Abstract

Plasmonic waveguides have been indispensable “building-blocks” to construct functional elements for future integrated nano-photonic devices and circuits. In this paper, we demonstrate that a thick silver nanowire with well-defined end facets can provide multiple outcoupling channels, and the controllable beam splitting is realized. The propagating surface plasmons emission at nanowire end are split into two parts: I1 and I2, with the polarizations nearly perpendicular to the respective emitting facets. By changing incident polarization, the splitting ratio (I1/I2) can be tuned in the range of 1.52~0.36. Electromagnetic simulations indicate that polarization beam splitting mechanisms in this single thick nanowire are the interference of propagating surface plasmon modes and the superposition of excited dipoles at the nanowire end. These findings would deepen the understanding of manipulation of surface plasmons propagation/emission, and advance the development of plasmonic waveguide-based nano-photonic devices.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Coupling of a single-photon emitter in nanodiamond to surface plasmons of a nanochannel-enclosed silver nanowire

Morteza Aramesh, Jiri Cervenka, Ann Roberts, Amir Djalalian-Assl, Ranjith Rajasekharan, Jinghua Fang, Kostya Ostrikov, and Steven Prawer
Opt. Express 22(13) 15530-15541 (2014)

Spectral-interference microscopy for characterization of functional plasmonic elements

Christian Rewitz, Thomas Keitzl, Philip Tuchscherer, Sebastian Goetz, Peter Geisler, Gary Razinskas, Bert Hecht, and Tobias Brixner
Opt. Express 20(13) 14632-14647 (2012)

Subwavelength polarization beam splitter with controllable splitting ratio based on surface plasmon polaritons

Yuanyuan Chen, Gang Song, Jinghua Xiao, Li Yu, and Jiasen Zhang
Opt. Express 21(1) 314-321 (2013)

References

  • View by:
  • |
  • |
  • |

  1. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
    [Crossref] [PubMed]
  2. S. A. Maier, Plasmonics: Fundamentals and applications (Springer, 2007).
  3. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [Crossref] [PubMed]
  4. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
    [Crossref]
  5. V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111(6), 3888–3912 (2011).
    [Crossref] [PubMed]
  6. N. Jiang, X. Zhuo, and J. Wang, “Active plasmonics: Principles, structures, and applications,” Chem. Rev. 118(6), 3054–3099 (2018).
    [Crossref] [PubMed]
  7. G. Haran and L. Chuntonov, “Artificial plasmonic molecules and their interaction with real molecules,” Chem. Rev. 118(11), 5539–5580 (2018).
    [Crossref] [PubMed]
  8. S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
    [Crossref]
  9. F. Benz, M. K. Schmidt, A. Dreismann, R. Chikkaraddy, Y. Zhang, A. Demetriadou, C. Carnegie, H. Ohadi, B. de Nijs, R. Esteban, J. Aizpurua, and J. J. Baumberg, “Single-molecule optomechanics in “picocavities”,” Science 354(6313), 726–729 (2016).
    [Crossref] [PubMed]
  10. A. Kristensen, J. K. W. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2(1), 16088 (2016).
    [Crossref]
  11. K. Santhosh, O. Bitton, L. Chuntonov, and G. Haran, “Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit,” Nat. Commun. 7(1), s11823 (2016).
    [Crossref] [PubMed]
  12. B. Cerjan, X. Yang, P. Nordlander, and N. J. Halas, “Asymmetric aluminum antennas for self-calibrating surface-enhanced infrared absorption spectroscopy,” ACS Photonics 3(3), 354–360 (2016).
    [Crossref]
  13. L. Shao, Z. J. Yang, D. Andrén, P. Johansson, and M. Käll, “Gold nanorod rotary motors driven by resonant light scattering,” ACS Nano 9(12), 12542–12551 (2015).
    [Crossref] [PubMed]
  14. L. Shao, X. Zhuo, and J. Wang, “Advanced plasmonic materials for dynamic color display,” Adv. Mater. 30(16), e1704338 (2018).
    [Crossref] [PubMed]
  15. L. Shao and M. Käll, “Light-driven rotation of plasmonic nanomotors,” Adv. Funct. Mater. 28(25), 1706272 (2018).
    [Crossref]
  16. W. Chen, S. Zhang, Q. Deng, and H. Xu, “Probing of sub-picometer vertical differential resolutions using cavity plasmons,” Nat. Commun. 9(1), 801 (2018).
    [Crossref] [PubMed]
  17. W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92(10), 107401 (2004).
    [Crossref] [PubMed]
  18. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95(4), 046802 (2005).
    [Crossref] [PubMed]
  19. M. Pu, N. Yao, C. Hu, X. Xin, Z. Zhao, C. Wang, and X. Luo, “Directional coupler and nonlinear Mach-Zehnder interferometer based on metal-insulator-metal plasmonic waveguide,” Opt. Express 18(20), 21030–21037 (2010).
    [Crossref] [PubMed]
  20. S. Kim and M. Qi, “Polarization rotation and coupling between silicon waveguide and hybrid plasmonic waveguide,” Opt. Express 23(8), 9968–9978 (2015).
    [Crossref] [PubMed]
  21. H. Wei, D. Pan, S. Zhang, Z. Li, Q. Li, N. Liu, W. Wang, and H. Xu, “Plasmon waveguiding in nanowires,” Chem. Rev. 118(6), 2882–2926 (2018).
    [Crossref] [PubMed]
  22. S. Zhang, C. Gu, and H. Xu, “Single nanoparticle couplers for plasmonic waveguides,” Small 10(21), 4264–4269 (2014).
    [PubMed]
  23. A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
    [Crossref] [PubMed]
  24. E. Bermúdez-Ureña, C. Gonzalez-Ballestero, M. Geiselmann, R. Marty, I. P. Radko, T. Holmgaard, Y. Alaverdyan, E. Moreno, F. J. García-Vidal, S. I. Bozhevolnyi, and R. Quidant, “Coupling of individual quantum emitters to channel plasmons,” Nat. Commun. 6(1), 7883 (2015).
    [Crossref] [PubMed]
  25. S. Zhang, H. Wei, K. Bao, U. Håkanson, N. J. Halas, P. Nordlander, and H. Xu, “Chiral surface plasmon polaritons on metallic nanowires,” Phys. Rev. Lett. 107(9), 096801 (2011).
    [Crossref] [PubMed]
  26. C.-L. Zou, F.-W. Sun, Y.-F. Xiao, C.-H. Dong, X.-D. Chen, J.-M. Cui, Q. Gong, Z.-F. Han, and G.-C. Guo, “Plasmon modes of silver nanowire on a silica substrate,” Appl. Phys. Lett. 97(18), 183102 (2010).
    [Crossref]
  27. C.-M. Chen, C.-K. Young, K.-R. Chen, and Y.-C. Lan, “Spiral surface plasmon modes on uniform and tapered metallic nanorods,” J. Opt. Soc. Am. B 30(9), 2529–2534 (2013).
    [Crossref]
  28. V. A. Zenin, R. Malureanu, I. P. Radko, A. V. Lavrinenko, and S. I. Bozhevolnyi, “Near-field characterization of bound plasmonic modes in metal strip waveguides,” Opt. Express 24(5), 4582–4590 (2016).
    [Crossref] [PubMed]
  29. V. V. Temnov, U. Woggon, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon interferometry: measuring group velocity of surface plasmons,” Opt. Lett. 32(10), 1235–1237 (2007).
    [Crossref] [PubMed]
  30. M. Allione, V. V. Temnov, Y. Fedutik, U. Woggon, and M. V. Artemyev, “Surface plasmon mediated interference phenomena in low-q silver nanowire cavities,” Nano Lett. 8(1), 31–35 (2008).
    [Crossref] [PubMed]
  31. B. Wild, L. Cao, Y. Sun, B. P. Khanal, E. R. Zubarev, S. K. Gray, N. F. Scherer, and M. Pelton, “Propagation lengths and group velocities of plasmons in chemically synthesized gold and silver nanowires,” ACS Nano 6(1), 472–482 (2012).
    [Crossref] [PubMed]
  32. C. Rewitz, T. Keitzl, P. Tuchscherer, J.-S. Huang, P. Geisler, G. Razinskas, B. Hecht, and T. Brixner, “Ultrafast plasmon propagation in nanowires characterized by far-field spectral interferometry,” Nano Lett. 12(1), 45–49 (2012).
    [Crossref] [PubMed]
  33. H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
    [Crossref] [PubMed]
  34. Y. Li, M. Kang, J. Shi, K. Wu, S. Zhang, and H. Xu, “Transversely divergent second harmonic generation by surface plasmon polaritons on single metallic nanowires,” Nano Lett. 17(12), 7803–7808 (2017).
    [Crossref] [PubMed]
  35. M. Liu, M. Pelton, and P. Guyot-Sionnest, “Reduced damping of surface plasmons at low temperatures,” Phys. Rev. B Condens. Matter Mater. Phys. 79(3), 035418 (2009).
    [Crossref]
  36. Y. Bian and Q. Gong, “Metallic-nanowire-loaded silicon-on-insulator structures: a route to low-loss plasmon waveguiding on the nanoscale,” Nanoscale 7(10), 4415–4422 (2015).
    [Crossref] [PubMed]
  37. W. Wang, Q. Yang, F. Fan, H. Xu, and Z. L. Wang, “Light propagation in curved silver nanowire plasmonic waveguides,” Nano Lett. 11(4), 1603–1608 (2011).
    [Crossref] [PubMed]
  38. D. F. Pile and D. K. Gramotnev, “Plasmonic subwavelength waveguides: next to zero losses at sharp bends,” Opt. Lett. 30(10), 1186–1188 (2005).
    [Crossref] [PubMed]
  39. V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, “Bend loss for channel plasmon polaritons,” Appl. Phys. Lett. 89(14), 143108 (2006).
    [Crossref]
  40. W. Wang, W. Zhou, T. Fu, F. Wu, N. Zhang, Q. Li, Z. Xu, and W. Liu, “Reduced propagation loss of surface plasmon polaritons on Ag nanowire-graphene hybrid,” Nano Energy 48, 197–201 (2018).
    [Crossref]
  41. Z. Li, K. Bao, Y. Fang, Y. Huang, P. Nordlander, and H. Xu, “Correlation between incident and emission polarization in nanowire surface plasmon waveguides,” Nano Lett. 10(5), 1831–1835 (2010).
    [Crossref] [PubMed]
  42. T. Shegai, V. D. Miljković, K. Bao, H. Xu, P. Nordlander, P. Johansson, and M. Käll, “Unidirectional broadband light emission from supported plasmonic nanowires,” Nano Lett. 11(2), 706–711 (2011).
    [Crossref] [PubMed]
  43. H. Wei, X. Tian, D. Pan, L. Chen, Z. Jia, and H. Xu, “Directionally-controlled periodic collimated beams of surface plasmon polaritons on metal film in Ag nanowire/Al2O3/Ag film composite structure,” Nano Lett. 15(1), 560–564 (2015).
    [Crossref] [PubMed]
  44. Y. Ma, X. Li, H. Yu, L. Tong, Y. Gu, and Q. Gong, “Direct measurement of propagation losses in silver nanowires,” Opt. Lett. 35(8), 1160–1162 (2010).
    [Crossref] [PubMed]
  45. X. Li, X. Guo, D. Wang, and L. Tong, “Propagation losses in gold nanowires,” Opt. Commun. 323, 119–122 (2014).
    [Crossref]
  46. Y. Fang, Z. Li, Y. Huang, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Branched silver nanowires as controllable plasmon routers,” Nano Lett. 10(5), 1950–1954 (2010).
    [Crossref] [PubMed]
  47. H. Wei, D. Pan, and H. Xu, “Routing of surface plasmons in silver nanowire networks controlled by polarization and coating,” Nanoscale 7(45), 19053–19059 (2015).
    [Crossref] [PubMed]
  48. D. Pan, H. Wei, L. Gao, and H. Xu, “Strong spin-orbit interaction of light in plasmonic nanostructures and nanocircuits,” Phys. Rev. Lett. 117(16), 166803 (2016).
    [Crossref] [PubMed]
  49. H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks,” Nano Lett. 11(2), 471–475 (2011).
    [Crossref] [PubMed]
  50. H. Wei, Z. Wang, X. Tian, M. Käll, and H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat. Commun. 2(1), 387 (2011).
    [Crossref] [PubMed]
  51. Z. Li, S. Zhang, N. J. Halas, P. Nordlander, and H. Xu, “Coherent modulation of propagating plasmons in silver-nanowire-based structures,” Small 7(5), 593–596 (2011).
    [Crossref] [PubMed]
  52. H. Wei and H. Xu, “Controlling surface plasmon interference in branched silver nanowire structures,” Nanoscale 4(22), 7149–7154 (2012).
    [Crossref] [PubMed]
  53. D. Singh, M. Raghuwanshi, and G. V. Pavan Kumar, “Propagation of light in serially coupled plasmonic nanowire dimer: Geometry dependence and polarization control,” Appl. Phys. Lett. 101(11), 111111 (2012).
    [Crossref]
  54. Y. Sun, B. Gates, B. Mayers, and Y. Xia, “Crystalline silver nanowires by soft solution processing,” Nano Lett. 2(2), 165–168 (2002).
    [Crossref]
  55. H. Wei, S. Zhang, X. Tian, and H. Xu, “Highly tunable propagating surface plasmons on supported silver nanowires,” Proc. Natl. Acad. Sci. U.S.A. 110(12), 4494–4499 (2013).
    [Crossref] [PubMed]

