Abstract

We present an intensive vertical orientation Smith–Purcell radiation with the 2D well-array metasurface. It is shown that the moving electrons can induce three induced surface currents at the well-array metasurface, where a strong coupling among them takes place. The coupling significantly improves the radiated field intensity and shapes the radiation angle-distribution. The theoretical results show that the Smith–Purcell radiation’s field intensity is 3 times larger than the one within a conventional grating structure with directional radiation at 90 degree. Therefore, much stronger intensity and more centralized directional radiation will provide a promising way to develop electron beam driven THz sources.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Enhanced THz Smith-Purcell radiation based on the grating grooves with holes array

P. Zhang, Y. Zhang, and M. Tang
Opt. Express 25(10) 10901-10910 (2017)

Characteristic analysis of a Smith–Purcell terahertz source

Xian-Zhu Meng, Ming-Hong Wang, Li-Ming Zhang, and Zhong-Min Ren
Photon. Res. 4(5) 162-167 (2016)

Analysis of Smith-Purcell radiation in optical region

Simpei Taga, Koji Inafune, and Eiichi Sano
Opt. Express 15(24) 16222-16229 (2007)

References

  • View by:
  • |
  • |
  • |

  1. P. H. Siegel, “Terahertz technology,” IEEE Trans. Microw. Theory Tech. 50(3), 910–928 (2002).
    [Crossref]
  2. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
    [Crossref]
  3. J. H. Booske, R. J. Dobbs, C. D. Joye, C. L. Kory, G. R. Neil, G.-S. Park, J. Park, and R. J. Temkin, “Vacuum electronic high power terahertz sources,” IEEE Trans. Terahertz Sci. Technol. 1(1), 54–75 (2011).
    [Crossref]
  4. G. P. Williams, “Filling the THz gap—high power sources and applications,” Rep. Prog. Phys. 69(2), 301–326 (2006).
    [Crossref]
  5. R. A. Lewis, “A review of terahertz sources,” J. Phys. D Appl. Phys. 47(37), 374001 (2014).
    [Crossref]
  6. T. Matsui, “A brief review on metamaterial-based vacuum electronics for Terahertz and microwave science and technology,” J. Infrared Millim. Terahertz Waves 38(9), 1140 (2017).
    [Crossref]
  7. L. L. Zhang, W. M. Wang, T. Wu, R. Zhang, S. J. Zhang, C. L. Zhang, Y. Zhang, Z. M. Sheng, and X. C. Zhang, “Observation of Terahertz Radiation via the Two-Color Laser Scheme with Uncommon Frequency Ratios,” Phys. Rev. Lett. 119(23), 235001 (2017).
    [Crossref] [PubMed]
  8. W. M. Wang, P. Gibbon, Z. M. Sheng, and Y. T. Li, “Tunable Circularly Polarized Terahertz Radiation from Magnetized Gas Plasma,” Phys. Rev. Lett. 114(25), 253901 (2015).
    [Crossref] [PubMed]
  9. F. J. García de Abajo, “Abajo, “Optical excitations in electron microscopy,” Rev. Mod. Phys. 82(1), 209–275 (2010).
    [Crossref]
  10. Microtech Instruments, Inc., Available: http://www.mtinstruments.com/thzsources/index.htm .
  11. S. J. Smith and E. M. Purcell, “Visible light from localized surface charges moving across a grating,” Phys. Rev. 92(4), 1069 (1953).
    [Crossref]
  12. P. M. Phillips, Planar orotron: a tunable, grating-based free electron laser (Dartmouth College, 1987).
  13. D. Li, K. Imasaki, X. Gao, Z. Yang, and G. S. Park, “Reduce the start current of smith-purcell backward wave oscillator by sidewall grating,” Appl. Phys. Lett. 91(22), 221506 (2007).
    [Crossref]
  14. A. S. Kesar, R. A. Marsh, and R. J. Temkin, “Power measurement of frequency-locked Smith-Purcell radiation,” Phys. Rev. Spec. Top. Accel. Beams 9(2), 022801 (2006).
    [Crossref]
  15. S. E. Korbly, A. S. Kesar, J. R. Sirigiri, and R. J. Temkin, “Observation of frequency-locked coherent terahertz Smith-Purcell radiation,” Phys. Rev. Lett. 94(5), 054803 (2005).
    [Crossref] [PubMed]
  16. H. L. Andrews and C. A. Brau, “Gain of a Smith–Purcell free-electron laser,” Phys. Rev. Spec. Top. Accel. Beams 7(7), 070701 (2004).
    [Crossref]
  17. P. Zhang, Y. Zhang, and M. Tang, “Enhanced THz Smith-Purcell radiation based on the grating grooves with holes array,” Opt. Express 25(10), 10901–10910 (2017).
    [Crossref] [PubMed]
  18. J. Urata, M. Goldstein, M. F. Kimmitt, A. Naumov, C. Platt, and J. E. Walsh, “Superradiant Smith–Purcell emission,” Phys. Rev. Lett. 80(3), 516–519 (1998).
    [Crossref]
  19. Y. M. Shin, J. K. So, K. H. Jang, J. H. Won, A. Srivastava, and G. S. Park, “Superradiant terahertz Smith-Purcell radiation from surface plasmon excited by counterstreaming electron beams,” Appl. Phys. Lett. 90(3), 031502 (2007).
    [Crossref]
  20. P. D. Hoang, G. Andonian, I. Gadjev, B. Naranjo, Y. Sakai, N. Sudar, O. Williams, M. Fedurin, K. Kusche, C. Swinson, P. Zhang, and J. B. Rosenzweig, “Experimental characterization of electron-beam-driven wakefield modes in a dielectric-woodpile cartesian symmetric structure,” Phys. Rev. Lett. 120(16), 164801 (2018).
    [Crossref] [PubMed]
  21. A. Okajima and T. Matsui, “Electron-beam induced terahertz radiation from graded metallic grating,” Opt. Express 22(14), 17490–17496 (2014).
    [Crossref] [PubMed]
  22. P. Zhang, Y. Zhang, M. Hu, W. Liu, J. Zhou, and S. Liu, “Diffraction radiation of a sub-wavelength hole array with dielectric medium loading,” J. Phys. D Appl. Phys. 45(14), 145303 (2012).
    [Crossref]
  23. J. H. Brownell, J. Walsh, and G. Doucas, “spontaneous Smith-Purcell radiation described through induced surface currents,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 57(1), 1075–1080 (1998).
    [Crossref]
  24. J. E. Walsh, “Electron beams diffraction gratings and radiation,” Nucl. Instrum. Methods Phys. Res. Sect. A 445(1), 214–221 (2000).
  25. D. Blanco, E. Rajo-Iglesias, S. Maci, and N. Llombart, “Directivity enhancement and spurious radiation suppression in leaky-wave antennas using inductive grid metasurfaces,” IEEE Trans. Antenn. Propag. 63(3), 891–900 (2015).
    [Crossref]
  26. M. T. Islam, M. H. Ullah, M. J. Singh, and M. R. I. Faruque, “A new metasurface superstrate structure for antenna performance enhancement,” Materials (Basel) 6(8), 3226–3240 (2013).
    [Crossref] [PubMed]
  27. Y. Song, J. Du, N. Jiang, L. Liu, and X. Hu, “Efficient terahertz and infrared Smith-Purcell radiation from metal-slot metasurfaces,” Opt. Lett. 43(16), 3858–3861 (2018).
    [Crossref] [PubMed]
  28. Y. Song, N. Jiang, L. Liu, X. Hu, and J. Zi, “Cherenkov Radiation from Photonic Bound States in the Continuum: Towards Compact Free-Electron Lasers,” Phys. Rev. Appl. 10(6), 064026 (2018).
    [Crossref]
  29. L. Liu, H. Chang, C. Zhang, Y. Song, and X. Hu, “Terahertz and infrared Smith-Purcell radiation from Babinet metasurfaces: Loss and efficiency,” Phys. Rev. B 96(16), 165435 (2017).
    [Crossref]
  30. P. M. Van Den Berg, “Smith–Purcell radiation from a point charge moving parallel to a reflection grating,” J. Opt. Soc. Am. 63(6), 689–698 (1973).
    [Crossref]
  31. P. M. van den Berg and T. H. Tan, “Smith–Purcell radiation from a line charge moving parallel to a reflection grating,” J. Opt. Soc. Am. 63(6), 689–698 (1973).
    [Crossref]
  32. J. D. Jackson and R. K. P. Zia, Classical Electrodynamics. (Springer, 1998).
  33. S. G. Liu, H. F. Li, W. X. Wang, and Y. L. Mo, Introduction to microwave electronics (National Defense Industry 1985).
  34. C. S. T. Corp, CST PS Tutorials. Available at: https://www.cst.com/.CST .

