Abstract

In this paper, we propose an adaptive optical self-interference cancellation using regular triangle algorithm for in-band full-duplex systems. By using this algorithm, the manual adjustment of the tunable optical time delay line and attenuator is replaced with the adaptive program to change the delay and attenuation for achieving optimal cancellation point. The adjustment process is simplified as a convex function problem. We choose to attain the optimal cancellation point by directly and continuously sampling the power of the signal after cancellation and in turn adjust the time delay and attenuation according to the algorithm. In this way, the two paths in the self-interference cancellation system are precisely and automatically matched. By using our proposed algorithm, the interference signal over 300-MHz wideband is diminished to the noise floor, attaining 20-25 dB cancellation depth adaptively. Compared with other existing algorithms in both the experiment and simulation, our proposed regular triangle algorithm reaches the optimal point faster with 10-30% less number of samples from the near start region, and lowers 40-60% less number of samples from the farther start region.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Self-interference cancellation using dual-drive Mach-Zehnder modulator for in-band full-duplex radio-over-fiber system

Yunhao Zhang, Shilin Xiao, Hanlin Feng, Lu Zhang, Zhao Zhou, and Weisheng Hu
Opt. Express 23(26) 33205-33213 (2015)

Experimental study of wideband in-band full-duplex communication based on optical self-interference cancellation

Yunhao Zhang, Shilin Xiao, Yinghong Yu, Cao Chen, Meihua Bi, Ling Liu, Lu Zhang, and Weisheng Hu
Opt. Express 24(26) 30139-30148 (2016)

Performance analysis of an optical self-interference cancellation system with a directly modulated laser-based demonstration

Yinghong Yu, Yunhao Zhang, Lin Huang, and Shilin Xiao
Appl. Opt. 57(6) 1284-1291 (2018)