2018 (7)

L. Shao, X. Zhuo, and J. Wang, “Advanced plasmonic materials for dynamic color display,” Adv. Mater. 30(16), e1704338 (2018).
[Crossref] [PubMed]

L. Shao and M. Käll, “Light-driven rotation of plasmonic nanomotors,” Adv. Funct. Mater. 28(25), 1706272 (2018).
[Crossref]

W. Chen, S. Zhang, Q. Deng, and H. Xu, “Probing of sub-picometer vertical differential resolutions using cavity plasmons,” Nat. Commun. 9(1), 801 (2018).
[Crossref] [PubMed]

N. Jiang, X. Zhuo, and J. Wang, “Active plasmonics: Principles, structures, and applications,” Chem. Rev. 118(6), 3054–3099 (2018).
[Crossref] [PubMed]

G. Haran and L. Chuntonov, “Artificial plasmonic molecules and their interaction with real molecules,” Chem. Rev. 118(11), 5539–5580 (2018).
[Crossref] [PubMed]

H. Wei, D. Pan, S. Zhang, Z. Li, Q. Li, N. Liu, W. Wang, and H. Xu, “Plasmon waveguiding in nanowires,” Chem. Rev. 118(6), 2882–2926 (2018).
[Crossref] [PubMed]

W. Wang, W. Zhou, T. Fu, F. Wu, N. Zhang, Q. Li, Z. Xu, and W. Liu, “Reduced propagation loss of surface plasmon polaritons on Ag nanowire-graphene hybrid,” Nano Energy 48, 197–201 (2018).
[Crossref]

2017 (1)

Y. Li, M. Kang, J. Shi, K. Wu, S. Zhang, and H. Xu, “Transversely divergent second harmonic generation by surface plasmon polaritons on single metallic nanowires,” Nano Lett. 17(12), 7803–7808 (2017).
[Crossref] [PubMed]

2016 (6)

V. A. Zenin, R. Malureanu, I. P. Radko, A. V. Lavrinenko, and S. I. Bozhevolnyi, “Near-field characterization of bound plasmonic modes in metal strip waveguides,” Opt. Express 24(5), 4582–4590 (2016).
[Crossref] [PubMed]

F. Benz, M. K. Schmidt, A. Dreismann, R. Chikkaraddy, Y. Zhang, A. Demetriadou, C. Carnegie, H. Ohadi, B. de Nijs, R. Esteban, J. Aizpurua, and J. J. Baumberg, “Single-molecule optomechanics in “picocavities”,” Science 354(6313), 726–729 (2016).
[Crossref] [PubMed]

A. Kristensen, J. K. W. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2(1), 16088 (2016).
[Crossref]

K. Santhosh, O. Bitton, L. Chuntonov, and G. Haran, “Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit,” Nat. Commun. 7(1), s11823 (2016).
[Crossref] [PubMed]

B. Cerjan, X. Yang, P. Nordlander, and N. J. Halas, “Asymmetric aluminum antennas for self-calibrating surface-enhanced infrared absorption spectroscopy,” ACS Photonics 3(3), 354–360 (2016).
[Crossref]

D. Pan, H. Wei, L. Gao, and H. Xu, “Strong spin-orbit interaction of light in plasmonic nanostructures and nanocircuits,” Phys. Rev. Lett. 117(16), 166803 (2016).
[Crossref] [PubMed]

2015 (6)

H. Wei, X. Tian, D. Pan, L. Chen, Z. Jia, and H. Xu, “Directionally-controlled periodic collimated beams of surface plasmon polaritons on metal film in Ag nanowire/Al2O3/Ag film composite structure,” Nano Lett. 15(1), 560–564 (2015).
[Crossref] [PubMed]

H. Wei, D. Pan, and H. Xu, “Routing of surface plasmons in silver nanowire networks controlled by polarization and coating,” Nanoscale 7(45), 19053–19059 (2015).
[Crossref] [PubMed]

L. Shao, Z. J. Yang, D. Andrén, P. Johansson, and M. Käll, “Gold nanorod rotary motors driven by resonant light scattering,” ACS Nano 9(12), 12542–12551 (2015).
[Crossref] [PubMed]

S. Kim and M. Qi, “Polarization rotation and coupling between silicon waveguide and hybrid plasmonic waveguide,” Opt. Express 23(8), 9968–9978 (2015).
[Crossref] [PubMed]

E. Bermúdez-Ureña, C. Gonzalez-Ballestero, M. Geiselmann, R. Marty, I. P. Radko, T. Holmgaard, Y. Alaverdyan, E. Moreno, F. J. García-Vidal, S. I. Bozhevolnyi, and R. Quidant, “Coupling of individual quantum emitters to channel plasmons,” Nat. Commun. 6(1), 7883 (2015).
[Crossref] [PubMed]

Y. Bian and Q. Gong, “Metallic-nanowire-loaded silicon-on-insulator structures: a route to low-loss plasmon waveguiding on the nanoscale,” Nanoscale 7(10), 4415–4422 (2015).
[Crossref] [PubMed]

2014 (2)

S. Zhang, C. Gu, and H. Xu, “Single nanoparticle couplers for plasmonic waveguides,” Small 10(21), 4264–4269 (2014).
[PubMed]

X. Li, X. Guo, D. Wang, and L. Tong, “Propagation losses in gold nanowires,” Opt. Commun. 323, 119–122 (2014).
[Crossref]

2013 (2)

H. Wei, S. Zhang, X. Tian, and H. Xu, “Highly tunable propagating surface plasmons on supported silver nanowires,” Proc. Natl. Acad. Sci. U.S.A. 110(12), 4494–4499 (2013).
[Crossref] [PubMed]

C.-M. Chen, C.-K. Young, K.-R. Chen, and Y.-C. Lan, “Spiral surface plasmon modes on uniform and tapered metallic nanorods,” J. Opt. Soc. Am. B 30(9), 2529–2534 (2013).
[Crossref]

2012 (4)

B. Wild, L. Cao, Y. Sun, B. P. Khanal, E. R. Zubarev, S. K. Gray, N. F. Scherer, and M. Pelton, “Propagation lengths and group velocities of plasmons in chemically synthesized gold and silver nanowires,” ACS Nano 6(1), 472–482 (2012).
[Crossref] [PubMed]

C. Rewitz, T. Keitzl, P. Tuchscherer, J.-S. Huang, P. Geisler, G. Razinskas, B. Hecht, and T. Brixner, “Ultrafast plasmon propagation in nanowires characterized by far-field spectral interferometry,” Nano Lett. 12(1), 45–49 (2012).
[Crossref] [PubMed]

H. Wei and H. Xu, “Controlling surface plasmon interference in branched silver nanowire structures,” Nanoscale 4(22), 7149–7154 (2012).
[Crossref] [PubMed]

D. Singh, M. Raghuwanshi, and G. V. Pavan Kumar, “Propagation of light in serially coupled plasmonic nanowire dimer: Geometry dependence and polarization control,” Appl. Phys. Lett. 101(11), 111111 (2012).
[Crossref]

2011 (7)

H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks,” Nano Lett. 11(2), 471–475 (2011).
[Crossref] [PubMed]

H. Wei, Z. Wang, X. Tian, M. Käll, and H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat. Commun. 2(1), 387 (2011).
[Crossref] [PubMed]

Z. Li, S. Zhang, N. J. Halas, P. Nordlander, and H. Xu, “Coherent modulation of propagating plasmons in silver-nanowire-based structures,” Small 7(5), 593–596 (2011).
[Crossref] [PubMed]

T. Shegai, V. D. Miljković, K. Bao, H. Xu, P. Nordlander, P. Johansson, and M. Käll, “Unidirectional broadband light emission from supported plasmonic nanowires,” Nano Lett. 11(2), 706–711 (2011).
[Crossref] [PubMed]

W. Wang, Q. Yang, F. Fan, H. Xu, and Z. L. Wang, “Light propagation in curved silver nanowire plasmonic waveguides,” Nano Lett. 11(4), 1603–1608 (2011).
[Crossref] [PubMed]

S. Zhang, H. Wei, K. Bao, U. Håkanson, N. J. Halas, P. Nordlander, and H. Xu, “Chiral surface plasmon polaritons on metallic nanowires,” Phys. Rev. Lett. 107(9), 096801 (2011).
[Crossref] [PubMed]

V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111(6), 3888–3912 (2011).
[Crossref] [PubMed]

2010 (6)

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

M. Pu, N. Yao, C. Hu, X. Xin, Z. Zhao, C. Wang, and X. Luo, “Directional coupler and nonlinear Mach-Zehnder interferometer based on metal-insulator-metal plasmonic waveguide,” Opt. Express 18(20), 21030–21037 (2010).
[Crossref] [PubMed]

C.-L. Zou, F.-W. Sun, Y.-F. Xiao, C.-H. Dong, X.-D. Chen, J.-M. Cui, Q. Gong, Z.-F. Han, and G.-C. Guo, “Plasmon modes of silver nanowire on a silica substrate,” Appl. Phys. Lett. 97(18), 183102 (2010).
[Crossref]

Y. Fang, Z. Li, Y. Huang, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Branched silver nanowires as controllable plasmon routers,” Nano Lett. 10(5), 1950–1954 (2010).
[Crossref] [PubMed]

Y. Ma, X. Li, H. Yu, L. Tong, Y. Gu, and Q. Gong, “Direct measurement of propagation losses in silver nanowires,” Opt. Lett. 35(8), 1160–1162 (2010).
[Crossref] [PubMed]

Z. Li, K. Bao, Y. Fang, Y. Huang, P. Nordlander, and H. Xu, “Correlation between incident and emission polarization in nanowire surface plasmon waveguides,” Nano Lett. 10(5), 1831–1835 (2010).
[Crossref] [PubMed]

2009 (1)

M. Liu, M. Pelton, and P. Guyot-Sionnest, “Reduced damping of surface plasmons at low temperatures,” Phys. Rev. B Condens. Matter Mater. Phys. 79(3), 035418 (2009).
[Crossref]

2008 (1)

M. Allione, V. V. Temnov, Y. Fedutik, U. Woggon, and M. V. Artemyev, “Surface plasmon mediated interference phenomena in low-q silver nanowire cavities,” Nano Lett. 8(1), 31–35 (2008).
[Crossref] [PubMed]

2007 (3)

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[Crossref] [PubMed]

V. V. Temnov, U. Woggon, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon interferometry: measuring group velocity of surface plasmons,” Opt. Lett. 32(10), 1235–1237 (2007).
[Crossref] [PubMed]

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[Crossref]

2006 (2)

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[Crossref] [PubMed]

V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, “Bend loss for channel plasmon polaritons,” Appl. Phys. Lett. 89(14), 143108 (2006).
[Crossref]

2005 (3)

D. F. Pile and D. K. Gramotnev, “Plasmonic subwavelength waveguides: next to zero losses at sharp bends,” Opt. Lett. 30(10), 1186–1188 (2005).
[Crossref] [PubMed]

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[Crossref] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95(4), 046802 (2005).
[Crossref] [PubMed]

2004 (1)

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92(10), 107401 (2004).
[Crossref] [PubMed]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

2002 (1)

Y. Sun, B. Gates, B. Mayers, and Y. Xia, “Crystalline silver nanowires by soft solution processing,” Nano Lett. 2(2), 165–168 (2002).
[Crossref]

Aizpurua, J.