2018 (3)

P. D. Hoang, G. Andonian, I. Gadjev, B. Naranjo, Y. Sakai, N. Sudar, O. Williams, M. Fedurin, K. Kusche, C. Swinson, P. Zhang, and J. B. Rosenzweig, “Experimental characterization of electron-beam-driven wakefield modes in a dielectric-woodpile cartesian symmetric structure,” Phys. Rev. Lett. 120(16), 164801 (2018).
[Crossref] [PubMed]

Y. Song, J. Du, N. Jiang, L. Liu, and X. Hu, “Efficient terahertz and infrared Smith-Purcell radiation from metal-slot metasurfaces,” Opt. Lett. 43(16), 3858–3861 (2018).
[Crossref] [PubMed]

Y. Song, N. Jiang, L. Liu, X. Hu, and J. Zi, “Cherenkov Radiation from Photonic Bound States in the Continuum: Towards Compact Free-Electron Lasers,” Phys. Rev. Appl. 10(6), 064026 (2018).
[Crossref]

2017 (4)

L. Liu, H. Chang, C. Zhang, Y. Song, and X. Hu, “Terahertz and infrared Smith-Purcell radiation from Babinet metasurfaces: Loss and efficiency,” Phys. Rev. B 96(16), 165435 (2017).
[Crossref]

T. Matsui, “A brief review on metamaterial-based vacuum electronics for Terahertz and microwave science and technology,” J. Infrared Millim. Terahertz Waves 38(9), 1140 (2017).
[Crossref]

L. L. Zhang, W. M. Wang, T. Wu, R. Zhang, S. J. Zhang, C. L. Zhang, Y. Zhang, Z. M. Sheng, and X. C. Zhang, “Observation of Terahertz Radiation via the Two-Color Laser Scheme with Uncommon Frequency Ratios,” Phys. Rev. Lett. 119(23), 235001 (2017).
[Crossref] [PubMed]

P. Zhang, Y. Zhang, and M. Tang, “Enhanced THz Smith-Purcell radiation based on the grating grooves with holes array,” Opt. Express 25(10), 10901–10910 (2017).
[Crossref] [PubMed]

2015 (2)

W. M. Wang, P. Gibbon, Z. M. Sheng, and Y. T. Li, “Tunable Circularly Polarized Terahertz Radiation from Magnetized Gas Plasma,” Phys. Rev. Lett. 114(25), 253901 (2015).
[Crossref] [PubMed]

D. Blanco, E. Rajo-Iglesias, S. Maci, and N. Llombart, “Directivity enhancement and spurious radiation suppression in leaky-wave antennas using inductive grid metasurfaces,” IEEE Trans. Antenn. Propag. 63(3), 891–900 (2015).
[Crossref]

2014 (2)

2013 (1)

M. T. Islam, M. H. Ullah, M. J. Singh, and M. R. I. Faruque, “A new metasurface superstrate structure for antenna performance enhancement,” Materials (Basel) 6(8), 3226–3240 (2013).
[Crossref] [PubMed]

2012 (1)

P. Zhang, Y. Zhang, M. Hu, W. Liu, J. Zhou, and S. Liu, “Diffraction radiation of a sub-wavelength hole array with dielectric medium loading,” J. Phys. D Appl. Phys. 45(14), 145303 (2012).
[Crossref]

2011 (1)

J. H. Booske, R. J. Dobbs, C. D. Joye, C. L. Kory, G. R. Neil, G.-S. Park, J. Park, and R. J. Temkin, “Vacuum electronic high power terahertz sources,” IEEE Trans. Terahertz Sci. Technol. 1(1), 54–75 (2011).
[Crossref]

2010 (1)

F. J. García de Abajo, “Abajo, “Optical excitations in electron microscopy,” Rev. Mod. Phys. 82(1), 209–275 (2010).
[Crossref]

2007 (3)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Y. M. Shin, J. K. So, K. H. Jang, J. H. Won, A. Srivastava, and G. S. Park, “Superradiant terahertz Smith-Purcell radiation from surface plasmon excited by counterstreaming electron beams,” Appl. Phys. Lett. 90(3), 031502 (2007).
[Crossref]

D. Li, K. Imasaki, X. Gao, Z. Yang, and G. S. Park, “Reduce the start current of smith-purcell backward wave oscillator by sidewall grating,” Appl. Phys. Lett. 91(22), 221506 (2007).
[Crossref]

2006 (2)

A. S. Kesar, R. A. Marsh, and R. J. Temkin, “Power measurement of frequency-locked Smith-Purcell radiation,” Phys. Rev. Spec. Top. Accel. Beams 9(2), 022801 (2006).
[Crossref]

G. P. Williams, “Filling the THz gap—high power sources and applications,” Rep. Prog. Phys. 69(2), 301–326 (2006).
[Crossref]

2005 (1)

S. E. Korbly, A. S. Kesar, J. R. Sirigiri, and R. J. Temkin, “Observation of frequency-locked coherent terahertz Smith-Purcell radiation,” Phys. Rev. Lett. 94(5), 054803 (2005).
[Crossref] [PubMed]

2004 (1)

H. L. Andrews and C. A. Brau, “Gain of a Smith–Purcell free-electron laser,” Phys. Rev. Spec. Top. Accel. Beams 7(7), 070701 (2004).
[Crossref]

2002 (1)

P. H. Siegel, “Terahertz technology,” IEEE Trans. Microw. Theory Tech. 50(3), 910–928 (2002).
[Crossref]

2000 (1)

J. E. Walsh, “Electron beams diffraction gratings and radiation,” Nucl. Instrum. Methods Phys. Res. Sect. A 445(1), 214–221 (2000).