References

  • View by:
  • |
  • |
  • |

  1. A. Sabharwal, P. Schniter, D. Guo, D. W. Bliss, S. Rangarajan, and R. Wichman, “In-band full-duplex wireless: Challenges and opportunities,” IEEE J. Sel. Areas Comm. 32(9), 1637–1652 (2014).
    [Crossref]
  2. Z. Zhang, X. Chai, K. Long, A. V. Vasilakos, and L. Hanzo, “Full duplex techniques for 5G networks: self-interference cancellation, protocol design, and relay selection,” IEEE Commun. Mag. 53(5), 128–137 (2015).
    [Crossref]
  3. G. Liu, F. R. Yu, H. Ji, V. C. M. Leung, and X. Li, “In-band full-duplex relaying: A survey, research issues and challenges,” IEEE Comm. Surv. and Tutor. 17(2), 500–524 (2015).
    [Crossref]
  4. D. Kim, H. Lee, and D. Hong, “A survey of in-band full-duplex transmission: From the perspective of PHY and MAC layers,” IEEE Comm. Surv. and Tutor. 17(4), 2017–2046 (2015).
    [Crossref]
  5. P. A. Gamage, A. Nirmalathas, C. Lim, D. Novak, and R. Waterhouse, “Design and analysis of digitized RF over-fiber links,” J. Lightwave Technol. 27(12), 2052–2061 (2009).
    [Crossref]
  6. Z. Tu, A. Wen, X. Li, and H. Zhang, “A photonic pre-distortion technique for RF self-interference cancellation,” IEEE Photonics Technol. Lett. 30(14), 1297–1300 (2018).
    [Crossref]
  7. Y. Zhang, S. Xiao, Y. Yu, C. Chen, M. Bi, L. Liu, L. Zhang, and W. Hu, “Experimental study of wideband in-band full-duplex communication based on optical self-interference cancellation,” Opt. Express 24(26), 30139–30148 (2016).
    [Crossref] [PubMed]
  8. J. J. Sun, M. P. Chang, and P. R. Prucnal, “Demonstration of over-the-air RF self-interference cancellation using an optical system,” IEEE Photonics Technol. Lett. 29(4), 397–400 (2017).
    [Crossref]
  9. J. Suarez, K. Kravtsov, and P. R. Prucnal, “Incoherent method of optical interference cancellation for radio-frequency communications,” IEEE J. Quantum Electron. 45(4), 402–408 (2009).
    [Crossref]
  10. Y. Zhang, S. Xiao, H. Feng, L. Zhang, Z. Zhou, and W. Hu, “Self-interference cancellation using dual-drive Mach-Zehnder modulator for in-band full-duplex radio-over-fiber system,” Opt. Express 23(26), 33205–33213 (2015).
    [Crossref] [PubMed]
  11. X. Han, B. Huo, Y. Shao, and M. Zhao, “Optical RF self-interference cancellation by using an integrated dual-parallel MZM,” IEEE Photonics J. 9(2), 1–8 (2017).
    [Crossref]
  12. Y. Xiang, G. Li, and S. Pan, “Ultrawideband optical cancellation of RF interference with phase change,” Opt. Express 25(18), 21259–21264 (2017).
    [Crossref] [PubMed]
  13. M. P. Chang, M. Fok, A. Hofmaier, and P. R. Prucnal, “Optical analog self-interference cancellation using electro-absorption modulators,” IEEE Microw. Wirel. Compon. Lett. 23(2), 99–101 (2013).
    [Crossref]
  14. Q. Zhou, H. Feng, G. Scott, and M. P. Fok, “Wideband co-site interference cancellation based on hybrid electrical and optical techniques,” Opt. Lett. 39(22), 6537–6540 (2014).
    [Crossref] [PubMed]
  15. Y. Yu, Y. Zhang, L. Huang, and S. Xiao, “Performance analysis of an optical self-interference cancellation system with a directly modulated laser-based demonstration,” Appl. Opt. 57(6), 1284–1291 (2018).
    [Crossref] [PubMed]
  16. Y. Zhang, L. Li, S. Xiao, M. Bi, L. Huang, L. Zheng, and W. Hu, “EML-based multi-path self-interference cancellation with adaptive frequency-domain pre-equalization,” IEEE Photonics Technol. Lett. 30(12), 1103–1106 (2018).
    [Crossref]
  17. M. P. Chang, E. C. Blow, J. J. Sun, M. Z. Lu, and P. R. Prucnal, “Integrated microwave photonic circuit for self-interference cancellation,” IEEE Trans. Microw. Theory Tech. 65(11), 4493–4501 (2017).
    [Crossref]
  18. Q. Long and C. Wu, “A hybrid method combining genetic algorithm and Hooke-Jeeves method for constrained global optimization,” J. Ind. Manage. Optim. 10(4), 1279–1296 (2014).
    [Crossref]
  19. L. Geng, T. Zhang, Z. Zeng, and X. Han, “An efficient joint tx-rx beam search scheme in mmwave massive MIMO systems (invited paper),” in Proceedings of Wireless Internet, C. Li and S. Mao, eds. (Springer International Publishing, Cham,2018), pp. 64–74.
  20. C. Mateo, P. L. Carro, P. Garcia-Ducar, J. de Mingo, and I. Salinas, “RoF spatial mux MIMO-LTE fronthaul system transmission parameter selection with Nelder-Mead optimization algorithm,” in Proceedings of 2018 IEEE/MTT-S International Microwave Symposium - IMS, (2018), pp. 1046–1049.
    [Crossref]
  21. H. S. Sim, W. J. Leong, and C. Y. Chen, “Gradient method with multiple damping for large-scale unconstrained optimization,” Optim. Lett. 13(3), 1–16 (2018).
    [Crossref]
  22. Y. Xu, X. Li, J. Yu, and G. K. Chang, “Simple and reconfigured single-sideband OFDM RoF system,” Opt. Express 24(20), 22830–22835 (2016).
    [Crossref] [PubMed]

2018 (4)

Z. Tu, A. Wen, X. Li, and H. Zhang, “A photonic pre-distortion technique for RF self-interference cancellation,” IEEE Photonics Technol. Lett. 30(14), 1297–1300 (2018).
[Crossref]

Y. Yu, Y. Zhang, L. Huang, and S. Xiao, “Performance analysis of an optical self-interference cancellation system with a directly modulated laser-based demonstration,” Appl. Opt. 57(6), 1284–1291 (2018).
[Crossref] [PubMed]

Y. Zhang, L. Li, S. Xiao, M. Bi, L. Huang, L. Zheng, and W. Hu, “EML-based multi-path self-interference cancellation with adaptive frequency-domain pre-equalization,” IEEE Photonics Technol. Lett. 30(12), 1103–1106 (2018).
[Crossref]

H. S. Sim, W. J. Leong, and C. Y. Chen, “Gradient method with multiple damping for large-scale unconstrained optimization,” Optim. Lett. 13(3), 1–16 (2018).
[Crossref]

