Abstract

Resonance interaction between a localized electromagnetic field and excited states in molecules paves the way to control fundamental properties of a matter. In this study, we encapsulated organic molecules with relatively low unoriented dipole moments in the polymer matrix, placed them in tunable optical microcavity and realized, for the first time, controllable modification of the broad photoluminescence (PL) emission of these molecules in strong coupling regime at room temperature. Notably, while in most previous studies it was reported that the single mode dominates in the PL signal (radiation of the so-called branch of the lower polariton), here we report on the observation of two distinct PL peaks, evolution of which has been followed as the microcavity mode is detuned from the excitonic resonance. A significant Rabi splitting estimated from the modified PL spectra was as large as 225 meV. The developed approach can be used both in fundamental research of resonant light-mater coupling and its practical applications in sensing and development of coherent spontaneous emission sources using a combination of carefully designed microcavity with a wide variety of organic molecules.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Strong coupling of surface plasmon polaritons and ensembles of dye molecules

T. U. Tumkur, G. Zhu, and M. A. Noginov
Opt. Express 24(4) 3921-3928 (2016)

Quantum plasmonics: new opportunity in fundamental and applied photonics

Da Xu, Xiao Xiong, Lin Wu, Xi-Feng Ren, Ching Eng Png, Guang-Can Guo, Qihuang Gong, and Yun-Feng Xiao
Adv. Opt. Photon. 10(4) 703-756 (2018)

Strong coupling between a dipole emitter and localized plasmons: enhancement by sharp silver tips

Stefania D’Agostino, Filippo Alpeggiani, and Lucio Claudio Andreani
Opt. Express 21(23) 27602-27610 (2013)

References

  • View by:
  • |
  • |
  • |

  1. H. J. Kimble, “Strong interactions of single atoms and photons in cavity QED,” Phys. Scr. T76(1), 127–137 (1998).
    [Crossref]
  2. J. McKeever, A. Boca, A. D. Boozer, J. R. Buck, and H. J. Kimble, “Experimental realization of a one-atom laser in the regime of strong coupling,” Nature 425(6955), 268–271 (2003).
    [Crossref] [PubMed]
  3. D. S. Dovzhenko, S. V. Ryabchuk, Y. P. Rakovich, and I. R. Nabiev, “Light-matter interaction in the strong coupling regime: configurations, conditions, and applications,” Nanoscale 10(8), 3589–3605 (2018).
    [Crossref] [PubMed]
  4. P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78(1), 013901 (2015).
    [Crossref] [PubMed]
  5. G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2(2), 81–90 (2006).
    [Crossref]
  6. S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1(8), 449–458 (2007).
    [Crossref]
  7. B. Lee, J. Park, G. H. Han, H. S. Ee, C. H. Naylor, W. Liu, A. T. C. Johnson, and R. Agarwal, “Fano resonance and spectrally modified photoluminescence enhancement in monolayer MoS2 integrated with plasmonic nanoantenna array,” Nano Lett. 15(5), 3646–3653 (2015).
    [Crossref] [PubMed]
  8. D. S. Dovzhenko, E. V. Osipov, I. L. Martynov, P. A. Linkov, and A. A. Chistyakov, “Enhancement of spontaneous emission from CdSe/CdS/ZnS quantum dots at the edge of the photonic band gap in a porous silicon Bragg mirror,” Phys. Procedia 73, 126–130 (2015).
    [Crossref]
  9. V. A. Krivenkov, S. A. Goncharov, I. Nabiev, and Y. P. Rakovich, “Induced transparency in plasmon–exciton nanostructures for sensing applications,” Laser Photonics Rev., 1800176 (2018).
  10. E. M. Purcell, “Spontaneous transition probabilities in radio-frequency spectroscopy,” Phys. Rev. 69, 681 (1946).
  11. M. Pelton, “Modified spontaneous emission in nanophotonic structures,” Nat. Photonics 9(7), 427–435 (2015).
    [Crossref]
  12. X. W. Yuan, L. Shi, Q. Wang, C. Q. Chen, X. H. Liu, L. X. Sun, B. Zhang, J. Zi, and W. Lu, “Spontaneous emission modulation of colloidal quantum dots via efficient coupling with hybrid plasmonic photonic crystal,” Opt. Express 22(19), 23473–23479 (2014).
    [Crossref] [PubMed]
  13. C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69(23), 3314–3317 (1992).
    [Crossref] [PubMed]
  14. A. Shalabney, J. George, H. Hiura, J. A. Hutchison, C. Genet, P. Hellwig, and T. W. Ebbesen, “Enhanced Raman scattering from vibro-polariton hybrid states,” Angew. Chem. Int. Ed. Engl. 54(27), 7971–7975 (2015).
    [Crossref] [PubMed]
  15. A. Thomas, J. George, A. Shalabney, M. Dryzhakov, S. J. Varma, J. Moran, T. Chervy, X. Zhong, E. Devaux, C. Genet, J. A. Hutchison, and T. W. Ebbesen, “Ground-state chemical reactivity under vibrational coupling to the vacuum electromagnetic field,” Angew. Chem. Int. Ed. Engl. 55(38), 11462–11466 (2016).
    [Crossref] [PubMed]
  16. E. Orgiu, J. George, J. A. Hutchison, E. Devaux, J. F. Dayen, B. Doudin, F. Stellacci, C. Genet, J. Schachenmayer, C. Genes, G. Pupillo, P. Samorì, and T. W. Ebbesen, “Conductivity in organic semiconductors hybridized with the vacuum field,” Nat. Mater. 14(11), 1123–1129 (2015).
    [Crossref] [PubMed]
  17. G. G. Rozenman, K. Akulov, A. Golombek, and T. Schwartz, “Long-range transport of organic exciton-polaritons revealed by ultrafast microscopy,” ACS Photonics 5(1), 105–110 (2017).
    [Crossref]
  18. X. Zhong, T. Chervy, L. Zhang, A. Thomas, J. George, C. Genet, J. A. Hutchison, and T. W. Ebbesen, “Energy transfer between spatially separated entangled molecules,” Angew. Chem. Int. Ed. Engl. 56(31), 9034–9038 (2017).
    [Crossref] [PubMed]
  19. X. Zhong, T. Chervy, S. Wang, J. George, A. Thomas, J. A. Hutchison, E. Devaux, C. Genet, and T. W. Ebbesen, “Non-radiative energy transfer mediated by hybrid light-matter states,” Angew. Chem. 128(21), 6310–6314 (2016).
    [Crossref] [PubMed]
  20. H. Deng, G. Weihs, D. Snoke, J. Bloch, and Y. Yamamoto, “Polariton lasing vs. photon lasing in a semiconductor microcavity,” Proc. Natl. Acad. Sci. U.S.A. 100(26), 15318–15323 (2003).
    [Crossref] [PubMed]
  21. T. Guillet, M. Mexis, J. Levrat, G. Rossbach, C. Brimont, T. Bretagnon, B. Gil, R. Butté, N. Grandjean, L. Orosz, F. Réveret, J. Leymarie, J. Zúñiga-Pérez, M. Leroux, F. Semond, and S. Bouchoule, “Polariton lasing in a hybrid bulk ZnO microcavity,” Appl. Phys. Lett. 99(16), 161104 (2011).
    [Crossref]
  22. M. Ramezani, A. Halpin, A. I. Fernández-Domínguez, J. Feist, S. R. K. Rodriguez, F. J. Garcia-Vidal, and J. G. Rivas, “Plasmon-exciton-polariton lasing,” Optica 4(1), 31–37 (2017).
    [Crossref]
  23. A. Konrad, A. M. Kern, M. Brecht, and A. J. Meixner, “Strong and coherent coupling of a plasmonic nanoparticle to a subwavelength Fabry–Pérot resonator,” Nano Lett. 15(7), 4423–4428 (2015).
    [Crossref] [PubMed]
  24. A. Chizhik, F. Schleifenbaum, R. Gutbrod, A. Chizhik, D. Khoptyar, A. J. Meixner, and J. Enderlein, “Tuning the fluorescence emission spectra of a single molecule with a variable optical subwavelength metal microcavity,” Phys. Rev. Lett. 102(7), 073002 (2009).
    [Crossref] [PubMed]
  25. K. E. Mochalov, I. S. Vaskan, D. S. Dovzhenko, Y. P. Rakovich, and I. Nabiev, “A versatile tunable microcavity for investigation of light-matter interaction,” Rev. Sci. Instrum. 89(5), 053105 (2018).
    [Crossref] [PubMed]
  26. B. M. Garraway, “The Dicke model in quantum optics: Dicke model revisited,” Philos Trans A Math Phys Eng Sci 369(1939), 1137–1155 (2011).
    [Crossref] [PubMed]
  27. G. S. Agarwal, “Vacuum-Field Rabi Splittings in Microwave Absorption by Rydberg Atoms in a Cavity,” Phys. Rev. Lett. 53(18), 1732–1734 (1984).
    [Crossref]
  28. C. Würth, M. G. González, R. Niessner, U. Panne, C. Haisch, and U. R. Genger, “Determination of the absolute fluorescence quantum yield of rhodamine 6G with optical and photoacoustic methods--providing the basis for fluorescence quantum yield standards,” Talanta 90, 30–37 (2012).
    [Crossref] [PubMed]
  29. T. K. Hakala, J. J. Toppari, A. Kuzyk, M. Pettersson, H. Tikkanen, H. Kunttu, and P. Törmä, “Vacuum Rabi splitting and strong-coupling dynamics for surface-plasmon polaritons and rhodamine 6G molecules,” Phys. Rev. Lett. 103(5), 053602 (2009).
    [Crossref] [PubMed]
  30. N. I. Cade, T. Ritman-Meer, and D. Richards, “Strong coupling of localized plasmons and molecular excitons in nanostructured silver films,” Phys. Rev. B Condens. Matter Mater. Phys. 79(24), 241404 (2009).
    [Crossref]
  31. P. Vasa, W. Wang, R. Pomraenke, M. Lammers, M. Maiuri, C. Manzoni, G. Cerullo, and C. Lienau, “Real-time observation of ultrafast Rabi oscillations between excitons and plasmons in metal nanostructures with J-aggregates,” Nat. Photonics 7(2), 128–132 (2013).
    [Crossref]
  32. B. Zhen, S. L. Chua, J. Lee, A. W. Rodriguez, X. Liang, S. G. Johnson, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Enabling enhanced emission and low-threshold lasing of organic molecules using special Fano resonances of macroscopic photonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 110(34), 13711–13716 (2013).
    [Crossref] [PubMed]
  33. R. Sasai, T. Itoh, W. Ohmori, H. Itoh, and M. Kusunoki, “Preparation and characterization of rhodamine 6G/alkyltrimethylammonium/laponite hybrid solid materials with higher emission quantum yield,” J. Phys. Chem. C 113(1), 415–421 (2008).
    [Crossref]
  34. V. Martínez Martínez, F. López Arbeloa, J. Bañuelos Prieto, and I. López Arbeloa, “Characterization of rhodamine 6G aggregates intercalated in solid thin films of laponite clay. 2 Fluorescence spectroscopy,” J. Phys. Chem. B 109(15), 7443–7450 (2005).
    [Crossref] [PubMed]
  35. S. R. K. Rodriguez and J. G. Rivas, “Surface lattice resonances strongly coupled to Rhodamine 6G excitons: tuning the plasmon-exciton-polariton mass and composition,” Opt. Express 21(22), 27411–27421 (2013).
    [Crossref] [PubMed]
  36. K. E. Mochalov, A. A. Chistyakov, D. O. Solovyeva, A. V. Mezin, V. A. Oleinikov, I. S. Vaskan, M. Molinari, I. I. Agapov, I. Nabiev, and A. E. Efimov, “An instrumental approach to combining confocal microspectroscopy and 3D scanning probe nanotomography,” Ultramicroscopy 182, 118–123 (2017).
    [Crossref] [PubMed]
  37. A. E. Efimov, I. I. Agapov, O. I. Agapova, V. A. Oleinikov, A. V. Mezin, M. Molinari, I. Nabiev, and K. E. Mochalov, “A novel design of a scanning probe microscope integrated with an ultramicrotome for serial block-face nanotomography,” Rev. Sci. Instrum. 88(2), 023701 (2017).
    [Crossref] [PubMed]
  38. G. Zengin, T. Gschneidtner, R. Verre, L. Shao, T. J. Antosiewicz, K. Moth-Poulsen, M. Käll, and T. Shegai, “Evaluating conditions for strong coupling between nanoparticle plasmons and organic dyes using scattering and absorption spectroscopy,” J. Phys. Chem. C 120(37), 20588–20596 (2016).
    [Crossref]
  39. D. S. Dovzhenko, I. S. Vaskan, K. E. Mochalov, Y. P. Rakovich, and I. Nabiev, “Spectral and spatial characteristics of the electromagnetic field modes in the tunable optical microcavity cell for the investigation of the “light-matter” hybrid state,” JETP Lett. 109(1), 12–18 (2019).
  40. M. Chapman, M. Mullen, E. Novoa-Ortega, M. Alhasani, J. F. Elman, and W. B. Euler, “Structural evolution of ultrathin films of rhodamine 6G on glass,” J. Phys. Chem. C 120(15), 8289–8297 (2016).
    [Crossref]
  41. V. Agranovich, M. Litinskaia, and D. Lidzey, “Cavity polaritons in microcavities containing disordered organic semiconductors,” Phys. Rev. B Condens. Matter Mater. Phys. 67(8), 085311 (2003).
    [Crossref]
  42. C. Gonzalez-Ballestero, J. Feist, E. Gonzalo Badía, E. Moreno, and F. J. Garcia-Vidal, “Uncoupled dark states can inherit polaritonic properties,” Phys. Rev. Lett. 117(15), 156402 (2016).
    [Crossref] [PubMed]
  43. S. Betzold, S. Herbst, A. A. P. Trichet, J. M. Smith, F. Würthner, S. Höfling, and C. P. Dietrich, “Tunable light–matter hybridization in open organic microcavities,” ACS Photonics 5(1), 90–94 (2018).
    [Crossref]

2019 (1)

D. S. Dovzhenko, I. S. Vaskan, K. E. Mochalov, Y. P. Rakovich, and I. Nabiev, “Spectral and spatial characteristics of the electromagnetic field modes in the tunable optical microcavity cell for the investigation of the “light-matter” hybrid state,” JETP Lett. 109(1), 12–18 (2019).

