Abstract

We present a high-accuracy fiber-optic Fabry-Pérot (F-P) sensor capable of simultaneously measuring the temperature and gas refractive-index (RI). The sensor consists of a silicon F-P cavity for temperature sensing and a glass F-P cavity with a side groove for gas RI sensing. Two F-P cavities are simply fabricated and connected in series by microelectromechanical system (MEMS) techniques. The hybrid F-P sensor produces a superposition of signals. Changes in temperature and RI can be separated and detected by a fast Fourier transform (FFT) and the wavelength-tracing method. The experimental results demonstrate that the sensitivities of the proposed sensor are 80.7 pm/°C from 10 °C to 60 °C and over 1535.8 nm/RIU in the gas RI range of 1.0000248–1.0007681. Furthermore, the gas RI measurement reaches a high accuracy of ± 7.6 × 10−6 RIU, owing to the temperature compensation. In addition, the measured precisions of the temperature and gas RI are 1.07 × 10−3 °C and 2.73 × 10−8 RIU, respectively.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Compact gas refractometer based on a tapered four-core fiber

Zhihua Shao, Xueguang Qiao, and Qiangzhou Rong
Appl. Opt. 57(35) 10198-10206 (2018)

Dual parameter fiber-integrated sensor for refractive index and temperature measurement based on Fabry–Perot micro-resonators

Sergiy Suntsov, Christian E. Rüter, and Detlef Kip
Appl. Opt. 58(8) 2076-2080 (2019)

High-resolution and fast-response fiber-optic temperature sensor using silicon Fabry-Pérot cavity

Guigen Liu, Ming Han, and Weilin Hou
Opt. Express 23(6) 7237-7247 (2015)

References

  • View by:
  • |
  • |
  • |

  1. R. Wang, P. Huang, J. He, and X. Qiao, “Gas refractometer based on a side-open fiber optic Fabry-Perot interferometer,” Appl. Opt. 56(1), 50–54 (2017).
    [Crossref]
  2. P. Jia, G. Fang, T. Liang, Y. Hong, Q. Tan, X. Chen, W. Liu, C. Xue, J. Liu, W. Zhang, and J. Xiong, “Temperature-compensated fiber-optic fabry-perot interferometric gas refractive-index sensor based on hollow silica tube for high-temperature application,” Sensor. Actuat. B-Chem. 244, 226–232 (2017).
    [Crossref]
  3. R. H. Wang, Z. W. Liu, and X. G. Qiao, “Fringe visibility enhanced Fabry-Perot interferometer and its application as gas refractometer,” Sensor. Actuat. B-Chem. 234, 498–502 (2016).
    [Crossref]
  4. M. Quan, J. Tian, and Y. Yao, “Ultra-high sensitivity Fabry-Perot interferometer gas refractive index fiber sensor based on photonic crystal fiber and Vernier effect,” Opt. Lett. 40(21), 4891–4894 (2015).
    [Crossref] [PubMed]
  5. R. Wang and X. Qiao, “Gas refractometer based on optical fiber extrinsic fabry-perot interferometer with open cavity,” IEEE Photonics Technol. Lett. 27(3), 245–248 (2015).
    [Crossref]
  6. G. Z. Xiao, A. Adnet, Z. Zhang, F. G. Sun, and C. P. Grover, “Monitoring changes in the refractive index of gases by means of a fiber optic fabry-perot interferometer sensor,” Sensor. Actuat. A-Phys. 118(2), 177–182 (2005).
    [Crossref]
  7. S. D. Torre, S. Levorato, G. Menon, J. Polak, L. Steiger, M. Sulc, and F. Tessarotto, “A study of the rich gas refractive index,” Nucl. Instrum. Methods Phys. Res. A 639(1), 271–273 (2011).
    [Crossref]
  8. A. Couairon, M. Franco, A. Mysyrowicz, J. Biegert, and U. Keller, “Pulse self-compression to the single-cycle limit by filamentation in a gas with a pressure gradient,” Opt. Lett. 30(19), 2657–2659 (2005).
    [Crossref] [PubMed]
  9. S. Pevec and D. Donlagic, “Miniature fiber-optic Fabry-Perot refractive index sensor for gas sensing with a resolution of 5×10-9 RIU,” Opt. Express 26(18), 23868–23882 (2018).
    [Crossref] [PubMed]
  10. S. Pevec and D. Donlagic, “High resolution, all-fiber, micro-machined sensor for simultaneous measurement of refractive index and temperature,” Opt. Express 22(13), 16241–16253 (2014).
    [Crossref] [PubMed]
  11. S. Pevec and D. Donlagic, “Multiparameter fiber-optic sensor for simultaneous measurement of thermal conductivity, pressure, refractive index, and temperature,” IEEE Photonics J. 9(1), 1–14 (2017).
    [Crossref]
  12. K. Bremer, T. Reinsch, G. Leen, B. Roth, S. Lochmann, and E. Lewis, “Pressure, temperature and refractive index determination of fluids using a single fibre optic point sensor,” Sensor. Actuat. A-Phys. 256, 84–88 (2017).
    [Crossref]
  13. H. Y. Choi, G. Mudhana, K. S. Park, U. C. Paek, and B. H. Lee, “Cross-talk free and ultra-compact fiber optic sensor for simultaneous measurement of temperature and refractive index,” Opt. Express 18(1), 141–149 (2010).
    [Crossref] [PubMed]
  14. F. Shi, C. Zhao, B. Xu, Y. Li, and D. N. Wang, “Simultaneous measurement of refractive index and temperature base on three-beam interferometric fiber-optic,” in Proceedings of Optoelectronics Global Conference (2015), pp. 1–3.
    [Crossref]
  15. R. Wang and X. Qiao, “Hybrid optical fiber Fabry-Perot interferometer for simultaneous measurement of gas refractive index and temperature,” Appl. Opt. 53(32), 7724–7728 (2014).
    [Crossref] [PubMed]
  16. T. Wang and M. Wang, “Fabry-pérot fiber sensor for simultaneous measurement of refractive index and temperature based on an in-fiber ellipsoidal cavity,” IEEE Photonics Technol. Lett. 24(19), 1733–1736 (2012).
    [Crossref]
  17. R. M. André, S. C. Warren-Smith, M. Becker, J. Dellith, M. Rothhardt, M. I. Zibaii, H. Latifi, M. B. Marques, H. Bartelt, and O. Frazão, “Simultaneous measurement of temperature and refractive index using focused ion beam milled Fabry-Perot cavities in optical fiber micro-tips,” Opt. Express 24(13), 14053–14065 (2016).
    [Crossref] [PubMed]
  18. X. L. Tan, Y. F. Geng, X. J. Li, Y. L. Deng, Z. Yin, and R. Gao, “UV-curable polymer microhemisphere-based fiber-optic fabry-perot interferometer for simultaneous measurement of refractive index and temperature,” IEEE Photonics J. 6(4), 1–8 (2014).
    [Crossref]
  19. R. D. Pechstedt, “Fibre optical sensor for simultaneous measurement of pressure, temperature and refractive index,” Proc. SPIE 9157, 91570I (2014).
  20. X. Y. Zhang, Y. S. Yu, C. C. Zhu, C. Chen, R. Yang, Y. Xue, Q.-D. Chen, and H.-B. Sun, “Miniature end-capped fiber sensor for refractive index and temperature measurement,” IEEE Photonics Technol. Lett. 26(1), 7–10 (2014).
    [Crossref]
  21. areH. Bae, D. Yun, H. Liu, D. A. Olson, and M. Yu, “Hybrid miniature fabry-perot sensor with dual optical cavities for simultaneous pressure and temperature measurements,” J. Lightwave Technol. 32(8), 1585–1593 (2014).
    [Crossref]
  22. D. Wu, W. Huang, G. Y. Wang, J. Y. Fu, and Y. Y. Chen, “In-line fiber fabry-perot refractive index tip sensor based on photonic crystal fiber and spectrum differential integration method,” Opt. Commun. 313(4), 270–275 (2014).
    [Crossref]
  23. R. Wüthrich, K. Fujisaki, P. Couthy, L. A. Hof, and H. Bleuler, “Spark assisted chemical engraving (SACE) in microfactory,” J. Micromech. Microeng. 15(10), S276–S280 (2005).
    [Crossref]
  24. J. Yin, T. Liu, J. Jiang, K. Liu, S. Wang, Z. Qin, and S. Zou, “Batch-producible fiber-optic Fabry-Pérot sensor for simultaneous pressure and temperature sensing,” IEEE Photonics Technol. Lett. 26(20), 2070–2073 (2014).
    [Crossref]
  25. G. Cocorullo and I. Rendina, “Thermo-optical modulation at 1.5 μm in silicon etalon,” Electron. Lett. 28(1), 83–85 (1992).
    [Crossref]
  26. H. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9(3), 561–658 (1980).
    [Crossref]
  27. M. Deng, C. P. Tang, T. Zhu, Y. J. Rao, L. C. Xu, and M. Han, “Refractive index measurement using photonic crystal fiber-based Fabry-Perot interferometer,” Appl. Opt. 49(9), 1593–1598 (2010).
    [Crossref] [PubMed]
  28. K. P. Birch and M. J. Downs, “An updated edlén equation for the refractive index of air,” Metrologia 30(3), 155–162 (1993).
    [Crossref]
  29. ISO 5725–1, “Accuracy (trueness and precision) of measurement methods and results. Part 1: General principles and definitions,” International Standards Organization, (1994).
  30. Z. L. Ran, Y. J. Rao, W. J. Liu, X. Liao, and K. S. Chiang, “Laser-micromachined Fabry-Perot optical fiber tip sensor for high-resolution temperature-independent measurement of refractive index,” Opt. Express 16(3), 2252–2263 (2008).
    [Crossref] [PubMed]
  31. J. R. Zhao, X. G. Huang, W. X. He, and J. H. Chen, “High-resolution and temperature-insensitive fiber optic refractive index sensor based on fresnel reflection modulated by fabry-perot interference,” J. Lightwave Technol. 28(19), 2799–2803 (2010).
    [Crossref]
  32. Y. Liu and S. Qu, “Optical fiber Fabry-Perot interferometer cavity fabricated by femtosecond laser-induced water breakdown for refractive index sensing,” Appl. Opt. 53(3), 469–474 (2014).
    [Crossref] [PubMed]

