Abstract

Point spread function (PSF) engineering by phase modulation is a novel approach to three-dimensional (3D) super-resolution microscopy, with different point spread functions being proposed for specific applications. It is often not easy to achieve the desired shape of engineered point spread functions because it is challenging to determine the correct phase mask. Additionally, a phase mask can either encode 3D space information or additional time information, but not both simultaneously. A robust algorithm for recovering a phase mask to generate arbitrary point spread functions is needed. In this work, a generalized phase mask design method is introduced by performing an optimization. A stochastic gradient descent algorithm and a Gauss-Newton algorithm are developed and compared for their ability to recover the phase masks for previously reported point spread functions. The new Gauss-Newton algorithm converges to a minimum at much higher speeds. This algorithm is used to design a novel stretching-lobe phase mask to encode temporal and 3D spatial information simultaneously. The stretching-lobe phase mask and other masks are fabricated in-house for proof-of-concept using multi-level light lithography and an optimized commercially sourced stretching-lobe phase mask (PM) is validated experimentally to encode 3D spatial and temporal information. The algorithms’ generalizability is further demonstrated by generating a phase mask that comprises four different letters at different depths.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Super-resolution photon-efficient imaging by nanometric double-helix point spread function localization of emitters (SPINDLE)

Ginni Grover, Keith DeLuca, Sean Quirin, Jennifer DeLuca, and Rafael Piestun
Opt. Express 20(24) 26681-26695 (2012)

Three dimensional single molecule localization using a phase retrieved pupil function

Sheng Liu, Emil B. Kromann, Wesley D. Krueger, Joerg Bewersdorf, and Keith A. Lidke
Opt. Express 21(24) 29462-29487 (2013)

Measurement-based estimation of global pupil functions in 3D localization microscopy

Petar N. Petrov, Yoav Shechtman, and W. E. Moerner
Opt. Express 25(7) 7945-7959 (2017)

References

  • View by:
  • |
  • |
  • |

  1. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
    [Crossref] [PubMed]
  2. X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335(6067), 427 (2012).
    [Crossref] [PubMed]
  3. H. Sasaki, K. Yamamoto, Y. Ichihashi, and T. Senoh, “Image Size Scalable Full-parallax Coloured Three-dimensional Video by Electronic Holography,” Sci. Rep. 4(1), 4000 (2015).
    [Crossref] [PubMed]
  4. S. Yamada, T. Kakue, T. Shimobaba, and T. Ito, “Interactive Holographic Display Based on Finger Gestures,” Sci. Rep. 8(1), 2010 (2018).
    [Crossref] [PubMed]
  5. S. R. P. Pavani and R. Piestun, “High-efficiency rotating point spread functions,” Opt. Express 16(5), 3484–3489 (2008).
    [Crossref] [PubMed]
  6. S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. U.S.A. 106(9), 2995–2999 (2009).
    [Crossref] [PubMed]
  7. A. S. Backer and W. E. Moerner, “Extending single-molecule microscopy using optical Fourier processing,” J. Phys. Chem. B 118(28), 8313–8329 (2014).
    [Crossref] [PubMed]
  8. E. R. Dowski and W. T. Cathey, “Extended depth of field through wave-front coding,” Appl. Opt. 34(11), 1859–1866 (1995).
    [Crossref] [PubMed]
  9. S. Bagheri and B. Javidi, “Extension of depth of field using amplitude and phase modulation of the pupil function,” Opt. Lett. 33(7), 757–759 (2008).
    [Crossref] [PubMed]
  10. G. Grover, S. Quirin, C. Fiedler, and R. Piestun, “Photon efficient double-helix PSF microscopy with application to 3D photo-activation localization imaging,” Biomed. Opt. Express 2(11), 3010–3020 (2011).
    [Crossref] [PubMed]
  11. R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise nanometer localization analysis for individual fluorescent probes,” Biophys. J. 82(5), 2775–2783 (2002).
    [Crossref] [PubMed]
  12. M. D. Lew, M. A. Thompson, M. Badieirostami, and W. E. Moerner, “In vivo three-dimensional superresolution fluorescence tracking using a double-helix point spread function,” Proc SPIE Int Soc Opt Eng 7571, 75710Z–75710Z (2010).
    [Crossref]
  13. W. E. Moerner, Y. Shechtman, and Q. Wang, “Single-molecule spectroscopy and imaging over the decades,” Faraday Discuss. 184, 9–36 (2015).
    [Crossref] [PubMed]
  14. M. Badieirostami, M. D. Lew, M. A. Thompson, and W. E. Moerner, “Three-dimensional localization precision of the double-helix point spread function versus astigmatism and biplane,” Appl. Phys. Lett. 97(16), 161103 (2010).
    [Crossref] [PubMed]
  15. H. Shen, L. J. Tauzin, R. Baiyasi, W. Wang, N. Moringo, B. Shuang, and C. F. Landes, “Single particle tracking: from theory to biophysical applications,” Chem. Rev. 117(11), 7331–7376 (2017).
    [Crossref] [PubMed]
  16. B. Shuang, W. Wang, H. Shen, L. J. Tauzin, C. Flatebo, J. Chen, N. A. Moringo, L. D. C. Bishop, K. F. Kelly, and C. F. Landes, “Generalized recovery algorithm for 3D super-resolution microscopy using rotating point spread functions,” Sci. Rep. 6(1), 30826 (2016).
    [Crossref] [PubMed]
  17. J. K. Adams, V. Boominathan, B. W. Avants, D. G. Vercosa, F. Ye, R. G. Baraniuk, J. T. Robinson, and A. Veeraraghavan, “Single-frame 3D fluorescence microscopy with ultraminiature lensless FlatScope,” Sci. Adv. 3(12), e1701548 (2017).
    [Crossref] [PubMed]
  18. A. von Diezmann, Y. Shechtman, and W. E. Moerner, “Three-dimensional localization of single molecules for super-resolution imaging and single-particle tracking,” Chem. Rev. 117(11), 7244–7275 (2017).
    [Crossref] [PubMed]
  19. M. D. Lew, S. F. Lee, M. Badieirostami, and W. E. Moerner, “Corkscrew point spread function for far-field three-dimensional nanoscale localization of pointlike objects,” Opt. Lett. 36(2), 202–204 (2011).
    [Crossref] [PubMed]
  20. S. Jia, J. C. Vaughan, and X. Zhuang, “Isotropic 3D Super-resolution Imaging with a Self-bending Point Spread Function,” Nat. Photonics 8, 302–306 (2014).
    [Crossref] [PubMed]
  21. Y. Shechtman, L. E. Weiss, A. S. Backer, S. J. Sahl, and W. E. Moerner, “Precise three-dimensional scan-free multiple-particle tracking over large axial ranges with tetrapod point spread functions,” Nano Lett. 15(6), 4194–4199 (2015).
    [Crossref] [PubMed]
  22. N. A. Moringo, H. Shen, L. D. C. Bishop, W. Wang, and C. F. Landes, “Enhancing analytical separations using super-resolution microscopy,” Annu. Rev. Phys. Chem. 69(1), 353–375 (2018).
    [Crossref] [PubMed]
  23. M. A. Thompson, J. M. Casolari, M. Badieirostami, P. O. Brown, and W. E. Moerner, “Three-dimensional tracking of single mRNA particles in Saccharomyces cerevisiae using a double-helix point spread function,” Proc. Natl. Acad. Sci. U.S.A. 107(42), 17864–17871 (2010).
    [Crossref] [PubMed]
  24. V. Sundaresan, K. Marchuk, Y. Yu, E. J. Titus, A. J. Wilson, C. M. Armstrong, B. Zhang, and K. A. Willets, “Visualizing and calculating tip–substrate distance in nanoscale scanning electrochemical microscopy using 3-dimensional super-resolution optical imaging,” Anal. Chem. 89(1), 922–928 (2017).
    [Crossref] [PubMed]
  25. W. Wang, H. Shen, B. Shuang, B. S. Hoener, L. J. Tauzin, N. A. Moringo, K. F. Kelly, and C. F. Landes, “Super Temporal-Resolved Microscopy (STReM),” J. Phys. Chem. Lett. 7(22), 4524–4529 (2016).
    [Crossref] [PubMed]
  26. W. Wang, H. Shen, N. A. Moringo, N. C. Carrejo, F. Ye, J. T. Robinson, and C. F. Landes, “Super-temporal resolved microscopy reveals multistep desorption kinetics of α-lactalbumin from nylon,” Langmuir 34(23), 6697–6702 (2018).
    [Crossref] [PubMed]
  27. J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt. 21(15), 2758–2769 (1982).
    [Crossref] [PubMed]
  28. Y. Shechtman, S. J. Sahl, A. S. Backer, and W. E. Moerner, “Optimal point spread function design for 3D imaging,” Phys. Rev. Lett. 113(13), 133902 (2014).
    [Crossref] [PubMed]
  29. P. N. Petrov, Y. Shechtman, and W. E. Moerner, “Measurement-based estimation of global pupil functions in 3D localization microscopy,” Opt. Express 25(7), 7945–7959 (2017).
    [Crossref] [PubMed]
  30. H. H. Bauschke, P. L. Combettes, and D. R. Luke, “Phase retrieval, error reduction algorithm, and Fienup variants: a view from convex optimization,” J. Opt. Soc. Am. A 19(7), 1334–1345 (2002).
    [Crossref] [PubMed]
  31. J. R. Fienup and C. C. Wackerman, “Phase-retrieval stagnation problems and solutions,” J. Opt. Soc. Am. A 3(11), 1897–1907 (1986).
    [Crossref]
  32. Å. Björck, Numerical Methods for Least Squares Problems.
  33. J. Chao, S. Ram, T. Lee, E. S. Ward, and R. J. Ober, “Investigation of the numerics of point spread function integration in single molecule localization,” Opt. Express 23(13), 16866–16883 (2015).
    [Crossref] [PubMed]
  34. L. Bottou, “Large-scale machine learning with stochastic gradient descent,” in Proceedings of COMPSTAT’2010(Springer, 2010), pp. 177–186.
    [Crossref]
  35. B. Recht, C. Re, S. Wright, and F. Niu, “Hogwild: A lock-free approach to parallelizing stochastic gradient descent,” in Advances in neural information processing systems(2011), pp. 693–701.
  36. F. Ye, B. W. Avants, A. Veeraraghavan, and J. T. Robinson, “Integrated light-sheet illumination using metallic slit microlenses,” Opt. Express 26(21), 27326–27338 (2018).
    [Crossref] [PubMed]
  37. G. Grover, K. DeLuca, S. Quirin, J. DeLuca, and R. Piestun, “Super-resolution photon-efficient imaging by nanometric double-helix point spread function localization of emitters (SPINDLE),” Opt. Express 20(24), 26681–26695 (2012).
    [Crossref] [PubMed]
  38. A. Rammohan, P. K. Dwivedi, R. Martinez-Duarte, H. Katepalli, M. J. Madou, and A. Sharma, “One-step maskless grayscale lithography for the fabrication of 3-dimensional structures in SU-8,” Sens. Actuator B-Chem. 153(1), 125–134 (2011).
    [Crossref]
  39. M. P. Backlund, M. D. Lew, A. S. Backer, S. J. Sahl, G. Grover, A. Agrawal, R. Piestun, and W. E. Moerner, “Simultaneous, accurate measurement of the 3D position and orientation of single molecules,” Proc. Natl. Acad. Sci. U.S.A. 109(47), 19087–19092 (2012).
    [Crossref] [PubMed]
  40. A. Diezmann, M. Y. Lee, M. D. Lew, and W. E. Moerner, “Correcting field-dependent aberrations with nanoscale accuracy in three-dimensional single-molecule localization microscopy,” Optica 2(11), 985–993 (2015).
    [Crossref] [PubMed]
  41. L. Zhu, W. Zhang, D. Elnatan, and B. Huang, “Faster STORM using compressed sensing,” Nat. Methods 9(7), 721–723 (2012).
    [Crossref] [PubMed]
  42. H. P. Babcock and X. Zhuang, “Analyzing single molecule localization microscopy data using cubic splines,” Sci. Rep. 7(1), 552 (2017).
    [Crossref] [PubMed]
  43. H. Mazidi, J. Lu, A. Nehorai, and M. D. Lew, “Minimizing structural bias in single-molecule super-resolution microscopy,” Sci. Rep. 8(1), 13133 (2018).
    [Crossref] [PubMed]
  44. Y. Li, M. Mund, P. Hoess, J. Deschamps, U. Matti, B. Nijmeijer, V. J. Sabinina, J. Ellenberg, I. Schoen, and J. Ries, “Real-time 3D single-molecule localization using experimental point spread functions,” Nat. Methods 15(5), 367–369 (2018).
    [Crossref] [PubMed]
  45. J. Zhang, N. Pégard, J. Zhong, H. Adesnik, and L. Waller, “3D computer-generated holography by non-convex optimization,” Optica 4(10), 1306–1313 (2017).
    [Crossref]

