Abstract

Sample-scan phase contrast imaging was demonstrated by producing and coherently recombining light from a pair of axially offset focal planes. Placing a homogeneous medium in one of the two focal planes enables quantitative phase imaging using only common-path optics, recovering absolute phase without halo or oblique-illumination artifacts. Axially offset foci separated by 70 μm with a 10x objective were produced through polarization wavefront shaping using a matched pair of custom-designed microretarder arrays, compatible with retrofitting into conventional commercial microscopes. Quantitative phase imaging was achieved by two complementary approaches: i) rotation of a half wave plate, and ii) 50 kHz polarization modulation with lock-in amplification for detection.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Localization accuracy of gold nanoparticles in single particle orientation and rotational tracking

Fei Zhao, Kuangcai Chen, Bin Dong, Kai Yang, Yan Gu, and Ning Fang
Opt. Express 25(9) 9860-9871 (2017)

Single-exposure complementary aperture phase microscopy with polarization encoding

Kengyeh K. Chu and Jerome Mertz
Opt. Lett. 37(18) 3798-3800 (2012)

References

  • View by:
  • |
  • |
  • |

  1. F. Zernike, “Phase contrast, a new method for the microscopic observation of transparent objects part II,” Physica 9(10), 974–986 (1942).
    [Crossref]
  2. F. Zernike, “How I discovered phase contrast,” Science 121(3141), 345–349 (1955).
    [Crossref] [PubMed]
  3. N. Georges, “Interferential polarizing device for study of phase objects,” US patent, US2924142A (1960).
  4. H.-U. Dodt and W. Zieglgänsberger, “Visualizing unstained neurons in living brain slices by infrared DIC-videomicroscopy,” Brain Res. 537(1-2), 333–336 (1990).
    [Crossref] [PubMed]
  5. J. Gelles, B. J. Schnapp, and M. P. Sheetz, “Tracking kinesin-driven movements with nanometre-scale precision,” Nature 331(6155), 450–453 (1988).
    [Crossref] [PubMed]
  6. R. D. Allen, N. S. Allen, and J. L. Travis, “Video-enhanced contrast, differential interference contrast (AVEC-DIC) microscopy: a new method capable of analyzing microtubule-related motility in the reticulopodial network of Allogromia laticollaris,” Cell Motil. 1(3), 291–302 (1981).
    [Crossref] [PubMed]
  7. T. Ikeda, G. Popescu, R. R. Dasari, and M. S. Feld, “Hilbert phase microscopy for investigating fast dynamics in transparent systems,” Opt. Lett. 30(10), 1165–1167 (2005).
    [Crossref] [PubMed]
  8. D.-I. D. Gabor, “Microscopy by reconstructed wave-fronts,” Proc. R. Soc. Lond. A Math. Phys. Sci. 197(1051), 454–487 (1949).
    [Crossref]
  9. T. Zhang and I. Yamaguchi, “Three-dimensional microscopy with phase-shifting digital holography,” Opt. Lett. 23(15), 1221–1223 (1998).
    [Crossref] [PubMed]
  10. C. Mann, L. Yu, C.-M. Lo, and M. Kim, “High-resolution quantitative phase-contrast microscopy by digital holography,” Opt. Express 13(22), 8693–8698 (2005).
    [Crossref] [PubMed]
  11. M. K. Kim, “Digital holographic microscopy,” in Digital Holographic Microscopy (Springer, 2011), pp. 149–190.
  12. L. Miccio, A. Finizio, R. Puglisi, D. Balduzzi, A. Galli, and P. Ferraro, “Dynamic DIC by digital holography microscopy for enhancing phase-contrast visualization,” Biomed. Opt. Express 2(2), 331–344 (2011).
    [Crossref] [PubMed]
  13. J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11(3), 77–79 (1967).
    [Crossref]
  14. Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express 19(2), 1016–1026 (2011).
    [Crossref] [PubMed]
  15. G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett. 31(6), 775–777 (2006).
    [Crossref] [PubMed]
  16. B. Bhaduri, H. Pham, M. Mir, and G. Popescu, “Diffraction phase microscopy with white light,” Opt. Lett. 37(6), 1094–1096 (2012).
    [Crossref] [PubMed]