2018 (3)

K. E. Mochalov, I. S. Vaskan, D. S. Dovzhenko, Y. P. Rakovich, and I. Nabiev, “A versatile tunable microcavity for investigation of light-matter interaction,” Rev. Sci. Instrum. 89(5), 053105 (2018).
[Crossref] [PubMed]

D. S. Dovzhenko, S. V. Ryabchuk, Y. P. Rakovich, and I. R. Nabiev, “Light-matter interaction in the strong coupling regime: configurations, conditions, and applications,” Nanoscale 10(8), 3589–3605 (2018).
[Crossref] [PubMed]

S. Betzold, S. Herbst, A. A. P. Trichet, J. M. Smith, F. Würthner, S. Höfling, and C. P. Dietrich, “Tunable light–matter hybridization in open organic microcavities,” ACS Photonics 5(1), 90–94 (2018).
[Crossref]

2017 (5)

M. Ramezani, A. Halpin, A. I. Fernández-Domínguez, J. Feist, S. R. K. Rodriguez, F. J. Garcia-Vidal, and J. G. Rivas, “Plasmon-exciton-polariton lasing,” Optica 4(1), 31–37 (2017).
[Crossref]

G. G. Rozenman, K. Akulov, A. Golombek, and T. Schwartz, “Long-range transport of organic exciton-polaritons revealed by ultrafast microscopy,” ACS Photonics 5(1), 105–110 (2017).
[Crossref]

X. Zhong, T. Chervy, L. Zhang, A. Thomas, J. George, C. Genet, J. A. Hutchison, and T. W. Ebbesen, “Energy transfer between spatially separated entangled molecules,” Angew. Chem. Int. Ed. Engl. 56(31), 9034–9038 (2017).
[Crossref] [PubMed]

K. E. Mochalov, A. A. Chistyakov, D. O. Solovyeva, A. V. Mezin, V. A. Oleinikov, I. S. Vaskan, M. Molinari, I. I. Agapov, I. Nabiev, and A. E. Efimov, “An instrumental approach to combining confocal microspectroscopy and 3D scanning probe nanotomography,” Ultramicroscopy 182, 118–123 (2017).
[Crossref] [PubMed]

A. E. Efimov, I. I. Agapov, O. I. Agapova, V. A. Oleinikov, A. V. Mezin, M. Molinari, I. Nabiev, and K. E. Mochalov, “A novel design of a scanning probe microscope integrated with an ultramicrotome for serial block-face nanotomography,” Rev. Sci. Instrum. 88(2), 023701 (2017).
[Crossref] [PubMed]

2016 (5)

G. Zengin, T. Gschneidtner, R. Verre, L. Shao, T. J. Antosiewicz, K. Moth-Poulsen, M. Käll, and T. Shegai, “Evaluating conditions for strong coupling between nanoparticle plasmons and organic dyes using scattering and absorption spectroscopy,” J. Phys. Chem. C 120(37), 20588–20596 (2016).
[Crossref]

M. Chapman, M. Mullen, E. Novoa-Ortega, M. Alhasani, J. F. Elman, and W. B. Euler, “Structural evolution of ultrathin films of rhodamine 6G on glass,” J. Phys. Chem. C 120(15), 8289–8297 (2016).
[Crossref]

C. Gonzalez-Ballestero, J. Feist, E. Gonzalo Badía, E. Moreno, and F. J. Garcia-Vidal, “Uncoupled dark states can inherit polaritonic properties,” Phys. Rev. Lett. 117(15), 156402 (2016).
[Crossref] [PubMed]

X. Zhong, T. Chervy, S. Wang, J. George, A. Thomas, J. A. Hutchison, E. Devaux, C. Genet, and T. W. Ebbesen, “Non-radiative energy transfer mediated by hybrid light-matter states,” Angew. Chem. 128(21), 6310–6314 (2016).
[Crossref] [PubMed]

A. Thomas, J. George, A. Shalabney, M. Dryzhakov, S. J. Varma, J. Moran, T. Chervy, X. Zhong, E. Devaux, C. Genet, J. A. Hutchison, and T. W. Ebbesen, “Ground-state chemical reactivity under vibrational coupling to the vacuum electromagnetic field,” Angew. Chem. Int. Ed. Engl. 55(38), 11462–11466 (2016).
[Crossref] [PubMed]

2015 (7)

E. Orgiu, J. George, J. A. Hutchison, E. Devaux, J. F. Dayen, B. Doudin, F. Stellacci, C. Genet, J. Schachenmayer, C. Genes, G. Pupillo, P. Samorì, and T. W. Ebbesen, “Conductivity in organic semiconductors hybridized with the vacuum field,” Nat. Mater. 14(11), 1123–1129 (2015).
[Crossref] [PubMed]

A. Shalabney, J. George, H. Hiura, J. A. Hutchison, C. Genet, P. Hellwig, and T. W. Ebbesen, “Enhanced Raman scattering from vibro-polariton hybrid states,” Angew. Chem. Int. Ed. Engl. 54(27), 7971–7975 (2015).
[Crossref] [PubMed]

P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78(1), 013901 (2015).
[Crossref] [PubMed]

B. Lee, J. Park, G. H. Han, H. S. Ee, C. H. Naylor, W. Liu, A. T. C. Johnson, and R. Agarwal, “Fano resonance and spectrally modified photoluminescence enhancement in monolayer MoS2 integrated with plasmonic nanoantenna array,” Nano Lett. 15(5), 3646–3653 (2015).
[Crossref] [PubMed]

D. S. Dovzhenko, E. V. Osipov, I. L. Martynov, P. A. Linkov, and A. A. Chistyakov, “Enhancement of spontaneous emission from CdSe/CdS/ZnS quantum dots at the edge of the photonic band gap in a porous silicon Bragg mirror,” Phys. Procedia 73, 126–130 (2015).
[Crossref]

M. Pelton, “Modified spontaneous emission in nanophotonic structures,” Nat. Photonics 9(7), 427–435 (2015).
[Crossref]

A. Konrad, A. M. Kern, M. Brecht, and A. J. Meixner, “Strong and coherent coupling of a plasmonic nanoparticle to a subwavelength Fabry–Pérot resonator,” Nano Lett. 15(7), 4423–4428 (2015).
[Crossref] [PubMed]

2014 (1)

2013 (3)

S. R. K. Rodriguez and J. G. Rivas, “Surface lattice resonances strongly coupled to Rhodamine 6G excitons: tuning the plasmon-exciton-polariton mass and composition,” Opt. Express 21(22), 27411–27421 (2013).
[Crossref] [PubMed]

P. Vasa, W. Wang, R. Pomraenke, M. Lammers, M. Maiuri, C. Manzoni, G. Cerullo, and C. Lienau, “Real-time observation of ultrafast Rabi oscillations between excitons and plasmons in metal nanostructures with J-aggregates,” Nat. Photonics 7(2), 128–132 (2013).
[Crossref]

B. Zhen, S. L. Chua, J. Lee, A. W. Rodriguez, X. Liang, S. G. Johnson, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Enabling enhanced emission and low-threshold lasing of organic molecules using special Fano resonances of macroscopic photonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 110(34), 13711–13716 (2013).
[Crossref] [PubMed]

2012 (1)

C. Würth, M. G. González, R. Niessner, U. Panne, C. Haisch, and U. R. Genger, “Determination of the absolute fluorescence quantum yield of rhodamine 6G with optical and photoacoustic methods--providing the basis for fluorescence quantum yield standards,” Talanta 90, 30–37 (2012).
[Crossref] [PubMed]

2011 (2)

T. Guillet, M. Mexis, J. Levrat, G. Rossbach, C. Brimont, T. Bretagnon, B. Gil, R. Butté, N. Grandjean, L. Orosz, F. Réveret, J. Leymarie, J. Zúñiga-Pérez, M. Leroux, F. Semond, and S. Bouchoule, “Polariton lasing in a hybrid bulk ZnO microcavity,” Appl. Phys. Lett. 99(16), 161104 (2011).
[Crossref]

B. M. Garraway, “The Dicke model in quantum optics: Dicke model revisited,” Philos Trans A Math Phys Eng Sci 369(1939), 1137–1155 (2011).
[Crossref] [PubMed]

2009 (3)

A. Chizhik, F. Schleifenbaum, R. Gutbrod, A. Chizhik, D. Khoptyar, A. J. Meixner, and J. Enderlein, “Tuning the fluorescence emission spectra of a single molecule with a variable optical subwavelength metal microcavity,” Phys. Rev. Lett. 102(7), 073002 (2009).
[Crossref] [PubMed]

T. K. Hakala, J. J. Toppari, A. Kuzyk, M. Pettersson, H. Tikkanen, H. Kunttu, and P. Törmä, “Vacuum Rabi splitting and strong-coupling dynamics for surface-plasmon polaritons and rhodamine 6G molecules,” Phys. Rev. Lett. 103(5), 053602 (2009).
[Crossref] [PubMed]

N. I. Cade, T. Ritman-Meer, and D. Richards, “Strong coupling of localized plasmons and molecular excitons in nanostructured silver films,” Phys. Rev. B Condens. Matter Mater. Phys. 79(24), 241404 (2009).
[Crossref]

2008 (1)

R. Sasai, T. Itoh, W. Ohmori, H. Itoh, and M. Kusunoki, “Preparation and characterization of rhodamine 6G/alkyltrimethylammonium/laponite hybrid solid materials with higher emission quantum yield,” J. Phys. Chem. C 113(1), 415–421 (2008).
[Crossref]

2007 (1)

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1(8), 449–458 (2007).
[Crossref]

2006 (1)

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2(2), 81–90 (2006).
[Crossref]

2005 (1)

V. Martínez Martínez, F. López Arbeloa, J. Bañuelos Prieto, and I. López Arbeloa, “Characterization of rhodamine 6G aggregates intercalated in solid thin films of laponite clay. 2 Fluorescence spectroscopy,” J. Phys. Chem. B 109(15), 7443–7450 (2005).
[Crossref] [PubMed]

2003 (3)

V. Agranovich, M. Litinskaia, and D. Lidzey, “Cavity polaritons in microcavities containing disordered organic semiconductors,” Phys. Rev. B Condens. Matter Mater. Phys. 67(8), 085311 (2003).
[Crossref]

J. McKeever, A. Boca, A. D. Boozer, J. R. Buck, and H. J. Kimble, “Experimental realization of a one-atom laser in the regime of strong coupling,” Nature 425(6955), 268–271 (2003).
[Crossref] [PubMed]

H. Deng, G. Weihs, D. Snoke, J. Bloch, and Y. Yamamoto, “Polariton lasing vs. photon lasing in a semiconductor microcavity,” Proc. Natl. Acad. Sci. U.S.A. 100(26), 15318–15323 (2003).
[Crossref] [PubMed]

1998 (1)

H. J. Kimble, “Strong interactions of single atoms and photons in cavity QED,” Phys. Scr. T76(1), 127–137 (1998).
[Crossref]

1992 (1)

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69(23), 3314–3317 (1992).
[Crossref] [PubMed]

1984 (1)

G. S. Agarwal, “Vacuum-Field Rabi Splittings in Microwave Absorption by Rydberg Atoms in a Cavity,” Phys. Rev. Lett. 53(18), 1732–1734 (1984).
[Crossref]

1946 (1)

E. M. Purcell, “Spontaneous transition probabilities in radio-frequency spectroscopy,” Phys. Rev. 69, 681 (1946).

Agapov, I. I.

K. E. Mochalov, A. A. Chistyakov, D. O. Solovyeva, A. V. Mezin, V. A. Oleinikov, I. S. Vaskan, M. Molinari, I. I. Agapov, I. Nabiev, and A. E. Efimov, “An instrumental approach to combining confocal microspectroscopy and 3D scanning probe nanotomography,” Ultramicroscopy 182, 118–123 (2017).
[Crossref] [PubMed]

A. E. Efimov, I. I. Agapov, O. I. Agapova, V. A. Oleinikov, A. V. Mezin, M. Molinari, I. Nabiev, and K. E. Mochalov, “A novel design of a scanning probe microscope integrated with an ultramicrotome for serial block-face nanotomography,” Rev. Sci. Instrum. 88(2), 023701 (2017).
[Crossref] [PubMed]

Agapova, O. I.

A. E. Efimov, I. I. Agapov, O. I. Agapova, V. A. Oleinikov, A. V. Mezin, M. Molinari, I. Nabiev, and K. E. Mochalov, “A novel design of a scanning probe microscope integrated with an ultramicrotome for serial block-face nanotomography,” Rev. Sci. Instrum. 88(2), 023701 (2017).
[Crossref] [PubMed]

Agarwal, G. S.

G. S. Agarwal, “Vacuum-Field Rabi Splittings in Microwave Absorption by Rydberg Atoms in a Cavity,” Phys. Rev. Lett. 53(18), 1732–1734 (1984).
[Crossref]

Agarwal, R.

B. Lee, J. Park, G. H. Han, H. S. Ee, C. H. Naylor, W. Liu, A. T. C. Johnson, and R. Agarwal, “Fano resonance and spectrally modified photoluminescence enhancement in monolayer MoS2 integrated with plasmonic nanoantenna array,” Nano Lett. 15(5), 3646–3653 (2015).
[Crossref] [PubMed]

Agranovich, V.

V. Agranovich, M. Litinskaia, and D. Lidzey, “Cavity polaritons in microcavities containing disordered organic semiconductors,” Phys. Rev. B Condens. Matter Mater. Phys. 67(8), 085311 (2003).
[Crossref]

Akulov, K.

G. G. Rozenman, K. Akulov, A. Golombek, and T. Schwartz, “Long-range transport of organic exciton-polaritons revealed by ultrafast microscopy,” ACS Photonics 5(1), 105–110 (2017).
[Crossref]

Alhasani, M.

M. Chapman, M. Mullen, E. Novoa-Ortega, M. Alhasani, J. F. Elman, and W. B. Euler, “Structural evolution of ultrathin films of rhodamine 6G on glass,” J. Phys. Chem. C 120(15), 8289–8297 (2016).
[Crossref]

Antosiewicz, T. J.

G. Zengin, T. Gschneidtner, R. Verre, L. Shao, T. J. Antosiewicz, K. Moth-Poulsen, M. Käll, and T. Shegai, “Evaluating conditions for strong coupling between nanoparticle plasmons and organic dyes using scattering and absorption spectroscopy,” J. Phys. Chem. C 120(37), 20588–20596 (2016).
[Crossref]

Arakawa, Y.

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69(23), 3314–3317 (1992).
[Crossref] [PubMed]

Asano, T.

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1(8), 449–458 (2007).
[Crossref]

Bañuelos Prieto, J.

V. Martínez Martínez, F. López Arbeloa, J. Bañuelos Prieto, and I. López Arbeloa, “Characterization of rhodamine 6G aggregates intercalated in solid thin films of laponite clay. 2 Fluorescence spectroscopy,” J. Phys. Chem. B 109(15), 7443–7450 (2005).
[Crossref] [PubMed]

Barnes, W. L.

P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78(1), 013901 (2015).
[Crossref] [PubMed]

Betzold, S.