2018 (6)

S. Yamada, T. Kakue, T. Shimobaba, and T. Ito, “Interactive Holographic Display Based on Finger Gestures,” Sci. Rep. 8(1), 2010 (2018).
[Crossref] [PubMed]

N. A. Moringo, H. Shen, L. D. C. Bishop, W. Wang, and C. F. Landes, “Enhancing analytical separations using super-resolution microscopy,” Annu. Rev. Phys. Chem. 69(1), 353–375 (2018).
[Crossref] [PubMed]

W. Wang, H. Shen, N. A. Moringo, N. C. Carrejo, F. Ye, J. T. Robinson, and C. F. Landes, “Super-temporal resolved microscopy reveals multistep desorption kinetics of α-lactalbumin from nylon,” Langmuir 34(23), 6697–6702 (2018).
[Crossref] [PubMed]

F. Ye, B. W. Avants, A. Veeraraghavan, and J. T. Robinson, “Integrated light-sheet illumination using metallic slit microlenses,” Opt. Express 26(21), 27326–27338 (2018).
[Crossref] [PubMed]

H. Mazidi, J. Lu, A. Nehorai, and M. D. Lew, “Minimizing structural bias in single-molecule super-resolution microscopy,” Sci. Rep. 8(1), 13133 (2018).
[Crossref] [PubMed]

Y. Li, M. Mund, P. Hoess, J. Deschamps, U. Matti, B. Nijmeijer, V. J. Sabinina, J. Ellenberg, I. Schoen, and J. Ries, “Real-time 3D single-molecule localization using experimental point spread functions,” Nat. Methods 15(5), 367–369 (2018).
[Crossref] [PubMed]

2017 (7)

J. Zhang, N. Pégard, J. Zhong, H. Adesnik, and L. Waller, “3D computer-generated holography by non-convex optimization,” Optica 4(10), 1306–1313 (2017).
[Crossref]

H. P. Babcock and X. Zhuang, “Analyzing single molecule localization microscopy data using cubic splines,” Sci. Rep. 7(1), 552 (2017).
[Crossref] [PubMed]

P. N. Petrov, Y. Shechtman, and W. E. Moerner, “Measurement-based estimation of global pupil functions in 3D localization microscopy,” Opt. Express 25(7), 7945–7959 (2017).
[Crossref] [PubMed]

V. Sundaresan, K. Marchuk, Y. Yu, E. J. Titus, A. J. Wilson, C. M. Armstrong, B. Zhang, and K. A. Willets, “Visualizing and calculating tip–substrate distance in nanoscale scanning electrochemical microscopy using 3-dimensional super-resolution optical imaging,” Anal. Chem. 89(1), 922–928 (2017).
[Crossref] [PubMed]

H. Shen, L. J. Tauzin, R. Baiyasi, W. Wang, N. Moringo, B. Shuang, and C. F. Landes, “Single particle tracking: from theory to biophysical applications,” Chem. Rev. 117(11), 7331–7376 (2017).
[Crossref] [PubMed]

J. K. Adams, V. Boominathan, B. W. Avants, D. G. Vercosa, F. Ye, R. G. Baraniuk, J. T. Robinson, and A. Veeraraghavan, “Single-frame 3D fluorescence microscopy with ultraminiature lensless FlatScope,” Sci. Adv. 3(12), e1701548 (2017).
[Crossref] [PubMed]

A. von Diezmann, Y. Shechtman, and W. E. Moerner, “Three-dimensional localization of single molecules for super-resolution imaging and single-particle tracking,” Chem. Rev. 117(11), 7244–7275 (2017).
[Crossref] [PubMed]

2016 (2)

B. Shuang, W. Wang, H. Shen, L. J. Tauzin, C. Flatebo, J. Chen, N. A. Moringo, L. D. C. Bishop, K. F. Kelly, and C. F. Landes, “Generalized recovery algorithm for 3D super-resolution microscopy using rotating point spread functions,” Sci. Rep. 6(1), 30826 (2016).
[Crossref] [PubMed]