1998 (2)

J. H. Brownell, J. Walsh, and G. Doucas, “spontaneous Smith-Purcell radiation described through induced surface currents,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 57(1), 1075–1080 (1998).
[Crossref]

J. Urata, M. Goldstein, M. F. Kimmitt, A. Naumov, C. Platt, and J. E. Walsh, “Superradiant Smith–Purcell emission,” Phys. Rev. Lett. 80(3), 516–519 (1998).
[Crossref]

1973 (2)

1953 (1)

S. J. Smith and E. M. Purcell, “Visible light from localized surface charges moving across a grating,” Phys. Rev. 92(4), 1069 (1953).
[Crossref]

Andonian, G.

P. D. Hoang, G. Andonian, I. Gadjev, B. Naranjo, Y. Sakai, N. Sudar, O. Williams, M. Fedurin, K. Kusche, C. Swinson, P. Zhang, and J. B. Rosenzweig, “Experimental characterization of electron-beam-driven wakefield modes in a dielectric-woodpile cartesian symmetric structure,” Phys. Rev. Lett. 120(16), 164801 (2018).
[Crossref] [PubMed]

Andrews, H. L.

H. L. Andrews and C. A. Brau, “Gain of a Smith–Purcell free-electron laser,” Phys. Rev. Spec. Top. Accel. Beams 7(7), 070701 (2004).
[Crossref]

Blanco, D.

D. Blanco, E. Rajo-Iglesias, S. Maci, and N. Llombart, “Directivity enhancement and spurious radiation suppression in leaky-wave antennas using inductive grid metasurfaces,” IEEE Trans. Antenn. Propag. 63(3), 891–900 (2015).
[Crossref]

Booske, J. H.

J. H. Booske, R. J. Dobbs, C. D. Joye, C. L. Kory, G. R. Neil, G.-S. Park, J. Park, and R. J. Temkin, “Vacuum electronic high power terahertz sources,” IEEE Trans. Terahertz Sci. Technol. 1(1), 54–75 (2011).
[Crossref]

Brau, C. A.

H. L. Andrews and C. A. Brau, “Gain of a Smith–Purcell free-electron laser,” Phys. Rev. Spec. Top. Accel. Beams 7(7), 070701 (2004).
[Crossref]

Brownell, J. H.

J. H. Brownell, J. Walsh, and G. Doucas, “spontaneous Smith-Purcell radiation described through induced surface currents,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 57(1), 1075–1080 (1998).
[Crossref]

Chang, H.

L. Liu, H. Chang, C. Zhang, Y. Song, and X. Hu, “Terahertz and infrared Smith-Purcell radiation from Babinet metasurfaces: Loss and efficiency,” Phys. Rev. B 96(16), 165435 (2017).
[Crossref]

Dobbs, R. J.

J. H. Booske, R. J. Dobbs, C. D. Joye, C. L. Kory, G. R. Neil, G.-S. Park, J. Park, and R. J. Temkin, “Vacuum electronic high power terahertz sources,” IEEE Trans. Terahertz Sci. Technol. 1(1), 54–75 (2011).
[Crossref]

Doucas, G.

J. H. Brownell, J. Walsh, and G. Doucas, “spontaneous Smith-Purcell radiation described through induced surface currents,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 57(1), 1075–1080 (1998).
[Crossref]

Du, J.

Faruque, M. R. I.

M. T. Islam, M. H. Ullah, M. J. Singh, and M. R. I. Faruque, “A new metasurface superstrate structure for antenna performance enhancement,” Materials (Basel) 6(8), 3226–3240 (2013).
[Crossref] [PubMed]

Fedurin, M.

P. D. Hoang, G. Andonian, I. Gadjev, B. Naranjo, Y. Sakai, N. Sudar, O. Williams, M. Fedurin, K. Kusche, C. Swinson, P. Zhang, and J. B. Rosenzweig, “Experimental characterization of electron-beam-driven wakefield modes in a dielectric-woodpile cartesian symmetric structure,” Phys. Rev. Lett. 120(16), 164801 (2018).
[Crossref] [PubMed]

Gadjev, I.

P. D. Hoang, G. Andonian, I. Gadjev, B. Naranjo, Y. Sakai, N. Sudar, O. Williams, M. Fedurin, K. Kusche, C. Swinson, P. Zhang, and J. B. Rosenzweig, “Experimental characterization of electron-beam-driven wakefield modes in a dielectric-woodpile cartesian symmetric structure,” Phys. Rev. Lett. 120(16), 164801 (2018).
[Crossref] [PubMed]

Gao, X.

D. Li, K. Imasaki, X. Gao, Z. Yang, and G. S. Park, “Reduce the start current of smith-purcell backward wave oscillator by sidewall grating,” Appl. Phys. Lett. 91(22), 221506 (2007).
[Crossref]

García de Abajo, F. J.

F. J. García de Abajo, “Abajo, “Optical excitations in electron microscopy,” Rev. Mod. Phys. 82(1), 209–275 (2010).
[Crossref]

Gibbon, P.

W. M. Wang, P. Gibbon, Z. M. Sheng, and Y. T. Li, “Tunable Circularly Polarized Terahertz Radiation from Magnetized Gas Plasma,” Phys. Rev. Lett. 114(25), 253901 (2015).
[Crossref] [PubMed]

Goldstein, M.

J. Urata, M. Goldstein, M. F. Kimmitt, A. Naumov, C. Platt, and J. E. Walsh, “Superradiant Smith–Purcell emission,” Phys. Rev. Lett. 80(3), 516–519 (1998).
[Crossref]

Hoang, P. D.

P. D. Hoang, G. Andonian, I. Gadjev, B. Naranjo, Y. Sakai, N. Sudar, O. Williams, M. Fedurin, K. Kusche, C. Swinson, P. Zhang, and J. B. Rosenzweig, “Experimental characterization of electron-beam-driven wakefield modes in a dielectric-woodpile cartesian symmetric structure,” Phys. Rev. Lett. 120(16), 164801 (2018).
[Crossref] [PubMed]

Hu, M.

P. Zhang, Y. Zhang, M. Hu, W. Liu, J. Zhou, and S. Liu, “Diffraction radiation of a sub-wavelength hole array with dielectric medium loading,” J. Phys. D Appl. Phys. 45(14), 145303 (2012).
[Crossref]

Hu, X.