F. Benz, M. K. Schmidt, A. Dreismann, R. Chikkaraddy, Y. Zhang, A. Demetriadou, C. Carnegie, H. Ohadi, B. de Nijs, R. Esteban, J. Aizpurua, and J. J. Baumberg, “Single-molecule optomechanics in “picocavities”,” Science 354(6313), 726–729 (2016).
[Crossref] [PubMed]

Akimov, A. V.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[Crossref] [PubMed]

Alaverdyan, Y.

E. Bermúdez-Ureña, C. Gonzalez-Ballestero, M. Geiselmann, R. Marty, I. P. Radko, T. Holmgaard, Y. Alaverdyan, E. Moreno, F. J. García-Vidal, S. I. Bozhevolnyi, and R. Quidant, “Coupling of individual quantum emitters to channel plasmons,” Nat. Commun. 6(1), 7883 (2015).
[Crossref] [PubMed]

Allione, M.

M. Allione, V. V. Temnov, Y. Fedutik, U. Woggon, and M. V. Artemyev, “Surface plasmon mediated interference phenomena in low-q silver nanowire cavities,” Nano Lett. 8(1), 31–35 (2008).
[Crossref] [PubMed]

Andrén, D.

L. Shao, Z. J. Yang, D. Andrén, P. Johansson, and M. Käll, “Gold nanorod rotary motors driven by resonant light scattering,” ACS Nano 9(12), 12542–12551 (2015).
[Crossref] [PubMed]

Artemyev, M. V.

M. Allione, V. V. Temnov, Y. Fedutik, U. Woggon, and M. V. Artemyev, “Surface plasmon mediated interference phenomena in low-q silver nanowire cavities,” Nano Lett. 8(1), 31–35 (2008).
[Crossref] [PubMed]

Aussenegg, F. R.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[Crossref] [PubMed]

Bao, K.

T. Shegai, V. D. Miljković, K. Bao, H. Xu, P. Nordlander, P. Johansson, and M. Käll, “Unidirectional broadband light emission from supported plasmonic nanowires,” Nano Lett. 11(2), 706–711 (2011).
[Crossref] [PubMed]

S. Zhang, H. Wei, K. Bao, U. Håkanson, N. J. Halas, P. Nordlander, and H. Xu, “Chiral surface plasmon polaritons on metallic nanowires,” Phys. Rev. Lett. 107(9), 096801 (2011).
[Crossref] [PubMed]

Z. Li, K. Bao, Y. Fang, Y. Huang, P. Nordlander, and H. Xu, “Correlation between incident and emission polarization in nanowire surface plasmon waveguides,” Nano Lett. 10(5), 1831–1835 (2010).
[Crossref] [PubMed]

Barnes, W. L.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92(10), 107401 (2004).
[Crossref] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Baumberg, J. J.

F. Benz, M. K. Schmidt, A. Dreismann, R. Chikkaraddy, Y. Zhang, A. Demetriadou, C. Carnegie, H. Ohadi, B. de Nijs, R. Esteban, J. Aizpurua, and J. J. Baumberg, “Single-molecule optomechanics in “picocavities”,” Science 354(6313), 726–729 (2016).
[Crossref] [PubMed]

Benz, F.

F. Benz, M. K. Schmidt, A. Dreismann, R. Chikkaraddy, Y. Zhang, A. Demetriadou, C. Carnegie, H. Ohadi, B. de Nijs, R. Esteban, J. Aizpurua, and J. J. Baumberg, “Single-molecule optomechanics in “picocavities”,” Science 354(6313), 726–729 (2016).
[Crossref] [PubMed]

Bermúdez-Ureña, E.

E. Bermúdez-Ureña, C. Gonzalez-Ballestero, M. Geiselmann, R. Marty, I. P. Radko, T. Holmgaard, Y. Alaverdyan, E. Moreno, F. J. García-Vidal, S. I. Bozhevolnyi, and R. Quidant, “Coupling of individual quantum emitters to channel plasmons,” Nat. Commun. 6(1), 7883 (2015).
[Crossref] [PubMed]

Bian, Y.

Y. Bian and Q. Gong, “Metallic-nanowire-loaded silicon-on-insulator structures: a route to low-loss plasmon waveguiding on the nanoscale,” Nanoscale 7(10), 4415–4422 (2015).
[Crossref] [PubMed]

Bitton, O.

K. Santhosh, O. Bitton, L. Chuntonov, and G. Haran, “Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit,” Nat. Commun. 7(1), s11823 (2016).
[Crossref] [PubMed]

Bozhevolnyi, S. I.

A. Kristensen, J. K. W. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2(1), 16088 (2016).
[Crossref]

V. A. Zenin, R. Malureanu, I. P. Radko, A. V. Lavrinenko, and S. I. Bozhevolnyi, “Near-field characterization of bound plasmonic modes in metal strip waveguides,” Opt. Express 24(5), 4582–4590 (2016).
[Crossref] [PubMed]

E. Bermúdez-Ureña, C. Gonzalez-Ballestero, M. Geiselmann, R. Marty, I. P. Radko, T. Holmgaard, Y. Alaverdyan, E. Moreno, F. J. García-Vidal, S. I. Bozhevolnyi, and R. Quidant, “Coupling of individual quantum emitters to channel plasmons,” Nat. Commun. 6(1), 7883 (2015).
[Crossref] [PubMed]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, “Bend loss for channel plasmon polaritons,” Appl. Phys. Lett. 89(14), 143108 (2006).
[Crossref]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95(4), 046802 (2005).
[Crossref] [PubMed]

Brixner, T.

C. Rewitz, T. Keitzl, P. Tuchscherer, J.-S. Huang, P. Geisler, G. Razinskas, B. Hecht, and T. Brixner, “Ultrafast plasmon propagation in nanowires characterized by far-field spectral interferometry,” Nano Lett. 12(1), 45–49 (2012).
[Crossref] [PubMed]

Cao, L.

B. Wild, L. Cao, Y. Sun, B. P. Khanal, E. R. Zubarev, S. K. Gray, N. F. Scherer, and M. Pelton, “Propagation lengths and group velocities of plasmons in chemically synthesized gold and silver nanowires,” ACS Nano 6(1), 472–482 (2012).
[Crossref] [PubMed]

Carnegie, C.

F. Benz, M. K. Schmidt, A. Dreismann, R. Chikkaraddy, Y. Zhang, A. Demetriadou, C. Carnegie, H. Ohadi, B. de Nijs, R. Esteban, J. Aizpurua, and J. J. Baumberg, “Single-molecule optomechanics in “picocavities”,” Science 354(6313), 726–729 (2016).
[Crossref] [PubMed]

Cerjan, B.

B. Cerjan, X. Yang, P. Nordlander, and N. J. Halas, “Asymmetric aluminum antennas for self-calibrating surface-enhanced infrared absorption spectroscopy,” ACS Photonics 3(3), 354–360 (2016).
[Crossref]

Chang, D. E.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[Crossref] [PubMed]

Chen, C.-M.

Chen, K.-R.

Chen, L.

H. Wei, X. Tian, D. Pan, L. Chen, Z. Jia, and H. Xu, “Directionally-controlled periodic collimated beams of surface plasmon polaritons on metal film in Ag nanowire/Al2O3/Ag film composite structure,” Nano Lett. 15(1), 560–564 (2015).
[Crossref] [PubMed]

Chen, W.

W. Chen, S. Zhang, Q. Deng, and H. Xu, “Probing of sub-picometer vertical differential resolutions using cavity plasmons,” Nat. Commun. 9(1), 801 (2018).
[Crossref] [PubMed]

Chen, X.-D.

C.-L. Zou, F.-W. Sun, Y.-F. Xiao, C.-H. Dong, X.-D. Chen, J.-M. Cui, Q. Gong, Z.-F. Han, and G.-C. Guo, “Plasmon modes of silver nanowire on a silica substrate,” Appl. Phys. Lett. 97(18), 183102 (2010).
[Crossref]

Chikkaraddy, R.

F. Benz, M. K. Schmidt, A. Dreismann, R. Chikkaraddy, Y. Zhang, A. Demetriadou, C. Carnegie, H. Ohadi, B. de Nijs, R. Esteban, J. Aizpurua, and J. J. Baumberg, “Single-molecule optomechanics in “picocavities”,” Science 354(6313), 726–729 (2016).
[Crossref] [PubMed]

Chuntonov, L.

G. Haran and L. Chuntonov, “Artificial plasmonic molecules and their interaction with real molecules,” Chem. Rev. 118(11), 5539–5580 (2018).
[Crossref] [PubMed]

K. Santhosh, O. Bitton, L. Chuntonov, and G. Haran, “Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit,” Nat. Commun. 7(1), s11823 (2016).
[Crossref] [PubMed]

Cong, F.

H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks,” Nano Lett. 11(2), 471–475 (2011).
[Crossref] [PubMed]

Cui, J.-M.

C.-L. Zou, F.-W. Sun, Y.-F. Xiao, C.-H. Dong, X.-D. Chen, J.-M. Cui, Q. Gong, Z.-F. Han, and G.-C. Guo, “Plasmon modes of silver nanowire on a silica substrate,” Appl. Phys. Lett. 97(18), 183102 (2010).
[Crossref]

de Nijs, B.

F. Benz, M. K. Schmidt, A. Dreismann, R. Chikkaraddy, Y. Zhang, A. Demetriadou, C. Carnegie, H. Ohadi, B. de Nijs, R. Esteban, J. Aizpurua, and J. J. Baumberg, “Single-molecule optomechanics in “picocavities”,” Science 354(6313), 726–729 (2016).
[Crossref] [PubMed]

Demetriadou, A.

F. Benz, M. K. Schmidt, A. Dreismann, R. Chikkaraddy, Y. Zhang, A. Demetriadou, C. Carnegie, H. Ohadi, B. de Nijs, R. Esteban, J. Aizpurua, and J. J. Baumberg, “Single-molecule optomechanics in “picocavities”,” Science 354(6313), 726–729 (2016).
[Crossref] [PubMed]

Deng, Q.

W. Chen, S. Zhang, Q. Deng, and H. Xu, “Probing of sub-picometer vertical differential resolutions using cavity plasmons,” Nat. Commun. 9(1), 801 (2018).
[Crossref] [PubMed]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Devaux, E.

V. V. Temnov, U. Woggon, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon interferometry: measuring group velocity of surface plasmons,” Opt. Lett. 32(10), 1235–1237 (2007).
[Crossref] [PubMed]

V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, “Bend loss for channel plasmon polaritons,” Appl. Phys. Lett. 89(14), 143108 (2006).
[Crossref]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95(4), 046802 (2005).
[Crossref] [PubMed]

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92(10), 107401 (2004).
[Crossref] [PubMed]

Dintinger, J.

V. V. Temnov, U. Woggon, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon interferometry: measuring group velocity of surface plasmons,” Opt. Lett. 32(10), 1235–1237 (2007).
[Crossref] [PubMed]

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92(10), 107401 (2004).
[Crossref] [PubMed]

Ditlbacher, H.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[Crossref] [PubMed]

Dong, C.-H.