W. Wang, H. Shen, B. Shuang, B. S. Hoener, L. J. Tauzin, N. A. Moringo, K. F. Kelly, and C. F. Landes, “Super Temporal-Resolved Microscopy (STReM),” J. Phys. Chem. Lett. 7(22), 4524–4529 (2016).
[Crossref] [PubMed]

2015 (5)

Y. Shechtman, L. E. Weiss, A. S. Backer, S. J. Sahl, and W. E. Moerner, “Precise three-dimensional scan-free multiple-particle tracking over large axial ranges with tetrapod point spread functions,” Nano Lett. 15(6), 4194–4199 (2015).
[Crossref] [PubMed]

J. Chao, S. Ram, T. Lee, E. S. Ward, and R. J. Ober, “Investigation of the numerics of point spread function integration in single molecule localization,” Opt. Express 23(13), 16866–16883 (2015).
[Crossref] [PubMed]

W. E. Moerner, Y. Shechtman, and Q. Wang, “Single-molecule spectroscopy and imaging over the decades,” Faraday Discuss. 184, 9–36 (2015).
[Crossref] [PubMed]

H. Sasaki, K. Yamamoto, Y. Ichihashi, and T. Senoh, “Image Size Scalable Full-parallax Coloured Three-dimensional Video by Electronic Holography,” Sci. Rep. 4(1), 4000 (2015).
[Crossref] [PubMed]

A. Diezmann, M. Y. Lee, M. D. Lew, and W. E. Moerner, “Correcting field-dependent aberrations with nanoscale accuracy in three-dimensional single-molecule localization microscopy,” Optica 2(11), 985–993 (2015).
[Crossref] [PubMed]

2014 (3)

A. S. Backer and W. E. Moerner, “Extending single-molecule microscopy using optical Fourier processing,” J. Phys. Chem. B 118(28), 8313–8329 (2014).
[Crossref] [PubMed]

Y. Shechtman, S. J. Sahl, A. S. Backer, and W. E. Moerner, “Optimal point spread function design for 3D imaging,” Phys. Rev. Lett. 113(13), 133902 (2014).
[Crossref] [PubMed]

S. Jia, J. C. Vaughan, and X. Zhuang, “Isotropic 3D Super-resolution Imaging with a Self-bending Point Spread Function,” Nat. Photonics 8, 302–306 (2014).
[Crossref] [PubMed]

2012 (4)

M. P. Backlund, M. D. Lew, A. S. Backer, S. J. Sahl, G. Grover, A. Agrawal, R. Piestun, and W. E. Moerner, “Simultaneous, accurate measurement of the 3D position and orientation of single molecules,” Proc. Natl. Acad. Sci. U.S.A. 109(47), 19087–19092 (2012).
[Crossref] [PubMed]

G. Grover, K. DeLuca, S. Quirin, J. DeLuca, and R. Piestun, “Super-resolution photon-efficient imaging by nanometric double-helix point spread function localization of emitters (SPINDLE),” Opt. Express 20(24), 26681–26695 (2012).
[Crossref] [PubMed]

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335(6067), 427 (2012).
[Crossref] [PubMed]

L. Zhu, W. Zhang, D. Elnatan, and B. Huang, “Faster STORM using compressed sensing,” Nat. Methods 9(7), 721–723 (2012).
[Crossref] [PubMed]

2011 (4)

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

G. Grover, S. Quirin, C. Fiedler, and R. Piestun, “Photon efficient double-helix PSF microscopy with application to 3D photo-activation localization imaging,” Biomed. Opt. Express 2(11), 3010–3020 (2011).
[Crossref] [PubMed]

M. D. Lew, S. F. Lee, M. Badieirostami, and W. E. Moerner, “Corkscrew point spread function for far-field three-dimensional nanoscale localization of pointlike objects,” Opt. Lett. 36(2), 202–204 (2011).
[Crossref] [PubMed]

A. Rammohan, P. K. Dwivedi, R. Martinez-Duarte, H. Katepalli, M. J. Madou, and A. Sharma, “One-step maskless grayscale lithography for the fabrication of 3-dimensional structures in SU-8,” Sens. Actuator B-Chem. 153(1), 125–134 (2011).
[Crossref]

2010 (2)

M. A. Thompson, J. M. Casolari, M. Badieirostami, P. O. Brown, and W. E. Moerner, “Three-dimensional tracking of single mRNA particles in Saccharomyces cerevisiae using a double-helix point spread function,” Proc. Natl. Acad. Sci. U.S.A. 107(42), 17864–17871 (2010).
[Crossref] [PubMed]

M. Badieirostami, M. D. Lew, M. A. Thompson, and W. E. Moerner, “Three-dimensional localization precision of the double-helix point spread function versus astigmatism and biplane,” Appl. Phys. Lett. 97(16), 161103 (2010).
[Crossref] [PubMed]

2009 (1)

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. U.S.A. 106(9), 2995–2999 (2009).
[Crossref] [PubMed]

2008 (2)

2002 (2)

H. H. Bauschke, P. L. Combettes, and D. R. Luke, “Phase retrieval, error reduction algorithm, and Fienup variants: a view from convex optimization,” J. Opt. Soc. Am. A 19(7), 1334–1345 (2002).
[Crossref] [PubMed]

R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise nanometer localization analysis for individual fluorescent probes,” Biophys. J. 82(5), 2775–2783 (2002).
[Crossref] [PubMed]

1995 (1)

1986 (1)

1982 (1)

Adams, J. K.

J. K. Adams, V. Boominathan, B. W. Avants, D. G. Vercosa, F. Ye, R. G. Baraniuk, J. T. Robinson, and A. Veeraraghavan, “Single-frame 3D fluorescence microscopy with ultraminiature lensless FlatScope,” Sci. Adv. 3(12), e1701548 (2017).
[Crossref] [PubMed]

Adesnik, H.

Agrawal, A.

M. P. Backlund, M. D. Lew, A. S. Backer, S. J. Sahl, G. Grover, A. Agrawal, R. Piestun, and W. E. Moerner, “Simultaneous, accurate measurement of the 3D position and orientation of single molecules,” Proc. Natl. Acad. Sci. U.S.A. 109(47), 19087–19092 (2012).
[Crossref] [PubMed]

Aieta, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Armstrong, C. M.

V. Sundaresan, K. Marchuk, Y. Yu, E. J. Titus, A. J. Wilson, C. M. Armstrong, B. Zhang, and K. A. Willets, “Visualizing and calculating tip–substrate distance in nanoscale scanning electrochemical microscopy using 3-dimensional super-resolution optical imaging,” Anal. Chem. 89(1), 922–928 (2017).
[Crossref] [PubMed]

Avants, B. W.

F. Ye, B. W. Avants, A. Veeraraghavan, and J. T. Robinson, “Integrated light-sheet illumination using metallic slit microlenses,” Opt. Express 26(21), 27326–27338 (2018).
[Crossref] [PubMed]

J. K. Adams, V. Boominathan, B. W. Avants, D. G. Vercosa, F. Ye, R. G. Baraniuk, J. T. Robinson, and A. Veeraraghavan, “Single-frame 3D fluorescence microscopy with ultraminiature lensless FlatScope,” Sci. Adv. 3(12), e1701548 (2017).
[Crossref] [PubMed]

Babcock, H. P.

H. P. Babcock and X. Zhuang, “Analyzing single molecule localization microscopy data using cubic splines,” Sci. Rep. 7(1), 552 (2017).
[Crossref] [PubMed]

Backer, A. S.

Y. Shechtman, L. E. Weiss, A. S. Backer, S. J. Sahl, and W. E. Moerner, “Precise three-dimensional scan-free multiple-particle tracking over large axial ranges with tetrapod point spread functions,” Nano Lett. 15(6), 4194–4199 (2015).
[Crossref] [PubMed]

A. S. Backer and W. E. Moerner, “Extending single-molecule microscopy using optical Fourier processing,” J. Phys. Chem. B 118(28), 8313–8329 (2014).
[Crossref] [PubMed]

Y. Shechtman, S. J. Sahl, A. S. Backer, and W. E. Moerner, “Optimal point spread function design for 3D imaging,” Phys. Rev. Lett. 113(13), 133902 (2014).
[Crossref] [PubMed]

M. P. Backlund, M. D. Lew, A. S. Backer, S. J. Sahl, G. Grover, A. Agrawal, R. Piestun, and W. E. Moerner, “Simultaneous, accurate measurement of the 3D position and orientation of single molecules,” Proc. Natl. Acad. Sci. U.S.A. 109(47), 19087–19092 (2012).
[Crossref] [PubMed]

Backlund, M. P.