S. Betzold, S. Herbst, A. A. P. Trichet, J. M. Smith, F. Würthner, S. Höfling, and C. P. Dietrich, “Tunable light–matter hybridization in open organic microcavities,” ACS Photonics 5(1), 90–94 (2018).
[Crossref]

Bloch, J.

H. Deng, G. Weihs, D. Snoke, J. Bloch, and Y. Yamamoto, “Polariton lasing vs. photon lasing in a semiconductor microcavity,” Proc. Natl. Acad. Sci. U.S.A. 100(26), 15318–15323 (2003).
[Crossref] [PubMed]

Boca, A.

J. McKeever, A. Boca, A. D. Boozer, J. R. Buck, and H. J. Kimble, “Experimental realization of a one-atom laser in the regime of strong coupling,” Nature 425(6955), 268–271 (2003).
[Crossref] [PubMed]

Boozer, A. D.

J. McKeever, A. Boca, A. D. Boozer, J. R. Buck, and H. J. Kimble, “Experimental realization of a one-atom laser in the regime of strong coupling,” Nature 425(6955), 268–271 (2003).
[Crossref] [PubMed]

Bouchoule, S.

T. Guillet, M. Mexis, J. Levrat, G. Rossbach, C. Brimont, T. Bretagnon, B. Gil, R. Butté, N. Grandjean, L. Orosz, F. Réveret, J. Leymarie, J. Zúñiga-Pérez, M. Leroux, F. Semond, and S. Bouchoule, “Polariton lasing in a hybrid bulk ZnO microcavity,” Appl. Phys. Lett. 99(16), 161104 (2011).
[Crossref]

Brecht, M.

A. Konrad, A. M. Kern, M. Brecht, and A. J. Meixner, “Strong and coherent coupling of a plasmonic nanoparticle to a subwavelength Fabry–Pérot resonator,” Nano Lett. 15(7), 4423–4428 (2015).
[Crossref] [PubMed]

Bretagnon, T.

T. Guillet, M. Mexis, J. Levrat, G. Rossbach, C. Brimont, T. Bretagnon, B. Gil, R. Butté, N. Grandjean, L. Orosz, F. Réveret, J. Leymarie, J. Zúñiga-Pérez, M. Leroux, F. Semond, and S. Bouchoule, “Polariton lasing in a hybrid bulk ZnO microcavity,” Appl. Phys. Lett. 99(16), 161104 (2011).
[Crossref]

Brimont, C.

T. Guillet, M. Mexis, J. Levrat, G. Rossbach, C. Brimont, T. Bretagnon, B. Gil, R. Butté, N. Grandjean, L. Orosz, F. Réveret, J. Leymarie, J. Zúñiga-Pérez, M. Leroux, F. Semond, and S. Bouchoule, “Polariton lasing in a hybrid bulk ZnO microcavity,” Appl. Phys. Lett. 99(16), 161104 (2011).
[Crossref]

Buck, J. R.

J. McKeever, A. Boca, A. D. Boozer, J. R. Buck, and H. J. Kimble, “Experimental realization of a one-atom laser in the regime of strong coupling,” Nature 425(6955), 268–271 (2003).
[Crossref] [PubMed]

Butté, R.

T. Guillet, M. Mexis, J. Levrat, G. Rossbach, C. Brimont, T. Bretagnon, B. Gil, R. Butté, N. Grandjean, L. Orosz, F. Réveret, J. Leymarie, J. Zúñiga-Pérez, M. Leroux, F. Semond, and S. Bouchoule, “Polariton lasing in a hybrid bulk ZnO microcavity,” Appl. Phys. Lett. 99(16), 161104 (2011).
[Crossref]

Cade, N. I.

N. I. Cade, T. Ritman-Meer, and D. Richards, “Strong coupling of localized plasmons and molecular excitons in nanostructured silver films,” Phys. Rev. B Condens. Matter Mater. Phys. 79(24), 241404 (2009).
[Crossref]

Cerullo, G.

P. Vasa, W. Wang, R. Pomraenke, M. Lammers, M. Maiuri, C. Manzoni, G. Cerullo, and C. Lienau, “Real-time observation of ultrafast Rabi oscillations between excitons and plasmons in metal nanostructures with J-aggregates,” Nat. Photonics 7(2), 128–132 (2013).
[Crossref]

Chapman, M.

M. Chapman, M. Mullen, E. Novoa-Ortega, M. Alhasani, J. F. Elman, and W. B. Euler, “Structural evolution of ultrathin films of rhodamine 6G on glass,” J. Phys. Chem. C 120(15), 8289–8297 (2016).
[Crossref]

Chen, C. Q.

Chervy, T.

X. Zhong, T. Chervy, L. Zhang, A. Thomas, J. George, C. Genet, J. A. Hutchison, and T. W. Ebbesen, “Energy transfer between spatially separated entangled molecules,” Angew. Chem. Int. Ed. Engl. 56(31), 9034–9038 (2017).
[Crossref] [PubMed]

X. Zhong, T. Chervy, S. Wang, J. George, A. Thomas, J. A. Hutchison, E. Devaux, C. Genet, and T. W. Ebbesen, “Non-radiative energy transfer mediated by hybrid light-matter states,” Angew. Chem. 128(21), 6310–6314 (2016).
[Crossref] [PubMed]

A. Thomas, J. George, A. Shalabney, M. Dryzhakov, S. J. Varma, J. Moran, T. Chervy, X. Zhong, E. Devaux, C. Genet, J. A. Hutchison, and T. W. Ebbesen, “Ground-state chemical reactivity under vibrational coupling to the vacuum electromagnetic field,” Angew. Chem. Int. Ed. Engl. 55(38), 11462–11466 (2016).
[Crossref] [PubMed]

Chistyakov, A. A.

K. E. Mochalov, A. A. Chistyakov, D. O. Solovyeva, A. V. Mezin, V. A. Oleinikov, I. S. Vaskan, M. Molinari, I. I. Agapov, I. Nabiev, and A. E. Efimov, “An instrumental approach to combining confocal microspectroscopy and 3D scanning probe nanotomography,” Ultramicroscopy 182, 118–123 (2017).
[Crossref] [PubMed]

D. S. Dovzhenko, E. V. Osipov, I. L. Martynov, P. A. Linkov, and A. A. Chistyakov, “Enhancement of spontaneous emission from CdSe/CdS/ZnS quantum dots at the edge of the photonic band gap in a porous silicon Bragg mirror,” Phys. Procedia 73, 126–130 (2015).
[Crossref]

Chizhik, A.

A. Chizhik, F. Schleifenbaum, R. Gutbrod, A. Chizhik, D. Khoptyar, A. J. Meixner, and J. Enderlein, “Tuning the fluorescence emission spectra of a single molecule with a variable optical subwavelength metal microcavity,” Phys. Rev. Lett. 102(7), 073002 (2009).
[Crossref] [PubMed]

A. Chizhik, F. Schleifenbaum, R. Gutbrod, A. Chizhik, D. Khoptyar, A. J. Meixner, and J. Enderlein, “Tuning the fluorescence emission spectra of a single molecule with a variable optical subwavelength metal microcavity,” Phys. Rev. Lett. 102(7), 073002 (2009).
[Crossref] [PubMed]

Chua, S. L.

B. Zhen, S. L. Chua, J. Lee, A. W. Rodriguez, X. Liang, S. G. Johnson, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Enabling enhanced emission and low-threshold lasing of organic molecules using special Fano resonances of macroscopic photonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 110(34), 13711–13716 (2013).
[Crossref] [PubMed]

Dayen, J. F.

E. Orgiu, J. George, J. A. Hutchison, E. Devaux, J. F. Dayen, B. Doudin, F. Stellacci, C. Genet, J. Schachenmayer, C. Genes, G. Pupillo, P. Samorì, and T. W. Ebbesen, “Conductivity in organic semiconductors hybridized with the vacuum field,” Nat. Mater. 14(11), 1123–1129 (2015).
[Crossref] [PubMed]

Deng, H.

H. Deng, G. Weihs, D. Snoke, J. Bloch, and Y. Yamamoto, “Polariton lasing vs. photon lasing in a semiconductor microcavity,” Proc. Natl. Acad. Sci. U.S.A. 100(26), 15318–15323 (2003).
[Crossref] [PubMed]

Devaux, E.

X. Zhong, T. Chervy, S. Wang, J. George, A. Thomas, J. A. Hutchison, E. Devaux, C. Genet, and T. W. Ebbesen, “Non-radiative energy transfer mediated by hybrid light-matter states,” Angew. Chem. 128(21), 6310–6314 (2016).
[Crossref] [PubMed]

A. Thomas, J. George, A. Shalabney, M. Dryzhakov, S. J. Varma, J. Moran, T. Chervy, X. Zhong, E. Devaux, C. Genet, J. A. Hutchison, and T. W. Ebbesen, “Ground-state chemical reactivity under vibrational coupling to the vacuum electromagnetic field,” Angew. Chem. Int. Ed. Engl. 55(38), 11462–11466 (2016).
[Crossref] [PubMed]

E. Orgiu, J. George, J. A. Hutchison, E. Devaux, J. F. Dayen, B. Doudin, F. Stellacci, C. Genet, J. Schachenmayer, C. Genes, G. Pupillo, P. Samorì, and T. W. Ebbesen, “Conductivity in organic semiconductors hybridized with the vacuum field,” Nat. Mater. 14(11), 1123–1129 (2015).
[Crossref] [PubMed]

Dietrich, C. P.

S. Betzold, S. Herbst, A. A. P. Trichet, J. M. Smith, F. Würthner, S. Höfling, and C. P. Dietrich, “Tunable light–matter hybridization in open organic microcavities,” ACS Photonics 5(1), 90–94 (2018).
[Crossref]

Doudin, B.

E. Orgiu, J. George, J. A. Hutchison, E. Devaux, J. F. Dayen, B. Doudin, F. Stellacci, C. Genet, J. Schachenmayer, C. Genes, G. Pupillo, P. Samorì, and T. W. Ebbesen, “Conductivity in organic semiconductors hybridized with the vacuum field,” Nat. Mater. 14(11), 1123–1129 (2015).
[Crossref] [PubMed]

Dovzhenko, D. S.

D. S. Dovzhenko, I. S. Vaskan, K. E. Mochalov, Y. P. Rakovich, and I. Nabiev, “Spectral and spatial characteristics of the electromagnetic field modes in the tunable optical microcavity cell for the investigation of the “light-matter” hybrid state,” JETP Lett. 109(1), 12–18 (2019).

K. E. Mochalov, I. S. Vaskan, D. S. Dovzhenko, Y. P. Rakovich, and I. Nabiev, “A versatile tunable microcavity for investigation of light-matter interaction,” Rev. Sci. Instrum. 89(5), 053105 (2018).
[Crossref] [PubMed]

D. S. Dovzhenko, S. V. Ryabchuk, Y. P. Rakovich, and I. R. Nabiev, “Light-matter interaction in the strong coupling regime: configurations, conditions, and applications,” Nanoscale 10(8), 3589–3605 (2018).
[Crossref] [PubMed]

D. S. Dovzhenko, E. V. Osipov, I. L. Martynov, P. A. Linkov, and A. A. Chistyakov, “Enhancement of spontaneous emission from CdSe/CdS/ZnS quantum dots at the edge of the photonic band gap in a porous silicon Bragg mirror,” Phys. Procedia 73, 126–130 (2015).
[Crossref]

Dryzhakov, M.

A. Thomas, J. George, A. Shalabney, M. Dryzhakov, S. J. Varma, J. Moran, T. Chervy, X. Zhong, E. Devaux, C. Genet, J. A. Hutchison, and T. W. Ebbesen, “Ground-state chemical reactivity under vibrational coupling to the vacuum electromagnetic field,” Angew. Chem. Int. Ed. Engl. 55(38), 11462–11466 (2016).
[Crossref] [PubMed]

Ebbesen, T. W.

X. Zhong, T. Chervy, L. Zhang, A. Thomas, J. George, C. Genet, J. A. Hutchison, and T. W. Ebbesen, “Energy transfer between spatially separated entangled molecules,” Angew. Chem. Int. Ed. Engl. 56(31), 9034–9038 (2017).
[Crossref] [PubMed]

X. Zhong, T. Chervy, S. Wang, J. George, A. Thomas, J. A. Hutchison, E. Devaux, C. Genet, and T. W. Ebbesen, “Non-radiative energy transfer mediated by hybrid light-matter states,” Angew. Chem. 128(21), 6310–6314 (2016).
[Crossref] [PubMed]

A. Thomas, J. George, A. Shalabney, M. Dryzhakov, S. J. Varma, J. Moran, T. Chervy, X. Zhong, E. Devaux, C. Genet, J. A. Hutchison, and T. W. Ebbesen, “Ground-state chemical reactivity under vibrational coupling to the vacuum electromagnetic field,” Angew. Chem. Int. Ed. Engl. 55(38), 11462–11466 (2016).
[Crossref] [PubMed]

E. Orgiu, J. George, J. A. Hutchison, E. Devaux, J. F. Dayen, B. Doudin, F. Stellacci, C. Genet, J. Schachenmayer, C. Genes, G. Pupillo, P. Samorì, and T. W. Ebbesen, “Conductivity in organic semiconductors hybridized with the vacuum field,” Nat. Mater. 14(11), 1123–1129 (2015).
[Crossref] [PubMed]

A. Shalabney, J. George, H. Hiura, J. A. Hutchison, C. Genet, P. Hellwig, and T. W. Ebbesen, “Enhanced Raman scattering from vibro-polariton hybrid states,” Angew. Chem. Int. Ed. Engl. 54(27), 7971–7975 (2015).
[Crossref] [PubMed]

Ee, H. S.

B. Lee, J. Park, G. H. Han, H. S. Ee, C. H. Naylor, W. Liu, A. T. C. Johnson, and R. Agarwal, “Fano resonance and spectrally modified photoluminescence enhancement in monolayer MoS2 integrated with plasmonic nanoantenna array,” Nano Lett. 15(5), 3646–3653 (2015).
[Crossref] [PubMed]

Efimov, A. E.

K. E. Mochalov, A. A. Chistyakov, D. O. Solovyeva, A. V. Mezin, V. A. Oleinikov, I. S. Vaskan, M. Molinari, I. I. Agapov, I. Nabiev, and A. E. Efimov, “An instrumental approach to combining confocal microspectroscopy and 3D scanning probe nanotomography,” Ultramicroscopy 182, 118–123 (2017).
[Crossref] [PubMed]

A. E. Efimov, I. I. Agapov, O. I. Agapova, V. A. Oleinikov, A. V. Mezin, M. Molinari, I. Nabiev, and K. E. Mochalov, “A novel design of a scanning probe microscope integrated with an ultramicrotome for serial block-face nanotomography,” Rev. Sci. Instrum. 88(2), 023701 (2017).
[Crossref] [PubMed]

Elman, J. F.

