Abstract

This paper proposes a design for a dielectric-grating-coupled surface plasmon resonance (SPR) sensor that can be fabricated using a low-cost nanoimprint process and exhibits a high phase detection sensitivity when light is incident on the backside of the sensor and does not pass through the analyte on the front-side of the sensor. A low-refractive-index material (mesoporous silica) is utilized to implement a reverse symmetric waveguide structure that can enhance electric-field strength on the sensor surface and improve detection sensitivity. A sol-gel method is used to fill the groove of the grating structure with a high-refractive-index material (titanium dioxide), and surface smoothness is improved via a flat silicon impression mold. The experimental results indicate that although the sensor device exhibits defects and non-smooth surface relief, phase detection sensitivity can still be achieved as high as 2 × 10−5 RIU by using an electro-optic heterodyne interferometer.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Design and optimization of a novel surface plasmon resonance biosensor based on Otto configuration

E. K. Akowuah, T. Gorman, and S. Haxha
Opt. Express 17(26) 23511-23521 (2009)

Hybrid differential interrogation method for sensitive surface plasmon resonance measurement enabled by electro-optically tunable SPR sensors

Kun Wang, Zheng Zheng, Yalin Su, Zhiyou Wang, Lusheng Song, and Jinsong Zhu
Opt. Express 17(6) 4468-4478 (2009)

Bandgap-assisted surface-plasmon sensing

Arnaud J. Benahmed and Chih-Ming Ho
Appl. Opt. 46(16) 3369-3375 (2007)

References

  • View by:
  • |
  • |
  • |

  1. H. Raether, Surface plasmons on smooth and rough surfaces and on gratings, Springer Tracts in Modern Physics (Springer-Verlag, Berlin-Heidelberg, 1988).
  2. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1–2), 3–15 (1999).
    [Crossref]
  3. J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction grating and prism couplers: sensitivity comparison,” Sens. Actuators B Chem. 54(1–2), 16–24 (1999).
    [Crossref]
  4. W. K. Kuo and C. H. Chang, “Phase detection properties of grating-coupled surface plasmon resonance sensors,” Opt. Express 18(19), 19656–19664 (2010).
    [Crossref] [PubMed]
  5. J. Dostálek, J. Homola, and M. Miler, “Rich information format surface plasmon resonance biosensor based on array of diffraction gratings,” Sens. Actuators B Chem. 107(1), 154–161 (2005).
    [Crossref]
  6. M. Piliarik, M. Vala, I. Tichý, and J. Homola, “Compact and low-cost biosensor based on novel approach to spectroscopy of surface plasmons,” Biosens. Bioelectron. 24(12), 3430–3435 (2009).
    [Crossref] [PubMed]
  7. A. Sonato, M. Agostini, G. Ruffato, E. Gazzola, D. Liuni, G. Greco, M. Travagliati, M. Cecchini, and F. Romanato, “A surface acoustic wave (SAW)-enhanced grating-coupling phase-interrogation surface plasmon resonance (SPR) microfluidic biosensor,” Lab Chip 16(7), 1224–1233 (2016).
    [Crossref] [PubMed]
  8. A. T. Reiner, S. Fossati, and J. Dostalek, “Biosensor platform for parallel surface plasmon-enhanced epifluorescence and surface plasmon resonance detection,” Sens. Actuators B Chem. 257, 3430–3435 (2009).
  9. N. C. Lindquist, T. W. Johnson, J. Jose, L. M. Otto, and S. H. Oh, “Ultrasmooth metallic films with buried nanostructures for backside reflection-mode plasmonic biosensing,” Ann. Phys. 524(11), 687–696 (2012).
    [Crossref] [PubMed]
  10. S. Pi, X. Zeng, N. Zhang, D. Ji, B. Chen, H. Song, A. Cheney, Y. Xu, S. Jiang, D. Sun, Y. Song, and Q. Gan, “Dielectric-grating-coupled surface plasmon resonance from the back side of the metal film for ultrasensitive sensing,” IEEE Photonics J. 8(1), 4800207 (2009).
  11. R. Horvath, H. C. Pedersen, and N. B. Larsen, “Demonstration of reverse symmetry waveguide sensing in aqueous solutions,” Appl. Phys. Lett. 81(12), 2166–2168 (2002).
    [Crossref]
  12. M. Li, H. Tan, L. Chen, J. Wang, and S. Y. Chou, “Large area direct nanoimprinting of SiO2–TiO2 gel gratings for optical applications,” J. Vac. Sci. Technol. B 21(2), 660–663 (2003).
    [Crossref]
  13. C. C. Liu, J. G. Li, and S. W. Kuo, “Co-template method provides hierarchical mesoporous silicas with exceptionally ultra-low refractive indices,” RSC Advances 4(39), 20262–20272 (2014).
    [Crossref]
  14. K. H. Chen, C. C. Hsu, and D. C. Su, “Measurement of wavelength shift by using surface plasmon resonance heterodyne interferometry,” Opt. Commun. 209(1–3), 167–172 (2012).