M. P. Backlund, M. D. Lew, A. S. Backer, S. J. Sahl, G. Grover, A. Agrawal, R. Piestun, and W. E. Moerner, “Simultaneous, accurate measurement of the 3D position and orientation of single molecules,” Proc. Natl. Acad. Sci. U.S.A. 109(47), 19087–19092 (2012).
[Crossref] [PubMed]

Badieirostami, M.

M. D. Lew, S. F. Lee, M. Badieirostami, and W. E. Moerner, “Corkscrew point spread function for far-field three-dimensional nanoscale localization of pointlike objects,” Opt. Lett. 36(2), 202–204 (2011).
[Crossref] [PubMed]

M. A. Thompson, J. M. Casolari, M. Badieirostami, P. O. Brown, and W. E. Moerner, “Three-dimensional tracking of single mRNA particles in Saccharomyces cerevisiae using a double-helix point spread function,” Proc. Natl. Acad. Sci. U.S.A. 107(42), 17864–17871 (2010).
[Crossref] [PubMed]

M. Badieirostami, M. D. Lew, M. A. Thompson, and W. E. Moerner, “Three-dimensional localization precision of the double-helix point spread function versus astigmatism and biplane,” Appl. Phys. Lett. 97(16), 161103 (2010).
[Crossref] [PubMed]

Bagheri, S.

Baiyasi, R.

H. Shen, L. J. Tauzin, R. Baiyasi, W. Wang, N. Moringo, B. Shuang, and C. F. Landes, “Single particle tracking: from theory to biophysical applications,” Chem. Rev. 117(11), 7331–7376 (2017).
[Crossref] [PubMed]

Baraniuk, R. G.

J. K. Adams, V. Boominathan, B. W. Avants, D. G. Vercosa, F. Ye, R. G. Baraniuk, J. T. Robinson, and A. Veeraraghavan, “Single-frame 3D fluorescence microscopy with ultraminiature lensless FlatScope,” Sci. Adv. 3(12), e1701548 (2017).
[Crossref] [PubMed]

Bauschke, H. H.

Bishop, L. D. C.

N. A. Moringo, H. Shen, L. D. C. Bishop, W. Wang, and C. F. Landes, “Enhancing analytical separations using super-resolution microscopy,” Annu. Rev. Phys. Chem. 69(1), 353–375 (2018).
[Crossref] [PubMed]

B. Shuang, W. Wang, H. Shen, L. J. Tauzin, C. Flatebo, J. Chen, N. A. Moringo, L. D. C. Bishop, K. F. Kelly, and C. F. Landes, “Generalized recovery algorithm for 3D super-resolution microscopy using rotating point spread functions,” Sci. Rep. 6(1), 30826 (2016).
[Crossref] [PubMed]

Biteen, J. S.

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. U.S.A. 106(9), 2995–2999 (2009).
[Crossref] [PubMed]

Björck, Å.

Å. Björck, Numerical Methods for Least Squares Problems.

Boltasseva, A.

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335(6067), 427 (2012).
[Crossref] [PubMed]

Boominathan, V.

J. K. Adams, V. Boominathan, B. W. Avants, D. G. Vercosa, F. Ye, R. G. Baraniuk, J. T. Robinson, and A. Veeraraghavan, “Single-frame 3D fluorescence microscopy with ultraminiature lensless FlatScope,” Sci. Adv. 3(12), e1701548 (2017).
[Crossref] [PubMed]

Bottou, L.

L. Bottou, “Large-scale machine learning with stochastic gradient descent,” in Proceedings of COMPSTAT’2010(Springer, 2010), pp. 177–186.
[Crossref]

Brown, P. O.

M. A. Thompson, J. M. Casolari, M. Badieirostami, P. O. Brown, and W. E. Moerner, “Three-dimensional tracking of single mRNA particles in Saccharomyces cerevisiae using a double-helix point spread function,” Proc. Natl. Acad. Sci. U.S.A. 107(42), 17864–17871 (2010).
[Crossref] [PubMed]

Capasso, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Carrejo, N. C.

W. Wang, H. Shen, N. A. Moringo, N. C. Carrejo, F. Ye, J. T. Robinson, and C. F. Landes, “Super-temporal resolved microscopy reveals multistep desorption kinetics of α-lactalbumin from nylon,” Langmuir 34(23), 6697–6702 (2018).
[Crossref] [PubMed]

Casolari, J. M.

M. A. Thompson, J. M. Casolari, M. Badieirostami, P. O. Brown, and W. E. Moerner, “Three-dimensional tracking of single mRNA particles in Saccharomyces cerevisiae using a double-helix point spread function,” Proc. Natl. Acad. Sci. U.S.A. 107(42), 17864–17871 (2010).
[Crossref] [PubMed]

Cathey, W. T.

Chao, J.

Chen, J.

B. Shuang, W. Wang, H. Shen, L. J. Tauzin, C. Flatebo, J. Chen, N. A. Moringo, L. D. C. Bishop, K. F. Kelly, and C. F. Landes, “Generalized recovery algorithm for 3D super-resolution microscopy using rotating point spread functions,” Sci. Rep. 6(1), 30826 (2016).
[Crossref] [PubMed]

Combettes, P. L.

DeLuca, J.

DeLuca, K.

Deschamps, J.

Y. Li, M. Mund, P. Hoess, J. Deschamps, U. Matti, B. Nijmeijer, V. J. Sabinina, J. Ellenberg, I. Schoen, and J. Ries, “Real-time 3D single-molecule localization using experimental point spread functions,” Nat. Methods 15(5), 367–369 (2018).
[Crossref] [PubMed]

Diezmann, A.

Dowski, E. R.

Dwivedi, P. K.

A. Rammohan, P. K. Dwivedi, R. Martinez-Duarte, H. Katepalli, M. J. Madou, and A. Sharma, “One-step maskless grayscale lithography for the fabrication of 3-dimensional structures in SU-8,” Sens. Actuator B-Chem. 153(1), 125–134 (2011).
[Crossref]

Ellenberg, J.

Y. Li, M. Mund, P. Hoess, J. Deschamps, U. Matti, B. Nijmeijer, V. J. Sabinina, J. Ellenberg, I. Schoen, and J. Ries, “Real-time 3D single-molecule localization using experimental point spread functions,” Nat. Methods 15(5), 367–369 (2018).
[Crossref] [PubMed]

Elnatan, D.

L. Zhu, W. Zhang, D. Elnatan, and B. Huang, “Faster STORM using compressed sensing,” Nat. Methods 9(7), 721–723 (2012).
[Crossref] [PubMed]

Emani, N. K.

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335(6067), 427 (2012).
[Crossref] [PubMed]

Fiedler, C.

Fienup, J. R.

Flatebo, C.

B. Shuang, W. Wang, H. Shen, L. J. Tauzin, C. Flatebo, J. Chen, N. A. Moringo, L. D. C. Bishop, K. F. Kelly, and C. F. Landes, “Generalized recovery algorithm for 3D super-resolution microscopy using rotating point spread functions,” Sci. Rep. 6(1), 30826 (2016).
[Crossref] [PubMed]

Gaburro, Z.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Genevet, P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Grover, G.

Hoener, B. S.

W. Wang, H. Shen, B. Shuang, B. S. Hoener, L. J. Tauzin, N. A. Moringo, K. F. Kelly, and C. F. Landes, “Super Temporal-Resolved Microscopy (STReM),” J. Phys. Chem. Lett. 7(22), 4524–4529 (2016).
[Crossref] [PubMed]

Hoess, P.

Y. Li, M. Mund, P. Hoess, J. Deschamps, U. Matti, B. Nijmeijer, V. J. Sabinina, J. Ellenberg, I. Schoen, and J. Ries, “Real-time 3D single-molecule localization using experimental point spread functions,” Nat. Methods 15(5), 367–369 (2018).
[Crossref] [PubMed]

Huang, B.

L. Zhu, W. Zhang, D. Elnatan, and B. Huang, “Faster STORM using compressed sensing,” Nat. Methods 9(7), 721–723 (2012).
[Crossref] [PubMed]

Ichihashi, Y.

H. Sasaki, K. Yamamoto, Y. Ichihashi, and T. Senoh, “Image Size Scalable Full-parallax Coloured Three-dimensional Video by Electronic Holography,” Sci. Rep. 4(1), 4000 (2015).
[Crossref] [PubMed]

Ito, T.