M. Chapman, M. Mullen, E. Novoa-Ortega, M. Alhasani, J. F. Elman, and W. B. Euler, “Structural evolution of ultrathin films of rhodamine 6G on glass,” J. Phys. Chem. C 120(15), 8289–8297 (2016).
[Crossref]

Enderlein, J.

A. Chizhik, F. Schleifenbaum, R. Gutbrod, A. Chizhik, D. Khoptyar, A. J. Meixner, and J. Enderlein, “Tuning the fluorescence emission spectra of a single molecule with a variable optical subwavelength metal microcavity,” Phys. Rev. Lett. 102(7), 073002 (2009).
[Crossref] [PubMed]

Euler, W. B.

M. Chapman, M. Mullen, E. Novoa-Ortega, M. Alhasani, J. F. Elman, and W. B. Euler, “Structural evolution of ultrathin films of rhodamine 6G on glass,” J. Phys. Chem. C 120(15), 8289–8297 (2016).
[Crossref]

Feist, J.

M. Ramezani, A. Halpin, A. I. Fernández-Domínguez, J. Feist, S. R. K. Rodriguez, F. J. Garcia-Vidal, and J. G. Rivas, “Plasmon-exciton-polariton lasing,” Optica 4(1), 31–37 (2017).
[Crossref]

C. Gonzalez-Ballestero, J. Feist, E. Gonzalo Badía, E. Moreno, and F. J. Garcia-Vidal, “Uncoupled dark states can inherit polaritonic properties,” Phys. Rev. Lett. 117(15), 156402 (2016).
[Crossref] [PubMed]

Fernández-Domínguez, A. I.

Fujita, M.

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1(8), 449–458 (2007).
[Crossref]

Garcia-Vidal, F. J.

M. Ramezani, A. Halpin, A. I. Fernández-Domínguez, J. Feist, S. R. K. Rodriguez, F. J. Garcia-Vidal, and J. G. Rivas, “Plasmon-exciton-polariton lasing,” Optica 4(1), 31–37 (2017).
[Crossref]

C. Gonzalez-Ballestero, J. Feist, E. Gonzalo Badía, E. Moreno, and F. J. Garcia-Vidal, “Uncoupled dark states can inherit polaritonic properties,” Phys. Rev. Lett. 117(15), 156402 (2016).
[Crossref] [PubMed]

Garraway, B. M.

B. M. Garraway, “The Dicke model in quantum optics: Dicke model revisited,” Philos Trans A Math Phys Eng Sci 369(1939), 1137–1155 (2011).
[Crossref] [PubMed]

Genes, C.

E. Orgiu, J. George, J. A. Hutchison, E. Devaux, J. F. Dayen, B. Doudin, F. Stellacci, C. Genet, J. Schachenmayer, C. Genes, G. Pupillo, P. Samorì, and T. W. Ebbesen, “Conductivity in organic semiconductors hybridized with the vacuum field,” Nat. Mater. 14(11), 1123–1129 (2015).
[Crossref] [PubMed]

Genet, C.

X. Zhong, T. Chervy, L. Zhang, A. Thomas, J. George, C. Genet, J. A. Hutchison, and T. W. Ebbesen, “Energy transfer between spatially separated entangled molecules,” Angew. Chem. Int. Ed. Engl. 56(31), 9034–9038 (2017).
[Crossref] [PubMed]

X. Zhong, T. Chervy, S. Wang, J. George, A. Thomas, J. A. Hutchison, E. Devaux, C. Genet, and T. W. Ebbesen, “Non-radiative energy transfer mediated by hybrid light-matter states,” Angew. Chem. 128(21), 6310–6314 (2016).
[Crossref] [PubMed]

A. Thomas, J. George, A. Shalabney, M. Dryzhakov, S. J. Varma, J. Moran, T. Chervy, X. Zhong, E. Devaux, C. Genet, J. A. Hutchison, and T. W. Ebbesen, “Ground-state chemical reactivity under vibrational coupling to the vacuum electromagnetic field,” Angew. Chem. Int. Ed. Engl. 55(38), 11462–11466 (2016).
[Crossref] [PubMed]

E. Orgiu, J. George, J. A. Hutchison, E. Devaux, J. F. Dayen, B. Doudin, F. Stellacci, C. Genet, J. Schachenmayer, C. Genes, G. Pupillo, P. Samorì, and T. W. Ebbesen, “Conductivity in organic semiconductors hybridized with the vacuum field,” Nat. Mater. 14(11), 1123–1129 (2015).
[Crossref] [PubMed]

A. Shalabney, J. George, H. Hiura, J. A. Hutchison, C. Genet, P. Hellwig, and T. W. Ebbesen, “Enhanced Raman scattering from vibro-polariton hybrid states,” Angew. Chem. Int. Ed. Engl. 54(27), 7971–7975 (2015).
[Crossref] [PubMed]

Genger, U. R.

C. Würth, M. G. González, R. Niessner, U. Panne, C. Haisch, and U. R. Genger, “Determination of the absolute fluorescence quantum yield of rhodamine 6G with optical and photoacoustic methods--providing the basis for fluorescence quantum yield standards,” Talanta 90, 30–37 (2012).
[Crossref] [PubMed]

George, J.

X. Zhong, T. Chervy, L. Zhang, A. Thomas, J. George, C. Genet, J. A. Hutchison, and T. W. Ebbesen, “Energy transfer between spatially separated entangled molecules,” Angew. Chem. Int. Ed. Engl. 56(31), 9034–9038 (2017).
[Crossref] [PubMed]

X. Zhong, T. Chervy, S. Wang, J. George, A. Thomas, J. A. Hutchison, E. Devaux, C. Genet, and T. W. Ebbesen, “Non-radiative energy transfer mediated by hybrid light-matter states,” Angew. Chem. 128(21), 6310–6314 (2016).
[Crossref] [PubMed]

A. Thomas, J. George, A. Shalabney, M. Dryzhakov, S. J. Varma, J. Moran, T. Chervy, X. Zhong, E. Devaux, C. Genet, J. A. Hutchison, and T. W. Ebbesen, “Ground-state chemical reactivity under vibrational coupling to the vacuum electromagnetic field,” Angew. Chem. Int. Ed. Engl. 55(38), 11462–11466 (2016).
[Crossref] [PubMed]

A. Shalabney, J. George, H. Hiura, J. A. Hutchison, C. Genet, P. Hellwig, and T. W. Ebbesen, “Enhanced Raman scattering from vibro-polariton hybrid states,” Angew. Chem. Int. Ed. Engl. 54(27), 7971–7975 (2015).
[Crossref] [PubMed]

E. Orgiu, J. George, J. A. Hutchison, E. Devaux, J. F. Dayen, B. Doudin, F. Stellacci, C. Genet, J. Schachenmayer, C. Genes, G. Pupillo, P. Samorì, and T. W. Ebbesen, “Conductivity in organic semiconductors hybridized with the vacuum field,” Nat. Mater. 14(11), 1123–1129 (2015).
[Crossref] [PubMed]

Gibbs, H. M.

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2(2), 81–90 (2006).
[Crossref]

Gil, B.

T. Guillet, M. Mexis, J. Levrat, G. Rossbach, C. Brimont, T. Bretagnon, B. Gil, R. Butté, N. Grandjean, L. Orosz, F. Réveret, J. Leymarie, J. Zúñiga-Pérez, M. Leroux, F. Semond, and S. Bouchoule, “Polariton lasing in a hybrid bulk ZnO microcavity,” Appl. Phys. Lett. 99(16), 161104 (2011).
[Crossref]

Golombek, A.

G. G. Rozenman, K. Akulov, A. Golombek, and T. Schwartz, “Long-range transport of organic exciton-polaritons revealed by ultrafast microscopy,” ACS Photonics 5(1), 105–110 (2017).
[Crossref]

Goncharov, S. A.

V. A. Krivenkov, S. A. Goncharov, I. Nabiev, and Y. P. Rakovich, “Induced transparency in plasmon–exciton nanostructures for sensing applications,” Laser Photonics Rev., 1800176 (2018).

González, M. G.

C. Würth, M. G. González, R. Niessner, U. Panne, C. Haisch, and U. R. Genger, “Determination of the absolute fluorescence quantum yield of rhodamine 6G with optical and photoacoustic methods--providing the basis for fluorescence quantum yield standards,” Talanta 90, 30–37 (2012).
[Crossref] [PubMed]

Gonzalez-Ballestero, C.

C. Gonzalez-Ballestero, J. Feist, E. Gonzalo Badía, E. Moreno, and F. J. Garcia-Vidal, “Uncoupled dark states can inherit polaritonic properties,” Phys. Rev. Lett. 117(15), 156402 (2016).
[Crossref] [PubMed]

Gonzalo Badía, E.

C. Gonzalez-Ballestero, J. Feist, E. Gonzalo Badía, E. Moreno, and F. J. Garcia-Vidal, “Uncoupled dark states can inherit polaritonic properties,” Phys. Rev. Lett. 117(15), 156402 (2016).
[Crossref] [PubMed]

Grandjean, N.

T. Guillet, M. Mexis, J. Levrat, G. Rossbach, C. Brimont, T. Bretagnon, B. Gil, R. Butté, N. Grandjean, L. Orosz, F. Réveret, J. Leymarie, J. Zúñiga-Pérez, M. Leroux, F. Semond, and S. Bouchoule, “Polariton lasing in a hybrid bulk ZnO microcavity,” Appl. Phys. Lett. 99(16), 161104 (2011).
[Crossref]

Gschneidtner, T.

G. Zengin, T. Gschneidtner, R. Verre, L. Shao, T. J. Antosiewicz, K. Moth-Poulsen, M. Käll, and T. Shegai, “Evaluating conditions for strong coupling between nanoparticle plasmons and organic dyes using scattering and absorption spectroscopy,” J. Phys. Chem. C 120(37), 20588–20596 (2016).
[Crossref]

Guillet, T.

T. Guillet, M. Mexis, J. Levrat, G. Rossbach, C. Brimont, T. Bretagnon, B. Gil, R. Butté, N. Grandjean, L. Orosz, F. Réveret, J. Leymarie, J. Zúñiga-Pérez, M. Leroux, F. Semond, and S. Bouchoule, “Polariton lasing in a hybrid bulk ZnO microcavity,” Appl. Phys. Lett. 99(16), 161104 (2011).
[Crossref]

Gutbrod, R.

A. Chizhik, F. Schleifenbaum, R. Gutbrod, A. Chizhik, D. Khoptyar, A. J. Meixner, and J. Enderlein, “Tuning the fluorescence emission spectra of a single molecule with a variable optical subwavelength metal microcavity,” Phys. Rev. Lett. 102(7), 073002 (2009).
[Crossref] [PubMed]

Haisch, C.

C. Würth, M. G. González, R. Niessner, U. Panne, C. Haisch, and U. R. Genger, “Determination of the absolute fluorescence quantum yield of rhodamine 6G with optical and photoacoustic methods--providing the basis for fluorescence quantum yield standards,” Talanta 90, 30–37 (2012).
[Crossref] [PubMed]

Hakala, T. K.

T. K. Hakala, J. J. Toppari, A. Kuzyk, M. Pettersson, H. Tikkanen, H. Kunttu, and P. Törmä, “Vacuum Rabi splitting and strong-coupling dynamics for surface-plasmon polaritons and rhodamine 6G molecules,” Phys. Rev. Lett. 103(5), 053602 (2009).
[Crossref] [PubMed]

Halpin, A.

Han, G. H.

B. Lee, J. Park, G. H. Han, H. S. Ee, C. H. Naylor, W. Liu, A. T. C. Johnson, and R. Agarwal, “Fano resonance and spectrally modified photoluminescence enhancement in monolayer MoS2 integrated with plasmonic nanoantenna array,” Nano Lett. 15(5), 3646–3653 (2015).
[Crossref] [PubMed]

Hellwig, P.

A. Shalabney, J. George, H. Hiura, J. A. Hutchison, C. Genet, P. Hellwig, and T. W. Ebbesen, “Enhanced Raman scattering from vibro-polariton hybrid states,” Angew. Chem. Int. Ed. Engl. 54(27), 7971–7975 (2015).
[Crossref] [PubMed]

Herbst, S.

S. Betzold, S. Herbst, A. A. P. Trichet, J. M. Smith, F. Würthner, S. Höfling, and C. P. Dietrich, “Tunable light–matter hybridization in open organic microcavities,” ACS Photonics 5(1), 90–94 (2018).
[Crossref]

Hiura, H.

A. Shalabney, J. George, H. Hiura, J. A. Hutchison, C. Genet, P. Hellwig, and T. W. Ebbesen, “Enhanced Raman scattering from vibro-polariton hybrid states,” Angew. Chem. Int. Ed. Engl. 54(27), 7971–7975 (2015).
[Crossref] [PubMed]

Höfling, S.

S. Betzold, S. Herbst, A. A. P. Trichet, J. M. Smith, F. Würthner, S. Höfling, and C. P. Dietrich, “Tunable light–matter hybridization in open organic microcavities,” ACS Photonics 5(1), 90–94 (2018).
[Crossref]

Hutchison, J. A.

X. Zhong, T. Chervy, L. Zhang, A. Thomas, J. George, C. Genet, J. A. Hutchison, and T. W. Ebbesen, “Energy transfer between spatially separated entangled molecules,” Angew. Chem. Int. Ed. Engl. 56(31), 9034–9038 (2017).
[Crossref] [PubMed]

X. Zhong, T. Chervy, S. Wang, J. George, A. Thomas, J. A. Hutchison, E. Devaux, C. Genet, and T. W. Ebbesen, “Non-radiative energy transfer mediated by hybrid light-matter states,” Angew. Chem. 128(21), 6310–6314 (2016).
[Crossref] [PubMed]

A. Thomas, J. George, A. Shalabney, M. Dryzhakov, S. J. Varma, J. Moran, T. Chervy, X. Zhong, E. Devaux, C. Genet, J. A. Hutchison, and T. W. Ebbesen, “Ground-state chemical reactivity under vibrational coupling to the vacuum electromagnetic field,” Angew. Chem. Int. Ed. Engl. 55(38), 11462–11466 (2016).
[Crossref] [PubMed]

E. Orgiu, J. George, J. A. Hutchison, E. Devaux, J. F. Dayen, B. Doudin, F. Stellacci, C. Genet, J. Schachenmayer, C. Genes, G. Pupillo, P. Samorì, and T. W. Ebbesen, “Conductivity in organic semiconductors hybridized with the vacuum field,” Nat. Mater. 14(11), 1123–1129 (2015).
[Crossref] [PubMed]

A. Shalabney, J. George, H. Hiura, J. A. Hutchison, C. Genet, P. Hellwig, and T. W. Ebbesen, “Enhanced Raman scattering from vibro-polariton hybrid states,” Angew. Chem. Int. Ed. Engl. 54(27), 7971–7975 (2015).
[Crossref] [PubMed]

Ishikawa, A.