2017 (4)

M. P. Chang, E. C. Blow, J. J. Sun, M. Z. Lu, and P. R. Prucnal, “Integrated microwave photonic circuit for self-interference cancellation,” IEEE Trans. Microw. Theory Tech. 65(11), 4493–4501 (2017).
[Crossref]

X. Han, B. Huo, Y. Shao, and M. Zhao, “Optical RF self-interference cancellation by using an integrated dual-parallel MZM,” IEEE Photonics J. 9(2), 1–8 (2017).
[Crossref]

Y. Xiang, G. Li, and S. Pan, “Ultrawideband optical cancellation of RF interference with phase change,” Opt. Express 25(18), 21259–21264 (2017).
[Crossref] [PubMed]

J. J. Sun, M. P. Chang, and P. R. Prucnal, “Demonstration of over-the-air RF self-interference cancellation using an optical system,” IEEE Photonics Technol. Lett. 29(4), 397–400 (2017).
[Crossref]

2016 (2)

2015 (4)

Z. Zhang, X. Chai, K. Long, A. V. Vasilakos, and L. Hanzo, “Full duplex techniques for 5G networks: self-interference cancellation, protocol design, and relay selection,” IEEE Commun. Mag. 53(5), 128–137 (2015).
[Crossref]

G. Liu, F. R. Yu, H. Ji, V. C. M. Leung, and X. Li, “In-band full-duplex relaying: A survey, research issues and challenges,” IEEE Comm. Surv. and Tutor. 17(2), 500–524 (2015).
[Crossref]

D. Kim, H. Lee, and D. Hong, “A survey of in-band full-duplex transmission: From the perspective of PHY and MAC layers,” IEEE Comm. Surv. and Tutor. 17(4), 2017–2046 (2015).
[Crossref]

Y. Zhang, S. Xiao, H. Feng, L. Zhang, Z. Zhou, and W. Hu, “Self-interference cancellation using dual-drive Mach-Zehnder modulator for in-band full-duplex radio-over-fiber system,” Opt. Express 23(26), 33205–33213 (2015).
[Crossref] [PubMed]

2014 (3)

A. Sabharwal, P. Schniter, D. Guo, D. W. Bliss, S. Rangarajan, and R. Wichman, “In-band full-duplex wireless: Challenges and opportunities,” IEEE J. Sel. Areas Comm. 32(9), 1637–1652 (2014).
[Crossref]

Q. Long and C. Wu, “A hybrid method combining genetic algorithm and Hooke-Jeeves method for constrained global optimization,” J. Ind. Manage. Optim. 10(4), 1279–1296 (2014).
[Crossref]

Q. Zhou, H. Feng, G. Scott, and M. P. Fok, “Wideband co-site interference cancellation based on hybrid electrical and optical techniques,” Opt. Lett. 39(22), 6537–6540 (2014).
[Crossref] [PubMed]

2013 (1)

M. P. Chang, M. Fok, A. Hofmaier, and P. R. Prucnal, “Optical analog self-interference cancellation using electro-absorption modulators,” IEEE Microw. Wirel. Compon. Lett. 23(2), 99–101 (2013).
[Crossref]

2009 (2)

P. A. Gamage, A. Nirmalathas, C. Lim, D. Novak, and R. Waterhouse, “Design and analysis of digitized RF over-fiber links,” J. Lightwave Technol. 27(12), 2052–2061 (2009).
[Crossref]

J. Suarez, K. Kravtsov, and P. R. Prucnal, “Incoherent method of optical interference cancellation for radio-frequency communications,” IEEE J. Quantum Electron. 45(4), 402–408 (2009).
[Crossref]

Bi, M.

Y. Zhang, L. Li, S. Xiao, M. Bi, L. Huang, L. Zheng, and W. Hu, “EML-based multi-path self-interference cancellation with adaptive frequency-domain pre-equalization,” IEEE Photonics Technol. Lett. 30(12), 1103–1106 (2018).
[Crossref]

Y. Zhang, S. Xiao, Y. Yu, C. Chen, M. Bi, L. Liu, L. Zhang, and W. Hu, “Experimental study of wideband in-band full-duplex communication based on optical self-interference cancellation,” Opt. Express 24(26), 30139–30148 (2016).
[Crossref] [PubMed]

Bliss, D. W.