  17. B. Bhaduri, C. Edwards, H. Pham, R. Zhou, T. H. Nguyen, L. L. Goddard, and G. Popescu, “Diffraction phase microscopy: principles and applications in materials and life sciences,” Adv. Opt. Photonics 6(1), 57–119 (2014).
    [Crossref]
  18. G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7(9), 739–745 (2013).
    [Crossref] [PubMed]
  19. A. Jesacher, W. Harm, S. Bernet, and M. Ritsch-Marte, “Quantitative single-shot imaging of complex objects using phase retrieval with a designed periphery,” Opt. Express 20(5), 5470–5480 (2012).
    [Crossref] [PubMed]
  20. L. Tian and L. Waller, “3D intensity and phase imaging from light field measurements in an LED array microscope,” Optica 2(2), 104–111 (2015).
    [Crossref]
  21. T. J. McIntyre, C. Maurer, S. Fassl, S. Khan, S. Bernet, and M. Ritsch-Marte, “Quantitative SLM-based differential interference contrast imaging,” Opt. Express 18(13), 14063–14078 (2010).
    [Crossref] [PubMed]
  22. H. N. Chapman and K. A. Nugent, “Coherent lensless X-ray imaging,” Nat. Photonics 4(12), 833–839 (2010).
    [Crossref]
  23. J. S. Hartman, R. L. Gordon, and D. L. Lessor, “Nomarski differential interference contrast microscopy for surface slope measurements: an examination of techniques,” Appl. Opt. 20(15), 2665–2669 (1981).
    [Crossref] [PubMed]
  24. S. Sato, “Liquid-Crystal Lens-Cells with Variable Focal Length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
    [Crossref]
  25. H. Ren, D. W. Fox, B. Wu, and S.-T. Wu, “Liquid crystal lens with large focal length tunability and low operating voltage,” Opt. Express 15(18), 11328–11335 (2007).
    [Crossref] [PubMed]
  26. H. Ren, Y.-H. Fan, and S.-T. Wu, “Prism grating using polymer stabilized nematic liquid crystal,” Appl. Phys. Lett. 82(19), 3168–3170 (2003).
    [Crossref]
  27. J. Sun, S. Xu, H. Ren, and S.-T. Wu, “Reconfigurable fabrication of scattering-free polymer network liquid crystal prism/grating/lens,” Appl. Phys. Lett. 102(16), 161106 (2013).
    [Crossref]
  28. R. Yamaguchi, T. Nose, and S. Sato, “Liquid crystal polarizers with axially symmetrical properties,” Jpn. J. Appl. Phys. 28(9), 1730–1731 (1989).
    [Crossref]
  29. Y. Morita, J. E. Stockley, K. M. Johnson, E. Hanelt, and F. Sandmeyer, “Active liquid crystal devices incorporating liquid crystal polymer thin film waveplates,” Jpn. J. Appl. Phys. 38(Part 1, No. 1A), 95–100 (1999).
    [Crossref]
  30. S. J. Woltman, G. D. Jay, and G. P. Crawford, “Liquid-crystal materials find a new order in biomedical applications,” Nat. Mater. 6(12), 929–938 (2007).
    [Crossref] [PubMed]
  31. S. V. Serak, D. E. Roberts, J.-Y. Hwang, S. R. Nersisyan, N. V. Tabiryan, T. J. Bunning, D. M. Steeves, and B. R. Kimball, “Diffractive waveplate arrays [Invited],” J. Opt. Soc. Am. B 34(5), B56–B63 (2017).
    [Crossref]
  32. S. Ohki, “Dielectric constant and refractive index of lipid bilayers,” J. Theor. Biol. 19(1), 97–115 (1968).
    [Crossref] [PubMed]
  33. W. Huang and D. G. Levitt, “Theoretical calculation of the dielectric constant of a bilayer membrane,” Biophys. J. 17(2), 111–128 (1977).
    [Crossref] [PubMed]
  34. J. M. Tiffany, “Refractive index of meibomian and other lipids,” Curr. Eye Res. 5(11), 887–889 (1986).
    [Crossref] [PubMed]
  35. Y. Cui and R. M. A. Azzam, “Determination of the refractive index and thickness of transparent pellicles by use of the polarization-independent absentee-layer condition,” Appl. Opt. 35(25), 5040–5043 (1996).
    [Crossref] [PubMed]
  36. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55(10), 1205–1209 (1965).
    [Crossref]

2017 (1)

2015 (1)

2014 (1)

B. Bhaduri, C. Edwards, H. Pham, R. Zhou, T. H. Nguyen, L. L. Goddard, and G. Popescu, “Diffraction phase microscopy: principles and applications in materials and life sciences,” Adv. Opt. Photonics 6(1), 57–119 (2014).
[Crossref]