S. Yamada, T. Kakue, T. Shimobaba, and T. Ito, “Interactive Holographic Display Based on Finger Gestures,” Sci. Rep. 8(1), 2010 (2018).
[Crossref] [PubMed]

Javidi, B.

Jia, S.

S. Jia, J. C. Vaughan, and X. Zhuang, “Isotropic 3D Super-resolution Imaging with a Self-bending Point Spread Function,” Nat. Photonics 8, 302–306 (2014).
[Crossref] [PubMed]

Kakue, T.

S. Yamada, T. Kakue, T. Shimobaba, and T. Ito, “Interactive Holographic Display Based on Finger Gestures,” Sci. Rep. 8(1), 2010 (2018).
[Crossref] [PubMed]

Katepalli, H.

A. Rammohan, P. K. Dwivedi, R. Martinez-Duarte, H. Katepalli, M. J. Madou, and A. Sharma, “One-step maskless grayscale lithography for the fabrication of 3-dimensional structures in SU-8,” Sens. Actuator B-Chem. 153(1), 125–134 (2011).
[Crossref]

Kats, M. A.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Kelly, K. F.

B. Shuang, W. Wang, H. Shen, L. J. Tauzin, C. Flatebo, J. Chen, N. A. Moringo, L. D. C. Bishop, K. F. Kelly, and C. F. Landes, “Generalized recovery algorithm for 3D super-resolution microscopy using rotating point spread functions,” Sci. Rep. 6(1), 30826 (2016).
[Crossref] [PubMed]

W. Wang, H. Shen, B. Shuang, B. S. Hoener, L. J. Tauzin, N. A. Moringo, K. F. Kelly, and C. F. Landes, “Super Temporal-Resolved Microscopy (STReM),” J. Phys. Chem. Lett. 7(22), 4524–4529 (2016).
[Crossref] [PubMed]

Kildishev, A. V.

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335(6067), 427 (2012).
[Crossref] [PubMed]

Landes, C. F.

W. Wang, H. Shen, N. A. Moringo, N. C. Carrejo, F. Ye, J. T. Robinson, and C. F. Landes, “Super-temporal resolved microscopy reveals multistep desorption kinetics of α-lactalbumin from nylon,” Langmuir 34(23), 6697–6702 (2018).
[Crossref] [PubMed]

N. A. Moringo, H. Shen, L. D. C. Bishop, W. Wang, and C. F. Landes, “Enhancing analytical separations using super-resolution microscopy,” Annu. Rev. Phys. Chem. 69(1), 353–375 (2018).
[Crossref] [PubMed]

H. Shen, L. J. Tauzin, R. Baiyasi, W. Wang, N. Moringo, B. Shuang, and C. F. Landes, “Single particle tracking: from theory to biophysical applications,” Chem. Rev. 117(11), 7331–7376 (2017).
[Crossref] [PubMed]

B. Shuang, W. Wang, H. Shen, L. J. Tauzin, C. Flatebo, J. Chen, N. A. Moringo, L. D. C. Bishop, K. F. Kelly, and C. F. Landes, “Generalized recovery algorithm for 3D super-resolution microscopy using rotating point spread functions,” Sci. Rep. 6(1), 30826 (2016).
[Crossref] [PubMed]

W. Wang, H. Shen, B. Shuang, B. S. Hoener, L. J. Tauzin, N. A. Moringo, K. F. Kelly, and C. F. Landes, “Super Temporal-Resolved Microscopy (STReM),” J. Phys. Chem. Lett. 7(22), 4524–4529 (2016).
[Crossref] [PubMed]

Larson, D. R.

R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise nanometer localization analysis for individual fluorescent probes,” Biophys. J. 82(5), 2775–2783 (2002).
[Crossref] [PubMed]

Lee, M. Y.

Lee, S. F.

Lee, T.

Lew, M. D.

H. Mazidi, J. Lu, A. Nehorai, and M. D. Lew, “Minimizing structural bias in single-molecule super-resolution microscopy,” Sci. Rep. 8(1), 13133 (2018).
[Crossref] [PubMed]

A. Diezmann, M. Y. Lee, M. D. Lew, and W. E. Moerner, “Correcting field-dependent aberrations with nanoscale accuracy in three-dimensional single-molecule localization microscopy,” Optica 2(11), 985–993 (2015).
[Crossref] [PubMed]

M. P. Backlund, M. D. Lew, A. S. Backer, S. J. Sahl, G. Grover, A. Agrawal, R. Piestun, and W. E. Moerner, “Simultaneous, accurate measurement of the 3D position and orientation of single molecules,” Proc. Natl. Acad. Sci. U.S.A. 109(47), 19087–19092 (2012).
[Crossref] [PubMed]

M. D. Lew, S. F. Lee, M. Badieirostami, and W. E. Moerner, “Corkscrew point spread function for far-field three-dimensional nanoscale localization of pointlike objects,” Opt. Lett. 36(2), 202–204 (2011).
[Crossref] [PubMed]

M. Badieirostami, M. D. Lew, M. A. Thompson, and W. E. Moerner, “Three-dimensional localization precision of the double-helix point spread function versus astigmatism and biplane,” Appl. Phys. Lett. 97(16), 161103 (2010).
[Crossref] [PubMed]

Li, Y.

Y. Li, M. Mund, P. Hoess, J. Deschamps, U. Matti, B. Nijmeijer, V. J. Sabinina, J. Ellenberg, I. Schoen, and J. Ries, “Real-time 3D single-molecule localization using experimental point spread functions,” Nat. Methods 15(5), 367–369 (2018).
[Crossref] [PubMed]

Liu, N.

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. U.S.A. 106(9), 2995–2999 (2009).
[Crossref] [PubMed]

Lord, S. J.

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. U.S.A. 106(9), 2995–2999 (2009).
[Crossref] [PubMed]

Lu, J.

H. Mazidi, J. Lu, A. Nehorai, and M. D. Lew, “Minimizing structural bias in single-molecule super-resolution microscopy,” Sci. Rep. 8(1), 13133 (2018).
[Crossref] [PubMed]

Luke, D. R.

Madou, M. J.

A. Rammohan, P. K. Dwivedi, R. Martinez-Duarte, H. Katepalli, M. J. Madou, and A. Sharma, “One-step maskless grayscale lithography for the fabrication of 3-dimensional structures in SU-8,” Sens. Actuator B-Chem. 153(1), 125–134 (2011).
[Crossref]

Marchuk, K.

V. Sundaresan, K. Marchuk, Y. Yu, E. J. Titus, A. J. Wilson, C. M. Armstrong, B. Zhang, and K. A. Willets, “Visualizing and calculating tip–substrate distance in nanoscale scanning electrochemical microscopy using 3-dimensional super-resolution optical imaging,” Anal. Chem. 89(1), 922–928 (2017).
[Crossref] [PubMed]

Martinez-Duarte, R.

A. Rammohan, P. K. Dwivedi, R. Martinez-Duarte, H. Katepalli, M. J. Madou, and A. Sharma, “One-step maskless grayscale lithography for the fabrication of 3-dimensional structures in SU-8,” Sens. Actuator B-Chem. 153(1), 125–134 (2011).
[Crossref]

Matti, U.

Y. Li, M. Mund, P. Hoess, J. Deschamps, U. Matti, B. Nijmeijer, V. J. Sabinina, J. Ellenberg, I. Schoen, and J. Ries, “Real-time 3D single-molecule localization using experimental point spread functions,” Nat. Methods 15(5), 367–369 (2018).
[Crossref] [PubMed]

Mazidi, H.

H. Mazidi, J. Lu, A. Nehorai, and M. D. Lew, “Minimizing structural bias in single-molecule super-resolution microscopy,” Sci. Rep. 8(1), 13133 (2018).
[Crossref] [PubMed]

Moerner, W. E.