2016 (1)

A. Sonato, M. Agostini, G. Ruffato, E. Gazzola, D. Liuni, G. Greco, M. Travagliati, M. Cecchini, and F. Romanato, “A surface acoustic wave (SAW)-enhanced grating-coupling phase-interrogation surface plasmon resonance (SPR) microfluidic biosensor,” Lab Chip 16(7), 1224–1233 (2016).
[Crossref] [PubMed]

2014 (1)

C. C. Liu, J. G. Li, and S. W. Kuo, “Co-template method provides hierarchical mesoporous silicas with exceptionally ultra-low refractive indices,” RSC Advances 4(39), 20262–20272 (2014).
[Crossref]

2012 (2)

K. H. Chen, C. C. Hsu, and D. C. Su, “Measurement of wavelength shift by using surface plasmon resonance heterodyne interferometry,” Opt. Commun. 209(1–3), 167–172 (2012).

N. C. Lindquist, T. W. Johnson, J. Jose, L. M. Otto, and S. H. Oh, “Ultrasmooth metallic films with buried nanostructures for backside reflection-mode plasmonic biosensing,” Ann. Phys. 524(11), 687–696 (2012).
[Crossref] [PubMed]

2010 (1)

2009 (3)

S. Pi, X. Zeng, N. Zhang, D. Ji, B. Chen, H. Song, A. Cheney, Y. Xu, S. Jiang, D. Sun, Y. Song, and Q. Gan, “Dielectric-grating-coupled surface plasmon resonance from the back side of the metal film for ultrasensitive sensing,” IEEE Photonics J. 8(1), 4800207 (2009).

A. T. Reiner, S. Fossati, and J. Dostalek, “Biosensor platform for parallel surface plasmon-enhanced epifluorescence and surface plasmon resonance detection,” Sens. Actuators B Chem. 257, 3430–3435 (2009).

M. Piliarik, M. Vala, I. Tichý, and J. Homola, “Compact and low-cost biosensor based on novel approach to spectroscopy of surface plasmons,” Biosens. Bioelectron. 24(12), 3430–3435 (2009).
[Crossref] [PubMed]

2005 (1)

J. Dostálek, J. Homola, and M. Miler, “Rich information format surface plasmon resonance biosensor based on array of diffraction gratings,” Sens. Actuators B Chem. 107(1), 154–161 (2005).
[Crossref]

2003 (1)

M. Li, H. Tan, L. Chen, J. Wang, and S. Y. Chou, “Large area direct nanoimprinting of SiO2–TiO2 gel gratings for optical applications,” J. Vac. Sci. Technol. B 21(2), 660–663 (2003).
[Crossref]

2002 (1)

R. Horvath, H. C. Pedersen, and N. B. Larsen, “Demonstration of reverse symmetry waveguide sensing in aqueous solutions,” Appl. Phys. Lett. 81(12), 2166–2168 (2002).
[Crossref]

1999 (2)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1–2), 3–15 (1999).
[Crossref]

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction grating and prism couplers: sensitivity comparison,” Sens. Actuators B Chem. 54(1–2), 16–24 (1999).
[Crossref]

Agostini, M.

A. Sonato, M. Agostini, G. Ruffato, E. Gazzola, D. Liuni, G. Greco, M. Travagliati, M. Cecchini, and F. Romanato, “A surface acoustic wave (SAW)-enhanced grating-coupling phase-interrogation surface plasmon resonance (SPR) microfluidic biosensor,” Lab Chip 16(7), 1224–1233 (2016).
[Crossref] [PubMed]

Cecchini, M.

