Abstract

We propose and experimentally demonstrate an all-optical switch based on a graphene-coated fiber Mach-Zehnder interferometer, where the phase of the signal light in one arm of the interferometer is changed by the heat generated from external pump light absorption by the graphene coating. The external pumping scheme allows efficient pump absorption with multiple layers of graphene coated on an ordinary fiber or a slightly tapered fiber without introducing significant additional signal loss. Without using any wavelength multiplexer/demultiplexer, the switch can be pumped at any convenient wavelength or even with broadband light. Our experimental device, which is based on a standard 125-μm-diameter single-mode fiber with a 5-mm-long graphene coating, can be switched with a pump power of 5.3 mW at an extinction ratio of 19 dB with no additional signal loss. The switching power is insensitive to the graphene coating’s length and can be reduced to 4.8 mW, with the fiber tapered to 40 μm. The measured switching powers agree well with the theoretical values obtained by treating the graphene coating as a uniform sheet of heat source without thickness. The switch’s response time decreases with the fiber diameter and inversely with the graphene coating’s length. The switch’s rise and fall times, based on a 40-μm tapered fiber with a 20-mm-long graphene coating, are 30 ms and 50 ms, respectively.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Graphene-assisted all-fiber phase shifter and switching

Xuetao Gan, Chenyang Zhao, Yadong Wang, Dong Mao, Liang Fang, Lei Han, and Jianlin Zhao
Optica 2(5) 468-471 (2015)

Graphene decorated microfiber for ultrafast optical modulation

Shaoliang Yu, Chao Meng, Bigeng Chen, Hongqing Wang, Xiaoqin Wu, Weitao Liu, Shangjian Zhang, Yong Liu, Yikai Su, and Limin Tong
Opt. Express 23(8) 10764-10770 (2015)

Theoretical investigation of a broadband all-optical graphene-microfiber modulator