P. N. Petrov, Y. Shechtman, and W. E. Moerner, “Measurement-based estimation of global pupil functions in 3D localization microscopy,” Opt. Express 25(7), 7945–7959 (2017).
[Crossref] [PubMed]

A. von Diezmann, Y. Shechtman, and W. E. Moerner, “Three-dimensional localization of single molecules for super-resolution imaging and single-particle tracking,” Chem. Rev. 117(11), 7244–7275 (2017).
[Crossref] [PubMed]

W. E. Moerner, Y. Shechtman, and Q. Wang, “Single-molecule spectroscopy and imaging over the decades,” Faraday Discuss. 184, 9–36 (2015).
[Crossref] [PubMed]

Y. Shechtman, L. E. Weiss, A. S. Backer, S. J. Sahl, and W. E. Moerner, “Precise three-dimensional scan-free multiple-particle tracking over large axial ranges with tetrapod point spread functions,” Nano Lett. 15(6), 4194–4199 (2015).
[Crossref] [PubMed]

A. Diezmann, M. Y. Lee, M. D. Lew, and W. E. Moerner, “Correcting field-dependent aberrations with nanoscale accuracy in three-dimensional single-molecule localization microscopy,” Optica 2(11), 985–993 (2015).
[Crossref] [PubMed]

Y. Shechtman, S. J. Sahl, A. S. Backer, and W. E. Moerner, “Optimal point spread function design for 3D imaging,” Phys. Rev. Lett. 113(13), 133902 (2014).
[Crossref] [PubMed]

A. S. Backer and W. E. Moerner, “Extending single-molecule microscopy using optical Fourier processing,” J. Phys. Chem. B 118(28), 8313–8329 (2014).
[Crossref] [PubMed]

M. P. Backlund, M. D. Lew, A. S. Backer, S. J. Sahl, G. Grover, A. Agrawal, R. Piestun, and W. E. Moerner, “Simultaneous, accurate measurement of the 3D position and orientation of single molecules,” Proc. Natl. Acad. Sci. U.S.A. 109(47), 19087–19092 (2012).
[Crossref] [PubMed]

M. D. Lew, S. F. Lee, M. Badieirostami, and W. E. Moerner, “Corkscrew point spread function for far-field three-dimensional nanoscale localization of pointlike objects,” Opt. Lett. 36(2), 202–204 (2011).
[Crossref] [PubMed]

M. A. Thompson, J. M. Casolari, M. Badieirostami, P. O. Brown, and W. E. Moerner, “Three-dimensional tracking of single mRNA particles in Saccharomyces cerevisiae using a double-helix point spread function,” Proc. Natl. Acad. Sci. U.S.A. 107(42), 17864–17871 (2010).
[Crossref] [PubMed]

M. Badieirostami, M. D. Lew, M. A. Thompson, and W. E. Moerner, “Three-dimensional localization precision of the double-helix point spread function versus astigmatism and biplane,” Appl. Phys. Lett. 97(16), 161103 (2010).
[Crossref] [PubMed]

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. U.S.A. 106(9), 2995–2999 (2009).
[Crossref] [PubMed]

Moringo, N.

H. Shen, L. J. Tauzin, R. Baiyasi, W. Wang, N. Moringo, B. Shuang, and C. F. Landes, “Single particle tracking: from theory to biophysical applications,” Chem. Rev. 117(11), 7331–7376 (2017).
[Crossref] [PubMed]

Moringo, N. A.

N. A. Moringo, H. Shen, L. D. C. Bishop, W. Wang, and C. F. Landes, “Enhancing analytical separations using super-resolution microscopy,” Annu. Rev. Phys. Chem. 69(1), 353–375 (2018).
[Crossref] [PubMed]

W. Wang, H. Shen, N. A. Moringo, N. C. Carrejo, F. Ye, J. T. Robinson, and C. F. Landes, “Super-temporal resolved microscopy reveals multistep desorption kinetics of α-lactalbumin from nylon,” Langmuir 34(23), 6697–6702 (2018).
[Crossref] [PubMed]

W. Wang, H. Shen, B. Shuang, B. S. Hoener, L. J. Tauzin, N. A. Moringo, K. F. Kelly, and C. F. Landes, “Super Temporal-Resolved Microscopy (STReM),” J. Phys. Chem. Lett. 7(22), 4524–4529 (2016).
[Crossref] [PubMed]

B. Shuang, W. Wang, H. Shen, L. J. Tauzin, C. Flatebo, J. Chen, N. A. Moringo, L. D. C. Bishop, K. F. Kelly, and C. F. Landes, “Generalized recovery algorithm for 3D super-resolution microscopy using rotating point spread functions,” Sci. Rep. 6(1), 30826 (2016).
[Crossref] [PubMed]

Mund, M.

Y. Li, M. Mund, P. Hoess, J. Deschamps, U. Matti, B. Nijmeijer, V. J. Sabinina, J. Ellenberg, I. Schoen, and J. Ries, “Real-time 3D single-molecule localization using experimental point spread functions,” Nat. Methods 15(5), 367–369 (2018).
[Crossref] [PubMed]

Nehorai, A.

H. Mazidi, J. Lu, A. Nehorai, and M. D. Lew, “Minimizing structural bias in single-molecule super-resolution microscopy,” Sci. Rep. 8(1), 13133 (2018).
[Crossref] [PubMed]

Ni, X.

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335(6067), 427 (2012).
[Crossref] [PubMed]

Nijmeijer, B.

Y. Li, M. Mund, P. Hoess, J. Deschamps, U. Matti, B. Nijmeijer, V. J. Sabinina, J. Ellenberg, I. Schoen, and J. Ries, “Real-time 3D single-molecule localization using experimental point spread functions,” Nat. Methods 15(5), 367–369 (2018).
[Crossref] [PubMed]

Ober, R. J.

Pavani, S. R. P.

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. U.S.A. 106(9), 2995–2999 (2009).
[Crossref] [PubMed]

S. R. P. Pavani and R. Piestun, “High-efficiency rotating point spread functions,” Opt. Express 16(5), 3484–3489 (2008).
[Crossref] [PubMed]

Pégard, N.

Petrov, P. N.

Piestun, R.

G. Grover, K. DeLuca, S. Quirin, J. DeLuca, and R. Piestun, “Super-resolution photon-efficient imaging by nanometric double-helix point spread function localization of emitters (SPINDLE),” Opt. Express 20(24), 26681–26695 (2012).
[Crossref] [PubMed]

M. P. Backlund, M. D. Lew, A. S. Backer, S. J. Sahl, G. Grover, A. Agrawal, R. Piestun, and W. E. Moerner, “Simultaneous, accurate measurement of the 3D position and orientation of single molecules,” Proc. Natl. Acad. Sci. U.S.A. 109(47), 19087–19092 (2012).
[Crossref] [PubMed]

G. Grover, S. Quirin, C. Fiedler, and R. Piestun, “Photon efficient double-helix PSF microscopy with application to 3D photo-activation localization imaging,” Biomed. Opt. Express 2(11), 3010–3020 (2011).
[Crossref] [PubMed]

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. U.S.A. 106(9), 2995–2999 (2009).
[Crossref] [PubMed]

S. R. P. Pavani and R. Piestun, “High-efficiency rotating point spread functions,” Opt. Express 16(5), 3484–3489 (2008).
[Crossref] [PubMed]

Quirin, S.

Ram, S.

Rammohan, A.

A. Rammohan, P. K. Dwivedi, R. Martinez-Duarte, H. Katepalli, M. J. Madou, and A. Sharma, “One-step maskless grayscale lithography for the fabrication of 3-dimensional structures in SU-8,” Sens. Actuator B-Chem. 153(1), 125–134 (2011).
[Crossref]

Ries, J.

Y. Li, M. Mund, P. Hoess, J. Deschamps, U. Matti, B. Nijmeijer, V. J. Sabinina, J. Ellenberg, I. Schoen, and J. Ries, “Real-time 3D single-molecule localization using experimental point spread functions,” Nat. Methods 15(5), 367–369 (2018).
[Crossref] [PubMed]

Robinson, J. T.

F. Ye, B. W. Avants, A. Veeraraghavan, and J. T. Robinson, “Integrated light-sheet illumination using metallic slit microlenses,” Opt. Express 26(21), 27326–27338 (2018).
[Crossref] [PubMed]

W. Wang, H. Shen, N. A. Moringo, N. C. Carrejo, F. Ye, J. T. Robinson, and C. F. Landes, “Super-temporal resolved microscopy reveals multistep desorption kinetics of α-lactalbumin from nylon,” Langmuir 34(23), 6697–6702 (2018).
[Crossref] [PubMed]

J. K. Adams, V. Boominathan, B. W. Avants, D. G. Vercosa, F. Ye, R. G. Baraniuk, J. T. Robinson, and A. Veeraraghavan, “Single-frame 3D fluorescence microscopy with ultraminiature lensless FlatScope,” Sci. Adv. 3(12), e1701548 (2017).
[Crossref] [PubMed]

Sabinina, V. J.