2013 (2)

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7(9), 739–745 (2013).
[Crossref] [PubMed]

J. Sun, S. Xu, H. Ren, and S.-T. Wu, “Reconfigurable fabrication of scattering-free polymer network liquid crystal prism/grating/lens,” Appl. Phys. Lett. 102(16), 161106 (2013).
[Crossref]

2012 (2)

2011 (2)

2010 (2)

2007 (2)

H. Ren, D. W. Fox, B. Wu, and S.-T. Wu, “Liquid crystal lens with large focal length tunability and low operating voltage,” Opt. Express 15(18), 11328–11335 (2007).
[Crossref] [PubMed]

S. J. Woltman, G. D. Jay, and G. P. Crawford, “Liquid-crystal materials find a new order in biomedical applications,” Nat. Mater. 6(12), 929–938 (2007).
[Crossref] [PubMed]

2006 (1)

2005 (2)

2003 (1)

H. Ren, Y.-H. Fan, and S.-T. Wu, “Prism grating using polymer stabilized nematic liquid crystal,” Appl. Phys. Lett. 82(19), 3168–3170 (2003).
[Crossref]

1999 (1)

Y. Morita, J. E. Stockley, K. M. Johnson, E. Hanelt, and F. Sandmeyer, “Active liquid crystal devices incorporating liquid crystal polymer thin film waveplates,” Jpn. J. Appl. Phys. 38(Part 1, No. 1A), 95–100 (1999).
[Crossref]

1998 (1)

1996 (1)

1990 (1)

H.-U. Dodt and W. Zieglgänsberger, “Visualizing unstained neurons in living brain slices by infrared DIC-videomicroscopy,” Brain Res. 537(1-2), 333–336 (1990).
[Crossref] [PubMed]

1989 (1)

R. Yamaguchi, T. Nose, and S. Sato, “Liquid crystal polarizers with axially symmetrical properties,” Jpn. J. Appl. Phys. 28(9), 1730–1731 (1989).
[Crossref]

1988 (1)

J. Gelles, B. J. Schnapp, and M. P. Sheetz, “Tracking kinesin-driven movements with nanometre-scale precision,” Nature 331(6155), 450–453 (1988).
[Crossref] [PubMed]

1986 (1)

J. M. Tiffany, “Refractive index of meibomian and other lipids,” Curr. Eye Res. 5(11), 887–889 (1986).
[Crossref] [PubMed]

1981 (2)

R. D. Allen, N. S. Allen, and J. L. Travis, “Video-enhanced contrast, differential interference contrast (AVEC-DIC) microscopy: a new method capable of analyzing microtubule-related motility in the reticulopodial network of Allogromia laticollaris,” Cell Motil. 1(3), 291–302 (1981).
[Crossref] [PubMed]

J. S. Hartman, R. L. Gordon, and D. L. Lessor, “Nomarski differential interference contrast microscopy for surface slope measurements: an examination of techniques,” Appl. Opt. 20(15), 2665–2669 (1981).
[Crossref] [PubMed]

1979 (1)

S. Sato, “Liquid-Crystal Lens-Cells with Variable Focal Length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
[Crossref]

1977 (1)

W. Huang and D. G. Levitt, “Theoretical calculation of the dielectric constant of a bilayer membrane,” Biophys. J. 17(2), 111–128 (1977).
[Crossref] [PubMed]

1968 (1)

S. Ohki, “Dielectric constant and refractive index of lipid bilayers,” J. Theor. Biol. 19(1), 97–115 (1968).
[Crossref] [PubMed]

1967 (1)

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11(3), 77–79 (1967).
[Crossref]

1965 (1)

1955 (1)

F. Zernike, “How I discovered phase contrast,” Science 121(3141), 345–349 (1955).
[Crossref] [PubMed]

1949 (1)

D.-I. D. Gabor, “Microscopy by reconstructed wave-fronts,” Proc. R. Soc. Lond. A Math. Phys. Sci. 197(1051), 454–487 (1949).
[Crossref]

1942 (1)

F. Zernike, “Phase contrast, a new method for the microscopic observation of transparent objects part II,” Physica 9(10), 974–986 (1942).
[Crossref]

Allen, N. S.

R. D. Allen, N. S. Allen, and J. L. Travis, “Video-enhanced contrast, differential interference contrast (AVEC-DIC) microscopy: a new method capable of analyzing microtubule-related motility in the reticulopodial network of Allogromia laticollaris,” Cell Motil. 1(3), 291–302 (1981).
[Crossref] [PubMed]

Allen, R. D.