Y. Song, J. Du, N. Jiang, L. Liu, and X. Hu, “Efficient terahertz and infrared Smith-Purcell radiation from metal-slot metasurfaces,” Opt. Lett. 43(16), 3858–3861 (2018).
[Crossref] [PubMed]

Y. Song, N. Jiang, L. Liu, X. Hu, and J. Zi, “Cherenkov Radiation from Photonic Bound States in the Continuum: Towards Compact Free-Electron Lasers,” Phys. Rev. Appl. 10(6), 064026 (2018).
[Crossref]

L. Liu, H. Chang, C. Zhang, Y. Song, and X. Hu, “Terahertz and infrared Smith-Purcell radiation from Babinet metasurfaces: Loss and efficiency,” Phys. Rev. B 96(16), 165435 (2017).
[Crossref]

Imasaki, K.

D. Li, K. Imasaki, X. Gao, Z. Yang, and G. S. Park, “Reduce the start current of smith-purcell backward wave oscillator by sidewall grating,” Appl. Phys. Lett. 91(22), 221506 (2007).
[Crossref]

Islam, M. T.

M. T. Islam, M. H. Ullah, M. J. Singh, and M. R. I. Faruque, “A new metasurface superstrate structure for antenna performance enhancement,” Materials (Basel) 6(8), 3226–3240 (2013).
[Crossref] [PubMed]

Jang, K. H.

Y. M. Shin, J. K. So, K. H. Jang, J. H. Won, A. Srivastava, and G. S. Park, “Superradiant terahertz Smith-Purcell radiation from surface plasmon excited by counterstreaming electron beams,” Appl. Phys. Lett. 90(3), 031502 (2007).
[Crossref]

Jiang, N.

Y. Song, N. Jiang, L. Liu, X. Hu, and J. Zi, “Cherenkov Radiation from Photonic Bound States in the Continuum: Towards Compact Free-Electron Lasers,” Phys. Rev. Appl. 10(6), 064026 (2018).
[Crossref]

Y. Song, J. Du, N. Jiang, L. Liu, and X. Hu, “Efficient terahertz and infrared Smith-Purcell radiation from metal-slot metasurfaces,” Opt. Lett. 43(16), 3858–3861 (2018).
[Crossref] [PubMed]

Joye, C. D.

J. H. Booske, R. J. Dobbs, C. D. Joye, C. L. Kory, G. R. Neil, G.-S. Park, J. Park, and R. J. Temkin, “Vacuum electronic high power terahertz sources,” IEEE Trans. Terahertz Sci. Technol. 1(1), 54–75 (2011).
[Crossref]

Kesar, A. S.

A. S. Kesar, R. A. Marsh, and R. J. Temkin, “Power measurement of frequency-locked Smith-Purcell radiation,” Phys. Rev. Spec. Top. Accel. Beams 9(2), 022801 (2006).
[Crossref]

S. E. Korbly, A. S. Kesar, J. R. Sirigiri, and R. J. Temkin, “Observation of frequency-locked coherent terahertz Smith-Purcell radiation,” Phys. Rev. Lett. 94(5), 054803 (2005).
[Crossref] [PubMed]

Kimmitt, M. F.

J. Urata, M. Goldstein, M. F. Kimmitt, A. Naumov, C. Platt, and J. E. Walsh, “Superradiant Smith–Purcell emission,” Phys. Rev. Lett. 80(3), 516–519 (1998).
[Crossref]

Korbly, S. E.

S. E. Korbly, A. S. Kesar, J. R. Sirigiri, and R. J. Temkin, “Observation of frequency-locked coherent terahertz Smith-Purcell radiation,” Phys. Rev. Lett. 94(5), 054803 (2005).
[Crossref] [PubMed]

Kory, C. L.

J. H. Booske, R. J. Dobbs, C. D. Joye, C. L. Kory, G. R. Neil, G.-S. Park, J. Park, and R. J. Temkin, “Vacuum electronic high power terahertz sources,” IEEE Trans. Terahertz Sci. Technol. 1(1), 54–75 (2011).
[Crossref]

Kusche, K.

P. D. Hoang, G. Andonian, I. Gadjev, B. Naranjo, Y. Sakai, N. Sudar, O. Williams, M. Fedurin, K. Kusche, C. Swinson, P. Zhang, and J. B. Rosenzweig, “Experimental characterization of electron-beam-driven wakefield modes in a dielectric-woodpile cartesian symmetric structure,” Phys. Rev. Lett. 120(16), 164801 (2018).
[Crossref] [PubMed]

Lewis, R. A.

R. A. Lewis, “A review of terahertz sources,” J. Phys. D Appl. Phys. 47(37), 374001 (2014).
[Crossref]

Li, D.

D. Li, K. Imasaki, X. Gao, Z. Yang, and G. S. Park, “Reduce the start current of smith-purcell backward wave oscillator by sidewall grating,” Appl. Phys. Lett. 91(22), 221506 (2007).
[Crossref]

Li, Y. T.

W. M. Wang, P. Gibbon, Z. M. Sheng, and Y. T. Li, “Tunable Circularly Polarized Terahertz Radiation from Magnetized Gas Plasma,” Phys. Rev. Lett. 114(25), 253901 (2015).
[Crossref] [PubMed]

Liu, L.

Y. Song, J. Du, N. Jiang, L. Liu, and X. Hu, “Efficient terahertz and infrared Smith-Purcell radiation from metal-slot metasurfaces,” Opt. Lett. 43(16), 3858–3861 (2018).
[Crossref] [PubMed]

Y. Song, N. Jiang, L. Liu, X. Hu, and J. Zi, “Cherenkov Radiation from Photonic Bound States in the Continuum: Towards Compact Free-Electron Lasers,” Phys. Rev. Appl. 10(6), 064026 (2018).
[Crossref]

L. Liu, H. Chang, C. Zhang, Y. Song, and X. Hu, “Terahertz and infrared Smith-Purcell radiation from Babinet metasurfaces: Loss and efficiency,” Phys. Rev. B 96(16), 165435 (2017).
[Crossref]

Liu, S.

P. Zhang, Y. Zhang, M. Hu, W. Liu, J. Zhou, and S. Liu, “Diffraction radiation of a sub-wavelength hole array with dielectric medium loading,” J. Phys. D Appl. Phys. 45(14), 145303 (2012).
[Crossref]

Liu, W.

P. Zhang, Y. Zhang, M. Hu, W. Liu, J. Zhou, and S. Liu, “Diffraction radiation of a sub-wavelength hole array with dielectric medium loading,” J. Phys. D Appl. Phys. 45(14), 145303 (2012).
[Crossref]

Llombart, N.

D. Blanco, E. Rajo-Iglesias, S. Maci, and N. Llombart, “Directivity enhancement and spurious radiation suppression in leaky-wave antennas using inductive grid metasurfaces,” IEEE Trans. Antenn. Propag. 63(3), 891–900 (2015).
[Crossref]

Maci, S.