C.-L. Zou, F.-W. Sun, Y.-F. Xiao, C.-H. Dong, X.-D. Chen, J.-M. Cui, Q. Gong, Z.-F. Han, and G.-C. Guo, “Plasmon modes of silver nanowire on a silica substrate,” Appl. Phys. Lett. 97(18), 183102 (2010).
[Crossref]

Dreismann, A.

F. Benz, M. K. Schmidt, A. Dreismann, R. Chikkaraddy, Y. Zhang, A. Demetriadou, C. Carnegie, H. Ohadi, B. de Nijs, R. Esteban, J. Aizpurua, and J. J. Baumberg, “Single-molecule optomechanics in “picocavities”,” Science 354(6313), 726–729 (2016).
[Crossref] [PubMed]

Ebbesen, T. W.

V. V. Temnov, U. Woggon, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon interferometry: measuring group velocity of surface plasmons,” Opt. Lett. 32(10), 1235–1237 (2007).
[Crossref] [PubMed]

V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, “Bend loss for channel plasmon polaritons,” Appl. Phys. Lett. 89(14), 143108 (2006).
[Crossref]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95(4), 046802 (2005).
[Crossref] [PubMed]

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92(10), 107401 (2004).
[Crossref] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Esteban, R.

F. Benz, M. K. Schmidt, A. Dreismann, R. Chikkaraddy, Y. Zhang, A. Demetriadou, C. Carnegie, H. Ohadi, B. de Nijs, R. Esteban, J. Aizpurua, and J. J. Baumberg, “Single-molecule optomechanics in “picocavities”,” Science 354(6313), 726–729 (2016).
[Crossref] [PubMed]

Fan, F.

W. Wang, Q. Yang, F. Fan, H. Xu, and Z. L. Wang, “Light propagation in curved silver nanowire plasmonic waveguides,” Nano Lett. 11(4), 1603–1608 (2011).
[Crossref] [PubMed]

Fang, Y.

Z. Li, K. Bao, Y. Fang, Y. Huang, P. Nordlander, and H. Xu, “Correlation between incident and emission polarization in nanowire surface plasmon waveguides,” Nano Lett. 10(5), 1831–1835 (2010).
[Crossref] [PubMed]

Y. Fang, Z. Li, Y. Huang, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Branched silver nanowires as controllable plasmon routers,” Nano Lett. 10(5), 1950–1954 (2010).
[Crossref] [PubMed]

Fedutik, Y.

M. Allione, V. V. Temnov, Y. Fedutik, U. Woggon, and M. V. Artemyev, “Surface plasmon mediated interference phenomena in low-q silver nanowire cavities,” Nano Lett. 8(1), 31–35 (2008).
[Crossref] [PubMed]

Fernández-Domínguez, A. I.

V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111(6), 3888–3912 (2011).
[Crossref] [PubMed]

Fu, T.

W. Wang, W. Zhou, T. Fu, F. Wu, N. Zhang, Q. Li, Z. Xu, and W. Liu, “Reduced propagation loss of surface plasmon polaritons on Ag nanowire-graphene hybrid,” Nano Energy 48, 197–201 (2018).
[Crossref]

Gao, L.

D. Pan, H. Wei, L. Gao, and H. Xu, “Strong spin-orbit interaction of light in plasmonic nanostructures and nanocircuits,” Phys. Rev. Lett. 117(16), 166803 (2016).
[Crossref] [PubMed]

García-Vidal, F. J.

E. Bermúdez-Ureña, C. Gonzalez-Ballestero, M. Geiselmann, R. Marty, I. P. Radko, T. Holmgaard, Y. Alaverdyan, E. Moreno, F. J. García-Vidal, S. I. Bozhevolnyi, and R. Quidant, “Coupling of individual quantum emitters to channel plasmons,” Nat. Commun. 6(1), 7883 (2015).
[Crossref] [PubMed]

Gates, B.

Y. Sun, B. Gates, B. Mayers, and Y. Xia, “Crystalline silver nanowires by soft solution processing,” Nano Lett. 2(2), 165–168 (2002).
[Crossref]

Geiselmann, M.

E. Bermúdez-Ureña, C. Gonzalez-Ballestero, M. Geiselmann, R. Marty, I. P. Radko, T. Holmgaard, Y. Alaverdyan, E. Moreno, F. J. García-Vidal, S. I. Bozhevolnyi, and R. Quidant, “Coupling of individual quantum emitters to channel plasmons,” Nat. Commun. 6(1), 7883 (2015).
[Crossref] [PubMed]

Geisler, P.

C. Rewitz, T. Keitzl, P. Tuchscherer, J.-S. Huang, P. Geisler, G. Razinskas, B. Hecht, and T. Brixner, “Ultrafast plasmon propagation in nanowires characterized by far-field spectral interferometry,” Nano Lett. 12(1), 45–49 (2012).
[Crossref] [PubMed]

Giannini, V.

V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111(6), 3888–3912 (2011).
[Crossref] [PubMed]

Gong, Q.

Y. Bian and Q. Gong, “Metallic-nanowire-loaded silicon-on-insulator structures: a route to low-loss plasmon waveguiding on the nanoscale,” Nanoscale 7(10), 4415–4422 (2015).
[Crossref] [PubMed]

Y. Ma, X. Li, H. Yu, L. Tong, Y. Gu, and Q. Gong, “Direct measurement of propagation losses in silver nanowires,” Opt. Lett. 35(8), 1160–1162 (2010).
[Crossref] [PubMed]

C.-L. Zou, F.-W. Sun, Y.-F. Xiao, C.-H. Dong, X.-D. Chen, J.-M. Cui, Q. Gong, Z.-F. Han, and G.-C. Guo, “Plasmon modes of silver nanowire on a silica substrate,” Appl. Phys. Lett. 97(18), 183102 (2010).
[Crossref]

Gonzalez-Ballestero, C.

E. Bermúdez-Ureña, C. Gonzalez-Ballestero, M. Geiselmann, R. Marty, I. P. Radko, T. Holmgaard, Y. Alaverdyan, E. Moreno, F. J. García-Vidal, S. I. Bozhevolnyi, and R. Quidant, “Coupling of individual quantum emitters to channel plasmons,” Nat. Commun. 6(1), 7883 (2015).
[Crossref] [PubMed]

Gramotnev, D. K.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

D. F. Pile and D. K. Gramotnev, “Plasmonic subwavelength waveguides: next to zero losses at sharp bends,” Opt. Lett. 30(10), 1186–1188 (2005).
[Crossref] [PubMed]

Gray, S. K.

B. Wild, L. Cao, Y. Sun, B. P. Khanal, E. R. Zubarev, S. K. Gray, N. F. Scherer, and M. Pelton, “Propagation lengths and group velocities of plasmons in chemically synthesized gold and silver nanowires,” ACS Nano 6(1), 472–482 (2012).
[Crossref] [PubMed]

Gu, C.

S. Zhang, C. Gu, and H. Xu, “Single nanoparticle couplers for plasmonic waveguides,” Small 10(21), 4264–4269 (2014).
[PubMed]

Gu, Y.

Guo, G.-C.

C.-L. Zou, F.-W. Sun, Y.-F. Xiao, C.-H. Dong, X.-D. Chen, J.-M. Cui, Q. Gong, Z.-F. Han, and G.-C. Guo, “Plasmon modes of silver nanowire on a silica substrate,” Appl. Phys. Lett. 97(18), 183102 (2010).
[Crossref]

Guo, X.

X. Li, X. Guo, D. Wang, and L. Tong, “Propagation losses in gold nanowires,” Opt. Commun. 323, 119–122 (2014).
[Crossref]

Guyot-Sionnest, P.

M. Liu, M. Pelton, and P. Guyot-Sionnest, “Reduced damping of surface plasmons at low temperatures,” Phys. Rev. B Condens. Matter Mater. Phys. 79(3), 035418 (2009).
[Crossref]

Håkanson, U.

S. Zhang, H. Wei, K. Bao, U. Håkanson, N. J. Halas, P. Nordlander, and H. Xu, “Chiral surface plasmon polaritons on metallic nanowires,” Phys. Rev. Lett. 107(9), 096801 (2011).
[Crossref] [PubMed]

Halas, N. J.

A. Kristensen, J. K. W. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2(1), 16088 (2016).
[Crossref]

B. Cerjan, X. Yang, P. Nordlander, and N. J. Halas, “Asymmetric aluminum antennas for self-calibrating surface-enhanced infrared absorption spectroscopy,” ACS Photonics 3(3), 354–360 (2016).
[Crossref]

S. Zhang, H. Wei, K. Bao, U. Håkanson, N. J. Halas, P. Nordlander, and H. Xu, “Chiral surface plasmon polaritons on metallic nanowires,” Phys. Rev. Lett. 107(9), 096801 (2011).
[Crossref] [PubMed]

H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks,” Nano Lett. 11(2), 471–475 (2011).
[Crossref] [PubMed]

Z. Li, S. Zhang, N. J. Halas, P. Nordlander, and H. Xu, “Coherent modulation of propagating plasmons in silver-nanowire-based structures,” Small 7(5), 593–596 (2011).
[Crossref] [PubMed]

Y. Fang, Z. Li, Y. Huang, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Branched silver nanowires as controllable plasmon routers,” Nano Lett. 10(5), 1950–1954 (2010).
[Crossref] [PubMed]

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[Crossref]

Han, Z.-F.

C.-L. Zou, F.-W. Sun, Y.-F. Xiao, C.-H. Dong, X.-D. Chen, J.-M. Cui, Q. Gong, Z.-F. Han, and G.-C. Guo, “Plasmon modes of silver nanowire on a silica substrate,” Appl. Phys. Lett. 97(18), 183102 (2010).
[Crossref]

Haran, G.

G. Haran and L. Chuntonov, “Artificial plasmonic molecules and their interaction with real molecules,” Chem. Rev. 118(11), 5539–5580 (2018).
[Crossref] [PubMed]

K. Santhosh, O. Bitton, L. Chuntonov, and G. Haran, “Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit,” Nat. Commun. 7(1), s11823 (2016).
[Crossref] [PubMed]

Hecht, B.

C. Rewitz, T. Keitzl, P. Tuchscherer, J.-S. Huang, P. Geisler, G. Razinskas, B. Hecht, and T. Brixner, “Ultrafast plasmon propagation in nanowires characterized by far-field spectral interferometry,” Nano Lett. 12(1), 45–49 (2012).
[Crossref] [PubMed]

Heck, S. C.

V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111(6), 3888–3912 (2011).
[Crossref] [PubMed]

Hemmer, P. R.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[Crossref] [PubMed]

Hofer, F.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[Crossref] [PubMed]

Hohenau, A.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[Crossref] [PubMed]

Holmgaard, T.

E. Bermúdez-Ureña, C. Gonzalez-Ballestero, M. Geiselmann, R. Marty, I. P. Radko, T. Holmgaard, Y. Alaverdyan, E. Moreno, F. J. García-Vidal, S. I. Bozhevolnyi, and R. Quidant, “Coupling of individual quantum emitters to channel plasmons,” Nat. Commun. 6(1), 7883 (2015).
[Crossref] [PubMed]

Hu, C.

Huang, J.-S.

C. Rewitz, T. Keitzl, P. Tuchscherer, J.-S. Huang, P. Geisler, G. Razinskas, B. Hecht, and T. Brixner, “Ultrafast plasmon propagation in nanowires characterized by far-field spectral interferometry,” Nano Lett. 12(1), 45–49 (2012).
[Crossref] [PubMed]

Huang, Y.

Z. Li, K. Bao, Y. Fang, Y. Huang, P. Nordlander, and H. Xu, “Correlation between incident and emission polarization in nanowire surface plasmon waveguides,” Nano Lett. 10(5), 1831–1835 (2010).
[Crossref] [PubMed]

Y. Fang, Z. Li, Y. Huang, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Branched silver nanowires as controllable plasmon routers,” Nano Lett. 10(5), 1950–1954 (2010).
[Crossref] [PubMed]

Jia, Z.