Xiaoying He, Min Xu, and Xiangchao Zhang
J. Opt. Soc. Am. B 33(12) 2588-2595 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. E. Sharping, M. Fiorentino, P. Kumar, and R. S. Windeler, “All-optical switching based on cross-phase modulation in microstructure fiber,” IEEE Photonics Technol. Lett. 14(1), 77–79 (2002).
    [Crossref]
  2. A. Melloni, M. Chinello, and M. Martinelli, “All-optical switching in phase-shifted fiber Bragg grating,” IEEE Photonics Technol. Lett. 12(1), 42–44 (2000).
    [Crossref]
  3. B. J. Eggleton, R. E. Slusher, J. B. Judkins, J. B. Stark, and A. M. Vengsarkar, “All-optical switching in long-period fiber gratings,” Opt. Lett. 22(12), 883–885 (1997).
    [Crossref] [PubMed]
  4. M. J. F. Digonnet, R. W. Sadowski, H. J. Shaw, and R. H. Pantell, “Resonantly enhanced nonlinearity in doped fibers for low-power all-optical switching: a review,” Opt. Fiber Technol. 3(1), 44–64 (1997).
    [Crossref]
  5. Z. Zang and Y. Zhang, “Analysis of optical switching in a Yb3+-doped fiber Bragg grating by using self-phase modulation and cross-phase modulation,” Appl. Opt. 51(16), 3424–3430 (2012).
    [Crossref] [PubMed]
  6. K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
    [Crossref] [PubMed]
  7. P. Avouris, “Graphene: electronic and photonic properties and devices,” Nano Lett. 10(11), 4285–4294 (2010).
    [Crossref] [PubMed]
  8. H. Zhang, S. Virally, Q. Bao, K. P. Loh, S. Massar, N. Godbout, and P. Kockaert, “Large nonlinear Kerr effect in graphene,” arXiv preprint arXiv:1203.5527 (2012).
  9. S. Yu, X. Wu, K. Chen, B. Chen, X. Guo, D. Dai, L. Tong, W. Liu, and Y. Ron Shen, “All-optical graphene modulator based on optical Kerr phase shift,” Optica 3(5), 541–544 (2016).
    [Crossref]
  10. W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
    [Crossref] [PubMed]
  11. J.-H. Chen, B.-C. Zheng, G.-H. Shao, S.-J. Ge, F. Xu, and Y.-Q. Lu, “An all-optical modulator based on a stereo graphene–microfiber structure,” Light Sci. Appl. 4(12), e360 (2015).
    [Crossref]
  12. R. Wang, D. Li, M. Jiang, H. Wu, X. Xu, and Z. Ren, “All-optical intensity modulation based on graphene-coated microfibre waveguides,” Opt. Commun. 410, 604–608 (2018).
    [Crossref]
  13. H. Zhang, N. Healy, L. Shen, C. C. Huang, D. W. Hewak, and A. C. Peacock, “Enhanced all-optical modulation in a graphene-coated fibre with low insertion loss,” Sci. Rep. 6(1), 23512 (2016).
    [Crossref] [PubMed]
  14. C. Gao, L. Gao, T. Zhu, and G. Yin, “Incoherent optical modulation of graphene based on an in-line fiber Mach-Zehnder interferometer,” Opt. Lett. 42(9), 1708–1711 (2017).
    [Crossref] [PubMed]
  15. J. M. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Measurement of ultrafast carrier dynamics in epitaxial graphene,” Appl. Phys. Lett. 92(4), 042116 (2008).
    [Crossref]
  16. X. Gan, C. Zhao, Y. Wang, D. Mao, L. Fang, L. Han, and J. Zhao, “Graphene-assisted all-fiber phase shifter and switching,” Optica 2(5), 468–471 (2015).
    [Crossref]
  17. Y. Wang, X. Gan, C. Zhao, L. Fang, D. Mao, Y. Xu, F. Zhang, T. Xi, L. Ren, and J. Zhao, “All-optical control of microfiber resonator by graphene’s photothermal effect,” Appl. Phys. Lett. 108(17), 171905 (2016).
    [Crossref]
  18. X. Gan, Y. Wang, F. Zhang, C. Zhao, B. Jiang, L. Fang, D. Li, H. Wu, Z. Ren, and J. Zhao, “Graphene-controlled fiber Bragg grating and enabled optical bistability,” Opt. Lett. 41(3), 603–606 (2016).
    [Crossref] [PubMed]
  19. K. Wu, C. Guo, H. Wang, X. Zhang, J. Wang, and J. Chen, “All-optical phase shifter and switch near 1550nm using tungsten disulfide (WS2) deposited tapered fiber,” Opt. Express 25(15), 17639–17649 (2017).
    [Crossref] [PubMed]
  20. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
    [Crossref]
  21. A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8(3), 902–907 (2008).
    [Crossref] [PubMed]
  22. M. K. Davis, M. J. F. Digonnet, and R. H. Pantell, “Thermal effects in doped fibers,” J. Lightwave Technol. 16(6), 1013–1023 (1998).
    [Crossref]
  23. Z. Chang and K. S. Chiang, “Experimental verification of optical models of graphene with multimode slab waveguides,” Opt. Lett. 41(9), 2129–2132 (2016).
    [Crossref] [PubMed]
  24. Y. Xiao, J. Zhang, J. Yu, H. Dong, Y. Wei, Y. Luo, Y. Zhong, W. Qiu, J. Dong, H. Lu, H. Guan, J. Tang, W. Zhu, and Z. Chen, “Theoretical investigation of optical modulators based on graphene-coated side- polished fiber,” Opt. Express 26(11), 13759–13772 (2018).
    [Crossref] [PubMed]
  25. Z. Chang, W. Jin, and K. S. Chiang, “Graphene electrodes for lithium-niobate electro-optic devices,” Opt. Lett. 43(8), 1718–1721 (2018).
    [Crossref] [PubMed]
  26. T. Hao and K. S. Chiang, “Graphene-based ammonia-gas sensor using in-fiber Mach-Zehnder interferometer,” IEEE Photonics Technol. Lett. 29(23), 2035–2038 (2017).
    [Crossref]
  27. G. Xin, T. Yao, H. Sun, S. M. Scott, D. Shao, G. Wang, and J. Lian, “Highly thermally conductive and mechanically strong graphene fibers,” Science 349(6252), 1083–1087 (2015).
    [Crossref] [PubMed]
  28. E. Mayhew and V. Prakash, “Thermal conductivity of high performance carbon nanotube yarn-like fibers,” J. Appl. Phys. 115(17), 174306 (2014).
    [Crossref]

2018 (3)

2017 (3)

2016 (5)

2015 (3)

G. Xin, T. Yao, H. Sun, S. M. Scott, D. Shao, G. Wang, and J. Lian, “Highly thermally conductive and mechanically strong graphene fibers,” Science 349(6252), 1083–1087 (2015).
[Crossref] [PubMed]