D. Blanco, E. Rajo-Iglesias, S. Maci, and N. Llombart, “Directivity enhancement and spurious radiation suppression in leaky-wave antennas using inductive grid metasurfaces,” IEEE Trans. Antenn. Propag. 63(3), 891–900 (2015).
[Crossref]

Marsh, R. A.

A. S. Kesar, R. A. Marsh, and R. J. Temkin, “Power measurement of frequency-locked Smith-Purcell radiation,” Phys. Rev. Spec. Top. Accel. Beams 9(2), 022801 (2006).
[Crossref]

Matsui, T.

T. Matsui, “A brief review on metamaterial-based vacuum electronics for Terahertz and microwave science and technology,” J. Infrared Millim. Terahertz Waves 38(9), 1140 (2017).
[Crossref]

A. Okajima and T. Matsui, “Electron-beam induced terahertz radiation from graded metallic grating,” Opt. Express 22(14), 17490–17496 (2014).
[Crossref] [PubMed]

Naranjo, B.

P. D. Hoang, G. Andonian, I. Gadjev, B. Naranjo, Y. Sakai, N. Sudar, O. Williams, M. Fedurin, K. Kusche, C. Swinson, P. Zhang, and J. B. Rosenzweig, “Experimental characterization of electron-beam-driven wakefield modes in a dielectric-woodpile cartesian symmetric structure,” Phys. Rev. Lett. 120(16), 164801 (2018).
[Crossref] [PubMed]

Naumov, A.

J. Urata, M. Goldstein, M. F. Kimmitt, A. Naumov, C. Platt, and J. E. Walsh, “Superradiant Smith–Purcell emission,” Phys. Rev. Lett. 80(3), 516–519 (1998).
[Crossref]

Neil, G. R.

J. H. Booske, R. J. Dobbs, C. D. Joye, C. L. Kory, G. R. Neil, G.-S. Park, J. Park, and R. J. Temkin, “Vacuum electronic high power terahertz sources,” IEEE Trans. Terahertz Sci. Technol. 1(1), 54–75 (2011).
[Crossref]

Okajima, A.

Park, G. S.

Y. M. Shin, J. K. So, K. H. Jang, J. H. Won, A. Srivastava, and G. S. Park, “Superradiant terahertz Smith-Purcell radiation from surface plasmon excited by counterstreaming electron beams,” Appl. Phys. Lett. 90(3), 031502 (2007).
[Crossref]

D. Li, K. Imasaki, X. Gao, Z. Yang, and G. S. Park, “Reduce the start current of smith-purcell backward wave oscillator by sidewall grating,” Appl. Phys. Lett. 91(22), 221506 (2007).
[Crossref]

Park, G.-S.

J. H. Booske, R. J. Dobbs, C. D. Joye, C. L. Kory, G. R. Neil, G.-S. Park, J. Park, and R. J. Temkin, “Vacuum electronic high power terahertz sources,” IEEE Trans. Terahertz Sci. Technol. 1(1), 54–75 (2011).
[Crossref]

Park, J.

J. H. Booske, R. J. Dobbs, C. D. Joye, C. L. Kory, G. R. Neil, G.-S. Park, J. Park, and R. J. Temkin, “Vacuum electronic high power terahertz sources,” IEEE Trans. Terahertz Sci. Technol. 1(1), 54–75 (2011).
[Crossref]

Platt, C.

J. Urata, M. Goldstein, M. F. Kimmitt, A. Naumov, C. Platt, and J. E. Walsh, “Superradiant Smith–Purcell emission,” Phys. Rev. Lett. 80(3), 516–519 (1998).
[Crossref]

Purcell, E. M.

S. J. Smith and E. M. Purcell, “Visible light from localized surface charges moving across a grating,” Phys. Rev. 92(4), 1069 (1953).
[Crossref]

Rajo-Iglesias, E.

D. Blanco, E. Rajo-Iglesias, S. Maci, and N. Llombart, “Directivity enhancement and spurious radiation suppression in leaky-wave antennas using inductive grid metasurfaces,” IEEE Trans. Antenn. Propag. 63(3), 891–900 (2015).
[Crossref]

Rosenzweig, J. B.

P. D. Hoang, G. Andonian, I. Gadjev, B. Naranjo, Y. Sakai, N. Sudar, O. Williams, M. Fedurin, K. Kusche, C. Swinson, P. Zhang, and J. B. Rosenzweig, “Experimental characterization of electron-beam-driven wakefield modes in a dielectric-woodpile cartesian symmetric structure,” Phys. Rev. Lett. 120(16), 164801 (2018).
[Crossref] [PubMed]

Sakai, Y.

P. D. Hoang, G. Andonian, I. Gadjev, B. Naranjo, Y. Sakai, N. Sudar, O. Williams, M. Fedurin, K. Kusche, C. Swinson, P. Zhang, and J. B. Rosenzweig, “Experimental characterization of electron-beam-driven wakefield modes in a dielectric-woodpile cartesian symmetric structure,” Phys. Rev. Lett. 120(16), 164801 (2018).
[Crossref] [PubMed]

Sheng, Z. M.

L. L. Zhang, W. M. Wang, T. Wu, R. Zhang, S. J. Zhang, C. L. Zhang, Y. Zhang, Z. M. Sheng, and X. C. Zhang, “Observation of Terahertz Radiation via the Two-Color Laser Scheme with Uncommon Frequency Ratios,” Phys. Rev. Lett. 119(23), 235001 (2017).
[Crossref] [PubMed]

W. M. Wang, P. Gibbon, Z. M. Sheng, and Y. T. Li, “Tunable Circularly Polarized Terahertz Radiation from Magnetized Gas Plasma,” Phys. Rev. Lett. 114(25), 253901 (2015).
[Crossref] [PubMed]

Shin, Y. M.

Y. M. Shin, J. K. So, K. H. Jang, J. H. Won, A. Srivastava, and G. S. Park, “Superradiant terahertz Smith-Purcell radiation from surface plasmon excited by counterstreaming electron beams,” Appl. Phys. Lett. 90(3), 031502 (2007).
[Crossref]

Siegel, P. H.

P. H. Siegel, “Terahertz technology,” IEEE Trans. Microw. Theory Tech. 50(3), 910–928 (2002).
[Crossref]

Singh, M. J.

M. T. Islam, M. H. Ullah, M. J. Singh, and M. R. I. Faruque, “A new metasurface superstrate structure for antenna performance enhancement,” Materials (Basel) 6(8), 3226–3240 (2013).
[Crossref] [PubMed]

Sirigiri, J. R.

S. E. Korbly, A. S. Kesar, J. R. Sirigiri, and R. J. Temkin, “Observation of frequency-locked coherent terahertz Smith-Purcell radiation,” Phys. Rev. Lett. 94(5), 054803 (2005).
[Crossref] [PubMed]

Smith, S. J.

S. J. Smith and E. M. Purcell, “Visible light from localized surface charges moving across a grating,” Phys. Rev. 92(4), 1069 (1953).
[Crossref]

So, J. K.

