasmonic waveguide,” AIP Adv. 5(2), 027105 (2015).
[Crossref]

Appl. Phys. Lett. (1)

X. Shen and T. Jun Cui, “Planar plasmonic metamaterial on a thin film with nearly zero thickness,” Appl. Phys. Lett. 102(21), 211909 (2013).
[Crossref]

IEEE Antennas Wirel. Propag. Lett. (1)

P. S. Kildal, E. Alfonso, A. V. Nogueira, and E. R. Iglesias, “Local metamaterial-based waveguides in gaps between parallel metal plates,” IEEE Antennas Wirel. Propag. Lett. 8, 84–87 (2009).
[Crossref]

IEEE Trans. Microw. Theory Tech. (2)

K. M. Leong, K. Hennig, C. Zhang, R. N. Elmadjian, Z. Zhou, B. S. Gorospe, P. P. Chang-Chien, V. Radisic, and W. R. Deal, “WR1. 5 silicon micromachined waveguide components and active circuit integration methodology,” IEEE Trans. Microw. Theory Tech. 60(4), 998–1005 (2012).
[Crossref]

L. Liu, Z. Li, B. Xu, C. Gu, X. Chen, H. Sun, Y. Zhou, Q. Qing, P. Shum, and Y. Luo, “Ultra-low-loss high-contrast gratings based spoof surface plasmonic waveguide,” IEEE Trans. Microw. Theory Tech. 65(6), 2008–2018 (2017).
[Crossref]

IEEE Trans. THz Sci. Technol. (3)

E. Degirmenci, F. Surre, S. Philippe, R. Maldonado-Basilio, and P. Landais, “Improved bend waveguide design for terahertz transmission,” IEEE Trans. THz Sci. Technol. 2(1), 137–143 (2012).

A. Malekabadi, S. A. Charlebois, D. Deslandes, and F. Boone, “High-resistivity silicon dielectric ribbon waveguide for single-mode low-loss propagation at F/G-bands,” IEEE Trans. THz Sci. Technol. 4(4), 447–453 (2014).

H. Amarloo, N. Ranjkesh, and S. Safavi-Naeini, “Terahertz silicon–BCB–quartz dielectric waveguide: an efficient platform for compact THz systems,” IEEE Trans. THz Sci. Technol. 8(2), 201–208 (2018).

IEEE Trans. THz. Sci. Tech. (Paris) (3)

M. Ahmadi-Boroujeni, K. Altmann, B. Scherger, C. Jansen, M. Shahabadi, and M. Koch, “Terahertz parallel-plate ladder waveguide with highly confined guided modes,” IEEE Trans. THz. Sci. Tech. (Paris) 3(1), 87–95 (2013).

M. Vahidpour and K. Sarabandi, “2.5 D micromachined 240 GHz cavity-backed coplanar waveguide to rectangular waveguide transition,” IEEE Trans. THz. Sci. Tech. (Paris) 2(3), 315–322 (2012).

N. Ranjkesh, M. Basha, A. Taeb, and S. Safavi-Naeini, “Silicon-on-glass dielectric waveguide—Part II: For THz applications,” IEEE Trans. THz. Sci. Tech. (Paris) 5(2), 280–287 (2015).

J. Lightwave Technol. (1)

J. Micromech. Microeng. (1)

A. Malekabadi and C. Paoloni, “UV-LIGA microfabrication process for sub-terahertz waveguides utilizing multiple layered SU-8 photoresist,” J. Micromech. Microeng. 26(9), 095010 (2016).
[Crossref]

Opt. Express (6)

Opt. Lett. (1)

Photon. Res. (1)

Plasmonics (1)

D. Wang, L. Chen, B. Fang, and Y. Zhu, “Spoof localized surface plasmons excited by plasmonic waveguide chip with corrugated disk resonator,” Plasmonics 12(4), 947–952 (2017).
[Crossref]

Sci. Rep. (1)

L. Chen, Y. Wei, X. Zang, Y. Zhu, and S. Zhuang, “Excitation of dark multipolar plasmonic resonances at terahertz frequencies,” Sci. Rep. 6(1), 22027–27324 (2016).
[Crossref] [PubMed]

Science (1)

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

Other (1)

Q. Zhang, H. C. Zhang, H. Wu, and T. J. Cui, “A hybrid circuit for spoof surface plasmons and spatial waveguide modes to reach controllable band-pass filters,” Sci. Rep. B, 16531 (2015).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic drawing of the proposed hybrid SSP waveguide (e) compared with other related planar structures including domino (a), dielectric coated domino (b), parallel-plate ladder (c), and ridge gap waveguides (d). The transparent box is the dielectric channel. The arrow shows the direction of wave propagation.
Fig. 2
Fig. 2 Details of the proposed structure in the yz (a) and xz (b) planes. The direction of propagation is along the x-axis.
Figure 3
Figure 3 Dispersion diagram of a sample 2D structure with d = 50μm and a = 40μm; (a) for homogeneous filling with HR-Si, h = 55μm and different distances of the metal cladding (h3), (b) for h3 = 25μm and different schemes of dielectric filling. In each scheme, height of corrugations (h) is chosen in order to fix the Bragg frequency at 300GHz.
Fig. 4
Fig. 4 (a) Asymptotic frequency of 3D structure versus the distance of metal cladding (h3) for d = 50μm, a = 0.8d, w = 50μm, h = 57μm and homogeneous filling with HR-Si. (b) The dispersion diagram in the presence and absence of the metal cladding for rectangular and cylindrical-shaped pillars. The dimensions are given in the text.
Fig. 5
Fig. 5 Comparing the dispersion characteristics (a), the normalized group velocity (b), the attenuation constant (c), and the normalized propagation length (d) of the proposed waveguide with those of PPLWG, the conventional domino waveguide, and the dielectric coated domino waveguide (DRAF [‎22]).
Fig. 6
Fig. 6 (a) The fraction of transmitted power confined in the gap between the pillars and the metal cladding in the proposed waveguide (solid line) compared with the fraction of transmitted power above the pillars in the dielectric coated domino waveguide (DRAF) (dashed line), (b) the intensity of electric field in the cross-section the proposed waveguide (bottom) and the dielectric coated domino waveguide (DRAF) (top) at 225GHz.
Fig. 7
Fig. 7 (a) Radiation loss of a bend of radius 250μm based on the proposed hybrid SPP waveguide for HR-Si channel width of 100 and 200μm and the same bend based on the DRAF waveguide [22], (b) the z-component of electric field in the plane of the bend at 225GHz for the proposed waveguide with wd = 200μm.
Fig. 8
Fig. 8 Overall transmission coefficient along bent and straight sections of the proposed waveguide (with wd = 200μm) and the dielectric coated domino waveguide (DRAF). The straight sections and bends have the same total length of 900μm and material losses are included in the simulations.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

H 1y = n= A n exp(j k xn x) cos[ α 1n (z+ h 3 )]
H 2y = n= exp(j k xn x) [ B n exp( α 2n z)+ C n exp( α 2n z)]
H 3y =Dcos[ k 3 (zh)]
n= ( S n S n ' η 2n )( P n +1 P n 1 )= cot( k 3 h) η 3

Metrics