A. Sonato, M. Agostini, G. Ruffato, E. Gazzola, D. Liuni, G. Greco, M. Travagliati, M. Cecchini, and F. Romanato, “A surface acoustic wave (SAW)-enhanced grating-coupling phase-interrogation surface plasmon resonance (SPR) microfluidic biosensor,” Lab Chip 16(7), 1224–1233 (2016).
[Crossref] [PubMed]

Chang, C. H.

Chen, B.

S. Pi, X. Zeng, N. Zhang, D. Ji, B. Chen, H. Song, A. Cheney, Y. Xu, S. Jiang, D. Sun, Y. Song, and Q. Gan, “Dielectric-grating-coupled surface plasmon resonance from the back side of the metal film for ultrasensitive sensing,” IEEE Photonics J. 8(1), 4800207 (2009).

Chen, K. H.

K. H. Chen, C. C. Hsu, and D. C. Su, “Measurement of wavelength shift by using surface plasmon resonance heterodyne interferometry,” Opt. Commun. 209(1–3), 167–172 (2012).

Chen, L.

M. Li, H. Tan, L. Chen, J. Wang, and S. Y. Chou, “Large area direct nanoimprinting of SiO2–TiO2 gel gratings for optical applications,” J. Vac. Sci. Technol. B 21(2), 660–663 (2003).
[Crossref]

Cheney, A.

S. Pi, X. Zeng, N. Zhang, D. Ji, B. Chen, H. Song, A. Cheney, Y. Xu, S. Jiang, D. Sun, Y. Song, and Q. Gan, “Dielectric-grating-coupled surface plasmon resonance from the back side of the metal film for ultrasensitive sensing,” IEEE Photonics J. 8(1), 4800207 (2009).

Chou, S. Y.

M. Li, H. Tan, L. Chen, J. Wang, and S. Y. Chou, “Large area direct nanoimprinting of SiO2–TiO2 gel gratings for optical applications,” J. Vac. Sci. Technol. B 21(2), 660–663 (2003).
[Crossref]

Dostalek, J.

A. T. Reiner, S. Fossati, and J. Dostalek, “Biosensor platform for parallel surface plasmon-enhanced epifluorescence and surface plasmon resonance detection,” Sens. Actuators B Chem. 257, 3430–3435 (2009).

Dostálek, J.

J. Dostálek, J. Homola, and M. Miler, “Rich information format surface plasmon resonance biosensor based on array of diffraction gratings,” Sens. Actuators B Chem. 107(1), 154–161 (2005).
[Crossref]

Fossati, S.

A. T. Reiner, S. Fossati, and J. Dostalek, “Biosensor platform for parallel surface plasmon-enhanced epifluorescence and surface plasmon resonance detection,” Sens. Actuators B Chem. 257, 3430–3435 (2009).

Gan, Q.

S. Pi, X. Zeng, N. Zhang, D. Ji, B. Chen, H. Song, A. Cheney, Y. Xu, S. Jiang, D. Sun, Y. Song, and Q. Gan, “Dielectric-grating-coupled surface plasmon resonance from the back side of the metal film for ultrasensitive sensing,” IEEE Photonics J. 8(1), 4800207 (2009).

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1–2), 3–15 (1999).
[Crossref]

Gazzola, E.

A. Sonato, M. Agostini, G. Ruffato, E. Gazzola, D. Liuni, G. Greco, M. Travagliati, M. Cecchini, and F. Romanato, “A surface acoustic wave (SAW)-enhanced grating-coupling phase-interrogation surface plasmon resonance (SPR) microfluidic biosensor,” Lab Chip 16(7), 1224–1233 (2016).
[Crossref] [PubMed]

Greco, G.

A. Sonato, M. Agostini, G. Ruffato, E. Gazzola, D. Liuni, G. Greco, M. Travagliati, M. Cecchini, and F. Romanato, “A surface acoustic wave (SAW)-enhanced grating-coupling phase-interrogation surface plasmon resonance (SPR) microfluidic biosensor,” Lab Chip 16(7), 1224–1233 (2016).
[Crossref] [PubMed]

Homola, J.