Y. M. Shin, J. K. So, K. H. Jang, J. H. Won, A. Srivastava, and G. S. Park, “Superradiant terahertz Smith-Purcell radiation from surface plasmon excited by counterstreaming electron beams,” Appl. Phys. Lett. 90(3), 031502 (2007).
[Crossref]

Song, Y.

Y. Song, N. Jiang, L. Liu, X. Hu, and J. Zi, “Cherenkov Radiation from Photonic Bound States in the Continuum: Towards Compact Free-Electron Lasers,” Phys. Rev. Appl. 10(6), 064026 (2018).
[Crossref]

Y. Song, J. Du, N. Jiang, L. Liu, and X. Hu, “Efficient terahertz and infrared Smith-Purcell radiation from metal-slot metasurfaces,” Opt. Lett. 43(16), 3858–3861 (2018).
[Crossref] [PubMed]

L. Liu, H. Chang, C. Zhang, Y. Song, and X. Hu, “Terahertz and infrared Smith-Purcell radiation from Babinet metasurfaces: Loss and efficiency,” Phys. Rev. B 96(16), 165435 (2017).
[Crossref]

Srivastava, A.

Y. M. Shin, J. K. So, K. H. Jang, J. H. Won, A. Srivastava, and G. S. Park, “Superradiant terahertz Smith-Purcell radiation from surface plasmon excited by counterstreaming electron beams,” Appl. Phys. Lett. 90(3), 031502 (2007).
[Crossref]

Sudar, N.

P. D. Hoang, G. Andonian, I. Gadjev, B. Naranjo, Y. Sakai, N. Sudar, O. Williams, M. Fedurin, K. Kusche, C. Swinson, P. Zhang, and J. B. Rosenzweig, “Experimental characterization of electron-beam-driven wakefield modes in a dielectric-woodpile cartesian symmetric structure,” Phys. Rev. Lett. 120(16), 164801 (2018).
[Crossref] [PubMed]

Swinson, C.

P. D. Hoang, G. Andonian, I. Gadjev, B. Naranjo, Y. Sakai, N. Sudar, O. Williams, M. Fedurin, K. Kusche, C. Swinson, P. Zhang, and J. B. Rosenzweig, “Experimental characterization of electron-beam-driven wakefield modes in a dielectric-woodpile cartesian symmetric structure,” Phys. Rev. Lett. 120(16), 164801 (2018).
[Crossref] [PubMed]

Tan, T. H.

Tang, M.

Temkin, R. J.

J. H. Booske, R. J. Dobbs, C. D. Joye, C. L. Kory, G. R. Neil, G.-S. Park, J. Park, and R. J. Temkin, “Vacuum electronic high power terahertz sources,” IEEE Trans. Terahertz Sci. Technol. 1(1), 54–75 (2011).
[Crossref]

A. S. Kesar, R. A. Marsh, and R. J. Temkin, “Power measurement of frequency-locked Smith-Purcell radiation,” Phys. Rev. Spec. Top. Accel. Beams 9(2), 022801 (2006).
[Crossref]

S. E. Korbly, A. S. Kesar, J. R. Sirigiri, and R. J. Temkin, “Observation of frequency-locked coherent terahertz Smith-Purcell radiation,” Phys. Rev. Lett. 94(5), 054803 (2005).
[Crossref] [PubMed]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Ullah, M. H.

M. T. Islam, M. H. Ullah, M. J. Singh, and M. R. I. Faruque, “A new metasurface superstrate structure for antenna performance enhancement,” Materials (Basel) 6(8), 3226–3240 (2013).
[Crossref] [PubMed]

Urata, J.

J. Urata, M. Goldstein, M. F. Kimmitt, A. Naumov, C. Platt, and J. E. Walsh, “Superradiant Smith–Purcell emission,” Phys. Rev. Lett. 80(3), 516–519 (1998).
[Crossref]

Van Den Berg, P. M.

Walsh, J.

J. H. Brownell, J. Walsh, and G. Doucas, “spontaneous Smith-Purcell radiation described through induced surface currents,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 57(1), 1075–1080 (1998).
[Crossref]

Walsh, J. E.

J. E. Walsh, “Electron beams diffraction gratings and radiation,” Nucl. Instrum. Methods Phys. Res. Sect. A 445(1), 214–221 (2000).

J. Urata, M. Goldstein, M. F. Kimmitt, A. Naumov, C. Platt, and J. E. Walsh, “Superradiant Smith–Purcell emission,” Phys. Rev. Lett. 80(3), 516–519 (1998).
[Crossref]

Wang, W. M.

L. L. Zhang, W. M. Wang, T. Wu, R. Zhang, S. J. Zhang, C. L. Zhang, Y. Zhang, Z. M. Sheng, and X. C. Zhang, “Observation of Terahertz Radiation via the Two-Color Laser Scheme with Uncommon Frequency Ratios,” Phys. Rev. Lett. 119(23), 235001 (2017).
[Crossref] [PubMed]

W. M. Wang, P. Gibbon, Z. M. Sheng, and Y. T. Li, “Tunable Circularly Polarized Terahertz Radiation from Magnetized Gas Plasma,” Phys. Rev. Lett. 114(25), 253901 (2015).
[Crossref] [PubMed]

Williams, G. P.

G. P. Williams, “Filling the THz gap—high power sources and applications,” Rep. Prog. Phys. 69(2), 301–326 (2006).
[Crossref]

Williams, O.

P. D. Hoang, G. Andonian, I. Gadjev, B. Naranjo, Y. Sakai, N. Sudar, O. Williams, M. Fedurin, K. Kusche, C. Swinson, P. Zhang, and J. B. Rosenzweig, “Experimental characterization of electron-beam-driven wakefield modes in a dielectric-woodpile cartesian symmetric structure,” Phys. Rev. Lett. 120(16), 164801 (2018).
[Crossref] [PubMed]

Won, J. H.

Y. M. Shin, J. K. So, K. H. Jang, J. H. Won, A. Srivastava, and G. S. Park, “Superradiant terahertz Smith-Purcell radiation from surface plasmon excited by counterstreaming electron beams,” Appl. Phys. Lett. 90(3), 031502 (2007).
[Crossref]

Wu, T.

L. L. Zhang, W. M. Wang, T. Wu, R. Zhang, S. J. Zhang, C. L. Zhang, Y. Zhang, Z. M. Sheng, and X. C. Zhang, “Observation of Terahertz Radiation via the Two-Color Laser Scheme with Uncommon Frequency Ratios,” Phys. Rev. Lett. 119(23), 235001 (2017).
[Crossref] [PubMed]

Yang, Z.

D. Li, K. Imasaki, X. Gao, Z. Yang, and G. S. Park, “Reduce the start current of smith-purcell backward wave oscillator by sidewall grating,” Appl. Phys. Lett. 91(22), 221506 (2007).
[Crossref]

Zhang, C.