2018 (1)

2017 (4)

R. Wang, P. Huang, J. He, and X. Qiao, “Gas refractometer based on a side-open fiber optic Fabry-Perot interferometer,” Appl. Opt. 56(1), 50–54 (2017).
[Crossref]

P. Jia, G. Fang, T. Liang, Y. Hong, Q. Tan, X. Chen, W. Liu, C. Xue, J. Liu, W. Zhang, and J. Xiong, “Temperature-compensated fiber-optic fabry-perot interferometric gas refractive-index sensor based on hollow silica tube for high-temperature application,” Sensor. Actuat. B-Chem. 244, 226–232 (2017).
[Crossref]

S. Pevec and D. Donlagic, “Multiparameter fiber-optic sensor for simultaneous measurement of thermal conductivity, pressure, refractive index, and temperature,” IEEE Photonics J. 9(1), 1–14 (2017).
[Crossref]

K. Bremer, T. Reinsch, G. Leen, B. Roth, S. Lochmann, and E. Lewis, “Pressure, temperature and refractive index determination of fluids using a single fibre optic point sensor,” Sensor. Actuat. A-Phys. 256, 84–88 (2017).
[Crossref]

2016 (2)

2015 (2)

M. Quan, J. Tian, and Y. Yao, “Ultra-high sensitivity Fabry-Perot interferometer gas refractive index fiber sensor based on photonic crystal fiber and Vernier effect,” Opt. Lett. 40(21), 4891–4894 (2015).
[Crossref] [PubMed]

R. Wang and X. Qiao, “Gas refractometer based on optical fiber extrinsic fabry-perot interferometer with open cavity,” IEEE Photonics Technol. Lett. 27(3), 245–248 (2015).
[Crossref]

2014 (9)

S. Pevec and D. Donlagic, “High resolution, all-fiber, micro-machined sensor for simultaneous measurement of refractive index and temperature,” Opt. Express 22(13), 16241–16253 (2014).
[Crossref] [PubMed]

X. L. Tan, Y. F. Geng, X. J. Li, Y. L. Deng, Z. Yin, and R. Gao, “UV-curable polymer microhemisphere-based fiber-optic fabry-perot interferometer for simultaneous measurement of refractive index and temperature,” IEEE Photonics J. 6(4), 1–8 (2014).
[Crossref]

R. D. Pechstedt, “Fibre optical sensor for simultaneous measurement of pressure, temperature and refractive index,” Proc. SPIE 9157, 91570I (2014).