Y. Li, M. Mund, P. Hoess, J. Deschamps, U. Matti, B. Nijmeijer, V. J. Sabinina, J. Ellenberg, I. Schoen, and J. Ries, “Real-time 3D single-molecule localization using experimental point spread functions,” Nat. Methods 15(5), 367–369 (2018).
[Crossref] [PubMed]

Sahl, S. J.

Y. Shechtman, L. E. Weiss, A. S. Backer, S. J. Sahl, and W. E. Moerner, “Precise three-dimensional scan-free multiple-particle tracking over large axial ranges with tetrapod point spread functions,” Nano Lett. 15(6), 4194–4199 (2015).
[Crossref] [PubMed]

Y. Shechtman, S. J. Sahl, A. S. Backer, and W. E. Moerner, “Optimal point spread function design for 3D imaging,” Phys. Rev. Lett. 113(13), 133902 (2014).
[Crossref] [PubMed]

M. P. Backlund, M. D. Lew, A. S. Backer, S. J. Sahl, G. Grover, A. Agrawal, R. Piestun, and W. E. Moerner, “Simultaneous, accurate measurement of the 3D position and orientation of single molecules,” Proc. Natl. Acad. Sci. U.S.A. 109(47), 19087–19092 (2012).
[Crossref] [PubMed]

Sasaki, H.

H. Sasaki, K. Yamamoto, Y. Ichihashi, and T. Senoh, “Image Size Scalable Full-parallax Coloured Three-dimensional Video by Electronic Holography,” Sci. Rep. 4(1), 4000 (2015).
[Crossref] [PubMed]

Schoen, I.

Y. Li, M. Mund, P. Hoess, J. Deschamps, U. Matti, B. Nijmeijer, V. J. Sabinina, J. Ellenberg, I. Schoen, and J. Ries, “Real-time 3D single-molecule localization using experimental point spread functions,” Nat. Methods 15(5), 367–369 (2018).
[Crossref] [PubMed]

Senoh, T.

H. Sasaki, K. Yamamoto, Y. Ichihashi, and T. Senoh, “Image Size Scalable Full-parallax Coloured Three-dimensional Video by Electronic Holography,” Sci. Rep. 4(1), 4000 (2015).
[Crossref] [PubMed]

Shalaev, V. M.

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335(6067), 427 (2012).
[Crossref] [PubMed]

Sharma, A.

A. Rammohan, P. K. Dwivedi, R. Martinez-Duarte, H. Katepalli, M. J. Madou, and A. Sharma, “One-step maskless grayscale lithography for the fabrication of 3-dimensional structures in SU-8,” Sens. Actuator B-Chem. 153(1), 125–134 (2011).
[Crossref]

Shechtman, Y.

A. von Diezmann, Y. Shechtman, and W. E. Moerner, “Three-dimensional localization of single molecules for super-resolution imaging and single-particle tracking,” Chem. Rev. 117(11), 7244–7275 (2017).
[Crossref] [PubMed]

P. N. Petrov, Y. Shechtman, and W. E. Moerner, “Measurement-based estimation of global pupil functions in 3D localization microscopy,” Opt. Express 25(7), 7945–7959 (2017).
[Crossref] [PubMed]

Y. Shechtman, L. E. Weiss, A. S. Backer, S. J. Sahl, and W. E. Moerner, “Precise three-dimensional scan-free multiple-particle tracking over large axial ranges with tetrapod point spread functions,” Nano Lett. 15(6), 4194–4199 (2015).
[Crossref] [PubMed]

W. E. Moerner, Y. Shechtman, and Q. Wang, “Single-molecule spectroscopy and imaging over the decades,” Faraday Discuss. 184, 9–36 (2015).
[Crossref] [PubMed]

Y. Shechtman, S. J. Sahl, A. S. Backer, and W. E. Moerner, “Optimal point spread function design for 3D imaging,” Phys. Rev. Lett. 113(13), 133902 (2014).
[Crossref] [PubMed]

Shen, H.

W. Wang, H. Shen, N. A. Moringo, N. C. Carrejo, F. Ye, J. T. Robinson, and C. F. Landes, “Super-temporal resolved microscopy reveals multistep desorption kinetics of α-lactalbumin from nylon,” Langmuir 34(23), 6697–6702 (2018).
[Crossref] [PubMed]

N. A. Moringo, H. Shen, L. D. C. Bishop, W. Wang, and C. F. Landes, “Enhancing analytical separations using super-resolution microscopy,” Annu. Rev. Phys. Chem. 69(1), 353–375 (2018).
[Crossref] [PubMed]

H. Shen, L. J. Tauzin, R. Baiyasi, W. Wang, N. Moringo, B. Shuang, and C. F. Landes, “Single particle tracking: from theory to biophysical applications,” Chem. Rev. 117(11), 7331–7376 (2017).
[Crossref] [PubMed]

B. Shuang, W. Wang, H. Shen, L. J. Tauzin, C. Flatebo, J. Chen, N. A. Moringo, L. D. C. Bishop, K. F. Kelly, and C. F. Landes, “Generalized recovery algorithm for 3D super-resolution microscopy using rotating point spread functions,” Sci. Rep. 6(1), 30826 (2016).
[Crossref] [PubMed]

W. Wang, H. Shen, B. Shuang, B. S. Hoener, L. J. Tauzin, N. A. Moringo, K. F. Kelly, and C. F. Landes, “Super Temporal-Resolved Microscopy (STReM),” J. Phys. Chem. Lett. 7(22), 4524–4529 (2016).
[Crossref] [PubMed]

Shimobaba, T.

S. Yamada, T. Kakue, T. Shimobaba, and T. Ito, “Interactive Holographic Display Based on Finger Gestures,” Sci. Rep. 8(1), 2010 (2018).
[Crossref] [PubMed]

Shuang, B.

H. Shen, L. J. Tauzin, R. Baiyasi, W. Wang, N. Moringo, B. Shuang, and C. F. Landes, “Single particle tracking: from theory to biophysical applications,” Chem. Rev. 117(11), 7331–7376 (2017).
[Crossref] [PubMed]

B. Shuang, W. Wang, H. Shen, L. J. Tauzin, C. Flatebo, J. Chen, N. A. Moringo, L. D. C. Bishop, K. F. Kelly, and C. F. Landes, “Generalized recovery algorithm for 3D super-resolution microscopy using rotating point spread functions,” Sci. Rep. 6(1), 30826 (2016).
[Crossref] [PubMed]

W. Wang, H. Shen, B. Shuang, B. S. Hoener, L. J. Tauzin, N. A. Moringo, K. F. Kelly, and C. F. Landes, “Super Temporal-Resolved Microscopy (STReM),” J. Phys. Chem. Lett. 7(22), 4524–4529 (2016).
[Crossref] [PubMed]

Sundaresan, V.

V. Sundaresan, K. Marchuk, Y. Yu, E. J. Titus, A. J. Wilson, C. M. Armstrong, B. Zhang, and K. A. Willets, “Visualizing and calculating tip–substrate distance in nanoscale scanning electrochemical microscopy using 3-dimensional super-resolution optical imaging,” Anal. Chem. 89(1), 922–928 (2017).
[Crossref] [PubMed]

Tauzin, L. J.

H. Shen, L. J. Tauzin, R. Baiyasi, W. Wang, N. Moringo, B. Shuang, and C. F. Landes, “Single particle tracking: from theory to biophysical applications,” Chem. Rev. 117(11), 7331–7376 (2017).
[Crossref] [PubMed]

B. Shuang, W. Wang, H. Shen, L. J. Tauzin, C. Flatebo, J. Chen, N. A. Moringo, L. D. C. Bishop, K. F. Kelly, and C. F. Landes, “Generalized recovery algorithm for 3D super-resolution microscopy using rotating point spread functions,” Sci. Rep. 6(1), 30826 (2016).
[Crossref] [PubMed]

W. Wang, H. Shen, B. Shuang, B. S. Hoener, L. J. Tauzin, N. A. Moringo, K. F. Kelly, and C. F. Landes, “Super Temporal-Resolved Microscopy (STReM),” J. Phys. Chem. Lett. 7(22), 4524–4529 (2016).
[Crossref] [PubMed]

Tetienne, J.-P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Thompson, M. A.