R. D. Allen, N. S. Allen, and J. L. Travis, “Video-enhanced contrast, differential interference contrast (AVEC-DIC) microscopy: a new method capable of analyzing microtubule-related motility in the reticulopodial network of Allogromia laticollaris,” Cell Motil. 1(3), 291–302 (1981).
[Crossref] [PubMed]

Azzam, R. M. A.

Balduzzi, D.

Bernet, S.

Bhaduri, B.

B. Bhaduri, C. Edwards, H. Pham, R. Zhou, T. H. Nguyen, L. L. Goddard, and G. Popescu, “Diffraction phase microscopy: principles and applications in materials and life sciences,” Adv. Opt. Photonics 6(1), 57–119 (2014).
[Crossref]

B. Bhaduri, H. Pham, M. Mir, and G. Popescu, “Diffraction phase microscopy with white light,” Opt. Lett. 37(6), 1094–1096 (2012).
[Crossref] [PubMed]

Bunning, T. J.

Chapman, H. N.

H. N. Chapman and K. A. Nugent, “Coherent lensless X-ray imaging,” Nat. Photonics 4(12), 833–839 (2010).
[Crossref]

Crawford, G. P.

S. J. Woltman, G. D. Jay, and G. P. Crawford, “Liquid-crystal materials find a new order in biomedical applications,” Nat. Mater. 6(12), 929–938 (2007).
[Crossref] [PubMed]

Cui, Y.

Dasari, R. R.

Ding, H.

Dodt, H.-U.

H.-U. Dodt and W. Zieglgänsberger, “Visualizing unstained neurons in living brain slices by infrared DIC-videomicroscopy,” Brain Res. 537(1-2), 333–336 (1990).
[Crossref] [PubMed]

Edwards, C.

B. Bhaduri, C. Edwards, H. Pham, R. Zhou, T. H. Nguyen, L. L. Goddard, and G. Popescu, “Diffraction phase microscopy: principles and applications in materials and life sciences,” Adv. Opt. Photonics 6(1), 57–119 (2014).
[Crossref]

Fan, Y.-H.

H. Ren, Y.-H. Fan, and S.-T. Wu, “Prism grating using polymer stabilized nematic liquid crystal,” Appl. Phys. Lett. 82(19), 3168–3170 (2003).
[Crossref]

Fassl, S.

Feld, M. S.

Ferraro, P.

Finizio, A.

Fox, D. W.

Gabor, D.-I. D.

D.-I. D. Gabor, “Microscopy by reconstructed wave-fronts,” Proc. R. Soc. Lond. A Math. Phys. Sci. 197(1051), 454–487 (1949).
[Crossref]

Galli, A.

Gelles, J.

J. Gelles, B. J. Schnapp, and M. P. Sheetz, “Tracking kinesin-driven movements with nanometre-scale precision,” Nature 331(6155), 450–453 (1988).
[Crossref] [PubMed]

Gillette, M. U.

Goddard, L. L.

B. Bhaduri, C. Edwards, H. Pham, R. Zhou, T. H. Nguyen, L. L. Goddard, and G. Popescu, “Diffraction phase microscopy: principles and applications in materials and life sciences,” Adv. Opt. Photonics 6(1), 57–119 (2014).
[Crossref]

Goodman, J. W.

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11(3), 77–79 (1967).
[Crossref]

Gordon, R. L.

Hanelt, E.

Y. Morita, J. E. Stockley, K. M. Johnson, E. Hanelt, and F. Sandmeyer, “Active liquid crystal devices incorporating liquid crystal polymer thin film waveplates,” Jpn. J. Appl. Phys. 38(Part 1, No. 1A), 95–100 (1999).
[Crossref]

Harm, W.

Hartman, J. S.

Horstmeyer, R.

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7(9), 739–745 (2013).
[Crossref] [PubMed]

Huang, W.

W. Huang and D. G. Levitt, “Theoretical calculation of the dielectric constant of a bilayer membrane,” Biophys. J. 17(2), 111–128 (1977).
[Crossref] [PubMed]

Hwang, J.-Y.

Ikeda, T.

Jay, G. D.

S. J. Woltman, G. D. Jay, and G. P. Crawford, “Liquid-crystal materials find a new order in biomedical applications,” Nat. Mater. 6(12), 929–938 (2007).
[Crossref] [PubMed]

Jesacher, A.