X. Y. Zhang, Y. S. Yu, C. C. Zhu, C. Chen, R. Yang, Y. Xue, Q.-D. Chen, and H.-B. Sun, “Miniature end-capped fiber sensor for refractive index and temperature measurement,” IEEE Photonics Technol. Lett. 26(1), 7–10 (2014).
[Crossref]

areH. Bae, D. Yun, H. Liu, D. A. Olson, and M. Yu, “Hybrid miniature fabry-perot sensor with dual optical cavities for simultaneous pressure and temperature measurements,” J. Lightwave Technol. 32(8), 1585–1593 (2014).
[Crossref]

D. Wu, W. Huang, G. Y. Wang, J. Y. Fu, and Y. Y. Chen, “In-line fiber fabry-perot refractive index tip sensor based on photonic crystal fiber and spectrum differential integration method,” Opt. Commun. 313(4), 270–275 (2014).
[Crossref]

R. Wang and X. Qiao, “Hybrid optical fiber Fabry-Perot interferometer for simultaneous measurement of gas refractive index and temperature,” Appl. Opt. 53(32), 7724–7728 (2014).
[Crossref] [PubMed]

J. Yin, T. Liu, J. Jiang, K. Liu, S. Wang, Z. Qin, and S. Zou, “Batch-producible fiber-optic Fabry-Pérot sensor for simultaneous pressure and temperature sensing,” IEEE Photonics Technol. Lett. 26(20), 2070–2073 (2014).
[Crossref]

Y. Liu and S. Qu, “Optical fiber Fabry-Perot interferometer cavity fabricated by femtosecond laser-induced water breakdown for refractive index sensing,” Appl. Opt. 53(3), 469–474 (2014).
[Crossref] [PubMed]

2012 (1)

T. Wang and M. Wang, “Fabry-pérot fiber sensor for simultaneous measurement of refractive index and temperature based on an in-fiber ellipsoidal cavity,” IEEE Photonics Technol. Lett. 24(19), 1733–1736 (2012).
[Crossref]

2011 (1)

S. D. Torre, S. Levorato, G. Menon, J. Polak, L. Steiger, M. Sulc, and F. Tessarotto, “A study of the rich gas refractive index,” Nucl. Instrum. Methods Phys. Res. A 639(1), 271–273 (2011).
[Crossref]

2010 (3)

2008 (1)

2005 (3)

R. Wüthrich, K. Fujisaki, P. Couthy, L. A. Hof, and H. Bleuler, “Spark assisted chemical engraving (SACE) in microfactory,” J. Micromech. Microeng. 15(10), S276–S280 (2005).
[Crossref]

A. Couairon, M. Franco, A. Mysyrowicz, J. Biegert, and U. Keller, “Pulse self-compression to the single-cycle limit by filamentation in a gas with a pressure gradient,” Opt. Lett. 30(19), 2657–2659 (2005).
[Crossref] [PubMed]

G. Z. Xiao, A. Adnet, Z. Zhang, F. G. Sun, and C. P. Grover, “Monitoring changes in the refractive index of gases by means of a fiber optic fabry-perot interferometer sensor,” Sensor. Actuat. A-Phys. 118(2), 177–182 (2005).
[Crossref]

1993 (1)

K. P. Birch and M. J. Downs, “An updated edlén equation for the refractive index of air,” Metrologia 30(3), 155–162 (1993).
[Crossref]

1992 (1)

G. Cocorullo and I. Rendina, “Thermo-optical modulation at 1.5 μm in silicon etalon,” Electron. Lett. 28(1), 83–85 (1992).
[Crossref]

1980 (1)

H. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9(3), 561–658 (1980).
[Crossref]

Adnet, A.

G. Z. Xiao, A. Adnet, Z. Zhang, F. G. Sun, and C. P. Grover, “Monitoring changes in the refractive index of gases by means of a fiber optic fabry-perot interferometer sensor,” Sensor. Actuat. A-Phys. 118(2), 177–182 (2005).
[Crossref]

André, R. M.

Bae, H.

Bartelt, H.

Becker, M.

Biegert, J.

Birch, K. P.

K. P. Birch and M. J. Downs, “An updated edlén equation for the refractive index of air,” Metrologia 30(3), 155–162 (1993).
[Crossref]

Bleuler, H.

R. Wüthrich, K. Fujisaki, P. Couthy, L. A. Hof, and H. Bleuler, “Spark assisted chemical engraving (SACE) in microfactory,” J. Micromech. Microeng. 15(10), S276–S280 (2005).
[Crossref]

Bremer, K.

K. Bremer, T. Reinsch, G. Leen, B. Roth, S. Lochmann, and E. Lewis, “Pressure, temperature and refractive index determination of fluids using a single fibre optic point sensor,” Sensor. Actuat. A-Phys. 256, 84–88 (2017).
[Crossref]

Chen, C.

X. Y. Zhang, Y. S. Yu, C. C. Zhu, C. Chen, R. Yang, Y. Xue, Q.-D. Chen, and H.-B. Sun, “Miniature end-capped fiber sensor for refractive index and temperature measurement,” IEEE Photonics Technol. Lett. 26(1), 7–10 (2014).
[Crossref]

Chen, J. H.

Chen, Q.-D.

X. Y. Zhang, Y. S. Yu, C. C. Zhu, C. Chen, R. Yang, Y. Xue, Q.-D. Chen, and H.-B. Sun, “Miniature end-capped fiber sensor for refractive index and temperature measurement,” IEEE Photonics Technol. Lett. 26(1), 7–10 (2014).
[Crossref]

Chen, X.

P. Jia, G. Fang, T. Liang, Y. Hong, Q. Tan, X. Chen, W. Liu, C. Xue, J. Liu, W. Zhang, and J. Xiong, “Temperature-compensated fiber-optic fabry-perot interferometric gas refractive-index sensor based on hollow silica tube for high-temperature application,” Sensor. Actuat. B-Chem. 244, 226–232 (2017).
[Crossref]

Chen, Y. Y.