A. Sabharwal, P. Schniter, D. Guo, D. W. Bliss, S. Rangarajan, and R. Wichman, “In-band full-duplex wireless: Challenges and opportunities,” IEEE J. Sel. Areas Comm. 32(9), 1637–1652 (2014).
[Crossref]

Blow, E. C.

M. P. Chang, E. C. Blow, J. J. Sun, M. Z. Lu, and P. R. Prucnal, “Integrated microwave photonic circuit for self-interference cancellation,” IEEE Trans. Microw. Theory Tech. 65(11), 4493–4501 (2017).
[Crossref]

Carro, P. L.

C. Mateo, P. L. Carro, P. Garcia-Ducar, J. de Mingo, and I. Salinas, “RoF spatial mux MIMO-LTE fronthaul system transmission parameter selection with Nelder-Mead optimization algorithm,” in Proceedings of 2018 IEEE/MTT-S International Microwave Symposium - IMS, (2018), pp. 1046–1049.
[Crossref]

Chai, X.

Z. Zhang, X. Chai, K. Long, A. V. Vasilakos, and L. Hanzo, “Full duplex techniques for 5G networks: self-interference cancellation, protocol design, and relay selection,” IEEE Commun. Mag. 53(5), 128–137 (2015).
[Crossref]

Chang, G. K.

Chang, M. P.

J. J. Sun, M. P. Chang, and P. R. Prucnal, “Demonstration of over-the-air RF self-interference cancellation using an optical system,” IEEE Photonics Technol. Lett. 29(4), 397–400 (2017).
[Crossref]

M. P. Chang, E. C. Blow, J. J. Sun, M. Z. Lu, and P. R. Prucnal, “Integrated microwave photonic circuit for self-interference cancellation,” IEEE Trans. Microw. Theory Tech. 65(11), 4493–4501 (2017).
[Crossref]

M. P. Chang, M. Fok, A. Hofmaier, and P. R. Prucnal, “Optical analog self-interference cancellation using electro-absorption modulators,” IEEE Microw. Wirel. Compon. Lett. 23(2), 99–101 (2013).
[Crossref]

Chen, C.

Chen, C. Y.

H. S. Sim, W. J. Leong, and C. Y. Chen, “Gradient method with multiple damping for large-scale unconstrained optimization,” Optim. Lett. 13(3), 1–16 (2018).
[Crossref]

de Mingo, J.

C. Mateo, P. L. Carro, P. Garcia-Ducar, J. de Mingo, and I. Salinas, “RoF spatial mux MIMO-LTE fronthaul system transmission parameter selection with Nelder-Mead optimization algorithm,” in Proceedings of 2018 IEEE/MTT-S International Microwave Symposium - IMS, (2018), pp. 1046–1049.
[Crossref]

Feng, H.

Fok, M.

M. P. Chang, M. Fok, A. Hofmaier, and P. R. Prucnal, “Optical analog self-interference cancellation using electro-absorption modulators,” IEEE Microw. Wirel. Compon. Lett. 23(2), 99–101 (2013).
[Crossref]

Fok, M. P.

Gamage, P. A.

Garcia-Ducar, P.

C. Mateo, P. L. Carro, P. Garcia-Ducar, J. de Mingo, and I. Salinas, “RoF spatial mux MIMO-LTE fronthaul system transmission parameter selection with Nelder-Mead optimization algorithm,” in Proceedings of 2018 IEEE/MTT-S International Microwave Symposium - IMS, (2018), pp. 1046–1049.
[Crossref]

Guo, D.

A. Sabharwal, P. Schniter, D. Guo, D. W. Bliss, S. Rangarajan, and R. Wichman, “In-band full-duplex wireless: Challenges and opportunities,” IEEE J. Sel. Areas Comm. 32(9), 1637–1652 (2014).
[Crossref]

Han, X.

X. Han, B. Huo, Y. Shao, and M. Zhao, “Optical RF self-interference cancellation by using an integrated dual-parallel MZM,” IEEE Photonics J. 9(2), 1–8 (2017).
[Crossref]

Hanzo, L.

Z. Zhang, X. Chai, K. Long, A. V. Vasilakos, and L. Hanzo, “Full duplex techniques for 5G networks: self-interference cancellation, protocol design, and relay selection,” IEEE Commun. Mag. 53(5), 128–137 (2015).
[Crossref]

Hofmaier, A.