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69(23), 3314–3317 (1992).
[Crossref] [PubMed]

Itoh, H.

R. Sasai, T. Itoh, W. Ohmori, H. Itoh, and M. Kusunoki, “Preparation and characterization of rhodamine 6G/alkyltrimethylammonium/laponite hybrid solid materials with higher emission quantum yield,” J. Phys. Chem. C 113(1), 415–421 (2008).
[Crossref]

Itoh, T.

R. Sasai, T. Itoh, W. Ohmori, H. Itoh, and M. Kusunoki, “Preparation and characterization of rhodamine 6G/alkyltrimethylammonium/laponite hybrid solid materials with higher emission quantum yield,” J. Phys. Chem. C 113(1), 415–421 (2008).
[Crossref]

Joannopoulos, J. D.

B. Zhen, S. L. Chua, J. Lee, A. W. Rodriguez, X. Liang, S. G. Johnson, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Enabling enhanced emission and low-threshold lasing of organic molecules using special Fano resonances of macroscopic photonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 110(34), 13711–13716 (2013).
[Crossref] [PubMed]

Johnson, A. T. C.

B. Lee, J. Park, G. H. Han, H. S. Ee, C. H. Naylor, W. Liu, A. T. C. Johnson, and R. Agarwal, “Fano resonance and spectrally modified photoluminescence enhancement in monolayer MoS2 integrated with plasmonic nanoantenna array,” Nano Lett. 15(5), 3646–3653 (2015).
[Crossref] [PubMed]

Johnson, S. G.

B. Zhen, S. L. Chua, J. Lee, A. W. Rodriguez, X. Liang, S. G. Johnson, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Enabling enhanced emission and low-threshold lasing of organic molecules using special Fano resonances of macroscopic photonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 110(34), 13711–13716 (2013).
[Crossref] [PubMed]

Käll, M.

G. Zengin, T. Gschneidtner, R. Verre, L. Shao, T. J. Antosiewicz, K. Moth-Poulsen, M. Käll, and T. Shegai, “Evaluating conditions for strong coupling between nanoparticle plasmons and organic dyes using scattering and absorption spectroscopy,” J. Phys. Chem. C 120(37), 20588–20596 (2016).
[Crossref]

Kern, A. M.

A. Konrad, A. M. Kern, M. Brecht, and A. J. Meixner, “Strong and coherent coupling of a plasmonic nanoparticle to a subwavelength Fabry–Pérot resonator,” Nano Lett. 15(7), 4423–4428 (2015).
[Crossref] [PubMed]

Khitrova, G.

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2(2), 81–90 (2006).
[Crossref]

Khoptyar, D.

A. Chizhik, F. Schleifenbaum, R. Gutbrod, A. Chizhik, D. Khoptyar, A. J. Meixner, and J. Enderlein, “Tuning the fluorescence emission spectra of a single molecule with a variable optical subwavelength metal microcavity,” Phys. Rev. Lett. 102(7), 073002 (2009).
[Crossref] [PubMed]

Kimble, H. J.

J. McKeever, A. Boca, A. D. Boozer, J. R. Buck, and H. J. Kimble, “Experimental realization of a one-atom laser in the regime of strong coupling,” Nature 425(6955), 268–271 (2003).
[Crossref] [PubMed]

H. J. Kimble, “Strong interactions of single atoms and photons in cavity QED,” Phys. Scr. T76(1), 127–137 (1998).
[Crossref]

Kira, M.

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2(2), 81–90 (2006).
[Crossref]

Koch, S. W.

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2(2), 81–90 (2006).
[Crossref]

Konrad, A.

A. Konrad, A. M. Kern, M. Brecht, and A. J. Meixner, “Strong and coherent coupling of a plasmonic nanoparticle to a subwavelength Fabry–Pérot resonator,” Nano Lett. 15(7), 4423–4428 (2015).
[Crossref] [PubMed]

Krivenkov, V. A.

V. A. Krivenkov, S. A. Goncharov, I. Nabiev, and Y. P. Rakovich, “Induced transparency in plasmon–exciton nanostructures for sensing applications,” Laser Photonics Rev., 1800176 (2018).

Kunttu, H.

T. K. Hakala, J. J. Toppari, A. Kuzyk, M. Pettersson, H. Tikkanen, H. Kunttu, and P. Törmä, “Vacuum Rabi splitting and strong-coupling dynamics for surface-plasmon polaritons and rhodamine 6G molecules,” Phys. Rev. Lett. 103(5), 053602 (2009).
[Crossref] [PubMed]

Kusunoki, M.

R. Sasai, T. Itoh, W. Ohmori, H. Itoh, and M. Kusunoki, “Preparation and characterization of rhodamine 6G/alkyltrimethylammonium/laponite hybrid solid materials with higher emission quantum yield,” J. Phys. Chem. C 113(1), 415–421 (2008).
[Crossref]

Kuzyk, A.

T. K. Hakala, J. J. Toppari, A. Kuzyk, M. Pettersson, H. Tikkanen, H. Kunttu, and P. Törmä, “Vacuum Rabi splitting and strong-coupling dynamics for surface-plasmon polaritons and rhodamine 6G molecules,” Phys. Rev. Lett. 103(5), 053602 (2009).
[Crossref] [PubMed]

Lammers, M.

P. Vasa, W. Wang, R. Pomraenke, M. Lammers, M. Maiuri, C. Manzoni, G. Cerullo, and C. Lienau, “Real-time observation of ultrafast Rabi oscillations between excitons and plasmons in metal nanostructures with J-aggregates,” Nat. Photonics 7(2), 128–132 (2013).
[Crossref]

Lee, B.

B. Lee, J. Park, G. H. Han, H. S. Ee, C. H. Naylor, W. Liu, A. T. C. Johnson, and R. Agarwal, “Fano resonance and spectrally modified photoluminescence enhancement in monolayer MoS2 integrated with plasmonic nanoantenna array,” Nano Lett. 15(5), 3646–3653 (2015).
[Crossref] [PubMed]

Lee, J.

B. Zhen, S. L. Chua, J. Lee, A. W. Rodriguez, X. Liang, S. G. Johnson, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Enabling enhanced emission and low-threshold lasing of organic molecules using special Fano resonances of macroscopic photonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 110(34), 13711–13716 (2013).
[Crossref] [PubMed]

Leroux, M.

T. Guillet, M. Mexis, J. Levrat, G. Rossbach, C. Brimont, T. Bretagnon, B. Gil, R. Butté, N. Grandjean, L. Orosz, F. Réveret, J. Leymarie, J. Zúñiga-Pérez, M. Leroux, F. Semond, and S. Bouchoule, “Polariton lasing in a hybrid bulk ZnO microcavity,” Appl. Phys. Lett. 99(16), 161104 (2011).
[Crossref]

Levrat, J.

T. Guillet, M. Mexis, J. Levrat, G. Rossbach, C. Brimont, T. Bretagnon, B. Gil, R. Butté, N. Grandjean, L. Orosz, F. Réveret, J. Leymarie, J. Zúñiga-Pérez, M. Leroux, F. Semond, and S. Bouchoule, “Polariton lasing in a hybrid bulk ZnO microcavity,” Appl. Phys. Lett. 99(16), 161104 (2011).
[Crossref]

Leymarie, J.

T. Guillet, M. Mexis, J. Levrat, G. Rossbach, C. Brimont, T. Bretagnon, B. Gil, R. Butté, N. Grandjean, L. Orosz, F. Réveret, J. Leymarie, J. Zúñiga-Pérez, M. Leroux, F. Semond, and S. Bouchoule, “Polariton lasing in a hybrid bulk ZnO microcavity,” Appl. Phys. Lett. 99(16), 161104 (2011).
[Crossref]

Liang, X.

B. Zhen, S. L. Chua, J. Lee, A. W. Rodriguez, X. Liang, S. G. Johnson, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Enabling enhanced emission and low-threshold lasing of organic molecules using special Fano resonances of macroscopic photonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 110(34), 13711–13716 (2013).
[Crossref] [PubMed]

Lidzey, D.

V. Agranovich, M. Litinskaia, and D. Lidzey, “Cavity polaritons in microcavities containing disordered organic semiconductors,” Phys. Rev. B Condens. Matter Mater. Phys. 67(8), 085311 (2003).
[Crossref]

Lienau, C.

P. Vasa, W. Wang, R. Pomraenke, M. Lammers, M. Maiuri, C. Manzoni, G. Cerullo, and C. Lienau, “Real-time observation of ultrafast Rabi oscillations between excitons and plasmons in metal nanostructures with J-aggregates,” Nat. Photonics 7(2), 128–132 (2013).
[Crossref]

Linkov, P. A.

D. S. Dovzhenko, E. V. Osipov, I. L. Martynov, P. A. Linkov, and A. A. Chistyakov, “Enhancement of spontaneous emission from CdSe/CdS/ZnS quantum dots at the edge of the photonic band gap in a porous silicon Bragg mirror,” Phys. Procedia 73, 126–130 (2015).
[Crossref]

Litinskaia, M.

V. Agranovich, M. Litinskaia, and D. Lidzey, “Cavity polaritons in microcavities containing disordered organic semiconductors,” Phys. Rev. B Condens. Matter Mater. Phys. 67(8), 085311 (2003).
[Crossref]

Liu, W.

B. Lee, J. Park, G. H. Han, H. S. Ee, C. H. Naylor, W. Liu, A. T. C. Johnson, and R. Agarwal, “Fano resonance and spectrally modified photoluminescence enhancement in monolayer MoS2 integrated with plasmonic nanoantenna array,” Nano Lett. 15(5), 3646–3653 (2015).
[Crossref] [PubMed]

Liu, X. H.

López Arbeloa, F.

V. Martínez Martínez, F. López Arbeloa, J. Bañuelos Prieto, and I. López Arbeloa, “Characterization of rhodamine 6G aggregates intercalated in solid thin films of laponite clay. 2 Fluorescence spectroscopy,” J. Phys. Chem. B 109(15), 7443–7450 (2005).
[Crossref] [PubMed]

López Arbeloa, I.

V. Martínez Martínez, F. López Arbeloa, J. Bañuelos Prieto, and I. López Arbeloa, “Characterization of rhodamine 6G aggregates intercalated in solid thin films of laponite clay. 2 Fluorescence spectroscopy,” J. Phys. Chem. B 109(15), 7443–7450 (2005).
[Crossref] [PubMed]

Lu, W.

Maiuri, M.

P. Vasa, W. Wang, R. Pomraenke, M. Lammers, M. Maiuri, C. Manzoni, G. Cerullo, and C. Lienau, “Real-time observation of ultrafast Rabi oscillations between excitons and plasmons in metal nanostructures with J-aggregates,” Nat. Photonics 7(2), 128–132 (2013).
[Crossref]

Manzoni, C.

P. Vasa, W. Wang, R. Pomraenke, M. Lammers, M. Maiuri, C. Manzoni, G. Cerullo, and C. Lienau, “Real-time observation of ultrafast Rabi oscillations between excitons and plasmons in metal nanostructures with J-aggregates,” Nat. Photonics 7(2), 128–132 (2013).
[Crossref]

Martínez Martínez, V.

V. Martínez Martínez, F. López Arbeloa, J. Bañuelos Prieto, and I. López Arbeloa, “Characterization of rhodamine 6G aggregates intercalated in solid thin films of laponite clay. 2 Fluorescence spectroscopy,” J. Phys. Chem. B 109(15), 7443–7450 (2005).
[Crossref] [PubMed]

Martynov, I. L.

D. S. Dovzhenko, E. V. Osipov, I. L. Martynov, P. A. Linkov, and A. A. Chistyakov, “Enhancement of spontaneous emission from CdSe/CdS/ZnS quantum dots at the edge of the photonic band gap in a porous silicon Bragg mirror,” Phys. Procedia 73, 126–130 (2015).
[Crossref]

McKeever, J.

J. McKeever, A. Boca, A. D. Boozer, J. R. Buck, and H. J. Kimble, “Experimental realization of a one-atom laser in the regime of strong coupling,” Nature 425(6955), 268–271 (2003).
[Crossref] [PubMed]

Meixner, A. J.

A. Konrad, A. M. Kern, M. Brecht, and A. J. Meixner, “Strong and coherent coupling of a plasmonic nanoparticle to a subwavelength Fabry–Pérot resonator,” Nano Lett. 15(7), 4423–4428 (2015).
[Crossref] [PubMed]

A. Chizhik, F. Schleifenbaum, R. Gutbrod, A. Chizhik, D. Khoptyar, A. J. Meixner, and J. Enderlein, “Tuning the fluorescence emission spectra of a single molecule with a variable optical subwavelength metal microcavity,” Phys. Rev. Lett. 102(7), 073002 (2009).
[Crossref] [PubMed]

Mexis, M.

T. Guillet, M. Mexis, J. Levrat, G. Rossbach, C. Brimont, T. Bretagnon, B. Gil, R. Butté, N. Grandjean, L. Orosz, F. Réveret, J. Leymarie, J. Zúñiga-Pérez, M. Leroux, F. Semond, and S. Bouchoule, “Polariton lasing in a hybrid bulk ZnO microcavity,” Appl. Phys. Lett. 99(16), 161104 (2011).
[Crossref]

Mezin, A. V.

K. E. Mochalov, A. A. Chistyakov, D. O. Solovyeva, A. V. Mezin, V. A. Oleinikov, I. S. Vaskan, M. Molinari, I. I. Agapov, I. Nabiev, and A. E. Efimov, “An instrumental approach to combining confocal microspectroscopy and 3D scanning probe nanotomography,” Ultramicroscopy 182, 118–123 (2017).
[Crossref] [PubMed]

A. E. Efimov, I. I. Agapov, O. I. Agapova, V. A. Oleinikov, A. V. Mezin, M. Molinari, I. Nabiev, and K. E. Mochalov, “A novel design of a scanning probe microscope integrated with an ultramicrotome for serial block-face nanotomography,” Rev. Sci. Instrum. 88(2), 023701 (2017).
[Crossref] [PubMed]

Mochalov, K. E.

D. S. Dovzhenko, I. S. Vaskan, K. E. Mochalov, Y. P. Rakovich, and I. Nabiev, “Spectral and spatial characteristics of the electromagnetic field modes in the tunable optical microcavity cell for the investigation of the “light-matter” hybrid state,” JETP Lett. 109(1), 12–18 (2019).