L. Liu, H. Chang, C. Zhang, Y. Song, and X. Hu, “Terahertz and infrared Smith-Purcell radiation from Babinet metasurfaces: Loss and efficiency,” Phys. Rev. B 96(16), 165435 (2017).
[Crossref]

Zhang, C. L.

L. L. Zhang, W. M. Wang, T. Wu, R. Zhang, S. J. Zhang, C. L. Zhang, Y. Zhang, Z. M. Sheng, and X. C. Zhang, “Observation of Terahertz Radiation via the Two-Color Laser Scheme with Uncommon Frequency Ratios,” Phys. Rev. Lett. 119(23), 235001 (2017).
[Crossref] [PubMed]

Zhang, L. L.

L. L. Zhang, W. M. Wang, T. Wu, R. Zhang, S. J. Zhang, C. L. Zhang, Y. Zhang, Z. M. Sheng, and X. C. Zhang, “Observation of Terahertz Radiation via the Two-Color Laser Scheme with Uncommon Frequency Ratios,” Phys. Rev. Lett. 119(23), 235001 (2017).
[Crossref] [PubMed]

Zhang, P.

P. D. Hoang, G. Andonian, I. Gadjev, B. Naranjo, Y. Sakai, N. Sudar, O. Williams, M. Fedurin, K. Kusche, C. Swinson, P. Zhang, and J. B. Rosenzweig, “Experimental characterization of electron-beam-driven wakefield modes in a dielectric-woodpile cartesian symmetric structure,” Phys. Rev. Lett. 120(16), 164801 (2018).
[Crossref] [PubMed]

P. Zhang, Y. Zhang, and M. Tang, “Enhanced THz Smith-Purcell radiation based on the grating grooves with holes array,” Opt. Express 25(10), 10901–10910 (2017).
[Crossref] [PubMed]

P. Zhang, Y. Zhang, M. Hu, W. Liu, J. Zhou, and S. Liu, “Diffraction radiation of a sub-wavelength hole array with dielectric medium loading,” J. Phys. D Appl. Phys. 45(14), 145303 (2012).
[Crossref]

Zhang, R.

L. L. Zhang, W. M. Wang, T. Wu, R. Zhang, S. J. Zhang, C. L. Zhang, Y. Zhang, Z. M. Sheng, and X. C. Zhang, “Observation of Terahertz Radiation via the Two-Color Laser Scheme with Uncommon Frequency Ratios,” Phys. Rev. Lett. 119(23), 235001 (2017).
[Crossref] [PubMed]

Zhang, S. J.

L. L. Zhang, W. M. Wang, T. Wu, R. Zhang, S. J. Zhang, C. L. Zhang, Y. Zhang, Z. M. Sheng, and X. C. Zhang, “Observation of Terahertz Radiation via the Two-Color Laser Scheme with Uncommon Frequency Ratios,” Phys. Rev. Lett. 119(23), 235001 (2017).
[Crossref] [PubMed]

Zhang, X. C.

L. L. Zhang, W. M. Wang, T. Wu, R. Zhang, S. J. Zhang, C. L. Zhang, Y. Zhang, Z. M. Sheng, and X. C. Zhang, “Observation of Terahertz Radiation via the Two-Color Laser Scheme with Uncommon Frequency Ratios,” Phys. Rev. Lett. 119(23), 235001 (2017).
[Crossref] [PubMed]

Zhang, Y.

L. L. Zhang, W. M. Wang, T. Wu, R. Zhang, S. J. Zhang, C. L. Zhang, Y. Zhang, Z. M. Sheng, and X. C. Zhang, “Observation of Terahertz Radiation via the Two-Color Laser Scheme with Uncommon Frequency Ratios,” Phys. Rev. Lett. 119(23), 235001 (2017).
[Crossref] [PubMed]

P. Zhang, Y. Zhang, and M. Tang, “Enhanced THz Smith-Purcell radiation based on the grating grooves with holes array,” Opt. Express 25(10), 10901–10910 (2017).
[Crossref] [PubMed]

P. Zhang, Y. Zhang, M. Hu, W. Liu, J. Zhou, and S. Liu, “Diffraction radiation of a sub-wavelength hole array with dielectric medium loading,” J. Phys. D Appl. Phys. 45(14), 145303 (2012).
[Crossref]

Zhou, J.

P. Zhang, Y. Zhang, M. Hu, W. Liu, J. Zhou, and S. Liu, “Diffraction radiation of a sub-wavelength hole array with dielectric medium loading,” J. Phys. D Appl. Phys. 45(14), 145303 (2012).
[Crossref]

Zi, J.

Y. Song, N. Jiang, L. Liu, X. Hu, and J. Zi, “Cherenkov Radiation from Photonic Bound States in the Continuum: Towards Compact Free-Electron Lasers,” Phys. Rev. Appl. 10(6), 064026 (2018).
[Crossref]

Appl. Phys. Lett. (2)

D. Li, K. Imasaki, X. Gao, Z. Yang, and G. S. Park, “Reduce the start current of smith-purcell backward wave oscillator by sidewall grating,” Appl. Phys. Lett. 91(22), 221506 (2007).
[Crossref]

Y. M. Shin, J. K. So, K. H. Jang, J. H. Won, A. Srivastava, and G. S. Park, “Superradiant terahertz Smith-Purcell radiation from surface plasmon excited by counterstreaming electron beams,” Appl. Phys. Lett. 90(3), 031502 (2007).
[Crossref]

IEEE Trans. Antenn. Propag. (1)

D. Blanco, E. Rajo-Iglesias, S. Maci, and N. Llombart, “Directivity enhancement and spurious radiation suppression in leaky-wave antennas using inductive grid metasurfaces,” IEEE Trans. Antenn. Propag. 63(3), 891–900 (2015).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

P. H. Siegel, “Terahertz technology,” IEEE Trans. Microw. Theory Tech. 50(3), 910–928 (2002).
[Crossref]

IEEE Trans. Terahertz Sci. Technol. (1)

J. H. Booske, R. J. Dobbs, C. D. Joye, C. L. Kory, G. R. Neil, G.-S. Park, J. Park, and R. J. Temkin, “Vacuum electronic high power terahertz sources,” IEEE Trans. Terahertz Sci. Technol. 1(1), 54–75 (2011).
[Crossref]

J. Infrared Millim. Terahertz Waves (1)

T. Matsui, “A brief review on metamaterial-based vacuum electronics for Terahertz and microwave science and technology,” J. Infrared Millim. Terahertz Waves 38(9), 1140 (2017).
[Crossref]

J. Opt. Soc. Am. (2)

J. Phys. D Appl. Phys. (2)

P. Zhang, Y. Zhang, M. Hu, W. Liu, J. Zhou, and S. Liu, “Diffraction radiation of a sub-wavelength hole array with dielectric medium loading,” J. Phys. D Appl. Phys. 45(14), 145303 (2012).
[Crossref]

R. A. Lewis, “A review of terahertz sources,” J. Phys. D Appl. Phys. 47(37), 374001 (2014).
[Crossref]

Materials (Basel) (1)

M. T. Islam, M. H. Ullah, M. J. Singh, and M. R. I. Faruque, “A new metasurface superstrate structure for antenna performance enhancement,” Materials (Basel) 6(8), 3226–3240 (2013).
[Crossref] [PubMed]

Nat. Photonics (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Nucl. Instrum. Methods Phys. Res. Sect. A (1)

J. E. Walsh, “Electron beams diffraction gratings and radiation,” Nucl. Instrum. Methods Phys. Res. Sect. A 445(1), 214–221 (2000).