M. P. Chang, M. Fok, A. Hofmaier, and P. R. Prucnal, “Optical analog self-interference cancellation using electro-absorption modulators,” IEEE Microw. Wirel. Compon. Lett. 23(2), 99–101 (2013).
[Crossref]

Hong, D.

D. Kim, H. Lee, and D. Hong, “A survey of in-band full-duplex transmission: From the perspective of PHY and MAC layers,” IEEE Comm. Surv. and Tutor. 17(4), 2017–2046 (2015).
[Crossref]

Hu, W.

Huang, L.

Y. Zhang, L. Li, S. Xiao, M. Bi, L. Huang, L. Zheng, and W. Hu, “EML-based multi-path self-interference cancellation with adaptive frequency-domain pre-equalization,” IEEE Photonics Technol. Lett. 30(12), 1103–1106 (2018).
[Crossref]

Y. Yu, Y. Zhang, L. Huang, and S. Xiao, “Performance analysis of an optical self-interference cancellation system with a directly modulated laser-based demonstration,” Appl. Opt. 57(6), 1284–1291 (2018).
[Crossref] [PubMed]

Huo, B.

X. Han, B. Huo, Y. Shao, and M. Zhao, “Optical RF self-interference cancellation by using an integrated dual-parallel MZM,” IEEE Photonics J. 9(2), 1–8 (2017).
[Crossref]

Ji, H.

G. Liu, F. R. Yu, H. Ji, V. C. M. Leung, and X. Li, “In-band full-duplex relaying: A survey, research issues and challenges,” IEEE Comm. Surv. and Tutor. 17(2), 500–524 (2015).
[Crossref]

Kim, D.

D. Kim, H. Lee, and D. Hong, “A survey of in-band full-duplex transmission: From the perspective of PHY and MAC layers,” IEEE Comm. Surv. and Tutor. 17(4), 2017–2046 (2015).
[Crossref]

Kravtsov, K.

J. Suarez, K. Kravtsov, and P. R. Prucnal, “Incoherent method of optical interference cancellation for radio-frequency communications,” IEEE J. Quantum Electron. 45(4), 402–408 (2009).
[Crossref]

Lee, H.

D. Kim, H. Lee, and D. Hong, “A survey of in-band full-duplex transmission: From the perspective of PHY and MAC layers,” IEEE Comm. Surv. and Tutor. 17(4), 2017–2046 (2015).
[Crossref]

Leong, W. J.

H. S. Sim, W. J. Leong, and C. Y. Chen, “Gradient method with multiple damping for large-scale unconstrained optimization,” Optim. Lett. 13(3), 1–16 (2018).
[Crossref]

Leung, V. C. M.

G. Liu, F. R. Yu, H. Ji, V. C. M. Leung, and X. Li, “In-band full-duplex relaying: A survey, research issues and challenges,” IEEE Comm. Surv. and Tutor. 17(2), 500–524 (2015).
[Crossref]

Li, G.

Li, L.

Y. Zhang, L. Li, S. Xiao, M. Bi, L. Huang, L. Zheng, and W. Hu, “EML-based multi-path self-interference cancellation with adaptive frequency-domain pre-equalization,” IEEE Photonics Technol. Lett. 30(12), 1103–1106 (2018).
[Crossref]

Li, X.

Z. Tu, A. Wen, X. Li, and H. Zhang, “A photonic pre-distortion technique for RF self-interference cancellation,” IEEE Photonics Technol. Lett. 30(14), 1297–1300 (2018).
[Crossref]

Y. Xu, X. Li, J. Yu, and G. K. Chang, “Simple and reconfigured single-sideband OFDM RoF system,” Opt. Express 24(20), 22830–22835 (2016).
[Crossref] [PubMed]

G. Liu, F. R. Yu, H. Ji, V. C. M. Leung, and X. Li, “In-band full-duplex relaying: A survey, research issues and challenges,” IEEE Comm. Surv. and Tutor. 17(2), 500–524 (2015).
[Crossref]

Lim, C.

Liu, G.

G. Liu, F. R. Yu, H. Ji, V. C. M. Leung, and X. Li, “In-band full-duplex relaying: A survey, research issues and challenges,” IEEE Comm. Surv. and Tutor. 17(2), 500–524 (2015).
[Crossref]

Liu, L.

Long, K.

Z. Zhang, X. Chai, K. Long, A. V. Vasilakos, and L. Hanzo, “Full duplex techniques for 5G networks: self-interference cancellation, protocol design, and relay selection,” IEEE Commun. Mag. 53(5), 128–137 (2015).
[Crossref]

Long, Q.