J.-H. Chen, B.-C. Zheng, G.-H. Shao, S.-J. Ge, F. Xu, and Y.-Q. Lu, “An all-optical modulator based on a stereo graphene–microfiber structure,” Light Sci. Appl. 4(12), e360 (2015).
[Crossref]

X. Gan, C. Zhao, Y. Wang, D. Mao, L. Fang, L. Han, and J. Zhao, “Graphene-assisted all-fiber phase shifter and switching,” Optica 2(5), 468–471 (2015).
[Crossref]

2014 (2)

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

E. Mayhew and V. Prakash, “Thermal conductivity of high performance carbon nanotube yarn-like fibers,” J. Appl. Phys. 115(17), 174306 (2014).
[Crossref]

2012 (2)

Z. Zang and Y. Zhang, “Analysis of optical switching in a Yb3+-doped fiber Bragg grating by using self-phase modulation and cross-phase modulation,” Appl. Opt. 51(16), 3424–3430 (2012).
[Crossref] [PubMed]

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

2010 (2)

P. Avouris, “Graphene: electronic and photonic properties and devices,” Nano Lett. 10(11), 4285–4294 (2010).
[Crossref] [PubMed]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

2008 (2)

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8(3), 902–907 (2008).
[Crossref] [PubMed]

J. M. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Measurement of ultrafast carrier dynamics in epitaxial graphene,” Appl. Phys. Lett. 92(4), 042116 (2008).
[Crossref]

2002 (1)

J. E. Sharping, M. Fiorentino, P. Kumar, and R. S. Windeler, “All-optical switching based on cross-phase modulation in microstructure fiber,” IEEE Photonics Technol. Lett. 14(1), 77–79 (2002).
[Crossref]

2000 (1)

A. Melloni, M. Chinello, and M. Martinelli, “All-optical switching in phase-shifted fiber Bragg grating,” IEEE Photonics Technol. Lett. 12(1), 42–44 (2000).
[Crossref]

1998 (1)

1997 (2)

B. J. Eggleton, R. E. Slusher, J. B. Judkins, J. B. Stark, and A. M. Vengsarkar, “All-optical switching in long-period fiber gratings,” Opt. Lett. 22(12), 883–885 (1997).
[Crossref] [PubMed]

M. J. F. Digonnet, R. W. Sadowski, H. J. Shaw, and R. H. Pantell, “Resonantly enhanced nonlinearity in doped fibers for low-power all-optical switching: a review,” Opt. Fiber Technol. 3(1), 44–64 (1997).
[Crossref]

Avouris, P.

P. Avouris, “Graphene: electronic and photonic properties and devices,” Nano Lett. 10(11), 4285–4294 (2010).
[Crossref] [PubMed]

Balandin, A. A.

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8(3), 902–907 (2008).
[Crossref] [PubMed]

Bao, J.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Bao, W.

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8(3), 902–907 (2008).
[Crossref] [PubMed]

Bonaccorso, F.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Calizo, I.

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8(3), 902–907 (2008).
[Crossref] [PubMed]

Chandrashekhar, M.

J. M. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Measurement of ultrafast carrier dynamics in epitaxial graphene,” Appl. Phys. Lett. 92(4), 042116 (2008).
[Crossref]

Chang, Z.

Chen, B.

S. Yu, X. Wu, K. Chen, B. Chen, X. Guo, D. Dai, L. Tong, W. Liu, and Y. Ron Shen, “All-optical graphene modulator based on optical Kerr phase shift,” Optica 3(5), 541–544 (2016).
[Crossref]

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Chen, J.

Chen, J.-H.

J.-H. Chen, B.-C. Zheng, G.-H. Shao, S.-J. Ge, F. Xu, and Y.-Q. Lu, “An all-optical modulator based on a stereo graphene–microfiber structure,” Light Sci. Appl. 4(12), e360 (2015).
[Crossref]

Chen, K.

Chen, Z.

Chiang, K. S.

Chinello, M.

A. Melloni, M. Chinello, and M. Martinelli, “All-optical switching in phase-shifted fiber Bragg grating,” IEEE Photonics Technol. Lett. 12(1), 42–44 (2000).
[Crossref]

Colombo, L.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

Dai, D.

Davis, M. K.

Dawlaty, J. M.

J. M. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Measurement of ultrafast carrier dynamics in epitaxial graphene,” Appl. Phys. Lett. 92(4), 042116 (2008).
[Crossref]

Digonnet, M. J. F.