M. Piliarik, M. Vala, I. Tichý, and J. Homola, “Compact and low-cost biosensor based on novel approach to spectroscopy of surface plasmons,” Biosens. Bioelectron. 24(12), 3430–3435 (2009).
[Crossref] [PubMed]

J. Dostálek, J. Homola, and M. Miler, “Rich information format surface plasmon resonance biosensor based on array of diffraction gratings,” Sens. Actuators B Chem. 107(1), 154–161 (2005).
[Crossref]

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction grating and prism couplers: sensitivity comparison,” Sens. Actuators B Chem. 54(1–2), 16–24 (1999).
[Crossref]

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1–2), 3–15 (1999).
[Crossref]

Horvath, R.

R. Horvath, H. C. Pedersen, and N. B. Larsen, “Demonstration of reverse symmetry waveguide sensing in aqueous solutions,” Appl. Phys. Lett. 81(12), 2166–2168 (2002).
[Crossref]

Hsu, C. C.

K. H. Chen, C. C. Hsu, and D. C. Su, “Measurement of wavelength shift by using surface plasmon resonance heterodyne interferometry,” Opt. Commun. 209(1–3), 167–172 (2012).

Ji, D.

S. Pi, X. Zeng, N. Zhang, D. Ji, B. Chen, H. Song, A. Cheney, Y. Xu, S. Jiang, D. Sun, Y. Song, and Q. Gan, “Dielectric-grating-coupled surface plasmon resonance from the back side of the metal film for ultrasensitive sensing,” IEEE Photonics J. 8(1), 4800207 (2009).

Jiang, S.

S. Pi, X. Zeng, N. Zhang, D. Ji, B. Chen, H. Song, A. Cheney, Y. Xu, S. Jiang, D. Sun, Y. Song, and Q. Gan, “Dielectric-grating-coupled surface plasmon resonance from the back side of the metal film for ultrasensitive sensing,” IEEE Photonics J. 8(1), 4800207 (2009).

Johnson, T. W.

N. C. Lindquist, T. W. Johnson, J. Jose, L. M. Otto, and S. H. Oh, “Ultrasmooth metallic films with buried nanostructures for backside reflection-mode plasmonic biosensing,” Ann. Phys. 524(11), 687–696 (2012).
[Crossref] [PubMed]

Jose, J.

N. C. Lindquist, T. W. Johnson, J. Jose, L. M. Otto, and S. H. Oh, “Ultrasmooth metallic films with buried nanostructures for backside reflection-mode plasmonic biosensing,” Ann. Phys. 524(11), 687–696 (2012).
[Crossref] [PubMed]

Koudela, I.

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction grating and prism couplers: sensitivity comparison,” Sens. Actuators B Chem. 54(1–2), 16–24 (1999).
[Crossref]

Kuo, S. W.

C. C. Liu, J. G. Li, and S. W. Kuo, “Co-template method provides hierarchical mesoporous silicas with exceptionally ultra-low refractive indices,” RSC Advances 4(39), 20262–20272 (2014).
[Crossref]

Kuo, W. K.

Larsen, N. B.

R. Horvath, H. C. Pedersen, and N. B. Larsen, “Demonstration of reverse symmetry waveguide sensing in aqueous solutions,” Appl. Phys. Lett. 81(12), 2166–2168 (2002).
[Crossref]

Li, J. G.

C. C. Liu, J. G. Li, and S. W. Kuo, “Co-template method provides hierarchical mesoporous silicas with exceptionally ultra-low refractive indices,” RSC Advances 4(39), 20262–20272 (2014).
[Crossref]

Li, M.

M. Li, H. Tan, L. Chen, J. Wang, and S. Y. Chou, “Large area direct nanoimprinting of SiO2–TiO2 gel gratings for optical applications,” J. Vac. Sci. Technol. B 21(2), 660–663 (2003).
[Crossref]

Lindquist, N. C.

N. C. Lindquist, T. W. Johnson, J. Jose, L. M. Otto, and S. H. Oh, “Ultrasmooth metallic films with buried nanostructures for backside reflection-mode plasmonic biosensing,” Ann. Phys. 524(11), 687–696 (2012).
[Crossref] [PubMed]

Liu, C. C.

C. C. Liu, J. G. Li, and S. W. Kuo, “Co-template method provides hierarchical mesoporous silicas with exceptionally ultra-low refractive indices,” RSC Advances 4(39), 20262–20272 (2014).
[Crossref]

Liuni, D.