Q. Long and C. Wu, “A hybrid method combining genetic algorithm and Hooke-Jeeves method for constrained global optimization,” J. Ind. Manage. Optim. 10(4), 1279–1296 (2014).
[Crossref]

Lu, M. Z.

M. P. Chang, E. C. Blow, J. J. Sun, M. Z. Lu, and P. R. Prucnal, “Integrated microwave photonic circuit for self-interference cancellation,” IEEE Trans. Microw. Theory Tech. 65(11), 4493–4501 (2017).
[Crossref]

Mateo, C.

C. Mateo, P. L. Carro, P. Garcia-Ducar, J. de Mingo, and I. Salinas, “RoF spatial mux MIMO-LTE fronthaul system transmission parameter selection with Nelder-Mead optimization algorithm,” in Proceedings of 2018 IEEE/MTT-S International Microwave Symposium - IMS, (2018), pp. 1046–1049.
[Crossref]

Nirmalathas, A.

Novak, D.

Pan, S.

Prucnal, P. R.

J. J. Sun, M. P. Chang, and P. R. Prucnal, “Demonstration of over-the-air RF self-interference cancellation using an optical system,” IEEE Photonics Technol. Lett. 29(4), 397–400 (2017).
[Crossref]

M. P. Chang, E. C. Blow, J. J. Sun, M. Z. Lu, and P. R. Prucnal, “Integrated microwave photonic circuit for self-interference cancellation,” IEEE Trans. Microw. Theory Tech. 65(11), 4493–4501 (2017).
[Crossref]

M. P. Chang, M. Fok, A. Hofmaier, and P. R. Prucnal, “Optical analog self-interference cancellation using electro-absorption modulators,” IEEE Microw. Wirel. Compon. Lett. 23(2), 99–101 (2013).
[Crossref]

J. Suarez, K. Kravtsov, and P. R. Prucnal, “Incoherent method of optical interference cancellation for radio-frequency communications,” IEEE J. Quantum Electron. 45(4), 402–408 (2009).
[Crossref]

Rangarajan, S.

A. Sabharwal, P. Schniter, D. Guo, D. W. Bliss, S. Rangarajan, and R. Wichman, “In-band full-duplex wireless: Challenges and opportunities,” IEEE J. Sel. Areas Comm. 32(9), 1637–1652 (2014).
[Crossref]

Sabharwal, A.

A. Sabharwal, P. Schniter, D. Guo, D. W. Bliss, S. Rangarajan, and R. Wichman, “In-band full-duplex wireless: Challenges and opportunities,” IEEE J. Sel. Areas Comm. 32(9), 1637–1652 (2014).
[Crossref]

Salinas, I.

C. Mateo, P. L. Carro, P. Garcia-Ducar, J. de Mingo, and I. Salinas, “RoF spatial mux MIMO-LTE fronthaul system transmission parameter selection with Nelder-Mead optimization algorithm,” in Proceedings of 2018 IEEE/MTT-S International Microwave Symposium - IMS, (2018), pp. 1046–1049.
[Crossref]

Schniter, P.

A. Sabharwal, P. Schniter, D. Guo, D. W. Bliss, S. Rangarajan, and R. Wichman, “In-band full-duplex wireless: Challenges and opportunities,” IEEE J. Sel. Areas Comm. 32(9), 1637–1652 (2014).
[Crossref]

Scott, G.

Shao, Y.

X. Han, B. Huo, Y. Shao, and M. Zhao, “Optical RF self-interference cancellation by using an integrated dual-parallel MZM,” IEEE Photonics J. 9(2), 1–8 (2017).
[Crossref]

Sim, H. S.

H. S. Sim, W. J. Leong, and C. Y. Chen, “Gradient method with multiple damping for large-scale unconstrained optimization,” Optim. Lett. 13(3), 1–16 (2018).
[Crossref]

Suarez, J.

J. Suarez, K. Kravtsov, and P. R. Prucnal, “Incoherent method of optical interference cancellation for radio-frequency communications,” IEEE J. Quantum Electron. 45(4), 402–408 (2009).
[Crossref]

Sun, J. J.