K. E. Mochalov, I. S. Vaskan, D. S. Dovzhenko, Y. P. Rakovich, and I. Nabiev, “A versatile tunable microcavity for investigation of light-matter interaction,” Rev. Sci. Instrum. 89(5), 053105 (2018).
[Crossref] [PubMed]

A. E. Efimov, I. I. Agapov, O. I. Agapova, V. A. Oleinikov, A. V. Mezin, M. Molinari, I. Nabiev, and K. E. Mochalov, “A novel design of a scanning probe microscope integrated with an ultramicrotome for serial block-face nanotomography,” Rev. Sci. Instrum. 88(2), 023701 (2017).
[Crossref] [PubMed]

K. E. Mochalov, A. A. Chistyakov, D. O. Solovyeva, A. V. Mezin, V. A. Oleinikov, I. S. Vaskan, M. Molinari, I. I. Agapov, I. Nabiev, and A. E. Efimov, “An instrumental approach to combining confocal microspectroscopy and 3D scanning probe nanotomography,” Ultramicroscopy 182, 118–123 (2017).
[Crossref] [PubMed]

Molinari, M.

A. E. Efimov, I. I. Agapov, O. I. Agapova, V. A. Oleinikov, A. V. Mezin, M. Molinari, I. Nabiev, and K. E. Mochalov, “A novel design of a scanning probe microscope integrated with an ultramicrotome for serial block-face nanotomography,” Rev. Sci. Instrum. 88(2), 023701 (2017).
[Crossref] [PubMed]

K. E. Mochalov, A. A. Chistyakov, D. O. Solovyeva, A. V. Mezin, V. A. Oleinikov, I. S. Vaskan, M. Molinari, I. I. Agapov, I. Nabiev, and A. E. Efimov, “An instrumental approach to combining confocal microspectroscopy and 3D scanning probe nanotomography,” Ultramicroscopy 182, 118–123 (2017).
[Crossref] [PubMed]

Moran, J.

A. Thomas, J. George, A. Shalabney, M. Dryzhakov, S. J. Varma, J. Moran, T. Chervy, X. Zhong, E. Devaux, C. Genet, J. A. Hutchison, and T. W. Ebbesen, “Ground-state chemical reactivity under vibrational coupling to the vacuum electromagnetic field,” Angew. Chem. Int. Ed. Engl. 55(38), 11462–11466 (2016).
[Crossref] [PubMed]

Moreno, E.

C. Gonzalez-Ballestero, J. Feist, E. Gonzalo Badía, E. Moreno, and F. J. Garcia-Vidal, “Uncoupled dark states can inherit polaritonic properties,” Phys. Rev. Lett. 117(15), 156402 (2016).
[Crossref] [PubMed]

Moth-Poulsen, K.

G. Zengin, T. Gschneidtner, R. Verre, L. Shao, T. J. Antosiewicz, K. Moth-Poulsen, M. Käll, and T. Shegai, “Evaluating conditions for strong coupling between nanoparticle plasmons and organic dyes using scattering and absorption spectroscopy,” J. Phys. Chem. C 120(37), 20588–20596 (2016).
[Crossref]

Mullen, M.

M. Chapman, M. Mullen, E. Novoa-Ortega, M. Alhasani, J. F. Elman, and W. B. Euler, “Structural evolution of ultrathin films of rhodamine 6G on glass,” J. Phys. Chem. C 120(15), 8289–8297 (2016).
[Crossref]

Nabiev, I.

D. S. Dovzhenko, I. S. Vaskan, K. E. Mochalov, Y. P. Rakovich, and I. Nabiev, “Spectral and spatial characteristics of the electromagnetic field modes in the tunable optical microcavity cell for the investigation of the “light-matter” hybrid state,” JETP Lett. 109(1), 12–18 (2019).

K. E. Mochalov, I. S. Vaskan, D. S. Dovzhenko, Y. P. Rakovich, and I. Nabiev, “A versatile tunable microcavity for investigation of light-matter interaction,” Rev. Sci. Instrum. 89(5), 053105 (2018).
[Crossref] [PubMed]

K. E. Mochalov, A. A. Chistyakov, D. O. Solovyeva, A. V. Mezin, V. A. Oleinikov, I. S. Vaskan, M. Molinari, I. I. Agapov, I. Nabiev, and A. E. Efimov, “An instrumental approach to combining confocal microspectroscopy and 3D scanning probe nanotomography,” Ultramicroscopy 182, 118–123 (2017).
[Crossref] [PubMed]

A. E. Efimov, I. I. Agapov, O. I. Agapova, V. A. Oleinikov, A. V. Mezin, M. Molinari, I. Nabiev, and K. E. Mochalov, “A novel design of a scanning probe microscope integrated with an ultramicrotome for serial block-face nanotomography,” Rev. Sci. Instrum. 88(2), 023701 (2017).
[Crossref] [PubMed]

V. A. Krivenkov, S. A. Goncharov, I. Nabiev, and Y. P. Rakovich, “Induced transparency in plasmon–exciton nanostructures for sensing applications,” Laser Photonics Rev., 1800176 (2018).

Nabiev, I. R.

D. S. Dovzhenko, S. V. Ryabchuk, Y. P. Rakovich, and I. R. Nabiev, “Light-matter interaction in the strong coupling regime: configurations, conditions, and applications,” Nanoscale 10(8), 3589–3605 (2018).
[Crossref] [PubMed]

Naylor, C. H.

B. Lee, J. Park, G. H. Han, H. S. Ee, C. H. Naylor, W. Liu, A. T. C. Johnson, and R. Agarwal, “Fano resonance and spectrally modified photoluminescence enhancement in monolayer MoS2 integrated with plasmonic nanoantenna array,” Nano Lett. 15(5), 3646–3653 (2015).
[Crossref] [PubMed]

Niessner, R.

C. Würth, M. G. González, R. Niessner, U. Panne, C. Haisch, and U. R. Genger, “Determination of the absolute fluorescence quantum yield of rhodamine 6G with optical and photoacoustic methods--providing the basis for fluorescence quantum yield standards,” Talanta 90, 30–37 (2012).
[Crossref] [PubMed]

Nishioka, M.

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69(23), 3314–3317 (1992).
[Crossref] [PubMed]

Noda, S.

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1(8), 449–458 (2007).
[Crossref]

Novoa-Ortega, E.

M. Chapman, M. Mullen, E. Novoa-Ortega, M. Alhasani, J. F. Elman, and W. B. Euler, “Structural evolution of ultrathin films of rhodamine 6G on glass,” J. Phys. Chem. C 120(15), 8289–8297 (2016).
[Crossref]

Ohmori, W.

R. Sasai, T. Itoh, W. Ohmori, H. Itoh, and M. Kusunoki, “Preparation and characterization of rhodamine 6G/alkyltrimethylammonium/laponite hybrid solid materials with higher emission quantum yield,” J. Phys. Chem. C 113(1), 415–421 (2008).
[Crossref]

Oleinikov, V. A.

A. E. Efimov, I. I. Agapov, O. I. Agapova, V. A. Oleinikov, A. V. Mezin, M. Molinari, I. Nabiev, and K. E. Mochalov, “A novel design of a scanning probe microscope integrated with an ultramicrotome for serial block-face nanotomography,” Rev. Sci. Instrum. 88(2), 023701 (2017).
[Crossref] [PubMed]

K. E. Mochalov, A. A. Chistyakov, D. O. Solovyeva, A. V. Mezin, V. A. Oleinikov, I. S. Vaskan, M. Molinari, I. I. Agapov, I. Nabiev, and A. E. Efimov, “An instrumental approach to combining confocal microspectroscopy and 3D scanning probe nanotomography,” Ultramicroscopy 182, 118–123 (2017).
[Crossref] [PubMed]

Orgiu, E.

E. Orgiu, J. George, J. A. Hutchison, E. Devaux, J. F. Dayen, B. Doudin, F. Stellacci, C. Genet, J. Schachenmayer, C. Genes, G. Pupillo, P. Samorì, and T. W. Ebbesen, “Conductivity in organic semiconductors hybridized with the vacuum field,” Nat. Mater. 14(11), 1123–1129 (2015).
[Crossref] [PubMed]

Orosz, L.

T. Guillet, M. Mexis, J. Levrat, G. Rossbach, C. Brimont, T. Bretagnon, B. Gil, R. Butté, N. Grandjean, L. Orosz, F. Réveret, J. Leymarie, J. Zúñiga-Pérez, M. Leroux, F. Semond, and S. Bouchoule, “Polariton lasing in a hybrid bulk ZnO microcavity,” Appl. Phys. Lett. 99(16), 161104 (2011).
[Crossref]

Osipov, E. V.

D. S. Dovzhenko, E. V. Osipov, I. L. Martynov, P. A. Linkov, and A. A. Chistyakov, “Enhancement of spontaneous emission from CdSe/CdS/ZnS quantum dots at the edge of the photonic band gap in a porous silicon Bragg mirror,” Phys. Procedia 73, 126–130 (2015).
[Crossref]

Panne, U.

C. Würth, M. G. González, R. Niessner, U. Panne, C. Haisch, and U. R. Genger, “Determination of the absolute fluorescence quantum yield of rhodamine 6G with optical and photoacoustic methods--providing the basis for fluorescence quantum yield standards,” Talanta 90, 30–37 (2012).
[Crossref] [PubMed]

Park, J.

B. Lee, J. Park, G. H. Han, H. S. Ee, C. H. Naylor, W. Liu, A. T. C. Johnson, and R. Agarwal, “Fano resonance and spectrally modified photoluminescence enhancement in monolayer MoS2 integrated with plasmonic nanoantenna array,” Nano Lett. 15(5), 3646–3653 (2015).
[Crossref] [PubMed]

Pelton, M.

M. Pelton, “Modified spontaneous emission in nanophotonic structures,” Nat. Photonics 9(7), 427–435 (2015).
[Crossref]

Pettersson, M.

T. K. Hakala, J. J. Toppari, A. Kuzyk, M. Pettersson, H. Tikkanen, H. Kunttu, and P. Törmä, “Vacuum Rabi splitting and strong-coupling dynamics for surface-plasmon polaritons and rhodamine 6G molecules,” Phys. Rev. Lett. 103(5), 053602 (2009).
[Crossref] [PubMed]

Pomraenke, R.

P. Vasa, W. Wang, R. Pomraenke, M. Lammers, M. Maiuri, C. Manzoni, G. Cerullo, and C. Lienau, “Real-time observation of ultrafast Rabi oscillations between excitons and plasmons in metal nanostructures with J-aggregates,” Nat. Photonics 7(2), 128–132 (2013).
[Crossref]

Pupillo, G.

E. Orgiu, J. George, J. A. Hutchison, E. Devaux, J. F. Dayen, B. Doudin, F. Stellacci, C. Genet, J. Schachenmayer, C. Genes, G. Pupillo, P. Samorì, and T. W. Ebbesen, “Conductivity in organic semiconductors hybridized with the vacuum field,” Nat. Mater. 14(11), 1123–1129 (2015).
[Crossref] [PubMed]

Purcell, E. M.

E. M. Purcell, “Spontaneous transition probabilities in radio-frequency spectroscopy,” Phys. Rev. 69, 681 (1946).

Rakovich, Y. P.

D. S. Dovzhenko, I. S. Vaskan, K. E. Mochalov, Y. P. Rakovich, and I. Nabiev, “Spectral and spatial characteristics of the electromagnetic field modes in the tunable optical microcavity cell for the investigation of the “light-matter” hybrid state,” JETP Lett. 109(1), 12–18 (2019).

K. E. Mochalov, I. S. Vaskan, D. S. Dovzhenko, Y. P. Rakovich, and I. Nabiev, “A versatile tunable microcavity for investigation of light-matter interaction,” Rev. Sci. Instrum. 89(5), 053105 (2018).
[Crossref] [PubMed]

D. S. Dovzhenko, S. V. Ryabchuk, Y. P. Rakovich, and I. R. Nabiev, “Light-matter interaction in the strong coupling regime: configurations, conditions, and applications,” Nanoscale 10(8), 3589–3605 (2018).
[Crossref] [PubMed]

V. A. Krivenkov, S. A. Goncharov, I. Nabiev, and Y. P. Rakovich, “Induced transparency in plasmon–exciton nanostructures for sensing applications,” Laser Photonics Rev., 1800176 (2018).

Ramezani, M.

Réveret, F.

T. Guillet, M. Mexis, J. Levrat, G. Rossbach, C. Brimont, T. Bretagnon, B. Gil, R. Butté, N. Grandjean, L. Orosz, F. Réveret, J. Leymarie, J. Zúñiga-Pérez, M. Leroux, F. Semond, and S. Bouchoule, “Polariton lasing in a hybrid bulk ZnO microcavity,” Appl. Phys. Lett. 99(16), 161104 (2011).
[Crossref]

Richards, D.

N. I. Cade, T. Ritman-Meer, and D. Richards, “Strong coupling of localized plasmons and molecular excitons in nanostructured silver films,” Phys. Rev. B Condens. Matter Mater. Phys. 79(24), 241404 (2009).
[Crossref]

Ritman-Meer, T.

N. I. Cade, T. Ritman-Meer, and D. Richards, “Strong coupling of localized plasmons and molecular excitons in nanostructured silver films,” Phys. Rev. B Condens. Matter Mater. Phys. 79(24), 241404 (2009).
[Crossref]

Rivas, J. G.

Rodriguez, A. W.

B. Zhen, S. L. Chua, J. Lee, A. W. Rodriguez, X. Liang, S. G. Johnson, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Enabling enhanced emission and low-threshold lasing of organic molecules using special Fano resonances of macroscopic photonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 110(34), 13711–13716 (2013).
[Crossref] [PubMed]

Rodriguez, S. R. K.

Rossbach, G.

T. Guillet, M. Mexis, J. Levrat, G. Rossbach, C. Brimont, T. Bretagnon, B. Gil, R. Butté, N. Grandjean, L. Orosz, F. Réveret, J. Leymarie, J. Zúñiga-Pérez, M. Leroux, F. Semond, and S. Bouchoule, “Polariton lasing in a hybrid bulk ZnO microcavity,” Appl. Phys. Lett. 99(16), 161104 (2011).
[Crossref]

Rozenman, G. G.

G. G. Rozenman, K. Akulov, A. Golombek, and T. Schwartz, “Long-range transport of organic exciton-polaritons revealed by ultrafast microscopy,” ACS Photonics 5(1), 105–110 (2017).
[Crossref]

Ryabchuk, S. V.

D. S. Dovzhenko, S. V. Ryabchuk, Y. P. Rakovich, and I. R. Nabiev, “Light-matter interaction in the strong coupling regime: configurations, conditions, and applications,” Nanoscale 10(8), 3589–3605 (2018).
[Crossref] [PubMed]

Samorì, P.