M. K. Davis, M. J. F. Digonnet, and R. H. Pantell, “Thermal effects in doped fibers,” J. Lightwave Technol. 16(6), 1013–1023 (1998).
[Crossref]

M. J. F. Digonnet, R. W. Sadowski, H. J. Shaw, and R. H. Pantell, “Resonantly enhanced nonlinearity in doped fibers for low-power all-optical switching: a review,” Opt. Fiber Technol. 3(1), 44–64 (1997).
[Crossref]

Dong, H.

Dong, J.

Eggleton, B. J.

Fal’ko, V. I.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

Fang, L.

Fang, W.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Ferrari, A. C.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Fiorentino, M.

J. E. Sharping, M. Fiorentino, P. Kumar, and R. S. Windeler, “All-optical switching based on cross-phase modulation in microstructure fiber,” IEEE Photonics Technol. Lett. 14(1), 77–79 (2002).
[Crossref]

Gan, X.

Gao, C.

Gao, L.

Ge, S.-J.

J.-H. Chen, B.-C. Zheng, G.-H. Shao, S.-J. Ge, F. Xu, and Y.-Q. Lu, “An all-optical modulator based on a stereo graphene–microfiber structure,” Light Sci. Appl. 4(12), e360 (2015).
[Crossref]

Gellert, P. R.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

Ghosh, S.

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8(3), 902–907 (2008).
[Crossref] [PubMed]

Guan, H.

Guo, C.

Guo, X.

Han, L.

Hao, T.

T. Hao and K. S. Chiang, “Graphene-based ammonia-gas sensor using in-fiber Mach-Zehnder interferometer,” IEEE Photonics Technol. Lett. 29(23), 2035–2038 (2017).
[Crossref]

Hasan, T.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Healy, N.

H. Zhang, N. Healy, L. Shen, C. C. Huang, D. W. Hewak, and A. C. Peacock, “Enhanced all-optical modulation in a graphene-coated fibre with low insertion loss,” Sci. Rep. 6(1), 23512 (2016).
[Crossref] [PubMed]

Hewak, D. W.

H. Zhang, N. Healy, L. Shen, C. C. Huang, D. W. Hewak, and A. C. Peacock, “Enhanced all-optical modulation in a graphene-coated fibre with low insertion loss,” Sci. Rep. 6(1), 23512 (2016).
[Crossref] [PubMed]

Hu, Z.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Huang, C. C.

H. Zhang, N. Healy, L. Shen, C. C. Huang, D. W. Hewak, and A. C. Peacock, “Enhanced all-optical modulation in a graphene-coated fibre with low insertion loss,” Sci. Rep. 6(1), 23512 (2016).
[Crossref] [PubMed]

Jiang, B.

Jiang, M.

R. Wang, D. Li, M. Jiang, H. Wu, X. Xu, and Z. Ren, “All-optical intensity modulation based on graphene-coated microfibre waveguides,” Opt. Commun. 410, 604–608 (2018).
[Crossref]

Jin, W.

Judkins, J. B.

Kim, K.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

Kumar, P.

J. E. Sharping, M. Fiorentino, P. Kumar, and R. S. Windeler, “All-optical switching based on cross-phase modulation in microstructure fiber,” IEEE Photonics Technol. Lett. 14(1), 77–79 (2002).
[Crossref]

Lau, C. N.

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8(3), 902–907 (2008).
[Crossref] [PubMed]

Li, D.

R. Wang, D. Li, M. Jiang, H. Wu, X. Xu, and Z. Ren, “All-optical intensity modulation based on graphene-coated microfibre waveguides,” Opt. Commun. 410, 604–608 (2018).
[Crossref]

X. Gan, Y. Wang, F. Zhang, C. Zhao, B. Jiang, L. Fang, D. Li, H. Wu, Z. Ren, and J. Zhao, “Graphene-controlled fiber Bragg grating and enabled optical bistability,” Opt. Lett. 41(3), 603–606 (2016).
[Crossref] [PubMed]

Li, W.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Li, X.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Lian, J.

G. Xin, T. Yao, H. Sun, S. M. Scott, D. Shao, G. Wang, and J. Lian, “Highly thermally conductive and mechanically strong graphene fibers,” Science 349(6252), 1083–1087 (2015).
[Crossref] [PubMed]

Liu, W.

S. Yu, X. Wu, K. Chen, B. Chen, X. Guo, D. Dai, L. Tong, W. Liu, and Y. Ron Shen, “All-optical graphene modulator based on optical Kerr phase shift,” Optica 3(5), 541–544 (2016).
[Crossref]

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Lu, H.