A. Sonato, M. Agostini, G. Ruffato, E. Gazzola, D. Liuni, G. Greco, M. Travagliati, M. Cecchini, and F. Romanato, “A surface acoustic wave (SAW)-enhanced grating-coupling phase-interrogation surface plasmon resonance (SPR) microfluidic biosensor,” Lab Chip 16(7), 1224–1233 (2016).
[Crossref] [PubMed]

Miler, M.

J. Dostálek, J. Homola, and M. Miler, “Rich information format surface plasmon resonance biosensor based on array of diffraction gratings,” Sens. Actuators B Chem. 107(1), 154–161 (2005).
[Crossref]

Oh, S. H.

N. C. Lindquist, T. W. Johnson, J. Jose, L. M. Otto, and S. H. Oh, “Ultrasmooth metallic films with buried nanostructures for backside reflection-mode plasmonic biosensing,” Ann. Phys. 524(11), 687–696 (2012).
[Crossref] [PubMed]

Otto, L. M.

N. C. Lindquist, T. W. Johnson, J. Jose, L. M. Otto, and S. H. Oh, “Ultrasmooth metallic films with buried nanostructures for backside reflection-mode plasmonic biosensing,” Ann. Phys. 524(11), 687–696 (2012).
[Crossref] [PubMed]

Pedersen, H. C.

R. Horvath, H. C. Pedersen, and N. B. Larsen, “Demonstration of reverse symmetry waveguide sensing in aqueous solutions,” Appl. Phys. Lett. 81(12), 2166–2168 (2002).
[Crossref]

Pi, S.

S. Pi, X. Zeng, N. Zhang, D. Ji, B. Chen, H. Song, A. Cheney, Y. Xu, S. Jiang, D. Sun, Y. Song, and Q. Gan, “Dielectric-grating-coupled surface plasmon resonance from the back side of the metal film for ultrasensitive sensing,” IEEE Photonics J. 8(1), 4800207 (2009).

Piliarik, M.

M. Piliarik, M. Vala, I. Tichý, and J. Homola, “Compact and low-cost biosensor based on novel approach to spectroscopy of surface plasmons,” Biosens. Bioelectron. 24(12), 3430–3435 (2009).
[Crossref] [PubMed]

Reiner, A. T.

A. T. Reiner, S. Fossati, and J. Dostalek, “Biosensor platform for parallel surface plasmon-enhanced epifluorescence and surface plasmon resonance detection,” Sens. Actuators B Chem. 257, 3430–3435 (2009).

Romanato, F.

A. Sonato, M. Agostini, G. Ruffato, E. Gazzola, D. Liuni, G. Greco, M. Travagliati, M. Cecchini, and F. Romanato, “A surface acoustic wave (SAW)-enhanced grating-coupling phase-interrogation surface plasmon resonance (SPR) microfluidic biosensor,” Lab Chip 16(7), 1224–1233 (2016).
[Crossref] [PubMed]

Ruffato, G.

A. Sonato, M. Agostini, G. Ruffato, E. Gazzola, D. Liuni, G. Greco, M. Travagliati, M. Cecchini, and F. Romanato, “A surface acoustic wave (SAW)-enhanced grating-coupling phase-interrogation surface plasmon resonance (SPR) microfluidic biosensor,” Lab Chip 16(7), 1224–1233 (2016).
[Crossref] [PubMed]

Sonato, A.

A. Sonato, M. Agostini, G. Ruffato, E. Gazzola, D. Liuni, G. Greco, M. Travagliati, M. Cecchini, and F. Romanato, “A surface acoustic wave (SAW)-enhanced grating-coupling phase-interrogation surface plasmon resonance (SPR) microfluidic biosensor,” Lab Chip 16(7), 1224–1233 (2016).
[Crossref] [PubMed]

Song, H.

S. Pi, X. Zeng, N. Zhang, D. Ji, B. Chen, H. Song, A. Cheney, Y. Xu, S. Jiang, D. Sun, Y. Song, and Q. Gan, “Dielectric-grating-coupled surface plasmon resonance from the back side of the metal film for ultrasensitive sensing,” IEEE Photonics J. 8(1), 4800207 (2009).

Song, Y.