E. Orgiu, J. George, J. A. Hutchison, E. Devaux, J. F. Dayen, B. Doudin, F. Stellacci, C. Genet, J. Schachenmayer, C. Genes, G. Pupillo, P. Samorì, and T. W. Ebbesen, “Conductivity in organic semiconductors hybridized with the vacuum field,” Nat. Mater. 14(11), 1123–1129 (2015).
[Crossref] [PubMed]

Sasai, R.

R. Sasai, T. Itoh, W. Ohmori, H. Itoh, and M. Kusunoki, “Preparation and characterization of rhodamine 6G/alkyltrimethylammonium/laponite hybrid solid materials with higher emission quantum yield,” J. Phys. Chem. C 113(1), 415–421 (2008).
[Crossref]

Schachenmayer, J.

E. Orgiu, J. George, J. A. Hutchison, E. Devaux, J. F. Dayen, B. Doudin, F. Stellacci, C. Genet, J. Schachenmayer, C. Genes, G. Pupillo, P. Samorì, and T. W. Ebbesen, “Conductivity in organic semiconductors hybridized with the vacuum field,” Nat. Mater. 14(11), 1123–1129 (2015).
[Crossref] [PubMed]

Scherer, A.

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2(2), 81–90 (2006).
[Crossref]

Schleifenbaum, F.

A. Chizhik, F. Schleifenbaum, R. Gutbrod, A. Chizhik, D. Khoptyar, A. J. Meixner, and J. Enderlein, “Tuning the fluorescence emission spectra of a single molecule with a variable optical subwavelength metal microcavity,” Phys. Rev. Lett. 102(7), 073002 (2009).
[Crossref] [PubMed]

Schwartz, T.

G. G. Rozenman, K. Akulov, A. Golombek, and T. Schwartz, “Long-range transport of organic exciton-polaritons revealed by ultrafast microscopy,” ACS Photonics 5(1), 105–110 (2017).
[Crossref]

Semond, F.

T. Guillet, M. Mexis, J. Levrat, G. Rossbach, C. Brimont, T. Bretagnon, B. Gil, R. Butté, N. Grandjean, L. Orosz, F. Réveret, J. Leymarie, J. Zúñiga-Pérez, M. Leroux, F. Semond, and S. Bouchoule, “Polariton lasing in a hybrid bulk ZnO microcavity,” Appl. Phys. Lett. 99(16), 161104 (2011).
[Crossref]

Shalabney, A.

A. Thomas, J. George, A. Shalabney, M. Dryzhakov, S. J. Varma, J. Moran, T. Chervy, X. Zhong, E. Devaux, C. Genet, J. A. Hutchison, and T. W. Ebbesen, “Ground-state chemical reactivity under vibrational coupling to the vacuum electromagnetic field,” Angew. Chem. Int. Ed. Engl. 55(38), 11462–11466 (2016).
[Crossref] [PubMed]

A. Shalabney, J. George, H. Hiura, J. A. Hutchison, C. Genet, P. Hellwig, and T. W. Ebbesen, “Enhanced Raman scattering from vibro-polariton hybrid states,” Angew. Chem. Int. Ed. Engl. 54(27), 7971–7975 (2015).
[Crossref] [PubMed]

Shao, L.

G. Zengin, T. Gschneidtner, R. Verre, L. Shao, T. J. Antosiewicz, K. Moth-Poulsen, M. Käll, and T. Shegai, “Evaluating conditions for strong coupling between nanoparticle plasmons and organic dyes using scattering and absorption spectroscopy,” J. Phys. Chem. C 120(37), 20588–20596 (2016).
[Crossref]

Shapira, O.

B. Zhen, S. L. Chua, J. Lee, A. W. Rodriguez, X. Liang, S. G. Johnson, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Enabling enhanced emission and low-threshold lasing of organic molecules using special Fano resonances of macroscopic photonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 110(34), 13711–13716 (2013).
[Crossref] [PubMed]

Shegai, T.

G. Zengin, T. Gschneidtner, R. Verre, L. Shao, T. J. Antosiewicz, K. Moth-Poulsen, M. Käll, and T. Shegai, “Evaluating conditions for strong coupling between nanoparticle plasmons and organic dyes using scattering and absorption spectroscopy,” J. Phys. Chem. C 120(37), 20588–20596 (2016).
[Crossref]

Shi, L.

Smith, J. M.

S. Betzold, S. Herbst, A. A. P. Trichet, J. M. Smith, F. Würthner, S. Höfling, and C. P. Dietrich, “Tunable light–matter hybridization in open organic microcavities,” ACS Photonics 5(1), 90–94 (2018).
[Crossref]

Snoke, D.

H. Deng, G. Weihs, D. Snoke, J. Bloch, and Y. Yamamoto, “Polariton lasing vs. photon lasing in a semiconductor microcavity,” Proc. Natl. Acad. Sci. U.S.A. 100(26), 15318–15323 (2003).
[Crossref] [PubMed]

Soljacic, M.

B. Zhen, S. L. Chua, J. Lee, A. W. Rodriguez, X. Liang, S. G. Johnson, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Enabling enhanced emission and low-threshold lasing of organic molecules using special Fano resonances of macroscopic photonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 110(34), 13711–13716 (2013).
[Crossref] [PubMed]

Solovyeva, D. O.

K. E. Mochalov, A. A. Chistyakov, D. O. Solovyeva, A. V. Mezin, V. A. Oleinikov, I. S. Vaskan, M. Molinari, I. I. Agapov, I. Nabiev, and A. E. Efimov, “An instrumental approach to combining confocal microspectroscopy and 3D scanning probe nanotomography,” Ultramicroscopy 182, 118–123 (2017).
[Crossref] [PubMed]

Stellacci, F.

E. Orgiu, J. George, J. A. Hutchison, E. Devaux, J. F. Dayen, B. Doudin, F. Stellacci, C. Genet, J. Schachenmayer, C. Genes, G. Pupillo, P. Samorì, and T. W. Ebbesen, “Conductivity in organic semiconductors hybridized with the vacuum field,” Nat. Mater. 14(11), 1123–1129 (2015).
[Crossref] [PubMed]

Sun, L. X.

Thomas, A.

X. Zhong, T. Chervy, L. Zhang, A. Thomas, J. George, C. Genet, J. A. Hutchison, and T. W. Ebbesen, “Energy transfer between spatially separated entangled molecules,” Angew. Chem. Int. Ed. Engl. 56(31), 9034–9038 (2017).
[Crossref] [PubMed]

X. Zhong, T. Chervy, S. Wang, J. George, A. Thomas, J. A. Hutchison, E. Devaux, C. Genet, and T. W. Ebbesen, “Non-radiative energy transfer mediated by hybrid light-matter states,” Angew. Chem. 128(21), 6310–6314 (2016).
[Crossref] [PubMed]

A. Thomas, J. George, A. Shalabney, M. Dryzhakov, S. J. Varma, J. Moran, T. Chervy, X. Zhong, E. Devaux, C. Genet, J. A. Hutchison, and T. W. Ebbesen, “Ground-state chemical reactivity under vibrational coupling to the vacuum electromagnetic field,” Angew. Chem. Int. Ed. Engl. 55(38), 11462–11466 (2016).
[Crossref] [PubMed]

Tikkanen, H.

T. K. Hakala, J. J. Toppari, A. Kuzyk, M. Pettersson, H. Tikkanen, H. Kunttu, and P. Törmä, “Vacuum Rabi splitting and strong-coupling dynamics for surface-plasmon polaritons and rhodamine 6G molecules,” Phys. Rev. Lett. 103(5), 053602 (2009).
[Crossref] [PubMed]

Toppari, J. J.

T. K. Hakala, J. J. Toppari, A. Kuzyk, M. Pettersson, H. Tikkanen, H. Kunttu, and P. Törmä, “Vacuum Rabi splitting and strong-coupling dynamics for surface-plasmon polaritons and rhodamine 6G molecules,” Phys. Rev. Lett. 103(5), 053602 (2009).
[Crossref] [PubMed]

Törmä, P.

P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78(1), 013901 (2015).
[Crossref] [PubMed]

T. K. Hakala, J. J. Toppari, A. Kuzyk, M. Pettersson, H. Tikkanen, H. Kunttu, and P. Törmä, “Vacuum Rabi splitting and strong-coupling dynamics for surface-plasmon polaritons and rhodamine 6G molecules,” Phys. Rev. Lett. 103(5), 053602 (2009).
[Crossref] [PubMed]

Trichet, A. A. P.

S. Betzold, S. Herbst, A. A. P. Trichet, J. M. Smith, F. Würthner, S. Höfling, and C. P. Dietrich, “Tunable light–matter hybridization in open organic microcavities,” ACS Photonics 5(1), 90–94 (2018).
[Crossref]

Varma, S. J.

A. Thomas, J. George, A. Shalabney, M. Dryzhakov, S. J. Varma, J. Moran, T. Chervy, X. Zhong, E. Devaux, C. Genet, J. A. Hutchison, and T. W. Ebbesen, “Ground-state chemical reactivity under vibrational coupling to the vacuum electromagnetic field,” Angew. Chem. Int. Ed. Engl. 55(38), 11462–11466 (2016).
[Crossref] [PubMed]

Vasa, P.

P. Vasa, W. Wang, R. Pomraenke, M. Lammers, M. Maiuri, C. Manzoni, G. Cerullo, and C. Lienau, “Real-time observation of ultrafast Rabi oscillations between excitons and plasmons in metal nanostructures with J-aggregates,” Nat. Photonics 7(2), 128–132 (2013).
[Crossref]

Vaskan, I. S.

D. S. Dovzhenko, I. S. Vaskan, K. E. Mochalov, Y. P. Rakovich, and I. Nabiev, “Spectral and spatial characteristics of the electromagnetic field modes in the tunable optical microcavity cell for the investigation of the “light-matter” hybrid state,” JETP Lett. 109(1), 12–18 (2019).

K. E. Mochalov, I. S. Vaskan, D. S. Dovzhenko, Y. P. Rakovich, and I. Nabiev, “A versatile tunable microcavity for investigation of light-matter interaction,” Rev. Sci. Instrum. 89(5), 053105 (2018).
[Crossref] [PubMed]

K. E. Mochalov, A. A. Chistyakov, D. O. Solovyeva, A. V. Mezin, V. A. Oleinikov, I. S. Vaskan, M. Molinari, I. I. Agapov, I. Nabiev, and A. E. Efimov, “An instrumental approach to combining confocal microspectroscopy and 3D scanning probe nanotomography,” Ultramicroscopy 182, 118–123 (2017).
[Crossref] [PubMed]

Verre, R.

G. Zengin, T. Gschneidtner, R. Verre, L. Shao, T. J. Antosiewicz, K. Moth-Poulsen, M. Käll, and T. Shegai, “Evaluating conditions for strong coupling between nanoparticle plasmons and organic dyes using scattering and absorption spectroscopy,” J. Phys. Chem. C 120(37), 20588–20596 (2016).
[Crossref]

Wang, Q.

Wang, S.

X. Zhong, T. Chervy, S. Wang, J. George, A. Thomas, J. A. Hutchison, E. Devaux, C. Genet, and T. W. Ebbesen, “Non-radiative energy transfer mediated by hybrid light-matter states,” Angew. Chem. 128(21), 6310–6314 (2016).
[Crossref] [PubMed]

Wang, W.

P. Vasa, W. Wang, R. Pomraenke, M. Lammers, M. Maiuri, C. Manzoni, G. Cerullo, and C. Lienau, “Real-time observation of ultrafast Rabi oscillations between excitons and plasmons in metal nanostructures with J-aggregates,” Nat. Photonics 7(2), 128–132 (2013).
[Crossref]

Weihs, G.

H. Deng, G. Weihs, D. Snoke, J. Bloch, and Y. Yamamoto, “Polariton lasing vs. photon lasing in a semiconductor microcavity,” Proc. Natl. Acad. Sci. U.S.A. 100(26), 15318–15323 (2003).
[Crossref] [PubMed]

Weisbuch, C.

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69(23), 3314–3317 (1992).
[Crossref] [PubMed]

Würth, C.

C. Würth, M. G. González, R. Niessner, U. Panne, C. Haisch, and U. R. Genger, “Determination of the absolute fluorescence quantum yield of rhodamine 6G with optical and photoacoustic methods--providing the basis for fluorescence quantum yield standards,” Talanta 90, 30–37 (2012).
[Crossref] [PubMed]

Würthner, F.

S. Betzold, S. Herbst, A. A. P. Trichet, J. M. Smith, F. Würthner, S. Höfling, and C. P. Dietrich, “Tunable light–matter hybridization in open organic microcavities,” ACS Photonics 5(1), 90–94 (2018).
[Crossref]

Yamamoto, Y.

H. Deng, G. Weihs, D. Snoke, J. Bloch, and Y. Yamamoto, “Polariton lasing vs. photon lasing in a semiconductor microcavity,” Proc. Natl. Acad. Sci. U.S.A. 100(26), 15318–15323 (2003).
[Crossref] [PubMed]

Yuan, X. W.

Zengin, G.

G. Zengin, T. Gschneidtner, R. Verre, L. Shao, T. J. Antosiewicz, K. Moth-Poulsen, M. Käll, and T. Shegai, “Evaluating conditions for strong coupling between nanoparticle plasmons and organic dyes using scattering and absorption spectroscopy,” J. Phys. Chem. C 120(37), 20588–20596 (2016).
[Crossref]

Zhang, B.

Zhang, L.

X. Zhong, T. Chervy, L. Zhang, A. Thomas, J. George, C. Genet, J. A. Hutchison, and T. W. Ebbesen, “Energy transfer between spatially separated entangled molecules,” Angew. Chem. Int. Ed. Engl. 56(31), 9034–9038 (2017).
[Crossref] [PubMed]

Zhen, B.

B. Zhen, S. L. Chua, J. Lee, A. W. Rodriguez, X. Liang, S. G. Johnson, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Enabling enhanced emission and low-threshold lasing of organic molecules using special Fano resonances of macroscopic photonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 110(34), 13711–13716 (2013).
[Crossref] [PubMed]

Zhong, X.

X. Zhong, T. Chervy, L. Zhang, A. Thomas, J. George, C. Genet, J. A. Hutchison, and T. W. Ebbesen, “Energy transfer between spatially separated entangled molecules,” Angew. Chem. Int. Ed. Engl. 56(31), 9034–9038 (2017).
[Crossref] [PubMed]

X. Zhong, T. Chervy, S. Wang, J. George, A. Thomas, J. A. Hutchison, E. Devaux, C. Genet, and T. W. Ebbesen, “Non-radiative energy transfer mediated by hybrid light-matter states,” Angew. Chem. 128(21), 6310–6314 (2016).
[Crossref] [PubMed]

A. Thomas, J. George, A. Shalabney, M. Dryzhakov, S. J. Varma, J. Moran, T. Chervy, X. Zhong, E. Devaux, C. Genet, J. A. Hutchison, and T. W. Ebbesen, “Ground-state chemical reactivity under vibrational coupling to the vacuum electromagnetic field,” Angew. Chem. Int. Ed. Engl. 55(38), 11462–11466 (2016).
[Crossref] [PubMed]

Zi, J.