H. Wei, X. Tian, D. Pan, L. Chen, Z. Jia, and H. Xu, “Directionally-controlled periodic collimated beams of surface plasmon polaritons on metal film in Ag nanowire/Al2O3/Ag film composite structure,” Nano Lett. 15(1), 560–564 (2015).
[Crossref] [PubMed]

Jiang, N.

N. Jiang, X. Zhuo, and J. Wang, “Active plasmonics: Principles, structures, and applications,” Chem. Rev. 118(6), 3054–3099 (2018).
[Crossref] [PubMed]

Johansson, P.

L. Shao, Z. J. Yang, D. Andrén, P. Johansson, and M. Käll, “Gold nanorod rotary motors driven by resonant light scattering,” ACS Nano 9(12), 12542–12551 (2015).
[Crossref] [PubMed]

T. Shegai, V. D. Miljković, K. Bao, H. Xu, P. Nordlander, P. Johansson, and M. Käll, “Unidirectional broadband light emission from supported plasmonic nanowires,” Nano Lett. 11(2), 706–711 (2011).
[Crossref] [PubMed]

Käll, M.

L. Shao and M. Käll, “Light-driven rotation of plasmonic nanomotors,” Adv. Funct. Mater. 28(25), 1706272 (2018).
[Crossref]

L. Shao, Z. J. Yang, D. Andrén, P. Johansson, and M. Käll, “Gold nanorod rotary motors driven by resonant light scattering,” ACS Nano 9(12), 12542–12551 (2015).
[Crossref] [PubMed]

T. Shegai, V. D. Miljković, K. Bao, H. Xu, P. Nordlander, P. Johansson, and M. Käll, “Unidirectional broadband light emission from supported plasmonic nanowires,” Nano Lett. 11(2), 706–711 (2011).
[Crossref] [PubMed]

H. Wei, Z. Wang, X. Tian, M. Käll, and H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat. Commun. 2(1), 387 (2011).
[Crossref] [PubMed]

Kang, M.

Y. Li, M. Kang, J. Shi, K. Wu, S. Zhang, and H. Xu, “Transversely divergent second harmonic generation by surface plasmon polaritons on single metallic nanowires,” Nano Lett. 17(12), 7803–7808 (2017).
[Crossref] [PubMed]

Keitzl, T.

C. Rewitz, T. Keitzl, P. Tuchscherer, J.-S. Huang, P. Geisler, G. Razinskas, B. Hecht, and T. Brixner, “Ultrafast plasmon propagation in nanowires characterized by far-field spectral interferometry,” Nano Lett. 12(1), 45–49 (2012).
[Crossref] [PubMed]

Khanal, B. P.

B. Wild, L. Cao, Y. Sun, B. P. Khanal, E. R. Zubarev, S. K. Gray, N. F. Scherer, and M. Pelton, “Propagation lengths and group velocities of plasmons in chemically synthesized gold and silver nanowires,” ACS Nano 6(1), 472–482 (2012).
[Crossref] [PubMed]

Kim, S.

Kreibig, U.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[Crossref] [PubMed]

Krenn, J. R.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[Crossref] [PubMed]

Kristensen, A.

A. Kristensen, J. K. W. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2(1), 16088 (2016).
[Crossref]

Lal, S.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[Crossref]

Lan, Y.-C.

Lavrinenko, A. V.

Li, Q.

H. Wei, D. Pan, S. Zhang, Z. Li, Q. Li, N. Liu, W. Wang, and H. Xu, “Plasmon waveguiding in nanowires,” Chem. Rev. 118(6), 2882–2926 (2018).
[Crossref] [PubMed]

W. Wang, W. Zhou, T. Fu, F. Wu, N. Zhang, Q. Li, Z. Xu, and W. Liu, “Reduced propagation loss of surface plasmon polaritons on Ag nanowire-graphene hybrid,” Nano Energy 48, 197–201 (2018).
[Crossref]

Li, X.

Li, Y.

Y. Li, M. Kang, J. Shi, K. Wu, S. Zhang, and H. Xu, “Transversely divergent second harmonic generation by surface plasmon polaritons on single metallic nanowires,” Nano Lett. 17(12), 7803–7808 (2017).
[Crossref] [PubMed]

Li, Z.

H. Wei, D. Pan, S. Zhang, Z. Li, Q. Li, N. Liu, W. Wang, and H. Xu, “Plasmon waveguiding in nanowires,” Chem. Rev. 118(6), 2882–2926 (2018).
[Crossref] [PubMed]

H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks,” Nano Lett. 11(2), 471–475 (2011).
[Crossref] [PubMed]

Z. Li, S. Zhang, N. J. Halas, P. Nordlander, and H. Xu, “Coherent modulation of propagating plasmons in silver-nanowire-based structures,” Small 7(5), 593–596 (2011).
[Crossref] [PubMed]

Y. Fang, Z. Li, Y. Huang, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Branched silver nanowires as controllable plasmon routers,” Nano Lett. 10(5), 1950–1954 (2010).
[Crossref] [PubMed]

Z. Li, K. Bao, Y. Fang, Y. Huang, P. Nordlander, and H. Xu, “Correlation between incident and emission polarization in nanowire surface plasmon waveguides,” Nano Lett. 10(5), 1831–1835 (2010).
[Crossref] [PubMed]

Link, S.

A. Kristensen, J. K. W. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2(1), 16088 (2016).
[Crossref]

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[Crossref]

Liu, M.

M. Liu, M. Pelton, and P. Guyot-Sionnest, “Reduced damping of surface plasmons at low temperatures,” Phys. Rev. B Condens. Matter Mater. Phys. 79(3), 035418 (2009).
[Crossref]

Liu, N.

H. Wei, D. Pan, S. Zhang, Z. Li, Q. Li, N. Liu, W. Wang, and H. Xu, “Plasmon waveguiding in nanowires,” Chem. Rev. 118(6), 2882–2926 (2018).
[Crossref] [PubMed]

H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks,” Nano Lett. 11(2), 471–475 (2011).
[Crossref] [PubMed]

Liu, W.

W. Wang, W. Zhou, T. Fu, F. Wu, N. Zhang, Q. Li, Z. Xu, and W. Liu, “Reduced propagation loss of surface plasmon polaritons on Ag nanowire-graphene hybrid,” Nano Energy 48, 197–201 (2018).
[Crossref]

Lukin, M. D.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[Crossref] [PubMed]

Luo, X.

Ma, Y.

Maier, S. A.

V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111(6), 3888–3912 (2011).
[Crossref] [PubMed]

Malureanu, R.

Marty, R.

E. Bermúdez-Ureña, C. Gonzalez-Ballestero, M. Geiselmann, R. Marty, I. P. Radko, T. Holmgaard, Y. Alaverdyan, E. Moreno, F. J. García-Vidal, S. I. Bozhevolnyi, and R. Quidant, “Coupling of individual quantum emitters to channel plasmons,” Nat. Commun. 6(1), 7883 (2015).
[Crossref] [PubMed]

Mayers, B.

Y. Sun, B. Gates, B. Mayers, and Y. Xia, “Crystalline silver nanowires by soft solution processing,” Nano Lett. 2(2), 165–168 (2002).
[Crossref]

Miljkovic, V. D.

T. Shegai, V. D. Miljković, K. Bao, H. Xu, P. Nordlander, P. Johansson, and M. Käll, “Unidirectional broadband light emission from supported plasmonic nanowires,” Nano Lett. 11(2), 706–711 (2011).
[Crossref] [PubMed]

Moreno, E.

E. Bermúdez-Ureña, C. Gonzalez-Ballestero, M. Geiselmann, R. Marty, I. P. Radko, T. Holmgaard, Y. Alaverdyan, E. Moreno, F. J. García-Vidal, S. I. Bozhevolnyi, and R. Quidant, “Coupling of individual quantum emitters to channel plasmons,” Nat. Commun. 6(1), 7883 (2015).
[Crossref] [PubMed]

Mortensen, N. A.

A. Kristensen, J. K. W. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2(1), 16088 (2016).
[Crossref]

Mukherjee, A.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[Crossref] [PubMed]

Murray, W. A.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92(10), 107401 (2004).
[Crossref] [PubMed]

Nordlander, P.

B. Cerjan, X. Yang, P. Nordlander, and N. J. Halas, “Asymmetric aluminum antennas for self-calibrating surface-enhanced infrared absorption spectroscopy,” ACS Photonics 3(3), 354–360 (2016).
[Crossref]

A. Kristensen, J. K. W. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2(1), 16088 (2016).
[Crossref]

S. Zhang, H. Wei, K. Bao, U. Håkanson, N. J. Halas, P. Nordlander, and H. Xu, “Chiral surface plasmon polaritons on metallic nanowires,” Phys. Rev. Lett. 107(9), 096801 (2011).
[Crossref] [PubMed]

T. Shegai, V. D. Miljković, K. Bao, H. Xu, P. Nordlander, P. Johansson, and M. Käll, “Unidirectional broadband light emission from supported plasmonic nanowires,” Nano Lett. 11(2), 706–711 (2011).
[Crossref] [PubMed]

Z. Li, S. Zhang, N. J. Halas, P. Nordlander, and H. Xu, “Coherent modulation of propagating plasmons in silver-nanowire-based structures,” Small 7(5), 593–596 (2011).
[Crossref] [PubMed]

H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks,” Nano Lett. 11(2), 471–475 (2011).
[Crossref] [PubMed]

Y. Fang, Z. Li, Y. Huang, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Branched silver nanowires as controllable plasmon routers,” Nano Lett. 10(5), 1950–1954 (2010).
[Crossref] [PubMed]

Z. Li, K. Bao, Y. Fang, Y. Huang, P. Nordlander, and H. Xu, “Correlation between incident and emission polarization in nanowire surface plasmon waveguides,” Nano Lett. 10(5), 1831–1835 (2010).
[Crossref] [PubMed]

Ohadi, H.

F. Benz, M. K. Schmidt, A. Dreismann, R. Chikkaraddy, Y. Zhang, A. Demetriadou, C. Carnegie, H. Ohadi, B. de Nijs, R. Esteban, J. Aizpurua, and J. J. Baumberg, “Single-molecule optomechanics in “picocavities”,” Science 354(6313), 726–729 (2016).
[Crossref] [PubMed]

Ozbay, E.

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[Crossref] [PubMed]

Pan, D.

H. Wei, D. Pan, S. Zhang, Z. Li, Q. Li, N. Liu, W. Wang, and H. Xu, “Plasmon waveguiding in nanowires,” Chem. Rev. 118(6), 2882–2926 (2018).
[Crossref] [PubMed]

D. Pan, H. Wei, L. Gao, and H. Xu, “Strong spin-orbit interaction of light in plasmonic nanostructures and nanocircuits,” Phys. Rev. Lett. 117(16), 166803 (2016).
[Crossref] [PubMed]

H. Wei, D. Pan, and H. Xu, “Routing of surface plasmons in silver nanowire networks controlled by polarization and coating,” Nanoscale 7(45), 19053–19059 (2015).
[Crossref] [PubMed]

H. Wei, X. Tian, D. Pan, L. Chen, Z. Jia, and H. Xu, “Directionally-controlled periodic collimated beams of surface plasmon polaritons on metal film in Ag nanowire/Al2O3/Ag film composite structure,” Nano Lett. 15(1), 560–564 (2015).
[Crossref] [PubMed]

Park, H.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[Crossref] [PubMed]

Pavan Kumar, G. V.

D. Singh, M. Raghuwanshi, and G. V. Pavan Kumar, “Propagation of light in serially coupled plasmonic nanowire dimer: Geometry dependence and polarization control,” Appl. Phys. Lett. 101(11), 111111 (2012).
[Crossref]

Pelton, M.