J. J. Sun, M. P. Chang, and P. R. Prucnal, “Demonstration of over-the-air RF self-interference cancellation using an optical system,” IEEE Photonics Technol. Lett. 29(4), 397–400 (2017).
[Crossref]

M. P. Chang, E. C. Blow, J. J. Sun, M. Z. Lu, and P. R. Prucnal, “Integrated microwave photonic circuit for self-interference cancellation,” IEEE Trans. Microw. Theory Tech. 65(11), 4493–4501 (2017).
[Crossref]

Tu, Z.

Z. Tu, A. Wen, X. Li, and H. Zhang, “A photonic pre-distortion technique for RF self-interference cancellation,” IEEE Photonics Technol. Lett. 30(14), 1297–1300 (2018).
[Crossref]

Vasilakos, A. V.

Z. Zhang, X. Chai, K. Long, A. V. Vasilakos, and L. Hanzo, “Full duplex techniques for 5G networks: self-interference cancellation, protocol design, and relay selection,” IEEE Commun. Mag. 53(5), 128–137 (2015).
[Crossref]

Waterhouse, R.

Wen, A.

Z. Tu, A. Wen, X. Li, and H. Zhang, “A photonic pre-distortion technique for RF self-interference cancellation,” IEEE Photonics Technol. Lett. 30(14), 1297–1300 (2018).
[Crossref]

Wichman, R.

A. Sabharwal, P. Schniter, D. Guo, D. W. Bliss, S. Rangarajan, and R. Wichman, “In-band full-duplex wireless: Challenges and opportunities,” IEEE J. Sel. Areas Comm. 32(9), 1637–1652 (2014).
[Crossref]

Wu, C.

Q. Long and C. Wu, “A hybrid method combining genetic algorithm and Hooke-Jeeves method for constrained global optimization,” J. Ind. Manage. Optim. 10(4), 1279–1296 (2014).
[Crossref]

Xiang, Y.

Xiao, S.

Xu, Y.

Yu, F. R.

G. Liu, F. R. Yu, H. Ji, V. C. M. Leung, and X. Li, “In-band full-duplex relaying: A survey, research issues and challenges,” IEEE Comm. Surv. and Tutor. 17(2), 500–524 (2015).
[Crossref]

Yu, J.

Yu, Y.

Zhang, H.

Z. Tu, A. Wen, X. Li, and H. Zhang, “A photonic pre-distortion technique for RF self-interference cancellation,” IEEE Photonics Technol. Lett. 30(14), 1297–1300 (2018).
[Crossref]

Zhang, L.

Zhang, Y.

Zhang, Z.

Z. Zhang, X. Chai, K. Long, A. V. Vasilakos, and L. Hanzo, “Full duplex techniques for 5G networks: self-interference cancellation, protocol design, and relay selection,” IEEE Commun. Mag. 53(5), 128–137 (2015).
[Crossref]

Zhao, M.

X. Han, B. Huo, Y. Shao, and M. Zhao, “Optical RF self-interference cancellation by using an integrated dual-parallel MZM,” IEEE Photonics J. 9(2), 1–8 (2017).
[Crossref]

Zheng, L.

Y. Zhang, L. Li, S. Xiao, M. Bi, L. Huang, L. Zheng, and W. Hu, “EML-based multi-path self-interference cancellation with adaptive frequency-domain pre-equalization,” IEEE Photonics Technol. Lett. 30(12), 1103–1106 (2018).
[Crossref]

Zhou, Q.

Zhou, Z.

Appl. Opt. (1)

IEEE Comm. Surv. and Tutor. (2)

G. Liu, F. R. Yu, H. Ji, V. C. M. Leung, and X. Li, “In-band full-duplex relaying: A survey, research issues and challenges,” IEEE Comm. Surv. and Tutor. 17(2), 500–524 (2015).
[Crossref]

D. Kim, H. Lee, and D. Hong, “A survey of in-band full-duplex transmission: From the perspective of PHY and MAC layers,” IEEE Comm. Surv. and Tutor. 17(4), 2017–2046 (2015).
[Crossref]

IEEE Commun. Mag. (1)

Z. Zhang, X. Chai, K. Long, A. V. Vasilakos, and L. Hanzo, “Full duplex techniques for 5G networks: self-interference cancellation, protocol design, and relay selection,” IEEE Commun. Mag. 53(5), 128–137 (2015).
[Crossref]

IEEE J. Quantum Electron. (1)

J. Suarez, K. Kravtsov, and P. R. Prucnal, “Incoherent method of optical interference cancellation for radio-frequency communications,” IEEE J. Quantum Electron. 45(4), 402–408 (2009).
[Crossref]