Johnson, K. M.

Y. Morita, J. E. Stockley, K. M. Johnson, E. Hanelt, and F. Sandmeyer, “Active liquid crystal devices incorporating liquid crystal polymer thin film waveplates,” Jpn. J. Appl. Phys. 38(Part 1, No. 1A), 95–100 (1999).
[Crossref]

Khan, S.

Kim, M.

Kimball, B. R.

Lawrence, R. W.

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11(3), 77–79 (1967).
[Crossref]

Lessor, D. L.

Levitt, D. G.

W. Huang and D. G. Levitt, “Theoretical calculation of the dielectric constant of a bilayer membrane,” Biophys. J. 17(2), 111–128 (1977).
[Crossref] [PubMed]

Lo, C.-M.

Malitson, I. H.

Mann, C.

Maurer, C.

McIntyre, T. J.

Miccio, L.

Millet, L.

Mir, M.

Morita, Y.

Y. Morita, J. E. Stockley, K. M. Johnson, E. Hanelt, and F. Sandmeyer, “Active liquid crystal devices incorporating liquid crystal polymer thin film waveplates,” Jpn. J. Appl. Phys. 38(Part 1, No. 1A), 95–100 (1999).
[Crossref]

Nersisyan, S. R.

Nguyen, T. H.

B. Bhaduri, C. Edwards, H. Pham, R. Zhou, T. H. Nguyen, L. L. Goddard, and G. Popescu, “Diffraction phase microscopy: principles and applications in materials and life sciences,” Adv. Opt. Photonics 6(1), 57–119 (2014).
[Crossref]

Nose, T.

R. Yamaguchi, T. Nose, and S. Sato, “Liquid crystal polarizers with axially symmetrical properties,” Jpn. J. Appl. Phys. 28(9), 1730–1731 (1989).
[Crossref]

Nugent, K. A.

H. N. Chapman and K. A. Nugent, “Coherent lensless X-ray imaging,” Nat. Photonics 4(12), 833–839 (2010).
[Crossref]

Ohki, S.

S. Ohki, “Dielectric constant and refractive index of lipid bilayers,” J. Theor. Biol. 19(1), 97–115 (1968).
[Crossref] [PubMed]

Pham, H.

B. Bhaduri, C. Edwards, H. Pham, R. Zhou, T. H. Nguyen, L. L. Goddard, and G. Popescu, “Diffraction phase microscopy: principles and applications in materials and life sciences,” Adv. Opt. Photonics 6(1), 57–119 (2014).
[Crossref]

B. Bhaduri, H. Pham, M. Mir, and G. Popescu, “Diffraction phase microscopy with white light,” Opt. Lett. 37(6), 1094–1096 (2012).
[Crossref] [PubMed]

Popescu, G.

Puglisi, R.

Ren, H.

J. Sun, S. Xu, H. Ren, and S.-T. Wu, “Reconfigurable fabrication of scattering-free polymer network liquid crystal prism/grating/lens,” Appl. Phys. Lett. 102(16), 161106 (2013).
[Crossref]

H. Ren, D. W. Fox, B. Wu, and S.-T. Wu, “Liquid crystal lens with large focal length tunability and low operating voltage,” Opt. Express 15(18), 11328–11335 (2007).
[Crossref] [PubMed]

H. Ren, Y.-H. Fan, and S.-T. Wu, “Prism grating using polymer stabilized nematic liquid crystal,” Appl. Phys. Lett. 82(19), 3168–3170 (2003).
[Crossref]

Ritsch-Marte, M.

Roberts, D. E.

Rogers, J.

Sandmeyer, F.

Y. Morita, J. E. Stockley, K. M. Johnson, E. Hanelt, and F. Sandmeyer, “Active liquid crystal devices incorporating liquid crystal polymer thin film waveplates,” Jpn. J. Appl. Phys. 38(Part 1, No. 1A), 95–100 (1999).
[Crossref]

Sato, S.

R. Yamaguchi, T. Nose, and S. Sato, “Liquid crystal polarizers with axially symmetrical properties,” Jpn. J. Appl. Phys. 28(9), 1730–1731 (1989).
[Crossref]

S. Sato, “Liquid-Crystal Lens-Cells with Variable Focal Length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
[Crossref]

Schnapp, B. J.