D. Wu, W. Huang, G. Y. Wang, J. Y. Fu, and Y. Y. Chen, “In-line fiber fabry-perot refractive index tip sensor based on photonic crystal fiber and spectrum differential integration method,” Opt. Commun. 313(4), 270–275 (2014).
[Crossref]

Chiang, K. S.

Choi, H. Y.

Cocorullo, G.

G. Cocorullo and I. Rendina, “Thermo-optical modulation at 1.5 μm in silicon etalon,” Electron. Lett. 28(1), 83–85 (1992).
[Crossref]

Couairon, A.

Couthy, P.

R. Wüthrich, K. Fujisaki, P. Couthy, L. A. Hof, and H. Bleuler, “Spark assisted chemical engraving (SACE) in microfactory,” J. Micromech. Microeng. 15(10), S276–S280 (2005).
[Crossref]

Dellith, J.

Deng, M.

Deng, Y. L.

X. L. Tan, Y. F. Geng, X. J. Li, Y. L. Deng, Z. Yin, and R. Gao, “UV-curable polymer microhemisphere-based fiber-optic fabry-perot interferometer for simultaneous measurement of refractive index and temperature,” IEEE Photonics J. 6(4), 1–8 (2014).
[Crossref]

Donlagic, D.

Downs, M. J.

K. P. Birch and M. J. Downs, “An updated edlén equation for the refractive index of air,” Metrologia 30(3), 155–162 (1993).
[Crossref]

Fang, G.

P. Jia, G. Fang, T. Liang, Y. Hong, Q. Tan, X. Chen, W. Liu, C. Xue, J. Liu, W. Zhang, and J. Xiong, “Temperature-compensated fiber-optic fabry-perot interferometric gas refractive-index sensor based on hollow silica tube for high-temperature application,” Sensor. Actuat. B-Chem. 244, 226–232 (2017).
[Crossref]

Franco, M.

Frazão, O.

Fu, J. Y.

D. Wu, W. Huang, G. Y. Wang, J. Y. Fu, and Y. Y. Chen, “In-line fiber fabry-perot refractive index tip sensor based on photonic crystal fiber and spectrum differential integration method,” Opt. Commun. 313(4), 270–275 (2014).
[Crossref]

Fujisaki, K.

R. Wüthrich, K. Fujisaki, P. Couthy, L. A. Hof, and H. Bleuler, “Spark assisted chemical engraving (SACE) in microfactory,” J. Micromech. Microeng. 15(10), S276–S280 (2005).
[Crossref]

Gao, R.

X. L. Tan, Y. F. Geng, X. J. Li, Y. L. Deng, Z. Yin, and R. Gao, “UV-curable polymer microhemisphere-based fiber-optic fabry-perot interferometer for simultaneous measurement of refractive index and temperature,” IEEE Photonics J. 6(4), 1–8 (2014).
[Crossref]

Geng, Y. F.

X. L. Tan, Y. F. Geng, X. J. Li, Y. L. Deng, Z. Yin, and R. Gao, “UV-curable polymer microhemisphere-based fiber-optic fabry-perot interferometer for simultaneous measurement of refractive index and temperature,” IEEE Photonics J. 6(4), 1–8 (2014).
[Crossref]

Grover, C. P.

G. Z. Xiao, A. Adnet, Z. Zhang, F. G. Sun, and C. P. Grover, “Monitoring changes in the refractive index of gases by means of a fiber optic fabry-perot interferometer sensor,” Sensor. Actuat. A-Phys. 118(2), 177–182 (2005).
[Crossref]

Han, M.

He, J.

He, W. X.

Hof, L. A.

R. Wüthrich, K. Fujisaki, P. Couthy, L. A. Hof, and H. Bleuler, “Spark assisted chemical engraving (SACE) in microfactory,” J. Micromech. Microeng. 15(10), S276–S280 (2005).
[Crossref]

Hong, Y.

P. Jia, G. Fang, T. Liang, Y. Hong, Q. Tan, X. Chen, W. Liu, C. Xue, J. Liu, W. Zhang, and J. Xiong, “Temperature-compensated fiber-optic fabry-perot interferometric gas refractive-index sensor based on hollow silica tube for high-temperature application,” Sensor. Actuat. B-Chem. 244, 226–232 (2017).
[Crossref]

Huang, P.

Huang, W.

D. Wu, W. Huang, G. Y. Wang, J. Y. Fu, and Y. Y. Chen, “In-line fiber fabry-perot refractive index tip sensor based on photonic crystal fiber and spectrum differential integration method,” Opt. Commun. 313(4), 270–275 (2014).
[Crossref]

Huang, X. G.

Jia, P.

P. Jia, G. Fang, T. Liang, Y. Hong, Q. Tan, X. Chen, W. Liu, C. Xue, J. Liu, W. Zhang, and J. Xiong, “Temperature-compensated fiber-optic fabry-perot interferometric gas refractive-index sensor based on hollow silica tube for high-temperature application,” Sensor. Actuat. B-Chem. 244, 226–232 (2017).
[Crossref]

Jiang, J.

J. Yin, T. Liu, J. Jiang, K. Liu, S. Wang, Z. Qin, and S. Zou, “Batch-producible fiber-optic Fabry-Pérot sensor for simultaneous pressure and temperature sensing,” IEEE Photonics Technol. Lett. 26(20), 2070–2073 (2014).
[Crossref]

Keller, U.

Latifi, H.

Lee, B. H.

Leen, G.

K. Bremer, T. Reinsch, G. Leen, B. Roth, S. Lochmann, and E. Lewis, “Pressure, temperature and refractive index determination of fluids using a single fibre optic point sensor,” Sensor. Actuat. A-Phys. 256, 84–88 (2017).
[Crossref]

Levorato, S.

S. D. Torre, S. Levorato, G. Menon, J. Polak, L. Steiger, M. Sulc, and F. Tessarotto, “A study of the rich gas refractive index,” Nucl. Instrum. Methods Phys. Res. A 639(1), 271–273 (2011).
[Crossref]

Lewis, E.

K. Bremer, T. Reinsch, G. Leen, B. Roth, S. Lochmann, and E. Lewis, “Pressure, temperature and refractive index determination of fluids using a single fibre optic point sensor,” Sensor. Actuat. A-Phys. 256, 84–88 (2017).
[Crossref]

Li, H. H.

H. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9(3), 561–658 (1980).
[Crossref]

Li, X. J.

X. L. Tan, Y. F. Geng, X. J. Li, Y. L. Deng, Z. Yin, and R. Gao, “UV-curable polymer microhemisphere-based fiber-optic fabry-perot interferometer for simultaneous measurement of refractive index and temperature,” IEEE Photonics J. 6(4), 1–8 (2014).
[Crossref]

Li, Y.

F. Shi, C. Zhao, B. Xu, Y. Li, and D. N. Wang, “Simultaneous measurement of refractive index and temperature base on three-beam interferometric fiber-optic,” in Proceedings of Optoelectronics Global Conference (2015), pp. 1–3.
[Crossref]

Liang, T.

P. Jia, G. Fang, T. Liang, Y. Hong, Q. Tan, X. Chen, W. Liu, C. Xue, J. Liu, W. Zhang, and J. Xiong, “Temperature-compensated fiber-optic fabry-perot interferometric gas refractive-index sensor based on hollow silica tube for high-temperature application,” Sensor. Actuat. B-Chem. 244, 226–232 (2017).
[Crossref]

Liao, X.

Liu, H.

Liu, J.

P. Jia, G. Fang, T. Liang, Y. Hong, Q. Tan, X. Chen, W. Liu, C. Xue, J. Liu, W. Zhang, and J. Xiong, “Temperature-compensated fiber-optic fabry-perot interferometric gas refractive-index sensor based on hollow silica tube for high-temperature application,” Sensor. Actuat. B-Chem. 244, 226–232 (2017).
[Crossref]

Liu, K.

J. Yin, T. Liu, J. Jiang, K. Liu, S. Wang, Z. Qin, and S. Zou, “Batch-producible fiber-optic Fabry-Pérot sensor for simultaneous pressure and temperature sensing,” IEEE Photonics Technol. Lett. 26(20), 2070–2073 (2014).
[Crossref]

Liu, T.

J. Yin, T. Liu, J. Jiang, K. Liu, S. Wang, Z. Qin, and S. Zou, “Batch-producible fiber-optic Fabry-Pérot sensor for simultaneous pressure and temperature sensing,” IEEE Photonics Technol. Lett. 26(20), 2070–2073 (2014).
[Crossref]

Liu, W.

P. Jia, G. Fang, T. Liang, Y. Hong, Q. Tan, X. Chen, W. Liu, C. Xue, J. Liu, W. Zhang, and J. Xiong, “Temperature-compensated fiber-optic fabry-perot interferometric gas refractive-index sensor based on hollow silica tube for high-temperature application,” Sensor. Actuat. B-Chem. 244, 226–232 (2017).
[Crossref]

Liu, W. J.

Liu, Y.

Liu, Z. W.

R. H. Wang, Z. W. Liu, and X. G. Qiao, “Fringe visibility enhanced Fabry-Perot interferometer and its application as gas refractometer,” Sensor. Actuat. B-Chem. 234, 498–502 (2016).
[Crossref]

Lochmann, S.

K. Bremer, T. Reinsch, G. Leen, B. Roth, S. Lochmann, and E. Lewis, “Pressure, temperature and refractive index determination of fluids using a single fibre optic point sensor,” Sensor. Actuat. A-Phys. 256, 84–88 (2017).
[Crossref]

Marques, M. B.

Menon, G.

S. D. Torre, S. Levorato, G. Menon, J. Polak, L. Steiger, M. Sulc, and F. Tessarotto, “A study of the rich gas refractive index,” Nucl. Instrum. Methods Phys. Res. A 639(1), 271–273 (2011).
[Crossref]

Mudhana, G.

Mysyrowicz, A.

Olson, D. A.

Paek, U. C.

Park, K. S.

Pechstedt, R. D.

R. D. Pechstedt, “Fibre optical sensor for simultaneous measurement of pressure, temperature and refractive index,” Proc. SPIE 9157, 91570I (2014).

Pevec, S.

Polak, J.

S. D. Torre, S. Levorato, G. Menon, J. Polak, L. Steiger, M. Sulc, and F. Tessarotto, “A study of the rich gas refractive index,” Nucl. Instrum. Methods Phys. Res. A 639(1), 271–273 (2011).
[Crossref]

Qiao, X.

Qiao, X. G.

R. H. Wang, Z. W. Liu, and X. G. Qiao, “Fringe visibility enhanced Fabry-Perot interferometer and its application as gas refractometer,” Sensor. Actuat. B-Chem. 234, 498–502 (2016).
[Crossref]

Qin, Z.

J. Yin, T. Liu, J. Jiang, K. Liu, S. Wang, Z. Qin, and S. Zou, “Batch-producible fiber-optic Fabry-Pérot sensor for simultaneous pressure and temperature sensing,” IEEE Photonics Technol. Lett. 26(20), 2070–2073 (2014).
[Crossref]

Qu, S.

Quan, M.

Ran, Z. L.

Rao, Y. J.

Reinsch, T.

K. Bremer, T. Reinsch, G. Leen, B. Roth, S. Lochmann, and E. Lewis, “Pressure, temperature and refractive index determination of fluids using a single fibre optic point sensor,” Sensor. Actuat. A-Phys. 256, 84–88 (2017).
[Crossref]

Rendina, I.

G. Cocorullo and I. Rendina, “Thermo-optical modulation at 1.5 μm in silicon etalon,” Electron. Lett. 28(1), 83–85 (1992).
[Crossref]

Roth, B.

K. Bremer, T. Reinsch, G. Leen, B. Roth, S. Lochmann, and E. Lewis, “Pressure, temperature and refractive index determination of fluids using a single fibre optic point sensor,” Sensor. Actuat. A-Phys. 256, 84–88 (2017).
[Crossref]

Rothhardt, M.

Shi, F.

F. Shi, C. Zhao, B. Xu, Y. Li, and D. N. Wang, “Simultaneous measurement of refractive index and temperature base on three-beam interferometric fiber-optic,” in Proceedings of Optoelectronics Global Conference (2015), pp. 1–3.
[Crossref]

Steiger, L.

S. D. Torre, S. Levorato, G. Menon, J. Polak, L. Steiger, M. Sulc, and F. Tessarotto, “A study of the rich gas refractive index,” Nucl. Instrum. Methods Phys. Res. A 639(1), 271–273 (2011).
[Crossref]

Sulc, M.