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. (1)

S. J. Smith and E. M. Purcell, “Visible light from localized surface charges moving across a grating,” Phys. Rev. 92(4), 1069 (1953).
[Crossref]

Phys. Rev. Appl. (1)

Y. Song, N. Jiang, L. Liu, X. Hu, and J. Zi, “Cherenkov Radiation from Photonic Bound States in the Continuum: Towards Compact Free-Electron Lasers,” Phys. Rev. Appl. 10(6), 064026 (2018).
[Crossref]

Phys. Rev. B (1)

L. Liu, H. Chang, C. Zhang, Y. Song, and X. Hu, “Terahertz and infrared Smith-Purcell radiation from Babinet metasurfaces: Loss and efficiency,” Phys. Rev. B 96(16), 165435 (2017).
[Crossref]

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics (1)

J. H. Brownell, J. Walsh, and G. Doucas, “spontaneous Smith-Purcell radiation described through induced surface currents,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 57(1), 1075–1080 (1998).
[Crossref]

Phys. Rev. Lett. (5)

P. D. Hoang, G. Andonian, I. Gadjev, B. Naranjo, Y. Sakai, N. Sudar, O. Williams, M. Fedurin, K. Kusche, C. Swinson, P. Zhang, and J. B. Rosenzweig, “Experimental characterization of electron-beam-driven wakefield modes in a dielectric-woodpile cartesian symmetric structure,” Phys. Rev. Lett. 120(16), 164801 (2018).
[Crossref] [PubMed]

J. Urata, M. Goldstein, M. F. Kimmitt, A. Naumov, C. Platt, and J. E. Walsh, “Superradiant Smith–Purcell emission,” Phys. Rev. Lett. 80(3), 516–519 (1998).
[Crossref]

S. E. Korbly, A. S. Kesar, J. R. Sirigiri, and R. J. Temkin, “Observation of frequency-locked coherent terahertz Smith-Purcell radiation,” Phys. Rev. Lett. 94(5), 054803 (2005).
[Crossref] [PubMed]

L. L. Zhang, W. M. Wang, T. Wu, R. Zhang, S. J. Zhang, C. L. Zhang, Y. Zhang, Z. M. Sheng, and X. C. Zhang, “Observation of Terahertz Radiation via the Two-Color Laser Scheme with Uncommon Frequency Ratios,” Phys. Rev. Lett. 119(23), 235001 (2017).
[Crossref] [PubMed]

W. M. Wang, P. Gibbon, Z. M. Sheng, and Y. T. Li, “Tunable Circularly Polarized Terahertz Radiation from Magnetized Gas Plasma,” Phys. Rev. Lett. 114(25), 253901 (2015).
[Crossref] [PubMed]

Phys. Rev. Spec. Top. Accel. Beams (2)

H. L. Andrews and C. A. Brau, “Gain of a Smith–Purcell free-electron laser,” Phys. Rev. Spec. Top. Accel. Beams 7(7), 070701 (2004).
[Crossref]

A. S. Kesar, R. A. Marsh, and R. J. Temkin, “Power measurement of frequency-locked Smith-Purcell radiation,” Phys. Rev. Spec. Top. Accel. Beams 9(2), 022801 (2006).
[Crossref]

Rep. Prog. Phys. (1)

G. P. Williams, “Filling the THz gap—high power sources and applications,” Rep. Prog. Phys. 69(2), 301–326 (2006).
[Crossref]

Rev. Mod. Phys. (1)

F. J. García de Abajo, “Abajo, “Optical excitations in electron microscopy,” Rev. Mod. Phys. 82(1), 209–275 (2010).
[Crossref]

Other (5)

Microtech Instruments, Inc., Available: http://www.mtinstruments.com/thzsources/index.htm .

P. M. Phillips, Planar orotron: a tunable, grating-based free electron laser (Dartmouth College, 1987).

J. D. Jackson and R. K. P. Zia, Classical Electrodynamics. (Springer, 1998).

S. G. Liu, H. F. Li, W. X. Wang, and Y. L. Mo, Introduction to microwave electronics (National Defense Industry 1985).

C. S. T. Corp, CST PS Tutorials. Available at: https://www.cst.com/.CST .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) The schematic of conventional grating structure. (b) The schematic of well-array metasurface structure. The intensity and the direction of SP radiation are improved.
Fig. 2
Fig. 2 (a) The Schematic of the surface current in grating structure. The current with the period L in space gives rise to radiation. (b) The Schematic of the induced surface currents in well-array metasurface structure, J0′ is from the grating, and J1 and J2 is mainly from the diaphragms, they all have the same period L in space. (c) The simulation results of the surface current in conventional grating structure. (d) The simulation results of the surface current in well-array metasurface structure.
Fig. 3
Fig. 3 (a) Diagram showing the coordinate system and angles which define the direction of the emitted radiation, θ is the polar angle, and Ф is the azimuthal angle; (b) SP radiation diagram; (c) The polar angular θ distribution of the SP radiation energy.
Fig. 4
Fig. 4 (a) Ez field in the time domain for well-array metasurface structure and grating structure; (b) corresponding FFT of Ez for well-array metasurface and grating structure. (c) Frequency spectra of SP radiation for different distances between the diaphragms (w1).
Fig. 5
Fig. 5 (a) The schematic diagram of the probes distribution. (b) The strongest SP radiation spectra observed at the probes for different w1 cases.
Fig. 6
Fig. 6 Radiation frequency distribution and azimuthal angle distribution (Ф) distribution in cross-section for the well-array metasurface structure (a) and conventional grating structure (b).
Fig. 7
Fig. 7 Transient Ez field distribution in the cross-section for the (a) well-array metasurface structure and (b) grating structure. (c) Comparison of the radiation intensity.

Tables (1)

Tables Icon

Table 1 Parameters of the Well-array Metasurface Structure

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

W= 2 I ωΩ = ω 2 4 π 2 c 3 | dt d 3 x n ^ × n ^ × J total ( r,t ) e j( ωtk·r ) | 2
J total ( r,t )= m=1 L/l J tooth ( rml z ^ ,tml/v )
J tooth ( r,t )= f=1 F ρ( r,t, s f ) V( r,t, s f )
ρ( r, r 0 ,t,s )= qγb 2π δ( y ) [ ( x x 0 ) 2 + b 2 + γ 2 ( zcβt ) 2 ] 3/2
λ= L m ( 1 β cosθ )

Metrics