J. Gelles, B. J. Schnapp, and M. P. Sheetz, “Tracking kinesin-driven movements with nanometre-scale precision,” Nature 331(6155), 450–453 (1988).
[Crossref] [PubMed]

Serak, S. V.

Sheetz, M. P.

J. Gelles, B. J. Schnapp, and M. P. Sheetz, “Tracking kinesin-driven movements with nanometre-scale precision,” Nature 331(6155), 450–453 (1988).
[Crossref] [PubMed]

Steeves, D. M.

Stockley, J. E.

Y. Morita, J. E. Stockley, K. M. Johnson, E. Hanelt, and F. Sandmeyer, “Active liquid crystal devices incorporating liquid crystal polymer thin film waveplates,” Jpn. J. Appl. Phys. 38(Part 1, No. 1A), 95–100 (1999).
[Crossref]

Sun, J.

J. Sun, S. Xu, H. Ren, and S.-T. Wu, “Reconfigurable fabrication of scattering-free polymer network liquid crystal prism/grating/lens,” Appl. Phys. Lett. 102(16), 161106 (2013).
[Crossref]

Tabiryan, N. V.

Tian, L.

Tiffany, J. M.

J. M. Tiffany, “Refractive index of meibomian and other lipids,” Curr. Eye Res. 5(11), 887–889 (1986).
[Crossref] [PubMed]

Travis, J. L.

R. D. Allen, N. S. Allen, and J. L. Travis, “Video-enhanced contrast, differential interference contrast (AVEC-DIC) microscopy: a new method capable of analyzing microtubule-related motility in the reticulopodial network of Allogromia laticollaris,” Cell Motil. 1(3), 291–302 (1981).
[Crossref] [PubMed]

Unarunotai, S.

Waller, L.

Wang, Z.

Woltman, S. J.

S. J. Woltman, G. D. Jay, and G. P. Crawford, “Liquid-crystal materials find a new order in biomedical applications,” Nat. Mater. 6(12), 929–938 (2007).
[Crossref] [PubMed]

Wu, B.

Wu, S.-T.

J. Sun, S. Xu, H. Ren, and S.-T. Wu, “Reconfigurable fabrication of scattering-free polymer network liquid crystal prism/grating/lens,” Appl. Phys. Lett. 102(16), 161106 (2013).
[Crossref]

H. Ren, D. W. Fox, B. Wu, and S.-T. Wu, “Liquid crystal lens with large focal length tunability and low operating voltage,” Opt. Express 15(18), 11328–11335 (2007).
[Crossref] [PubMed]

H. Ren, Y.-H. Fan, and S.-T. Wu, “Prism grating using polymer stabilized nematic liquid crystal,” Appl. Phys. Lett. 82(19), 3168–3170 (2003).
[Crossref]

Xu, S.

J. Sun, S. Xu, H. Ren, and S.-T. Wu, “Reconfigurable fabrication of scattering-free polymer network liquid crystal prism/grating/lens,” Appl. Phys. Lett. 102(16), 161106 (2013).
[Crossref]

Yamaguchi, I.

Yamaguchi, R.

R. Yamaguchi, T. Nose, and S. Sato, “Liquid crystal polarizers with axially symmetrical properties,” Jpn. J. Appl. Phys. 28(9), 1730–1731 (1989).
[Crossref]

Yang, C.

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7(9), 739–745 (2013).
[Crossref] [PubMed]

Yu, L.

Zernike, F.

F. Zernike, “How I discovered phase contrast,” Science 121(3141), 345–349 (1955).
[Crossref] [PubMed]

F. Zernike, “Phase contrast, a new method for the microscopic observation of transparent objects part II,” Physica 9(10), 974–986 (1942).
[Crossref]

Zhang, T.

Zheng, G.

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7(9), 739–745 (2013).
[Crossref] [PubMed]

Zhou, R.

B. Bhaduri, C. Edwards, H. Pham, R. Zhou, T. H. Nguyen, L. L. Goddard, and G. Popescu, “Diffraction phase microscopy: principles and applications in materials and life sciences,” Adv. Opt. Photonics 6(1), 57–119 (2014).
[Crossref]

Zieglgänsberger, W.