B. Wild, L. Cao, Y. Sun, B. P. Khanal, E. R. Zubarev, S. K. Gray, N. F. Scherer, and M. Pelton, “Propagation lengths and group velocities of plasmons in chemically synthesized gold and silver nanowires,” ACS Nano 6(1), 472–482 (2012).
[Crossref] [PubMed]

M. Liu, M. Pelton, and P. Guyot-Sionnest, “Reduced damping of surface plasmons at low temperatures,” Phys. Rev. B Condens. Matter Mater. Phys. 79(3), 035418 (2009).
[Crossref]

Pile, D. F.

Pu, M.

Qi, M.

Quidant, R.

E. Bermúdez-Ureña, C. Gonzalez-Ballestero, M. Geiselmann, R. Marty, I. P. Radko, T. Holmgaard, Y. Alaverdyan, E. Moreno, F. J. García-Vidal, S. I. Bozhevolnyi, and R. Quidant, “Coupling of individual quantum emitters to channel plasmons,” Nat. Commun. 6(1), 7883 (2015).
[Crossref] [PubMed]

Radko, I. P.

V. A. Zenin, R. Malureanu, I. P. Radko, A. V. Lavrinenko, and S. I. Bozhevolnyi, “Near-field characterization of bound plasmonic modes in metal strip waveguides,” Opt. Express 24(5), 4582–4590 (2016).
[Crossref] [PubMed]

E. Bermúdez-Ureña, C. Gonzalez-Ballestero, M. Geiselmann, R. Marty, I. P. Radko, T. Holmgaard, Y. Alaverdyan, E. Moreno, F. J. García-Vidal, S. I. Bozhevolnyi, and R. Quidant, “Coupling of individual quantum emitters to channel plasmons,” Nat. Commun. 6(1), 7883 (2015).
[Crossref] [PubMed]

Raghuwanshi, M.

D. Singh, M. Raghuwanshi, and G. V. Pavan Kumar, “Propagation of light in serially coupled plasmonic nanowire dimer: Geometry dependence and polarization control,” Appl. Phys. Lett. 101(11), 111111 (2012).
[Crossref]

Razinskas, G.

C. Rewitz, T. Keitzl, P. Tuchscherer, J.-S. Huang, P. Geisler, G. Razinskas, B. Hecht, and T. Brixner, “Ultrafast plasmon propagation in nanowires characterized by far-field spectral interferometry,” Nano Lett. 12(1), 45–49 (2012).
[Crossref] [PubMed]

Rewitz, C.

C. Rewitz, T. Keitzl, P. Tuchscherer, J.-S. Huang, P. Geisler, G. Razinskas, B. Hecht, and T. Brixner, “Ultrafast plasmon propagation in nanowires characterized by far-field spectral interferometry,” Nano Lett. 12(1), 45–49 (2012).
[Crossref] [PubMed]

Rogers, M.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[Crossref] [PubMed]

Santhosh, K.

K. Santhosh, O. Bitton, L. Chuntonov, and G. Haran, “Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit,” Nat. Commun. 7(1), s11823 (2016).
[Crossref] [PubMed]

Scherer, N. F.

B. Wild, L. Cao, Y. Sun, B. P. Khanal, E. R. Zubarev, S. K. Gray, N. F. Scherer, and M. Pelton, “Propagation lengths and group velocities of plasmons in chemically synthesized gold and silver nanowires,” ACS Nano 6(1), 472–482 (2012).
[Crossref] [PubMed]

Schmidt, M. K.

F. Benz, M. K. Schmidt, A. Dreismann, R. Chikkaraddy, Y. Zhang, A. Demetriadou, C. Carnegie, H. Ohadi, B. de Nijs, R. Esteban, J. Aizpurua, and J. J. Baumberg, “Single-molecule optomechanics in “picocavities”,” Science 354(6313), 726–729 (2016).
[Crossref] [PubMed]

Shao, L.

L. Shao and M. Käll, “Light-driven rotation of plasmonic nanomotors,” Adv. Funct. Mater. 28(25), 1706272 (2018).
[Crossref]

L. Shao, X. Zhuo, and J. Wang, “Advanced plasmonic materials for dynamic color display,” Adv. Mater. 30(16), e1704338 (2018).
[Crossref] [PubMed]

L. Shao, Z. J. Yang, D. Andrén, P. Johansson, and M. Käll, “Gold nanorod rotary motors driven by resonant light scattering,” ACS Nano 9(12), 12542–12551 (2015).
[Crossref] [PubMed]

Shegai, T.

T. Shegai, V. D. Miljković, K. Bao, H. Xu, P. Nordlander, P. Johansson, and M. Käll, “Unidirectional broadband light emission from supported plasmonic nanowires,” Nano Lett. 11(2), 706–711 (2011).
[Crossref] [PubMed]

Shi, J.

Y. Li, M. Kang, J. Shi, K. Wu, S. Zhang, and H. Xu, “Transversely divergent second harmonic generation by surface plasmon polaritons on single metallic nanowires,” Nano Lett. 17(12), 7803–7808 (2017).
[Crossref] [PubMed]

Singh, D.

D. Singh, M. Raghuwanshi, and G. V. Pavan Kumar, “Propagation of light in serially coupled plasmonic nanowire dimer: Geometry dependence and polarization control,” Appl. Phys. Lett. 101(11), 111111 (2012).
[Crossref]

Sun, F.-W.

C.-L. Zou, F.-W. Sun, Y.-F. Xiao, C.-H. Dong, X.-D. Chen, J.-M. Cui, Q. Gong, Z.-F. Han, and G.-C. Guo, “Plasmon modes of silver nanowire on a silica substrate,” Appl. Phys. Lett. 97(18), 183102 (2010).
[Crossref]

Sun, Y.

B. Wild, L. Cao, Y. Sun, B. P. Khanal, E. R. Zubarev, S. K. Gray, N. F. Scherer, and M. Pelton, “Propagation lengths and group velocities of plasmons in chemically synthesized gold and silver nanowires,” ACS Nano 6(1), 472–482 (2012).
[Crossref] [PubMed]

Y. Sun, B. Gates, B. Mayers, and Y. Xia, “Crystalline silver nanowires by soft solution processing,” Nano Lett. 2(2), 165–168 (2002).
[Crossref]

Temnov, V. V.

M. Allione, V. V. Temnov, Y. Fedutik, U. Woggon, and M. V. Artemyev, “Surface plasmon mediated interference phenomena in low-q silver nanowire cavities,” Nano Lett. 8(1), 31–35 (2008).
[Crossref] [PubMed]

V. V. Temnov, U. Woggon, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon interferometry: measuring group velocity of surface plasmons,” Opt. Lett. 32(10), 1235–1237 (2007).
[Crossref] [PubMed]

Tian, X.

H. Wei, X. Tian, D. Pan, L. Chen, Z. Jia, and H. Xu, “Directionally-controlled periodic collimated beams of surface plasmon polaritons on metal film in Ag nanowire/Al2O3/Ag film composite structure,” Nano Lett. 15(1), 560–564 (2015).
[Crossref] [PubMed]

H. Wei, S. Zhang, X. Tian, and H. Xu, “Highly tunable propagating surface plasmons on supported silver nanowires,” Proc. Natl. Acad. Sci. U.S.A. 110(12), 4494–4499 (2013).
[Crossref] [PubMed]

H. Wei, Z. Wang, X. Tian, M. Käll, and H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat. Commun. 2(1), 387 (2011).
[Crossref] [PubMed]

H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks,” Nano Lett. 11(2), 471–475 (2011).
[Crossref] [PubMed]

Tong, L.

Tuchscherer, P.

C. Rewitz, T. Keitzl, P. Tuchscherer, J.-S. Huang, P. Geisler, G. Razinskas, B. Hecht, and T. Brixner, “Ultrafast plasmon propagation in nanowires characterized by far-field spectral interferometry,” Nano Lett. 12(1), 45–49 (2012).
[Crossref] [PubMed]

Volkov, V. S.

V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, “Bend loss for channel plasmon polaritons,” Appl. Phys. Lett. 89(14), 143108 (2006).
[Crossref]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95(4), 046802 (2005).
[Crossref] [PubMed]

Wagner, D.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[Crossref] [PubMed]

Wang, C.

Wang, D.

X. Li, X. Guo, D. Wang, and L. Tong, “Propagation losses in gold nanowires,” Opt. Commun. 323, 119–122 (2014).
[Crossref]

Wang, J.

L. Shao, X. Zhuo, and J. Wang, “Advanced plasmonic materials for dynamic color display,” Adv. Mater. 30(16), e1704338 (2018).
[Crossref] [PubMed]

N. Jiang, X. Zhuo, and J. Wang, “Active plasmonics: Principles, structures, and applications,” Chem. Rev. 118(6), 3054–3099 (2018).
[Crossref] [PubMed]

Wang, W.

H. Wei, D. Pan, S. Zhang, Z. Li, Q. Li, N. Liu, W. Wang, and H. Xu, “Plasmon waveguiding in nanowires,” Chem. Rev. 118(6), 2882–2926 (2018).
[Crossref] [PubMed]

W. Wang, W. Zhou, T. Fu, F. Wu, N. Zhang, Q. Li, Z. Xu, and W. Liu, “Reduced propagation loss of surface plasmon polaritons on Ag nanowire-graphene hybrid,” Nano Energy 48, 197–201 (2018).
[Crossref]

W. Wang, Q. Yang, F. Fan, H. Xu, and Z. L. Wang, “Light propagation in curved silver nanowire plasmonic waveguides,” Nano Lett. 11(4), 1603–1608 (2011).
[Crossref] [PubMed]

Wang, Z.

H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks,” Nano Lett. 11(2), 471–475 (2011).
[Crossref] [PubMed]

H. Wei, Z. Wang, X. Tian, M. Käll, and H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat. Commun. 2(1), 387 (2011).
[Crossref] [PubMed]

Wang, Z. L.

W. Wang, Q. Yang, F. Fan, H. Xu, and Z. L. Wang, “Light propagation in curved silver nanowire plasmonic waveguides,” Nano Lett. 11(4), 1603–1608 (2011).
[Crossref] [PubMed]

Wei, H.

H. Wei, D. Pan, S. Zhang, Z. Li, Q. Li, N. Liu, W. Wang, and H. Xu, “Plasmon waveguiding in nanowires,” Chem. Rev. 118(6), 2882–2926 (2018).
[Crossref] [PubMed]

D. Pan, H. Wei, L. Gao, and H. Xu, “Strong spin-orbit interaction of light in plasmonic nanostructures and nanocircuits,” Phys. Rev. Lett. 117(16), 166803 (2016).
[Crossref] [PubMed]

H. Wei, D. Pan, and H. Xu, “Routing of surface plasmons in silver nanowire networks controlled by polarization and coating,” Nanoscale 7(45), 19053–19059 (2015).
[Crossref] [PubMed]

H. Wei, X. Tian, D. Pan, L. Chen, Z. Jia, and H. Xu, “Directionally-controlled periodic collimated beams of surface plasmon polaritons on metal film in Ag nanowire/Al2O3/Ag film composite structure,” Nano Lett. 15(1), 560–564 (2015).
[Crossref] [PubMed]

H. Wei, S. Zhang, X. Tian, and H. Xu, “Highly tunable propagating surface plasmons on supported silver nanowires,” Proc. Natl. Acad. Sci. U.S.A. 110(12), 4494–4499 (2013).
[Crossref] [PubMed]

H. Wei and H. Xu, “Controlling surface plasmon interference in branched silver nanowire structures,” Nanoscale 4(22), 7149–7154 (2012).
[Crossref] [PubMed]

H. Wei, Z. Wang, X. Tian, M. Käll, and H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat. Commun. 2(1), 387 (2011).
[Crossref] [PubMed]

H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks,” Nano Lett. 11(2), 471–475 (2011).
[Crossref] [PubMed]

S. Zhang, H. Wei, K. Bao, U. Håkanson, N. J. Halas, P. Nordlander, and H. Xu, “Chiral surface plasmon polaritons on metallic nanowires,” Phys. Rev. Lett. 107(9), 096801 (2011).
[Crossref] [PubMed]

Wild, B.