Lu, Y.-Q.

J.-H. Chen, B.-C. Zheng, G.-H. Shao, S.-J. Ge, F. Xu, and Y.-Q. Lu, “An all-optical modulator based on a stereo graphene–microfiber structure,” Light Sci. Appl. 4(12), e360 (2015).
[Crossref]

Luo, Y.

Mao, D.

Y. Wang, X. Gan, C. Zhao, L. Fang, D. Mao, Y. Xu, F. Zhang, T. Xi, L. Ren, and J. Zhao, “All-optical control of microfiber resonator by graphene’s photothermal effect,” Appl. Phys. Lett. 108(17), 171905 (2016).
[Crossref]

X. Gan, C. Zhao, Y. Wang, D. Mao, L. Fang, L. Han, and J. Zhao, “Graphene-assisted all-fiber phase shifter and switching,” Optica 2(5), 468–471 (2015).
[Crossref]

Martinelli, M.

A. Melloni, M. Chinello, and M. Martinelli, “All-optical switching in phase-shifted fiber Bragg grating,” IEEE Photonics Technol. Lett. 12(1), 42–44 (2000).
[Crossref]

Mayhew, E.

E. Mayhew and V. Prakash, “Thermal conductivity of high performance carbon nanotube yarn-like fibers,” J. Appl. Phys. 115(17), 174306 (2014).
[Crossref]

Melloni, A.

A. Melloni, M. Chinello, and M. Martinelli, “All-optical switching in phase-shifted fiber Bragg grating,” IEEE Photonics Technol. Lett. 12(1), 42–44 (2000).
[Crossref]

Meng, C.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Miao, F.

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8(3), 902–907 (2008).
[Crossref] [PubMed]

Novoselov, K. S.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

Pantell, R. H.

M. K. Davis, M. J. F. Digonnet, and R. H. Pantell, “Thermal effects in doped fibers,” J. Lightwave Technol. 16(6), 1013–1023 (1998).
[Crossref]

M. J. F. Digonnet, R. W. Sadowski, H. J. Shaw, and R. H. Pantell, “Resonantly enhanced nonlinearity in doped fibers for low-power all-optical switching: a review,” Opt. Fiber Technol. 3(1), 44–64 (1997).
[Crossref]

Peacock, A. C.

H. Zhang, N. Healy, L. Shen, C. C. Huang, D. W. Hewak, and A. C. Peacock, “Enhanced all-optical modulation in a graphene-coated fibre with low insertion loss,” Sci. Rep. 6(1), 23512 (2016).
[Crossref] [PubMed]

Prakash, V.

E. Mayhew and V. Prakash, “Thermal conductivity of high performance carbon nanotube yarn-like fibers,” J. Appl. Phys. 115(17), 174306 (2014).
[Crossref]

Qiu, W.

Rana, F.

J. M. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Measurement of ultrafast carrier dynamics in epitaxial graphene,” Appl. Phys. Lett. 92(4), 042116 (2008).
[Crossref]

Ren, L.

Y. Wang, X. Gan, C. Zhao, L. Fang, D. Mao, Y. Xu, F. Zhang, T. Xi, L. Ren, and J. Zhao, “All-optical control of microfiber resonator by graphene’s photothermal effect,” Appl. Phys. Lett. 108(17), 171905 (2016).
[Crossref]

Ren, Z.

R. Wang, D. Li, M. Jiang, H. Wu, X. Xu, and Z. Ren, “All-optical intensity modulation based on graphene-coated microfibre waveguides,” Opt. Commun. 410, 604–608 (2018).
[Crossref]

X. Gan, Y. Wang, F. Zhang, C. Zhao, B. Jiang, L. Fang, D. Li, H. Wu, Z. Ren, and J. Zhao, “Graphene-controlled fiber Bragg grating and enabled optical bistability,” Opt. Lett. 41(3), 603–606 (2016).
[Crossref] [PubMed]

Ron Shen, Y.

Sadowski, R. W.

M. J. F. Digonnet, R. W. Sadowski, H. J. Shaw, and R. H. Pantell, “Resonantly enhanced nonlinearity in doped fibers for low-power all-optical switching: a review,” Opt. Fiber Technol. 3(1), 44–64 (1997).
[Crossref]

Schwab, M. G.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

Scott, S. M.

G. Xin, T. Yao, H. Sun, S. M. Scott, D. Shao, G. Wang, and J. Lian, “Highly thermally conductive and mechanically strong graphene fibers,” Science 349(6252), 1083–1087 (2015).
[Crossref] [PubMed]

Shao, D.