IEEE J. Sel. Areas Comm. (1)

A. Sabharwal, P. Schniter, D. Guo, D. W. Bliss, S. Rangarajan, and R. Wichman, “In-band full-duplex wireless: Challenges and opportunities,” IEEE J. Sel. Areas Comm. 32(9), 1637–1652 (2014).
[Crossref]

IEEE Microw. Wirel. Compon. Lett. (1)

M. P. Chang, M. Fok, A. Hofmaier, and P. R. Prucnal, “Optical analog self-interference cancellation using electro-absorption modulators,” IEEE Microw. Wirel. Compon. Lett. 23(2), 99–101 (2013).
[Crossref]

IEEE Photonics J. (1)

X. Han, B. Huo, Y. Shao, and M. Zhao, “Optical RF self-interference cancellation by using an integrated dual-parallel MZM,” IEEE Photonics J. 9(2), 1–8 (2017).
[Crossref]

IEEE Photonics Technol. Lett. (3)

Y. Zhang, L. Li, S. Xiao, M. Bi, L. Huang, L. Zheng, and W. Hu, “EML-based multi-path self-interference cancellation with adaptive frequency-domain pre-equalization,” IEEE Photonics Technol. Lett. 30(12), 1103–1106 (2018).
[Crossref]

Z. Tu, A. Wen, X. Li, and H. Zhang, “A photonic pre-distortion technique for RF self-interference cancellation,” IEEE Photonics Technol. Lett. 30(14), 1297–1300 (2018).
[Crossref]

J. J. Sun, M. P. Chang, and P. R. Prucnal, “Demonstration of over-the-air RF self-interference cancellation using an optical system,” IEEE Photonics Technol. Lett. 29(4), 397–400 (2017).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

M. P. Chang, E. C. Blow, J. J. Sun, M. Z. Lu, and P. R. Prucnal, “Integrated microwave photonic circuit for self-interference cancellation,” IEEE Trans. Microw. Theory Tech. 65(11), 4493–4501 (2017).
[Crossref]

J. Ind. Manage. Optim. (1)

Q. Long and C. Wu, “A hybrid method combining genetic algorithm and Hooke-Jeeves method for constrained global optimization,” J. Ind. Manage. Optim. 10(4), 1279–1296 (2014).
[Crossref]

J. Lightwave Technol. (1)

Opt. Express (4)

Opt. Lett. (1)

Optim. Lett. (1)

H. S. Sim, W. J. Leong, and C. Y. Chen, “Gradient method with multiple damping for large-scale unconstrained optimization,” Optim. Lett. 13(3), 1–16 (2018).
[Crossref]

Other (2)

L. Geng, T. Zhang, Z. Zeng, and X. Han, “An efficient joint tx-rx beam search scheme in mmwave massive MIMO systems (invited paper),” in Proceedings of Wireless Internet, C. Li and S. Mao, eds. (Springer International Publishing, Cham,2018), pp. 64–74.

C. Mateo, P. L. Carro, P. Garcia-Ducar, J. de Mingo, and I. Salinas, “RoF spatial mux MIMO-LTE fronthaul system transmission parameter selection with Nelder-Mead optimization algorithm,” in Proceedings of 2018 IEEE/MTT-S International Microwave Symposium - IMS, (2018), pp. 1046–1049.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Architecture of adaptive OSIC system. SI: Self-interference.
Fig. 2
Fig. 2 Diagram of exploration and convergence paths in Regular Triangle Algorithm.
Fig. 3
Fig. 3 Experiment platform of adaptive OSIC.
Fig. 4
Fig. 4 The number of samples’ comparison of four algorithms.
Fig. 5
Fig. 5 The convergence process of four methods from different start distance points (a) 10, (b) 30.
Fig. 6
Fig. 6 The convergence path of four methods from the same start point as in Fig. 5(a) in the coordinate system.
Fig. 7
Fig. 7 Sample probability distribution of four algorithms at different start distances: (a) 10, (b) 15, (c) 20, (d) 30.

Tables (2)

Tables Icon

Table 1 Parameters for Experiment Set Up

Tables Icon

Table 2 Algorithm 1: regular triangle algorithm

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P r (a,t)=[ 1+ ( a ) 2 2acos( Ω(t ) ]*P,
min P r =H(α,τ) s.t. α 0 α α 1 τ 0 τ τ 1 .

Metrics