H.-U. Dodt and W. Zieglgänsberger, “Visualizing unstained neurons in living brain slices by infrared DIC-videomicroscopy,” Brain Res. 537(1-2), 333–336 (1990).
[Crossref] [PubMed]

Adv. Opt. Photonics (1)

B. Bhaduri, C. Edwards, H. Pham, R. Zhou, T. H. Nguyen, L. L. Goddard, and G. Popescu, “Diffraction phase microscopy: principles and applications in materials and life sciences,” Adv. Opt. Photonics 6(1), 57–119 (2014).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (3)

H. Ren, Y.-H. Fan, and S.-T. Wu, “Prism grating using polymer stabilized nematic liquid crystal,” Appl. Phys. Lett. 82(19), 3168–3170 (2003).
[Crossref]

J. Sun, S. Xu, H. Ren, and S.-T. Wu, “Reconfigurable fabrication of scattering-free polymer network liquid crystal prism/grating/lens,” Appl. Phys. Lett. 102(16), 161106 (2013).
[Crossref]

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11(3), 77–79 (1967).
[Crossref]

Biomed. Opt. Express (1)

Biophys. J. (1)

W. Huang and D. G. Levitt, “Theoretical calculation of the dielectric constant of a bilayer membrane,” Biophys. J. 17(2), 111–128 (1977).
[Crossref] [PubMed]

Brain Res. (1)

H.-U. Dodt and W. Zieglgänsberger, “Visualizing unstained neurons in living brain slices by infrared DIC-videomicroscopy,” Brain Res. 537(1-2), 333–336 (1990).
[Crossref] [PubMed]

Cell Motil. (1)

R. D. Allen, N. S. Allen, and J. L. Travis, “Video-enhanced contrast, differential interference contrast (AVEC-DIC) microscopy: a new method capable of analyzing microtubule-related motility in the reticulopodial network of Allogromia laticollaris,” Cell Motil. 1(3), 291–302 (1981).
[Crossref] [PubMed]

Curr. Eye Res. (1)

J. M. Tiffany, “Refractive index of meibomian and other lipids,” Curr. Eye Res. 5(11), 887–889 (1986).
[Crossref] [PubMed]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

J. Theor. Biol. (1)

S. Ohki, “Dielectric constant and refractive index of lipid bilayers,” J. Theor. Biol. 19(1), 97–115 (1968).
[Crossref] [PubMed]

Jpn. J. Appl. Phys. (3)

S. Sato, “Liquid-Crystal Lens-Cells with Variable Focal Length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
[Crossref]

R. Yamaguchi, T. Nose, and S. Sato, “Liquid crystal polarizers with axially symmetrical properties,” Jpn. J. Appl. Phys. 28(9), 1730–1731 (1989).
[Crossref]

Y. Morita, J. E. Stockley, K. M. Johnson, E. Hanelt, and F. Sandmeyer, “Active liquid crystal devices incorporating liquid crystal polymer thin film waveplates,” Jpn. J. Appl. Phys. 38(Part 1, No. 1A), 95–100 (1999).
[Crossref]

Nat. Mater. (1)

S. J. Woltman, G. D. Jay, and G. P. Crawford, “Liquid-crystal materials find a new order in biomedical applications,” Nat. Mater. 6(12), 929–938 (2007).
[Crossref] [PubMed]

Nat. Photonics (2)

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7(9), 739–745 (2013).
[Crossref] [PubMed]

H. N. Chapman and K. A. Nugent, “Coherent lensless X-ray imaging,” Nat. Photonics 4(12), 833–839 (2010).
[Crossref]

Nature (1)

J. Gelles, B. J. Schnapp, and M. P. Sheetz, “Tracking kinesin-driven movements with nanometre-scale precision,” Nature 331(6155), 450–453 (1988).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (4)

Optica (1)

Physica (1)

F. Zernike, “Phase contrast, a new method for the microscopic observation of transparent objects part II,” Physica 9(10), 974–986 (1942).
[Crossref]

Proc. R. Soc. Lond. A Math. Phys. Sci. (1)

D.-I. D. Gabor, “Microscopy by reconstructed wave-fronts,” Proc. R. Soc. Lond. A Math. Phys. Sci. 197(1051), 454–487 (1949).
[Crossref]

Science (1)

F. Zernike, “How I discovered phase contrast,” Science 121(3141), 345–349 (1955).
[Crossref] [PubMed]

Other (2)

N. Georges, “Interferential polarizing device for study of phase objects,” US patent, US2924142A (1960).

M. K. Kim, “Digital holographic microscopy,” in Digital Holographic Microscopy (Springer, 2011), pp. 149–190.

Supplementary Material (1)