G. Xin, T. Yao, H. Sun, S. M. Scott, D. Shao, G. Wang, and J. Lian, “Highly thermally conductive and mechanically strong graphene fibers,” Science 349(6252), 1083–1087 (2015).
[Crossref] [PubMed]

Shao, G.-H.

J.-H. Chen, B.-C. Zheng, G.-H. Shao, S.-J. Ge, F. Xu, and Y.-Q. Lu, “An all-optical modulator based on a stereo graphene–microfiber structure,” Light Sci. Appl. 4(12), e360 (2015).
[Crossref]

Sharping, J. E.

J. E. Sharping, M. Fiorentino, P. Kumar, and R. S. Windeler, “All-optical switching based on cross-phase modulation in microstructure fiber,” IEEE Photonics Technol. Lett. 14(1), 77–79 (2002).
[Crossref]

Shaw, H. J.

M. J. F. Digonnet, R. W. Sadowski, H. J. Shaw, and R. H. Pantell, “Resonantly enhanced nonlinearity in doped fibers for low-power all-optical switching: a review,” Opt. Fiber Technol. 3(1), 44–64 (1997).
[Crossref]

Shen, L.

H. Zhang, N. Healy, L. Shen, C. C. Huang, D. W. Hewak, and A. C. Peacock, “Enhanced all-optical modulation in a graphene-coated fibre with low insertion loss,” Sci. Rep. 6(1), 23512 (2016).
[Crossref] [PubMed]

Shen, Y. R.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Shivaraman, S.

J. M. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Measurement of ultrafast carrier dynamics in epitaxial graphene,” Appl. Phys. Lett. 92(4), 042116 (2008).
[Crossref]

Slusher, R. E.

Spencer, M. G.

J. M. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Measurement of ultrafast carrier dynamics in epitaxial graphene,” Appl. Phys. Lett. 92(4), 042116 (2008).
[Crossref]

Stark, J. B.

Sun, H.

G. Xin, T. Yao, H. Sun, S. M. Scott, D. Shao, G. Wang, and J. Lian, “Highly thermally conductive and mechanically strong graphene fibers,” Science 349(6252), 1083–1087 (2015).
[Crossref] [PubMed]

Sun, Z.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Tang, J.

Teweldebrhan, D.

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8(3), 902–907 (2008).
[Crossref] [PubMed]

Tong, L.

S. Yu, X. Wu, K. Chen, B. Chen, X. Guo, D. Dai, L. Tong, W. Liu, and Y. Ron Shen, “All-optical graphene modulator based on optical Kerr phase shift,” Optica 3(5), 541–544 (2016).
[Crossref]

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Vengsarkar, A. M.

Wang, G.

G. Xin, T. Yao, H. Sun, S. M. Scott, D. Shao, G. Wang, and J. Lian, “Highly thermally conductive and mechanically strong graphene fibers,” Science 349(6252), 1083–1087 (2015).
[Crossref] [PubMed]

Wang, H.

K. Wu, C. Guo, H. Wang, X. Zhang, J. Wang, and J. Chen, “All-optical phase shifter and switch near 1550nm using tungsten disulfide (WS2) deposited tapered fiber,” Opt. Express 25(15), 17639–17649 (2017).
[Crossref] [PubMed]

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Wang, J.

Wang, R.

R. Wang, D. Li, M. Jiang, H. Wu, X. Xu, and Z. Ren, “All-optical intensity modulation based on graphene-coated microfibre waveguides,” Opt. Commun. 410, 604–608 (2018).
[Crossref]

Wang, Y.

Wei, Y.

Windeler, R. S.

J. E. Sharping, M. Fiorentino, P. Kumar, and R. S. Windeler, “All-optical switching based on cross-phase modulation in microstructure fiber,” IEEE Photonics Technol. Lett. 14(1), 77–79 (2002).
[Crossref]

Wu, H.

R. Wang, D. Li, M. Jiang, H. Wu, X. Xu, and Z. Ren, “All-optical intensity modulation based on graphene-coated microfibre waveguides,” Opt. Commun. 410, 604–608 (2018).
[Crossref]

X. Gan, Y. Wang, F. Zhang, C. Zhao, B. Jiang, L. Fang, D. Li, H. Wu, Z. Ren, and J. Zhao, “Graphene-controlled fiber Bragg grating and enabled optical bistability,” Opt. Lett. 41(3), 603–606 (2016).
[Crossref] [PubMed]

Wu, K.