Zúñiga-Pérez, J.

T. Guillet, M. Mexis, J. Levrat, G. Rossbach, C. Brimont, T. Bretagnon, B. Gil, R. Butté, N. Grandjean, L. Orosz, F. Réveret, J. Leymarie, J. Zúñiga-Pérez, M. Leroux, F. Semond, and S. Bouchoule, “Polariton lasing in a hybrid bulk ZnO microcavity,” Appl. Phys. Lett. 99(16), 161104 (2011).
[Crossref]

ACS Photonics (2)

G. G. Rozenman, K. Akulov, A. Golombek, and T. Schwartz, “Long-range transport of organic exciton-polaritons revealed by ultrafast microscopy,” ACS Photonics 5(1), 105–110 (2017).
[Crossref]

S. Betzold, S. Herbst, A. A. P. Trichet, J. M. Smith, F. Würthner, S. Höfling, and C. P. Dietrich, “Tunable light–matter hybridization in open organic microcavities,” ACS Photonics 5(1), 90–94 (2018).
[Crossref]

Angew. Chem. (1)

X. Zhong, T. Chervy, S. Wang, J. George, A. Thomas, J. A. Hutchison, E. Devaux, C. Genet, and T. W. Ebbesen, “Non-radiative energy transfer mediated by hybrid light-matter states,” Angew. Chem. 128(21), 6310–6314 (2016).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (3)

X. Zhong, T. Chervy, L. Zhang, A. Thomas, J. George, C. Genet, J. A. Hutchison, and T. W. Ebbesen, “Energy transfer between spatially separated entangled molecules,” Angew. Chem. Int. Ed. Engl. 56(31), 9034–9038 (2017).
[Crossref] [PubMed]

A. Shalabney, J. George, H. Hiura, J. A. Hutchison, C. Genet, P. Hellwig, and T. W. Ebbesen, “Enhanced Raman scattering from vibro-polariton hybrid states,” Angew. Chem. Int. Ed. Engl. 54(27), 7971–7975 (2015).
[Crossref] [PubMed]

A. Thomas, J. George, A. Shalabney, M. Dryzhakov, S. J. Varma, J. Moran, T. Chervy, X. Zhong, E. Devaux, C. Genet, J. A. Hutchison, and T. W. Ebbesen, “Ground-state chemical reactivity under vibrational coupling to the vacuum electromagnetic field,” Angew. Chem. Int. Ed. Engl. 55(38), 11462–11466 (2016).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

T. Guillet, M. Mexis, J. Levrat, G. Rossbach, C. Brimont, T. Bretagnon, B. Gil, R. Butté, N. Grandjean, L. Orosz, F. Réveret, J. Leymarie, J. Zúñiga-Pérez, M. Leroux, F. Semond, and S. Bouchoule, “Polariton lasing in a hybrid bulk ZnO microcavity,” Appl. Phys. Lett. 99(16), 161104 (2011).
[Crossref]

J. Phys. Chem. B (1)

V. Martínez Martínez, F. López Arbeloa, J. Bañuelos Prieto, and I. López Arbeloa, “Characterization of rhodamine 6G aggregates intercalated in solid thin films of laponite clay. 2 Fluorescence spectroscopy,” J. Phys. Chem. B 109(15), 7443–7450 (2005).
[Crossref] [PubMed]

J. Phys. Chem. C (3)

G. Zengin, T. Gschneidtner, R. Verre, L. Shao, T. J. Antosiewicz, K. Moth-Poulsen, M. Käll, and T. Shegai, “Evaluating conditions for strong coupling between nanoparticle plasmons and organic dyes using scattering and absorption spectroscopy,” J. Phys. Chem. C 120(37), 20588–20596 (2016).
[Crossref]

R. Sasai, T. Itoh, W. Ohmori, H. Itoh, and M. Kusunoki, “Preparation and characterization of rhodamine 6G/alkyltrimethylammonium/laponite hybrid solid materials with higher emission quantum yield,” J. Phys. Chem. C 113(1), 415–421 (2008).
[Crossref]

M. Chapman, M. Mullen, E. Novoa-Ortega, M. Alhasani, J. F. Elman, and W. B. Euler, “Structural evolution of ultrathin films of rhodamine 6G on glass,” J. Phys. Chem. C 120(15), 8289–8297 (2016).
[Crossref]

JETP Lett. (1)

D. S. Dovzhenko, I. S. Vaskan, K. E. Mochalov, Y. P. Rakovich, and I. Nabiev, “Spectral and spatial characteristics of the electromagnetic field modes in the tunable optical microcavity cell for the investigation of the “light-matter” hybrid state,” JETP Lett. 109(1), 12–18 (2019).

Nano Lett. (2)

A. Konrad, A. M. Kern, M. Brecht, and A. J. Meixner, “Strong and coherent coupling of a plasmonic nanoparticle to a subwavelength Fabry–Pérot resonator,” Nano Lett. 15(7), 4423–4428 (2015).
[Crossref] [PubMed]

B. Lee, J. Park, G. H. Han, H. S. Ee, C. H. Naylor, W. Liu, A. T. C. Johnson, and R. Agarwal, “Fano resonance and spectrally modified photoluminescence enhancement in monolayer MoS2 integrated with plasmonic nanoantenna array,” Nano Lett. 15(5), 3646–3653 (2015).
[Crossref] [PubMed]

Nanoscale (1)

D. S. Dovzhenko, S. V. Ryabchuk, Y. P. Rakovich, and I. R. Nabiev, “Light-matter interaction in the strong coupling regime: configurations, conditions, and applications,” Nanoscale 10(8), 3589–3605 (2018).
[Crossref] [PubMed]

Nat. Mater. (1)

E. Orgiu, J. George, J. A. Hutchison, E. Devaux, J. F. Dayen, B. Doudin, F. Stellacci, C. Genet, J. Schachenmayer, C. Genes, G. Pupillo, P. Samorì, and T. W. Ebbesen, “Conductivity in organic semiconductors hybridized with the vacuum field,” Nat. Mater. 14(11), 1123–1129 (2015).
[Crossref] [PubMed]

Nat. Photonics (3)

M. Pelton, “Modified spontaneous emission in nanophotonic structures,” Nat. Photonics 9(7), 427–435 (2015).
[Crossref]

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1(8), 449–458 (2007).
[Crossref]

P. Vasa, W. Wang, R. Pomraenke, M. Lammers, M. Maiuri, C. Manzoni, G. Cerullo, and C. Lienau, “Real-time observation of ultrafast Rabi oscillations between excitons and plasmons in metal nanostructures with J-aggregates,” Nat. Photonics 7(2), 128–132 (2013).
[Crossref]

Nat. Phys. (1)

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2(2), 81–90 (2006).
[Crossref]

Nature (1)

J. McKeever, A. Boca, A. D. Boozer, J. R. Buck, and H. J. Kimble, “Experimental realization of a one-atom laser in the regime of strong coupling,” Nature 425(6955), 268–271 (2003).
[Crossref] [PubMed]

Opt. Express (2)

Optica (1)

Philos Trans A Math Phys Eng Sci (1)

B. M. Garraway, “The Dicke model in quantum optics: Dicke model revisited,” Philos Trans A Math Phys Eng Sci 369(1939), 1137–1155 (2011).
[Crossref] [PubMed]

Phys. Procedia (1)

D. S. Dovzhenko, E. V. Osipov, I. L. Martynov, P. A. Linkov, and A. A. Chistyakov, “Enhancement of spontaneous emission from CdSe/CdS/ZnS quantum dots at the edge of the photonic band gap in a porous silicon Bragg mirror,” Phys. Procedia 73, 126–130 (2015).
[Crossref]

Phys. Rev. (1)

E. M. Purcell, “Spontaneous transition probabilities in radio-frequency spectroscopy,” Phys. Rev. 69, 681 (1946).

Phys. Rev. B Condens. Matter Mater. Phys. (2)

N. I. Cade, T. Ritman-Meer, and D. Richards, “Strong coupling of localized plasmons and molecular excitons in nanostructured silver films,” Phys. Rev. B Condens. Matter Mater. Phys. 79(24), 241404 (2009).
[Crossref]

V. Agranovich, M. Litinskaia, and D. Lidzey, “Cavity polaritons in microcavities containing disordered organic semiconductors,” Phys. Rev. B Condens. Matter Mater. Phys. 67(8), 085311 (2003).
[Crossref]

Phys. Rev. Lett. (5)

C. Gonzalez-Ballestero, J. Feist, E. Gonzalo Badía, E. Moreno, and F. J. Garcia-Vidal, “Uncoupled dark states can inherit polaritonic properties,” Phys. Rev. Lett. 117(15), 156402 (2016).
[Crossref] [PubMed]

T. K. Hakala, J. J. Toppari, A. Kuzyk, M. Pettersson, H. Tikkanen, H. Kunttu, and P. Törmä, “Vacuum Rabi splitting and strong-coupling dynamics for surface-plasmon polaritons and rhodamine 6G molecules,” Phys. Rev. Lett. 103(5), 053602 (2009).
[Crossref] [PubMed]

G. S. Agarwal, “Vacuum-Field Rabi Splittings in Microwave Absorption by Rydberg Atoms in a Cavity,” Phys. Rev. Lett. 53(18), 1732–1734 (1984).
[Crossref]

A. Chizhik, F. Schleifenbaum, R. Gutbrod, A. Chizhik, D. Khoptyar, A. J. Meixner, and J. Enderlein, “Tuning the fluorescence emission spectra of a single molecule with a variable optical subwavelength metal microcavity,” Phys. Rev. Lett. 102(7), 073002 (2009).
[Crossref] [PubMed]

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69(23), 3314–3317 (1992).
[Crossref] [PubMed]

Phys. Scr. (1)

H. J. Kimble, “Strong interactions of single atoms and photons in cavity QED,” Phys. Scr. T76(1), 127–137 (1998).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (2)

H. Deng, G. Weihs, D. Snoke, J. Bloch, and Y. Yamamoto, “Polariton lasing vs. photon lasing in a semiconductor microcavity,” Proc. Natl. Acad. Sci. U.S.A. 100(26), 15318–15323 (2003).
[Crossref] [PubMed]

B. Zhen, S. L. Chua, J. Lee, A. W. Rodriguez, X. Liang, S. G. Johnson, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Enabling enhanced emission and low-threshold lasing of organic molecules using special Fano resonances of macroscopic photonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 110(34), 13711–13716 (2013).
[Crossref] [PubMed]

Rep. Prog. Phys. (1)

P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78(1), 013901 (2015).
[Crossref] [PubMed]

Rev. Sci. Instrum. (2)

K. E. Mochalov, I. S. Vaskan, D. S. Dovzhenko, Y. P. Rakovich, and I. Nabiev, “A versatile tunable microcavity for investigation of light-matter interaction,” Rev. Sci. Instrum. 89(5), 053105 (2018).
[Crossref] [PubMed]

A. E. Efimov, I. I. Agapov, O. I. Agapova, V. A. Oleinikov, A. V. Mezin, M. Molinari, I. Nabiev, and K. E. Mochalov, “A novel design of a scanning probe microscope integrated with an ultramicrotome for serial block-face nanotomography,” Rev. Sci. Instrum. 88(2), 023701 (2017).
[Crossref] [PubMed]

Talanta (1)

C. Würth, M. G. González, R. Niessner, U. Panne, C. Haisch, and U. R. Genger, “Determination of the absolute fluorescence quantum yield of rhodamine 6G with optical and photoacoustic methods--providing the basis for fluorescence quantum yield standards,” Talanta 90, 30–37 (2012).
[Crossref] [PubMed]

Ultramicroscopy (1)

K. E. Mochalov, A. A. Chistyakov, D. O. Solovyeva, A. V. Mezin, V. A. Oleinikov, I. S. Vaskan, M. Molinari, I. I. Agapov, I. Nabiev, and A. E. Efimov, “An instrumental approach to combining confocal microspectroscopy and 3D scanning probe nanotomography,” Ultramicroscopy 182, 118–123 (2017).
[Crossref] [PubMed]

Other (1)

V. A. Krivenkov, S. A. Goncharov, I. Nabiev, and Y. P. Rakovich, “Induced transparency in plasmon–exciton nanostructures for sensing applications,” Laser Photonics Rev., 1800176 (2018).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Scheme of the experimental setup.An atomic force microscopy (AFM) imaging was carried out using of the unique setup “System for probe-optical 3D correlative microscopy” of the Institute of Bioorganic Chemistry of the Russian Academy of Sciences (IBCh RAS) (http://ckp-rf.ru/usu/486825/) [36,37]. Equipment was provided by the IBCh core facility (CKP IBCh, supported by Russian Ministry of Education and Science, grant RFMEFI62117X0018). High resolution of images has been achieved using silicon noncontact AFM-cantilevers (NSG01, Tipsnano OU).
Fig. 2
Fig. 2 (a) AFM-image (inset) and the cross-section of the scratch-in-PMMA area on the 87% reflection mirror. (b) Fluorescence spectrum of the R6G-PMMA film on metal mirror substrate.
Fig. 3
Fig. 3 Fluorescence spectrum (red curve) of R6G-PMMA film in a tunable microcavity in comparison to the fluorescence spectrum of the same film on the substrate (grey area) outside the microcavity and corresponding transmission spectrum of the microcavity (black curve).
Fig. 4
Fig. 4 Fluorescence spectra (color curves) of the R6G-PMMA film in a tunable microcavity with different distances between low (67%) reflecting mirrors. The spectra are vertically shifted for better presentation. From the upper spectra to the bottom one, the distance between the mirrors increased from 1790 nm to 1970 nm. Black arrows mark the maxima of the emission of the cavity polaritons. The corresponding spectral shift of the transmission maxima is marked with a dashed grey line. The solid grey line indicates the emission maximum of the R6G film without the microcavity.
Fig. 5
Fig. 5 Fluorescence spectra (color curves) of the R6G-PMMA film in a tunable microcavity with different distances between high (87%) reflecting mirrors. The spectra are vertically shifted for clarity. From the upper to the bottom one, the distance between the mirrors increased from 1424 nm to 1552 nm. Black arrows indicate the maxima of the emission of the cavity polaritons. The corresponding spectral shift of the transmission maxima is marked with dashed grey line. The solid grey line indicates the emission maximum of the R6G film without the microcavity.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

  Ω R =2g N =2 F geom d ωN ε 0 V m ,