S. D. Torre, S. Levorato, G. Menon, J. Polak, L. Steiger, M. Sulc, and F. Tessarotto, “A study of the rich gas refractive index,” Nucl. Instrum. Methods Phys. Res. A 639(1), 271–273 (2011).
[Crossref]

Sun, F. G.

G. Z. Xiao, A. Adnet, Z. Zhang, F. G. Sun, and C. P. Grover, “Monitoring changes in the refractive index of gases by means of a fiber optic fabry-perot interferometer sensor,” Sensor. Actuat. A-Phys. 118(2), 177–182 (2005).
[Crossref]

Sun, H.-B.

X. Y. Zhang, Y. S. Yu, C. C. Zhu, C. Chen, R. Yang, Y. Xue, Q.-D. Chen, and H.-B. Sun, “Miniature end-capped fiber sensor for refractive index and temperature measurement,” IEEE Photonics Technol. Lett. 26(1), 7–10 (2014).
[Crossref]

Tan, Q.

P. Jia, G. Fang, T. Liang, Y. Hong, Q. Tan, X. Chen, W. Liu, C. Xue, J. Liu, W. Zhang, and J. Xiong, “Temperature-compensated fiber-optic fabry-perot interferometric gas refractive-index sensor based on hollow silica tube for high-temperature application,” Sensor. Actuat. B-Chem. 244, 226–232 (2017).
[Crossref]

Tan, X. L.

X. L. Tan, Y. F. Geng, X. J. Li, Y. L. Deng, Z. Yin, and R. Gao, “UV-curable polymer microhemisphere-based fiber-optic fabry-perot interferometer for simultaneous measurement of refractive index and temperature,” IEEE Photonics J. 6(4), 1–8 (2014).
[Crossref]

Tang, C. P.

Tessarotto, F.

S. D. Torre, S. Levorato, G. Menon, J. Polak, L. Steiger, M. Sulc, and F. Tessarotto, “A study of the rich gas refractive index,” Nucl. Instrum. Methods Phys. Res. A 639(1), 271–273 (2011).
[Crossref]

Tian, J.

Torre, S. D.

S. D. Torre, S. Levorato, G. Menon, J. Polak, L. Steiger, M. Sulc, and F. Tessarotto, “A study of the rich gas refractive index,” Nucl. Instrum. Methods Phys. Res. A 639(1), 271–273 (2011).
[Crossref]

Wang, D. N.

F. Shi, C. Zhao, B. Xu, Y. Li, and D. N. Wang, “Simultaneous measurement of refractive index and temperature base on three-beam interferometric fiber-optic,” in Proceedings of Optoelectronics Global Conference (2015), pp. 1–3.
[Crossref]

Wang, G. Y.

D. Wu, W. Huang, G. Y. Wang, J. Y. Fu, and Y. Y. Chen, “In-line fiber fabry-perot refractive index tip sensor based on photonic crystal fiber and spectrum differential integration method,” Opt. Commun. 313(4), 270–275 (2014).
[Crossref]

Wang, M.

T. Wang and M. Wang, “Fabry-pérot fiber sensor for simultaneous measurement of refractive index and temperature based on an in-fiber ellipsoidal cavity,” IEEE Photonics Technol. Lett. 24(19), 1733–1736 (2012).
[Crossref]

Wang, R.

Wang, R. H.

R. H. Wang, Z. W. Liu, and X. G. Qiao, “Fringe visibility enhanced Fabry-Perot interferometer and its application as gas refractometer,” Sensor. Actuat. B-Chem. 234, 498–502 (2016).
[Crossref]

Wang, S.

J. Yin, T. Liu, J. Jiang, K. Liu, S. Wang, Z. Qin, and S. Zou, “Batch-producible fiber-optic Fabry-Pérot sensor for simultaneous pressure and temperature sensing,” IEEE Photonics Technol. Lett. 26(20), 2070–2073 (2014).
[Crossref]

Wang, T.

T. Wang and M. Wang, “Fabry-pérot fiber sensor for simultaneous measurement of refractive index and temperature based on an in-fiber ellipsoidal cavity,” IEEE Photonics Technol. Lett. 24(19), 1733–1736 (2012).
[Crossref]

Warren-Smith, S. C.

Wu, D.

D. Wu, W. Huang, G. Y. Wang, J. Y. Fu, and Y. Y. Chen, “In-line fiber fabry-perot refractive index tip sensor based on photonic crystal fiber and spectrum differential integration method,” Opt. Commun. 313(4), 270–275 (2014).
[Crossref]

Wüthrich, R.

R. Wüthrich, K. Fujisaki, P. Couthy, L. A. Hof, and H. Bleuler, “Spark assisted chemical engraving (SACE) in microfactory,” J. Micromech. Microeng. 15(10), S276–S280 (2005).
[Crossref]

Xiao, G. Z.

G. Z. Xiao, A. Adnet, Z. Zhang, F. G. Sun, and C. P. Grover, “Monitoring changes in the refractive index of gases by means of a fiber optic fabry-perot interferometer sensor,” Sensor. Actuat. A-Phys. 118(2), 177–182 (2005).
[Crossref]

Xiong, J.

P. Jia, G. Fang, T. Liang, Y. Hong, Q. Tan, X. Chen, W. Liu, C. Xue, J. Liu, W. Zhang, and J. Xiong, “Temperature-compensated fiber-optic fabry-perot interferometric gas refractive-index sensor based on hollow silica tube for high-temperature application,” Sensor. Actuat. B-Chem. 244, 226–232 (2017).
[Crossref]

Xu, B.

F. Shi, C. Zhao, B. Xu, Y. Li, and D. N. Wang, “Simultaneous measurement of refractive index and temperature base on three-beam interferometric fiber-optic,” in Proceedings of Optoelectronics Global Conference (2015), pp. 1–3.
[Crossref]

Xu, L. C.

Xue, C.

P. Jia, G. Fang, T. Liang, Y. Hong, Q. Tan, X. Chen, W. Liu, C. Xue, J. Liu, W. Zhang, and J. Xiong, “Temperature-compensated fiber-optic fabry-perot interferometric gas refractive-index sensor based on hollow silica tube for high-temperature application,” Sensor. Actuat. B-Chem. 244, 226–232 (2017).
[Crossref]

Xue, Y.