B. Wild, L. Cao, Y. Sun, B. P. Khanal, E. R. Zubarev, S. K. Gray, N. F. Scherer, and M. Pelton, “Propagation lengths and group velocities of plasmons in chemically synthesized gold and silver nanowires,” ACS Nano 6(1), 472–482 (2012).
[Crossref] [PubMed]

Woggon, U.

M. Allione, V. V. Temnov, Y. Fedutik, U. Woggon, and M. V. Artemyev, “Surface plasmon mediated interference phenomena in low-q silver nanowire cavities,” Nano Lett. 8(1), 31–35 (2008).
[Crossref] [PubMed]

V. V. Temnov, U. Woggon, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon interferometry: measuring group velocity of surface plasmons,” Opt. Lett. 32(10), 1235–1237 (2007).
[Crossref] [PubMed]

Wu, F.

W. Wang, W. Zhou, T. Fu, F. Wu, N. Zhang, Q. Li, Z. Xu, and W. Liu, “Reduced propagation loss of surface plasmon polaritons on Ag nanowire-graphene hybrid,” Nano Energy 48, 197–201 (2018).
[Crossref]

Wu, K.

Y. Li, M. Kang, J. Shi, K. Wu, S. Zhang, and H. Xu, “Transversely divergent second harmonic generation by surface plasmon polaritons on single metallic nanowires,” Nano Lett. 17(12), 7803–7808 (2017).
[Crossref] [PubMed]

Xia, Y.

Y. Sun, B. Gates, B. Mayers, and Y. Xia, “Crystalline silver nanowires by soft solution processing,” Nano Lett. 2(2), 165–168 (2002).
[Crossref]

Xiao, Y.-F.

C.-L. Zou, F.-W. Sun, Y.-F. Xiao, C.-H. Dong, X.-D. Chen, J.-M. Cui, Q. Gong, Z.-F. Han, and G.-C. Guo, “Plasmon modes of silver nanowire on a silica substrate,” Appl. Phys. Lett. 97(18), 183102 (2010).
[Crossref]

Xin, X.

Xu, H.

W. Chen, S. Zhang, Q. Deng, and H. Xu, “Probing of sub-picometer vertical differential resolutions using cavity plasmons,” Nat. Commun. 9(1), 801 (2018).
[Crossref] [PubMed]

H. Wei, D. Pan, S. Zhang, Z. Li, Q. Li, N. Liu, W. Wang, and H. Xu, “Plasmon waveguiding in nanowires,” Chem. Rev. 118(6), 2882–2926 (2018).
[Crossref] [PubMed]

Y. Li, M. Kang, J. Shi, K. Wu, S. Zhang, and H. Xu, “Transversely divergent second harmonic generation by surface plasmon polaritons on single metallic nanowires,” Nano Lett. 17(12), 7803–7808 (2017).
[Crossref] [PubMed]

D. Pan, H. Wei, L. Gao, and H. Xu, “Strong spin-orbit interaction of light in plasmonic nanostructures and nanocircuits,” Phys. Rev. Lett. 117(16), 166803 (2016).
[Crossref] [PubMed]

H. Wei, D. Pan, and H. Xu, “Routing of surface plasmons in silver nanowire networks controlled by polarization and coating,” Nanoscale 7(45), 19053–19059 (2015).
[Crossref] [PubMed]

H. Wei, X. Tian, D. Pan, L. Chen, Z. Jia, and H. Xu, “Directionally-controlled periodic collimated beams of surface plasmon polaritons on metal film in Ag nanowire/Al2O3/Ag film composite structure,” Nano Lett. 15(1), 560–564 (2015).
[Crossref] [PubMed]

S. Zhang, C. Gu, and H. Xu, “Single nanoparticle couplers for plasmonic waveguides,” Small 10(21), 4264–4269 (2014).
[PubMed]

H. Wei, S. Zhang, X. Tian, and H. Xu, “Highly tunable propagating surface plasmons on supported silver nanowires,” Proc. Natl. Acad. Sci. U.S.A. 110(12), 4494–4499 (2013).
[Crossref] [PubMed]

H. Wei and H. Xu, “Controlling surface plasmon interference in branched silver nanowire structures,” Nanoscale 4(22), 7149–7154 (2012).
[Crossref] [PubMed]

H. Wei, Z. Wang, X. Tian, M. Käll, and H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat. Commun. 2(1), 387 (2011).
[Crossref] [PubMed]

Z. Li, S. Zhang, N. J. Halas, P. Nordlander, and H. Xu, “Coherent modulation of propagating plasmons in silver-nanowire-based structures,” Small 7(5), 593–596 (2011).
[Crossref] [PubMed]

H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks,” Nano Lett. 11(2), 471–475 (2011).
[Crossref] [PubMed]

T. Shegai, V. D. Miljković, K. Bao, H. Xu, P. Nordlander, P. Johansson, and M. Käll, “Unidirectional broadband light emission from supported plasmonic nanowires,” Nano Lett. 11(2), 706–711 (2011).
[Crossref] [PubMed]

W. Wang, Q. Yang, F. Fan, H. Xu, and Z. L. Wang, “Light propagation in curved silver nanowire plasmonic waveguides,” Nano Lett. 11(4), 1603–1608 (2011).
[Crossref] [PubMed]

S. Zhang, H. Wei, K. Bao, U. Håkanson, N. J. Halas, P. Nordlander, and H. Xu, “Chiral surface plasmon polaritons on metallic nanowires,” Phys. Rev. Lett. 107(9), 096801 (2011).
[Crossref] [PubMed]

Z. Li, K. Bao, Y. Fang, Y. Huang, P. Nordlander, and H. Xu, “Correlation between incident and emission polarization in nanowire surface plasmon waveguides,” Nano Lett. 10(5), 1831–1835 (2010).
[Crossref] [PubMed]

Y. Fang, Z. Li, Y. Huang, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Branched silver nanowires as controllable plasmon routers,” Nano Lett. 10(5), 1950–1954 (2010).
[Crossref] [PubMed]

Xu, Z.

W. Wang, W. Zhou, T. Fu, F. Wu, N. Zhang, Q. Li, Z. Xu, and W. Liu, “Reduced propagation loss of surface plasmon polaritons on Ag nanowire-graphene hybrid,” Nano Energy 48, 197–201 (2018).
[Crossref]

Yang, J. K. W.

A. Kristensen, J. K. W. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2(1), 16088 (2016).
[Crossref]

Yang, Q.

W. Wang, Q. Yang, F. Fan, H. Xu, and Z. L. Wang, “Light propagation in curved silver nanowire plasmonic waveguides,” Nano Lett. 11(4), 1603–1608 (2011).
[Crossref] [PubMed]

Yang, X.

B. Cerjan, X. Yang, P. Nordlander, and N. J. Halas, “Asymmetric aluminum antennas for self-calibrating surface-enhanced infrared absorption spectroscopy,” ACS Photonics 3(3), 354–360 (2016).
[Crossref]

Yang, Z. J.

L. Shao, Z. J. Yang, D. Andrén, P. Johansson, and M. Käll, “Gold nanorod rotary motors driven by resonant light scattering,” ACS Nano 9(12), 12542–12551 (2015).
[Crossref] [PubMed]

Yao, N.

Young, C.-K.

Yu, C. L.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[Crossref] [PubMed]

Yu, H.

Zenin, V. A.

Zhang, N.

W. Wang, W. Zhou, T. Fu, F. Wu, N. Zhang, Q. Li, Z. Xu, and W. Liu, “Reduced propagation loss of surface plasmon polaritons on Ag nanowire-graphene hybrid,” Nano Energy 48, 197–201 (2018).
[Crossref]

Zhang, S.

H. Wei, D. Pan, S. Zhang, Z. Li, Q. Li, N. Liu, W. Wang, and H. Xu, “Plasmon waveguiding in nanowires,” Chem. Rev. 118(6), 2882–2926 (2018).
[Crossref] [PubMed]

W. Chen, S. Zhang, Q. Deng, and H. Xu, “Probing of sub-picometer vertical differential resolutions using cavity plasmons,” Nat. Commun. 9(1), 801 (2018).
[Crossref] [PubMed]

Y. Li, M. Kang, J. Shi, K. Wu, S. Zhang, and H. Xu, “Transversely divergent second harmonic generation by surface plasmon polaritons on single metallic nanowires,” Nano Lett. 17(12), 7803–7808 (2017).
[Crossref] [PubMed]

S. Zhang, C. Gu, and H. Xu, “Single nanoparticle couplers for plasmonic waveguides,” Small 10(21), 4264–4269 (2014).
[PubMed]

H. Wei, S. Zhang, X. Tian, and H. Xu, “Highly tunable propagating surface plasmons on supported silver nanowires,” Proc. Natl. Acad. Sci. U.S.A. 110(12), 4494–4499 (2013).
[Crossref] [PubMed]

Z. Li, S. Zhang, N. J. Halas, P. Nordlander, and H. Xu, “Coherent modulation of propagating plasmons in silver-nanowire-based structures,” Small 7(5), 593–596 (2011).
[Crossref] [PubMed]

H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks,” Nano Lett. 11(2), 471–475 (2011).
[Crossref] [PubMed]

S. Zhang, H. Wei, K. Bao, U. Håkanson, N. J. Halas, P. Nordlander, and H. Xu, “Chiral surface plasmon polaritons on metallic nanowires,” Phys. Rev. Lett. 107(9), 096801 (2011).
[Crossref] [PubMed]

Y. Fang, Z. Li, Y. Huang, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Branched silver nanowires as controllable plasmon routers,” Nano Lett. 10(5), 1950–1954 (2010).
[Crossref] [PubMed]

Zhang, Y.

F. Benz, M. K. Schmidt, A. Dreismann, R. Chikkaraddy, Y. Zhang, A. Demetriadou, C. Carnegie, H. Ohadi, B. de Nijs, R. Esteban, J. Aizpurua, and J. J. Baumberg, “Single-molecule optomechanics in “picocavities”,” Science 354(6313), 726–729 (2016).
[Crossref] [PubMed]

Zhao, Z.

Zhou, W.

W. Wang, W. Zhou, T. Fu, F. Wu, N. Zhang, Q. Li, Z. Xu, and W. Liu, “Reduced propagation loss of surface plasmon polaritons on Ag nanowire-graphene hybrid,” Nano Energy 48, 197–201 (2018).
[Crossref]

Zhuo, X.

L. Shao, X. Zhuo, and J. Wang, “Advanced plasmonic materials for dynamic color display,” Adv. Mater. 30(16), e1704338 (2018).
[Crossref] [PubMed]

N. Jiang, X. Zhuo, and J. Wang, “Active plasmonics: Principles, structures, and applications,” Chem. Rev. 118(6), 3054–3099 (2018).
[Crossref] [PubMed]

Zibrov, A. S.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[Crossref] [PubMed]

Zou, C.-L.

C.-L. Zou, F.-W. Sun, Y.-F. Xiao, C.-H. Dong, X.-D. Chen, J.-M. Cui, Q. Gong, Z.-F. Han, and G.-C. Guo, “Plasmon modes of silver nanowire on a silica substrate,” Appl. Phys. Lett. 97(18), 183102 (2010).
[Crossref]

Zubarev, E. R.