NameDescription
» Visualization 1       The whole sets of images acquired with the half wave plate at different angles.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (A) The design of µRA as half-wave retardance with spatially varied azimuthal orientation of the fast-axis targeted for 532 nm light. Scale bar: 500 µm. Bottom: part of the measured different intensity distribution with horizontal (H) and vertical (V) polarization detection when horizontally polarized light passing through the µRA. (B) The working principle of traditional Nomarski phase contrast microscope. (C) The working principle of ADIC microscope. L1 and L2: lens; RP: reference plane; SP: sample plane.
Fig. 2
Fig. 2 Experiment set-up for QPI with a 10x objective to recover both bright field images and QP images. Blue circled optics: add-in parts for LIA detection.
Fig. 3
Fig. 3 Measured point spread functions in the x-z plane with (A) and without (B) the μRA installed in the beam path.
Fig. 4
Fig. 4 Transmittance image (A) and QP images (B) recovered with half wave rotation measurement of a single FoV of mouse tail section. (C) Overlay of the measured intensity of background (dots) with its nonlinear fit result (solid line). (D) Overlay of the measured intensity of random pixels (dots) with its nonlinear fit result (solid line) to recover transmittance image and phase contrast image. Scale bar: 50 μm.
Fig. 5
Fig. 5 Images measured from LIA detection with 1f (A, B) and 2f (C, D) as reference, and the recovered transmittance bright field image (E) and quantitative phase contrast image (F) of a single FoV of mouse tail section. Color bar unit: (E) transmittance percentage, (F) phase shift in radian. Scale bar: 50 μm.
Fig. 6
Fig. 6 Transmittance and quantitative phase contrast images recovered from HWP rotation (A, B) and LIA detection (C) strategies of a single FoV of mouse tail section. (D) Differences images of the phase shift calculated from the two strategies. Color bar unit: (A) transmittance percentage, (B-D) phase shift in radian. Scale bar: 50 μm.
Fig. 7
Fig. 7 Quantitative phase contrast images of the same FoV of 8 µm silica beads recovered from both HWP rotation (A) and LIA detection (B) strategies. Color bar unit: phase shift in radian. Scale bar: 50 μm. Inserts: zoom-in for one single bead. (C) Phase shift line profiles of the cross line in the insets retrieved from the HWP rotation (blue dots) and LIA detection (orange squares) approach.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

( cos(γ) sin(γ) )= 1 2 e iγ ( 1 i )+ 1 2 e iγ ( 1 i )
e 0 =( 1 0 0 1 ) e 0 = 1 2 { [ ( 1 0 0 1 )+( 0 i i 0 ) ]+[ ( 1 0 0 1 )+( 0 i i 0 ) ] } e 0
e tot = 1 2 ( | t + |[ 1 i i 1 ] e i δ 2 +| t |[ 1 i i 1 ] e i δ 2 ) e 0
e 0 ( γ ) =[ cos2γ sin2γ sin2γ cos2γ ][ 1 0 ]
e det ( γ ) =[ cos ϕ pol sin ϕ pol sin ϕ pol cos ϕ pol ][ 1 0 0 0 ][ cos ϕ pol sin ϕ pol sin ϕ pol cos ϕ pol ] e tot ( γ )
I( ϕ pol ,γ ) | e det ( γ ) | 2
I(γ) | t + | 2 + | t | 2 +2| t + || t |cos(δ+4γ)
e 0 ( τ ) [ 1 i i 1 ][ e iΔ(τ) 2 0 0 e iΔ(τ) 2 ][ 1 1 1 1 ][ 1 0 ]= 2 (1i)[ sin( Δ( τ ) 2 + π 4 ) cos( Δ( τ ) 2 + π 4 ) ]
Δ(τ)=2Asin(2πfτ)
I(τ) | t + | 2 + | t | 2 +2| t + || t |sin( Δ(τ)δ )
I(τ)2( | t + | 2 + | t | 2 )+2| t + || t |{ [ ( 2A A 3 + A 5 6 A 7 72 + )sin(2πfτ)+( A 3 3 A 5 12 + A 7 120 + )sin(32πfτ)+ ]cosδ [ ( 1 A 2 + A 4 4 A 6 36 + )+( A 2 A 4 3 + A 6 24 + )cos(22πfτ)+( A 4 12 A 6 60 + )cos(42πfτ)+ ]sinδ }
1 f Y 2| t + || t |( 2A A 3 + A 5 6 A 7 72 )cosδ
2 f X 2| t + || t |( A 2 A 3 4 + A 6 24 )sinδ
δ=Im[In(cosδ+isinδ)]

Metrics