X. Y. Zhang, Y. S. Yu, C. C. Zhu, C. Chen, R. Yang, Y. Xue, Q.-D. Chen, and H.-B. Sun, “Miniature end-capped fiber sensor for refractive index and temperature measurement,” IEEE Photonics Technol. Lett. 26(1), 7–10 (2014).
[Crossref]

Yang, R.

X. Y. Zhang, Y. S. Yu, C. C. Zhu, C. Chen, R. Yang, Y. Xue, Q.-D. Chen, and H.-B. Sun, “Miniature end-capped fiber sensor for refractive index and temperature measurement,” IEEE Photonics Technol. Lett. 26(1), 7–10 (2014).
[Crossref]

Yao, Y.

Yin, J.

J. Yin, T. Liu, J. Jiang, K. Liu, S. Wang, Z. Qin, and S. Zou, “Batch-producible fiber-optic Fabry-Pérot sensor for simultaneous pressure and temperature sensing,” IEEE Photonics Technol. Lett. 26(20), 2070–2073 (2014).
[Crossref]

Yin, Z.

X. L. Tan, Y. F. Geng, X. J. Li, Y. L. Deng, Z. Yin, and R. Gao, “UV-curable polymer microhemisphere-based fiber-optic fabry-perot interferometer for simultaneous measurement of refractive index and temperature,” IEEE Photonics J. 6(4), 1–8 (2014).
[Crossref]

Yu, M.

Yu, Y. S.

X. Y. Zhang, Y. S. Yu, C. C. Zhu, C. Chen, R. Yang, Y. Xue, Q.-D. Chen, and H.-B. Sun, “Miniature end-capped fiber sensor for refractive index and temperature measurement,” IEEE Photonics Technol. Lett. 26(1), 7–10 (2014).
[Crossref]

Yun, D.

Zhang, W.

P. Jia, G. Fang, T. Liang, Y. Hong, Q. Tan, X. Chen, W. Liu, C. Xue, J. Liu, W. Zhang, and J. Xiong, “Temperature-compensated fiber-optic fabry-perot interferometric gas refractive-index sensor based on hollow silica tube for high-temperature application,” Sensor. Actuat. B-Chem. 244, 226–232 (2017).
[Crossref]

Zhang, X. Y.

X. Y. Zhang, Y. S. Yu, C. C. Zhu, C. Chen, R. Yang, Y. Xue, Q.-D. Chen, and H.-B. Sun, “Miniature end-capped fiber sensor for refractive index and temperature measurement,” IEEE Photonics Technol. Lett. 26(1), 7–10 (2014).
[Crossref]

Zhang, Z.

G. Z. Xiao, A. Adnet, Z. Zhang, F. G. Sun, and C. P. Grover, “Monitoring changes in the refractive index of gases by means of a fiber optic fabry-perot interferometer sensor,” Sensor. Actuat. A-Phys. 118(2), 177–182 (2005).
[Crossref]

Zhao, C.

F. Shi, C. Zhao, B. Xu, Y. Li, and D. N. Wang, “Simultaneous measurement of refractive index and temperature base on three-beam interferometric fiber-optic,” in Proceedings of Optoelectronics Global Conference (2015), pp. 1–3.
[Crossref]

Zhao, J. R.

Zhu, C. C.

X. Y. Zhang, Y. S. Yu, C. C. Zhu, C. Chen, R. Yang, Y. Xue, Q.-D. Chen, and H.-B. Sun, “Miniature end-capped fiber sensor for refractive index and temperature measurement,” IEEE Photonics Technol. Lett. 26(1), 7–10 (2014).
[Crossref]

Zhu, T.

Zibaii, M. I.

Zou, S.

J. Yin, T. Liu, J. Jiang, K. Liu, S. Wang, Z. Qin, and S. Zou, “Batch-producible fiber-optic Fabry-Pérot sensor for simultaneous pressure and temperature sensing,” IEEE Photonics Technol. Lett. 26(20), 2070–2073 (2014).
[Crossref]

Appl. Opt. (4)

Electron. Lett. (1)

G. Cocorullo and I. Rendina, “Thermo-optical modulation at 1.5 μm in silicon etalon,” Electron. Lett. 28(1), 83–85 (1992).
[Crossref]

IEEE Photonics J. (2)

X. L. Tan, Y. F. Geng, X. J. Li, Y. L. Deng, Z. Yin, and R. Gao, “UV-curable polymer microhemisphere-based fiber-optic fabry-perot interferometer for simultaneous measurement of refractive index and temperature,” IEEE Photonics J. 6(4), 1–8 (2014).
[Crossref]

S. Pevec and D. Donlagic, “Multiparameter fiber-optic sensor for simultaneous measurement of thermal conductivity, pressure, refractive index, and temperature,” IEEE Photonics J. 9(1), 1–14 (2017).
[Crossref]

IEEE Photonics Technol. Lett. (4)

T. Wang and M. Wang, “Fabry-pérot fiber sensor for simultaneous measurement of refractive index and temperature based on an in-fiber ellipsoidal cavity,” IEEE Photonics Technol. Lett. 24(19), 1733–1736 (2012).
[Crossref]

R. Wang and X. Qiao, “Gas refractometer based on optical fiber extrinsic fabry-perot interferometer with open cavity,” IEEE Photonics Technol. Lett. 27(3), 245–248 (2015).
[Crossref]

X. Y. Zhang, Y. S. Yu, C. C. Zhu, C. Chen, R. Yang, Y. Xue, Q.-D. Chen, and H.-B. Sun, “Miniature end-capped fiber sensor for refractive index and temperature measurement,” IEEE Photonics Technol. Lett. 26(1), 7–10 (2014).
[Crossref]

J. Yin, T. Liu, J. Jiang, K. Liu, S. Wang, Z. Qin, and S. Zou, “Batch-producible fiber-optic Fabry-Pérot sensor for simultaneous pressure and temperature sensing,” IEEE Photonics Technol. Lett. 26(20), 2070–2073 (2014).
[Crossref]