B. Wild, L. Cao, Y. Sun, B. P. Khanal, E. R. Zubarev, S. K. Gray, N. F. Scherer, and M. Pelton, “Propagation lengths and group velocities of plasmons in chemically synthesized gold and silver nanowires,” ACS Nano 6(1), 472–482 (2012).
[Crossref] [PubMed]

ACS Nano (2)

L. Shao, Z. J. Yang, D. Andrén, P. Johansson, and M. Käll, “Gold nanorod rotary motors driven by resonant light scattering,” ACS Nano 9(12), 12542–12551 (2015).
[Crossref] [PubMed]

B. Wild, L. Cao, Y. Sun, B. P. Khanal, E. R. Zubarev, S. K. Gray, N. F. Scherer, and M. Pelton, “Propagation lengths and group velocities of plasmons in chemically synthesized gold and silver nanowires,” ACS Nano 6(1), 472–482 (2012).
[Crossref] [PubMed]

ACS Photonics (1)

B. Cerjan, X. Yang, P. Nordlander, and N. J. Halas, “Asymmetric aluminum antennas for self-calibrating surface-enhanced infrared absorption spectroscopy,” ACS Photonics 3(3), 354–360 (2016).
[Crossref]

Adv. Funct. Mater. (1)

L. Shao and M. Käll, “Light-driven rotation of plasmonic nanomotors,” Adv. Funct. Mater. 28(25), 1706272 (2018).
[Crossref]

Adv. Mater. (1)

L. Shao, X. Zhuo, and J. Wang, “Advanced plasmonic materials for dynamic color display,” Adv. Mater. 30(16), e1704338 (2018).
[Crossref] [PubMed]

Appl. Phys. Lett. (3)

C.-L. Zou, F.-W. Sun, Y.-F. Xiao, C.-H. Dong, X.-D. Chen, J.-M. Cui, Q. Gong, Z.-F. Han, and G.-C. Guo, “Plasmon modes of silver nanowire on a silica substrate,” Appl. Phys. Lett. 97(18), 183102 (2010).
[Crossref]

V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, “Bend loss for channel plasmon polaritons,” Appl. Phys. Lett. 89(14), 143108 (2006).
[Crossref]

D. Singh, M. Raghuwanshi, and G. V. Pavan Kumar, “Propagation of light in serially coupled plasmonic nanowire dimer: Geometry dependence and polarization control,” Appl. Phys. Lett. 101(11), 111111 (2012).
[Crossref]

Chem. Rev. (4)

H. Wei, D. Pan, S. Zhang, Z. Li, Q. Li, N. Liu, W. Wang, and H. Xu, “Plasmon waveguiding in nanowires,” Chem. Rev. 118(6), 2882–2926 (2018).
[Crossref] [PubMed]

V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111(6), 3888–3912 (2011).
[Crossref] [PubMed]

N. Jiang, X. Zhuo, and J. Wang, “Active plasmonics: Principles, structures, and applications,” Chem. Rev. 118(6), 3054–3099 (2018).
[Crossref] [PubMed]

G. Haran and L. Chuntonov, “Artificial plasmonic molecules and their interaction with real molecules,” Chem. Rev. 118(11), 5539–5580 (2018).
[Crossref] [PubMed]

J. Opt. Soc. Am. B (1)

Nano Energy (1)

W. Wang, W. Zhou, T. Fu, F. Wu, N. Zhang, Q. Li, Z. Xu, and W. Liu, “Reduced propagation loss of surface plasmon polaritons on Ag nanowire-graphene hybrid,” Nano Energy 48, 197–201 (2018).
[Crossref]

Nano Lett. (10)

Z. Li, K. Bao, Y. Fang, Y. Huang, P. Nordlander, and H. Xu, “Correlation between incident and emission polarization in nanowire surface plasmon waveguides,” Nano Lett. 10(5), 1831–1835 (2010).
[Crossref] [PubMed]

T. Shegai, V. D. Miljković, K. Bao, H. Xu, P. Nordlander, P. Johansson, and M. Käll, “Unidirectional broadband light emission from supported plasmonic nanowires,” Nano Lett. 11(2), 706–711 (2011).
[Crossref] [PubMed]

H. Wei, X. Tian, D. Pan, L. Chen, Z. Jia, and H. Xu, “Directionally-controlled periodic collimated beams of surface plasmon polaritons on metal film in Ag nanowire/Al2O3/Ag film composite structure,” Nano Lett. 15(1), 560–564 (2015).
[Crossref] [PubMed]

M. Allione, V. V. Temnov, Y. Fedutik, U. Woggon, and M. V. Artemyev, “Surface plasmon mediated interference phenomena in low-q silver nanowire cavities,” Nano Lett. 8(1), 31–35 (2008).
[Crossref] [PubMed]

W. Wang, Q. Yang, F. Fan, H. Xu, and Z. L. Wang, “Light propagation in curved silver nanowire plasmonic waveguides,” Nano Lett. 11(4), 1603–1608 (2011).
[Crossref] [PubMed]

Y. Sun, B. Gates, B. Mayers, and Y. Xia, “Crystalline silver nanowires by soft solution processing,” Nano Lett. 2(2), 165–168 (2002).
[Crossref]

Y. Fang, Z. Li, Y. Huang, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Branched silver nanowires as controllable plasmon routers,” Nano Lett. 10(5), 1950–1954 (2010).
[Crossref] [PubMed]

H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks,” Nano Lett. 11(2), 471–475 (2011).
[Crossref] [PubMed]

C. Rewitz, T. Keitzl, P. Tuchscherer, J.-S. Huang, P. Geisler, G. Razinskas, B. Hecht, and T. Brixner, “Ultrafast plasmon propagation in nanowires characterized by far-field spectral interferometry,” Nano Lett. 12(1), 45–49 (2012).
[Crossref] [PubMed]

Y. Li, M. Kang, J. Shi, K. Wu, S. Zhang, and H. Xu, “Transversely divergent second harmonic generation by surface plasmon polaritons on single metallic nanowires,” Nano Lett. 17(12), 7803–7808 (2017).
[Crossref] [PubMed]

Nanoscale (3)

H. Wei, D. Pan, and H. Xu, “Routing of surface plasmons in silver nanowire networks controlled by polarization and coating,” Nanoscale 7(45), 19053–19059 (2015).
[Crossref] [PubMed]

H. Wei and H. Xu, “Controlling surface plasmon interference in branched silver nanowire structures,” Nanoscale 4(22), 7149–7154 (2012).
[Crossref] [PubMed]

Y. Bian and Q. Gong, “Metallic-nanowire-loaded silicon-on-insulator structures: a route to low-loss plasmon waveguiding on the nanoscale,” Nanoscale 7(10), 4415–4422 (2015).
[Crossref] [PubMed]

Nat. Commun. (4)

H. Wei, Z. Wang, X. Tian, M. Käll, and H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat. Commun. 2(1), 387 (2011).
[Crossref] [PubMed]

E. Bermúdez-Ureña, C. Gonzalez-Ballestero, M. Geiselmann, R. Marty, I. P. Radko, T. Holmgaard, Y. Alaverdyan, E. Moreno, F. J. García-Vidal, S. I. Bozhevolnyi, and R. Quidant, “Coupling of individual quantum emitters to channel plasmons,” Nat. Commun. 6(1), 7883 (2015).
[Crossref] [PubMed]

K. Santhosh, O. Bitton, L. Chuntonov, and G. Haran, “Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit,” Nat. Commun. 7(1), s11823 (2016).
[Crossref] [PubMed]

W. Chen, S. Zhang, Q. Deng, and H. Xu, “Probing of sub-picometer vertical differential resolutions using cavity plasmons,” Nat. Commun. 9(1), 801 (2018).
[Crossref] [PubMed]

Nat. Photonics (2)

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[Crossref]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

Nat. Rev. Mater. (1)

A. Kristensen, J. K. W. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2(1), 16088 (2016).
[Crossref]

Nature (2)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[Crossref] [PubMed]

Opt. Commun. (1)

X. Li, X. Guo, D. Wang, and L. Tong, “Propagation losses in gold nanowires,” Opt. Commun. 323, 119–122 (2014).
[Crossref]

Opt. Express (3)

Opt. Lett. (3)

Phys. Rev. B Condens. Matter Mater. Phys. (1)

M. Liu, M. Pelton, and P. Guyot-Sionnest, “Reduced damping of surface plasmons at low temperatures,” Phys. Rev. B Condens. Matter Mater. Phys. 79(3), 035418 (2009).
[Crossref]

Phys. Rev. Lett. (5)

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[Crossref] [PubMed]

S. Zhang, H. Wei, K. Bao, U. Håkanson, N. J. Halas, P. Nordlander, and H. Xu, “Chiral surface plasmon polaritons on metallic nanowires,” Phys. Rev. Lett. 107(9), 096801 (2011).
[Crossref] [PubMed]

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92(10), 107401 (2004).
[Crossref] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95(4), 046802 (2005).
[Crossref] [PubMed]

D. Pan, H. Wei, L. Gao, and H. Xu, “Strong spin-orbit interaction of light in plasmonic nanostructures and nanocircuits,” Phys. Rev. Lett. 117(16), 166803 (2016).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

H. Wei, S. Zhang, X. Tian, and H. Xu, “Highly tunable propagating surface plasmons on supported silver nanowires,” Proc. Natl. Acad. Sci. U.S.A. 110(12), 4494–4499 (2013).
[Crossref] [PubMed]

Science (2)

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[Crossref] [PubMed]

F. Benz, M. K. Schmidt, A. Dreismann, R. Chikkaraddy, Y. Zhang, A. Demetriadou, C. Carnegie, H. Ohadi, B. de Nijs, R. Esteban, J. Aizpurua, and J. J. Baumberg, “Single-molecule optomechanics in “picocavities”,” Science 354(6313), 726–729 (2016).
[Crossref] [PubMed]

Small (2)

S. Zhang, C. Gu, and H. Xu, “Single nanoparticle couplers for plasmonic waveguides,” Small 10(21), 4264–4269 (2014).
[PubMed]

Z. Li, S. Zhang, N. J. Halas, P. Nordlander, and H. Xu, “Coherent modulation of propagating plasmons in silver-nanowire-based structures,” Small 7(5), 593–596 (2011).
[Crossref] [PubMed]

Other (1)

S. A. Maier, Plasmonics: Fundamentals and applications (Springer, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Plasmons excitation and emission in a thick wire. (a) SEM image of silver nanowire of length 3.8 μm and diameter 510 nm. The α and θ correspond to the incident polarization and the rotation of emitting analyzer. The facets of emission end are denoted as C1 and C2, respectively. (b) Optical image of the nanowire emission under the excitation of a 633 nm laser. Red arrow indicates that the incident polarization is along the nanowire axis. (c) Left panel: the optical images of surface plasmons emission acquired under different θ degrees, including 0°, 60°, 90° and 120°, respectively. Right panel: the corresponding line intensity profile of nanowire end emission.
Fig. 2
Fig. 2 Plasmons excitation and emission at different incident and emission polarizations. (a) Optical images of propagating plasmons emission at incident polarization α = 33°. The analyzer angles are θ = 60°, 90° and 120° for (i)-(iii), respectively. (b) Emission intensity as a function of analyzer angle θ for the case in (a). (c) Οptical images of propagating plasmons emission at incident polarization α = 152°. The analyzer angles (i)-(iii) are the same as the ones in (a). (d) Emission intensity as a function of analyzer angle θ for the case in (c).
Fig. 3
Fig. 3 Polarization beam splitting on thick nanowire. (a) Emission intensity as a function of the analyzer rotation angle θ, for different incident polarizations (α = 30°, 60°, 75°, 90°, 105°, 120°, 150° and 170°, respectively). (b) Correlation between the incident (α) and emission (θmax) polarization in the thick nanowire surface plasmon waveguide. θmax is the analyzer angle, where maximal emission is obtained. The dashed line is drawn to guide eyes. (c) The splitting ratio as a function of incident polarization. The insets demonstrate the schemes of beam splitting in this single nanowire.
Fig. 4
Fig. 4 (a) The electric field distribution of propagating surface plasmons on the nanowire surface. The scale bars are all 500 nm. (b) The electric field distribution and direction (black arrows) of propagating surface plasmons on the nanowire end. The scale bars are all 100 nm. Panels (i)-(iii) correspond to the incident polarization of α = 0°, 90° and 45°, respectively.
Fig. 5
Fig. 5 The emitting polarization dependent near-field distribution of propagating surface plasmons on the nanowire end. (a) Analyzer is rotated to θ = 30°, (b) θ = 150°. The red arrow indicates that incident polarization is parallel to nanowire axis.
Fig. 6
Fig. 6 The detailed terminal shape of the characterized silver nanowire.
Fig. 7
Fig. 7 The emission intensity as a function of analyzer rotation angel θ. The incident polarization is parallel to the nanowire axis (α = 0°).

Metrics