Wu, X.

Xi, T.

Y. Wang, X. Gan, C. Zhao, L. Fang, D. Mao, Y. Xu, F. Zhang, T. Xi, L. Ren, and J. Zhao, “All-optical control of microfiber resonator by graphene’s photothermal effect,” Appl. Phys. Lett. 108(17), 171905 (2016).
[Crossref]

Xiao, Y.

Xin, G.

G. Xin, T. Yao, H. Sun, S. M. Scott, D. Shao, G. Wang, and J. Lian, “Highly thermally conductive and mechanically strong graphene fibers,” Science 349(6252), 1083–1087 (2015).
[Crossref] [PubMed]

Xu, F.

J.-H. Chen, B.-C. Zheng, G.-H. Shao, S.-J. Ge, F. Xu, and Y.-Q. Lu, “An all-optical modulator based on a stereo graphene–microfiber structure,” Light Sci. Appl. 4(12), e360 (2015).
[Crossref]

Xu, X.

R. Wang, D. Li, M. Jiang, H. Wu, X. Xu, and Z. Ren, “All-optical intensity modulation based on graphene-coated microfibre waveguides,” Opt. Commun. 410, 604–608 (2018).
[Crossref]

Xu, Y.

Y. Wang, X. Gan, C. Zhao, L. Fang, D. Mao, Y. Xu, F. Zhang, T. Xi, L. Ren, and J. Zhao, “All-optical control of microfiber resonator by graphene’s photothermal effect,” Appl. Phys. Lett. 108(17), 171905 (2016).
[Crossref]

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Yao, T.

G. Xin, T. Yao, H. Sun, S. M. Scott, D. Shao, G. Wang, and J. Lian, “Highly thermally conductive and mechanically strong graphene fibers,” Science 349(6252), 1083–1087 (2015).
[Crossref] [PubMed]

Yin, G.

Yu, J.

Yu, S.

Zang, Z.

Zhang, F.

X. Gan, Y. Wang, F. Zhang, C. Zhao, B. Jiang, L. Fang, D. Li, H. Wu, Z. Ren, and J. Zhao, “Graphene-controlled fiber Bragg grating and enabled optical bistability,” Opt. Lett. 41(3), 603–606 (2016).
[Crossref] [PubMed]

Y. Wang, X. Gan, C. Zhao, L. Fang, D. Mao, Y. Xu, F. Zhang, T. Xi, L. Ren, and J. Zhao, “All-optical control of microfiber resonator by graphene’s photothermal effect,” Appl. Phys. Lett. 108(17), 171905 (2016).
[Crossref]

Zhang, H.

H. Zhang, N. Healy, L. Shen, C. C. Huang, D. W. Hewak, and A. C. Peacock, “Enhanced all-optical modulation in a graphene-coated fibre with low insertion loss,” Sci. Rep. 6(1), 23512 (2016).
[Crossref] [PubMed]

Zhang, J.

Zhang, X.

Zhang, Y.

Zhao, C.

Zhao, J.

Zheng, B.-C.

J.-H. Chen, B.-C. Zheng, G.-H. Shao, S.-J. Ge, F. Xu, and Y.-Q. Lu, “An all-optical modulator based on a stereo graphene–microfiber structure,” Light Sci. Appl. 4(12), e360 (2015).
[Crossref]

Zhong, Y.

Zhu, T.

Zhu, W.

Appl. Opt. (1)

Appl. Phys. Lett. (2)

J. M. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Measurement of ultrafast carrier dynamics in epitaxial graphene,” Appl. Phys. Lett. 92(4), 042116 (2008).
[Crossref]

Y. Wang, X. Gan, C. Zhao, L. Fang, D. Mao, Y. Xu, F. Zhang, T. Xi, L. Ren, and J. Zhao, “All-optical control of microfiber resonator by graphene’s photothermal effect,” Appl. Phys. Lett. 108(17), 171905 (2016).
[Crossref]

IEEE Photonics Technol. Lett. (3)

T. Hao and K. S. Chiang, “Graphene-based ammonia-gas sensor using in-fiber Mach-Zehnder interferometer,” IEEE Photonics Technol. Lett. 29(23), 2035–2038 (2017).
[Crossref]

J. E. Sharping, M. Fiorentino, P. Kumar, and R. S. Windeler, “All-optical switching based on cross-phase modulation in microstructure fiber,” IEEE Photonics Technol. Lett. 14(1), 77–79 (2002).
[Crossref]