J. Lightwave Technol. (2)

J. Micromech. Microeng. (1)

R. Wüthrich, K. Fujisaki, P. Couthy, L. A. Hof, and H. Bleuler, “Spark assisted chemical engraving (SACE) in microfactory,” J. Micromech. Microeng. 15(10), S276–S280 (2005).
[Crossref]

J. Phys. Chem. Ref. Data (1)

H. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9(3), 561–658 (1980).
[Crossref]

Metrologia (1)

K. P. Birch and M. J. Downs, “An updated edlén equation for the refractive index of air,” Metrologia 30(3), 155–162 (1993).
[Crossref]

Nucl. Instrum. Methods Phys. Res. A (1)

S. D. Torre, S. Levorato, G. Menon, J. Polak, L. Steiger, M. Sulc, and F. Tessarotto, “A study of the rich gas refractive index,” Nucl. Instrum. Methods Phys. Res. A 639(1), 271–273 (2011).
[Crossref]

Opt. Commun. (1)

D. Wu, W. Huang, G. Y. Wang, J. Y. Fu, and Y. Y. Chen, “In-line fiber fabry-perot refractive index tip sensor based on photonic crystal fiber and spectrum differential integration method,” Opt. Commun. 313(4), 270–275 (2014).
[Crossref]

Opt. Express (5)

Opt. Lett. (2)

Proc. SPIE (1)

R. D. Pechstedt, “Fibre optical sensor for simultaneous measurement of pressure, temperature and refractive index,” Proc. SPIE 9157, 91570I (2014).

Sensor. Actuat. A-Phys. (2)

K. Bremer, T. Reinsch, G. Leen, B. Roth, S. Lochmann, and E. Lewis, “Pressure, temperature and refractive index determination of fluids using a single fibre optic point sensor,” Sensor. Actuat. A-Phys. 256, 84–88 (2017).
[Crossref]

G. Z. Xiao, A. Adnet, Z. Zhang, F. G. Sun, and C. P. Grover, “Monitoring changes in the refractive index of gases by means of a fiber optic fabry-perot interferometer sensor,” Sensor. Actuat. A-Phys. 118(2), 177–182 (2005).
[Crossref]

Sensor. Actuat. B-Chem. (2)

P. Jia, G. Fang, T. Liang, Y. Hong, Q. Tan, X. Chen, W. Liu, C. Xue, J. Liu, W. Zhang, and J. Xiong, “Temperature-compensated fiber-optic fabry-perot interferometric gas refractive-index sensor based on hollow silica tube for high-temperature application,” Sensor. Actuat. B-Chem. 244, 226–232 (2017).
[Crossref]

R. H. Wang, Z. W. Liu, and X. G. Qiao, “Fringe visibility enhanced Fabry-Perot interferometer and its application as gas refractometer,” Sensor. Actuat. B-Chem. 234, 498–502 (2016).
[Crossref]

Other (2)

F. Shi, C. Zhao, B. Xu, Y. Li, and D. N. Wang, “Simultaneous measurement of refractive index and temperature base on three-beam interferometric fiber-optic,” in Proceedings of Optoelectronics Global Conference (2015), pp. 1–3.
[Crossref]

ISO 5725–1, “Accuracy (trueness and precision) of measurement methods and results. Part 1: General principles and definitions,” International Standards Organization, (1994).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 (a) Schematic diagram of proposed sensor structure. (b) F-P cavity interference model of proposed sensor.
Fig. 2
Fig. 2 (a) Image of through hole and groove array in Pyrex glass wafer. (b) Image of individual sensing chip.
Fig. 3
Fig. 3 Experimental setup for measurement of temperature and pressure-induced RI changes.
Fig. 4
Fig. 4 (a) Reflection spectra of proposed sensor under room temperature and atmospheric pressure. (b) Spatial frequency spectra of output reflection spectra. (c) Independent interference spectra corresponding to FP1 by filter2. (d) Independent interference spectra corresponding to FP2 by filter1.
Fig. 5
Fig. 5 (a) Interference spectra of FP1 corresponding to temperature changes from 25 °C to 30 °C. (b) Temperature response of silicon cavity.
Fig. 6
Fig. 6 (a) Interference spectra of FP2 corresponding to temperature changes from 10 °C to 60 °C. (b) Relationship between B(t) and temperature.
Fig. 7
Fig. 7 Wavelength shift of FP1 in response to pressure increasing at different temperatures.
Fig. 8
Fig. 8 (a) Wavelength shift of FP2 in response to pressure increasing at different temperatures. (b) Wavelength shift in response to gas RI increasing at different temperatures.
Fig. 9
Fig. 9 Gas RI measurement error after temperature compensation.
Fig. 10
Fig. 10 Variation of wavelength measured at 25 °C and 100 kPa for 1 h. (a) Variation corresponding to FP1. (b) Variation corresponding to FP2.
Fig. 11
Fig. 11 (a) Variation of wavelength corresponding to FP1 measured at different temperatures for 2 cycles. (b) Variation of wavelength corresponding to FP2 measured at different pressures for 2 cycles

Tables (2)

Tables Icon

Table 1 Measurement results of pressure-induced gas RI response of FP2.

Tables Icon

Table 2 Comparison of the proposed fiber-optic F-P sensors in terms of the precision and repeatability

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

I(λ)= I 1 + I 2 + I 3 2 I 1 I 2 cos( ϕ 1 )2 I 2 I 3 cos( ϕ 2 )+2 I 1 I 3 cos( ϕ 1 + ϕ 2 ),
ϕ 1 = 4π n si L 1 λ , ϕ 2 = 4π n gas L 2 λ ,
ϕ 1 = 4π n si0 L 10 λ i0 = 4π n si (t) L 1 (t) λ i =2iπ,
S t = Δ λ i Δt = α si λ i0 + n T / n si0 λ i0 .
ϕ 2 = 4π n gas0 L 20 λ j0 = 4π n gas L 2 (t) λ j =2jπ,
S n = Δ λ j Δn = λ j0 n gas0 .
S tc = Δ λ j Δt = λ j0 α g .
t=( λ i λ i0 )/ S t ,
n gas = λ j /B(t),
t= λ i 1547.938 0.0807 .
n air =1+ 2.8437× 10 9 P 1+0.003661t ,
B(t)=0.00548t+1550.3962
n gas = λ j 0.00548t+1550.3962
S tn = d n gas dt = n gas t+282919 .
S tn = n gas 282919 ,

Metrics