S. Pi, X. Zeng, N. Zhang, D. Ji, B. Chen, H. Song, A. Cheney, Y. Xu, S. Jiang, D. Sun, Y. Song, and Q. Gan, “Dielectric-grating-coupled surface plasmon resonance from the back side of the metal film for ultrasensitive sensing,” IEEE Photonics J. 8(1), 4800207 (2009).

Su, D. C.

K. H. Chen, C. C. Hsu, and D. C. Su, “Measurement of wavelength shift by using surface plasmon resonance heterodyne interferometry,” Opt. Commun. 209(1–3), 167–172 (2012).

Sun, D.

S. Pi, X. Zeng, N. Zhang, D. Ji, B. Chen, H. Song, A. Cheney, Y. Xu, S. Jiang, D. Sun, Y. Song, and Q. Gan, “Dielectric-grating-coupled surface plasmon resonance from the back side of the metal film for ultrasensitive sensing,” IEEE Photonics J. 8(1), 4800207 (2009).

Tan, H.

M. Li, H. Tan, L. Chen, J. Wang, and S. Y. Chou, “Large area direct nanoimprinting of SiO2–TiO2 gel gratings for optical applications,” J. Vac. Sci. Technol. B 21(2), 660–663 (2003).
[Crossref]

Tichý, I.

M. Piliarik, M. Vala, I. Tichý, and J. Homola, “Compact and low-cost biosensor based on novel approach to spectroscopy of surface plasmons,” Biosens. Bioelectron. 24(12), 3430–3435 (2009).
[Crossref] [PubMed]

Travagliati, M.

A. Sonato, M. Agostini, G. Ruffato, E. Gazzola, D. Liuni, G. Greco, M. Travagliati, M. Cecchini, and F. Romanato, “A surface acoustic wave (SAW)-enhanced grating-coupling phase-interrogation surface plasmon resonance (SPR) microfluidic biosensor,” Lab Chip 16(7), 1224–1233 (2016).
[Crossref] [PubMed]

Vala, M.

M. Piliarik, M. Vala, I. Tichý, and J. Homola, “Compact and low-cost biosensor based on novel approach to spectroscopy of surface plasmons,” Biosens. Bioelectron. 24(12), 3430–3435 (2009).
[Crossref] [PubMed]

Wang, J.

M. Li, H. Tan, L. Chen, J. Wang, and S. Y. Chou, “Large area direct nanoimprinting of SiO2–TiO2 gel gratings for optical applications,” J. Vac. Sci. Technol. B 21(2), 660–663 (2003).
[Crossref]

Xu, Y.

S. Pi, X. Zeng, N. Zhang, D. Ji, B. Chen, H. Song, A. Cheney, Y. Xu, S. Jiang, D. Sun, Y. Song, and Q. Gan, “Dielectric-grating-coupled surface plasmon resonance from the back side of the metal film for ultrasensitive sensing,” IEEE Photonics J. 8(1), 4800207 (2009).

Yee, S. S.

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction grating and prism couplers: sensitivity comparison,” Sens. Actuators B Chem. 54(1–2), 16–24 (1999).
[Crossref]

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1–2), 3–15 (1999).
[Crossref]

Zeng, X.

S. Pi, X. Zeng, N. Zhang, D. Ji, B. Chen, H. Song, A. Cheney, Y. Xu, S. Jiang, D. Sun, Y. Song, and Q. Gan, “Dielectric-grating-coupled surface plasmon resonance from the back side of the metal film for ultrasensitive sensing,” IEEE Photonics J. 8(1), 4800207 (2009).

Zhang, N.

S. Pi, X. Zeng, N. Zhang, D. Ji, B. Chen, H. Song, A. Cheney, Y. Xu, S. Jiang, D. Sun, Y. Song, and Q. Gan, “Dielectric-grating-coupled surface plasmon resonance from the back side of the metal film for ultrasensitive sensing,” IEEE Photonics J. 8(1), 4800207 (2009).