A. Melloni, M. Chinello, and M. Martinelli, “All-optical switching in phase-shifted fiber Bragg grating,” IEEE Photonics Technol. Lett. 12(1), 42–44 (2000).
[Crossref]

J. Appl. Phys. (1)

E. Mayhew and V. Prakash, “Thermal conductivity of high performance carbon nanotube yarn-like fibers,” J. Appl. Phys. 115(17), 174306 (2014).
[Crossref]

J. Lightwave Technol. (1)

Light Sci. Appl. (1)

J.-H. Chen, B.-C. Zheng, G.-H. Shao, S.-J. Ge, F. Xu, and Y.-Q. Lu, “An all-optical modulator based on a stereo graphene–microfiber structure,” Light Sci. Appl. 4(12), e360 (2015).
[Crossref]

Nano Lett. (3)

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

P. Avouris, “Graphene: electronic and photonic properties and devices,” Nano Lett. 10(11), 4285–4294 (2010).
[Crossref] [PubMed]

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8(3), 902–907 (2008).
[Crossref] [PubMed]

Nat. Photonics (1)

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Nature (1)

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

Opt. Commun. (1)

R. Wang, D. Li, M. Jiang, H. Wu, X. Xu, and Z. Ren, “All-optical intensity modulation based on graphene-coated microfibre waveguides,” Opt. Commun. 410, 604–608 (2018).
[Crossref]

Opt. Express (2)

Opt. Fiber Technol. (1)

M. J. F. Digonnet, R. W. Sadowski, H. J. Shaw, and R. H. Pantell, “Resonantly enhanced nonlinearity in doped fibers for low-power all-optical switching: a review,” Opt. Fiber Technol. 3(1), 44–64 (1997).
[Crossref]

Opt. Lett. (5)

Optica (2)

Sci. Rep. (1)

H. Zhang, N. Healy, L. Shen, C. C. Huang, D. W. Hewak, and A. C. Peacock, “Enhanced all-optical modulation in a graphene-coated fibre with low insertion loss,” Sci. Rep. 6(1), 23512 (2016).
[Crossref] [PubMed]

Science (1)

G. Xin, T. Yao, H. Sun, S. M. Scott, D. Shao, G. Wang, and J. Lian, “Highly thermally conductive and mechanically strong graphene fibers,” Science 349(6252), 1083–1087 (2015).
[Crossref] [PubMed]

Other (1)

H. Zhang, S. Virally, Q. Bao, K. P. Loh, S. Massar, N. Godbout, and P. Kockaert, “Large nonlinear Kerr effect in graphene,” arXiv preprint arXiv:1203.5527 (2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic diagram of the proposed externally pumped all-optical switch.
Fig. 2
Fig. 2 Model used for the analysis of the temperature distribution in a graphene-coated fiber, where the pump power absorbed by graphene is modelled as a uniform heat source without thickness wrapped around the fiber.
Fig. 3
Fig. 3 (a) Calculated phase shift as a function of pump power for two lengths of graphene coating on a 125-μm-diameter fiber; (b) calculated switching power as a function of the fiber diameter for a 10-mm-long graphene coating; and (c) calculated graphene-induced signal loss as a function of tapered fiber diameter for three lengths of graphene coating.
Fig. 4
Fig. 4 Experimental setup of the proposed all-optical switch.
Fig. 5
Fig. 5 (a) Transmission spectra measured at several pump powers for a 125-μm fiber with a 5-mm-long graphene coating; and (b) phase shift as a function of the pump power measured for 125-μm fibers with 5-mm- and 10-mm-long graphene coatings, respectively.
Fig. 6
Fig. 6 (a) Switching powers measured for five fibers with different diameters, each coated with 10-mm-long graphene, where the insets are microscopic images of the graphene-coated sections of the corresponding fibers; and (b) transmission spectra measured at different pump powers for the graphene-coated 40-μm fiber for a 10-mm graphene-coating length.
Fig. 7
Fig. 7 (a) Response times measured for five fibers with different diameters, each coated with 10-mm-long graphene; (b) response times measured for four 125-μm fibers with different graphene-coating lengths; and (c) oscilloscope display of the signal waveforms (black) together with the pump square waves (blue) for a 40-μm fiber with a 20-mm-long graphene coating.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Q= k s 2 T(r),
k s T(r)| r= r 0 =h×( T 0 T ),
Δϕ=1.1× 10 5 2π λ ΔTL.

Metrics