Ann. Phys. (1)

N. C. Lindquist, T. W. Johnson, J. Jose, L. M. Otto, and S. H. Oh, “Ultrasmooth metallic films with buried nanostructures for backside reflection-mode plasmonic biosensing,” Ann. Phys. 524(11), 687–696 (2012).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

R. Horvath, H. C. Pedersen, and N. B. Larsen, “Demonstration of reverse symmetry waveguide sensing in aqueous solutions,” Appl. Phys. Lett. 81(12), 2166–2168 (2002).
[Crossref]

Biosens. Bioelectron. (1)

M. Piliarik, M. Vala, I. Tichý, and J. Homola, “Compact and low-cost biosensor based on novel approach to spectroscopy of surface plasmons,” Biosens. Bioelectron. 24(12), 3430–3435 (2009).
[Crossref] [PubMed]

IEEE Photonics J. (1)

S. Pi, X. Zeng, N. Zhang, D. Ji, B. Chen, H. Song, A. Cheney, Y. Xu, S. Jiang, D. Sun, Y. Song, and Q. Gan, “Dielectric-grating-coupled surface plasmon resonance from the back side of the metal film for ultrasensitive sensing,” IEEE Photonics J. 8(1), 4800207 (2009).

J. Vac. Sci. Technol. B (1)

M. Li, H. Tan, L. Chen, J. Wang, and S. Y. Chou, “Large area direct nanoimprinting of SiO2–TiO2 gel gratings for optical applications,” J. Vac. Sci. Technol. B 21(2), 660–663 (2003).
[Crossref]

Lab Chip (1)

A. Sonato, M. Agostini, G. Ruffato, E. Gazzola, D. Liuni, G. Greco, M. Travagliati, M. Cecchini, and F. Romanato, “A surface acoustic wave (SAW)-enhanced grating-coupling phase-interrogation surface plasmon resonance (SPR) microfluidic biosensor,” Lab Chip 16(7), 1224–1233 (2016).
[Crossref] [PubMed]

Opt. Commun. (1)

K. H. Chen, C. C. Hsu, and D. C. Su, “Measurement of wavelength shift by using surface plasmon resonance heterodyne interferometry,” Opt. Commun. 209(1–3), 167–172 (2012).

Opt. Express (1)

RSC Advances (1)

C. C. Liu, J. G. Li, and S. W. Kuo, “Co-template method provides hierarchical mesoporous silicas with exceptionally ultra-low refractive indices,” RSC Advances 4(39), 20262–20272 (2014).
[Crossref]

Sens. Actuators B Chem. (4)

J. Dostálek, J. Homola, and M. Miler, “Rich information format surface plasmon resonance biosensor based on array of diffraction gratings,” Sens. Actuators B Chem. 107(1), 154–161 (2005).
[Crossref]

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1–2), 3–15 (1999).
[Crossref]

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction grating and prism couplers: sensitivity comparison,” Sens. Actuators B Chem. 54(1–2), 16–24 (1999).
[Crossref]

A. T. Reiner, S. Fossati, and J. Dostalek, “Biosensor platform for parallel surface plasmon-enhanced epifluorescence and surface plasmon resonance detection,” Sens. Actuators B Chem. 257, 3430–3435 (2009).

Other (1)

H. Raether, Surface plasmons on smooth and rough surfaces and on gratings, Springer Tracts in Modern Physics (Springer-Verlag, Berlin-Heidelberg, 1988).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Structure of the backside-incident GCSPR device.
Fig. 2
Fig. 2 Simulation results of reflectivity and phase cures of reflected light for different values of (a) gold film thickness (d); (b) waveguide layer thickness (t); (c) grating modulation depth values (h); (d) low-n material thickness values (k).
Fig. 3
Fig. 3 (a) Simulation results of reflectivity for angular interrogation and phase curves of the backside-incident GCSPR, and (b) resonance and (c) non-resonance electric-field strength distributions on the top of the gold surface. (d) Electric-field strength distribution of the device by replacing the low-n material with silicon dioxide (SiO2).
Fig. 4
Fig. 4 Fabrication process of the nanoimprint backside-incident GCSPR sensor.
Fig. 5
Fig. 5 AFM images of the surface relief of (a) low-n mesoporous after heating, and (b) final device after impression with the flat PDMS mold.
Fig. 6
Fig. 6 (a) Measured reflectivity curve of scanning the incidence angle. (b) Simulation results of reflectivity curves of scanning the incidence angle for different retained grating depths ranging from 0 to 15 nm in steps of 5 nm.
Fig. 7
Fig. 7 (a) Measurement and simulation results of phase curves of scanning the incident angle. (b) Time evolution of the phase value variation when sucrose is added to pure water at t = 50 and 100 s.

Metrics