M. Badieirostami, M. D. Lew, M. A. Thompson, and W. E. Moerner, “Three-dimensional localization precision of the double-helix point spread function versus astigmatism and biplane,” Appl. Phys. Lett. 97(16), 161103 (2010).
[Crossref] [PubMed]

M. A. Thompson, J. M. Casolari, M. Badieirostami, P. O. Brown, and W. E. Moerner, “Three-dimensional tracking of single mRNA particles in Saccharomyces cerevisiae using a double-helix point spread function,” Proc. Natl. Acad. Sci. U.S.A. 107(42), 17864–17871 (2010).
[Crossref] [PubMed]

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. U.S.A. 106(9), 2995–2999 (2009).
[Crossref] [PubMed]

Thompson, R. E.

R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise nanometer localization analysis for individual fluorescent probes,” Biophys. J. 82(5), 2775–2783 (2002).
[Crossref] [PubMed]

Titus, E. J.

V. Sundaresan, K. Marchuk, Y. Yu, E. J. Titus, A. J. Wilson, C. M. Armstrong, B. Zhang, and K. A. Willets, “Visualizing and calculating tip–substrate distance in nanoscale scanning electrochemical microscopy using 3-dimensional super-resolution optical imaging,” Anal. Chem. 89(1), 922–928 (2017).
[Crossref] [PubMed]

Twieg, R. J.

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. U.S.A. 106(9), 2995–2999 (2009).
[Crossref] [PubMed]

Vaughan, J. C.

S. Jia, J. C. Vaughan, and X. Zhuang, “Isotropic 3D Super-resolution Imaging with a Self-bending Point Spread Function,” Nat. Photonics 8, 302–306 (2014).
[Crossref] [PubMed]

Veeraraghavan, A.

F. Ye, B. W. Avants, A. Veeraraghavan, and J. T. Robinson, “Integrated light-sheet illumination using metallic slit microlenses,” Opt. Express 26(21), 27326–27338 (2018).
[Crossref] [PubMed]

J. K. Adams, V. Boominathan, B. W. Avants, D. G. Vercosa, F. Ye, R. G. Baraniuk, J. T. Robinson, and A. Veeraraghavan, “Single-frame 3D fluorescence microscopy with ultraminiature lensless FlatScope,” Sci. Adv. 3(12), e1701548 (2017).
[Crossref] [PubMed]

Vercosa, D. G.

J. K. Adams, V. Boominathan, B. W. Avants, D. G. Vercosa, F. Ye, R. G. Baraniuk, J. T. Robinson, and A. Veeraraghavan, “Single-frame 3D fluorescence microscopy with ultraminiature lensless FlatScope,” Sci. Adv. 3(12), e1701548 (2017).
[Crossref] [PubMed]

von Diezmann, A.

A. von Diezmann, Y. Shechtman, and W. E. Moerner, “Three-dimensional localization of single molecules for super-resolution imaging and single-particle tracking,” Chem. Rev. 117(11), 7244–7275 (2017).
[Crossref] [PubMed]

Wackerman, C. C.

Waller, L.

Wang, Q.

W. E. Moerner, Y. Shechtman, and Q. Wang, “Single-molecule spectroscopy and imaging over the decades,” Faraday Discuss. 184, 9–36 (2015).
[Crossref] [PubMed]

Wang, W.

N. A. Moringo, H. Shen, L. D. C. Bishop, W. Wang, and C. F. Landes, “Enhancing analytical separations using super-resolution microscopy,” Annu. Rev. Phys. Chem. 69(1), 353–375 (2018).
[Crossref] [PubMed]

W. Wang, H. Shen, N. A. Moringo, N. C. Carrejo, F. Ye, J. T. Robinson, and C. F. Landes, “Super-temporal resolved microscopy reveals multistep desorption kinetics of α-lactalbumin from nylon,” Langmuir 34(23), 6697–6702 (2018).
[Crossref] [PubMed]

H. Shen, L. J. Tauzin, R. Baiyasi, W. Wang, N. Moringo, B. Shuang, and C. F. Landes, “Single particle tracking: from theory to biophysical applications,” Chem. Rev. 117(11), 7331–7376 (2017).
[Crossref] [PubMed]

B. Shuang, W. Wang, H. Shen, L. J. Tauzin, C. Flatebo, J. Chen, N. A. Moringo, L. D. C. Bishop, K. F. Kelly, and C. F. Landes, “Generalized recovery algorithm for 3D super-resolution microscopy using rotating point spread functions,” Sci. Rep. 6(1), 30826 (2016).
[Crossref] [PubMed]

W. Wang, H. Shen, B. Shuang, B. S. Hoener, L. J. Tauzin, N. A. Moringo, K. F. Kelly, and C. F. Landes, “Super Temporal-Resolved Microscopy (STReM),” J. Phys. Chem. Lett. 7(22), 4524–4529 (2016).
[Crossref] [PubMed]

Ward, E. S.

Webb, W. W.

R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise nanometer localization analysis for individual fluorescent probes,” Biophys. J. 82(5), 2775–2783 (2002).
[Crossref] [PubMed]

Weiss, L. E.

Y. Shechtman, L. E. Weiss, A. S. Backer, S. J. Sahl, and W. E. Moerner, “Precise three-dimensional scan-free multiple-particle tracking over large axial ranges with tetrapod point spread functions,” Nano Lett. 15(6), 4194–4199 (2015).
[Crossref] [PubMed]

Willets, K. A.

V. Sundaresan, K. Marchuk, Y. Yu, E. J. Titus, A. J. Wilson, C. M. Armstrong, B. Zhang, and K. A. Willets, “Visualizing and calculating tip–substrate distance in nanoscale scanning electrochemical microscopy using 3-dimensional super-resolution optical imaging,” Anal. Chem. 89(1), 922–928 (2017).
[Crossref] [PubMed]

Wilson, A. J.

V. Sundaresan, K. Marchuk, Y. Yu, E. J. Titus, A. J. Wilson, C. M. Armstrong, B. Zhang, and K. A. Willets, “Visualizing and calculating tip–substrate distance in nanoscale scanning electrochemical microscopy using 3-dimensional super-resolution optical imaging,” Anal. Chem. 89(1), 922–928 (2017).
[Crossref] [PubMed]

Yamada, S.

S. Yamada, T. Kakue, T. Shimobaba, and T. Ito, “Interactive Holographic Display Based on Finger Gestures,” Sci. Rep. 8(1), 2010 (2018).
[Crossref] [PubMed]

Yamamoto, K.

H. Sasaki, K. Yamamoto, Y. Ichihashi, and T. Senoh, “Image Size Scalable Full-parallax Coloured Three-dimensional Video by Electronic Holography,” Sci. Rep. 4(1), 4000 (2015).
[Crossref] [PubMed]

Ye, F.

W. Wang, H. Shen, N. A. Moringo, N. C. Carrejo, F. Ye, J. T. Robinson, and C. F. Landes, “Super-temporal resolved microscopy reveals multistep desorption kinetics of α-lactalbumin from nylon,” Langmuir 34(23), 6697–6702 (2018).
[Crossref] [PubMed]

F. Ye, B. W. Avants, A. Veeraraghavan, and J. T. Robinson, “Integrated light-sheet illumination using metallic slit microlenses,” Opt. Express 26(21), 27326–27338 (2018).
[Crossref] [PubMed]

J. K. Adams, V. Boominathan, B. W. Avants, D. G. Vercosa, F. Ye, R. G. Baraniuk, J. T. Robinson, and A. Veeraraghavan, “Single-frame 3D fluorescence microscopy with ultraminiature lensless FlatScope,” Sci. Adv. 3(12), e1701548 (2017).
[Crossref] [PubMed]

Yu, N.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Yu, Y.

V. Sundaresan, K. Marchuk, Y. Yu, E. J. Titus, A. J. Wilson, C. M. Armstrong, B. Zhang, and K. A. Willets, “Visualizing and calculating tip–substrate distance in nanoscale scanning electrochemical microscopy using 3-dimensional super-resolution optical imaging,” Anal. Chem. 89(1), 922–928 (2017).
[Crossref] [PubMed]

Zhang, B.

V. Sundaresan, K. Marchuk, Y. Yu, E. J. Titus, A. J. Wilson, C. M. Armstrong, B. Zhang, and K. A. Willets, “Visualizing and calculating tip–substrate distance in nanoscale scanning electrochemical microscopy using 3-dimensional super-resolution optical imaging,” Anal. Chem. 89(1), 922–928 (2017).
[Crossref] [PubMed]

Zhang, J.

Zhang, W.

L. Zhu, W. Zhang, D. Elnatan, and B. Huang, “Faster STORM using compressed sensing,” Nat. Methods 9(7), 721–723 (2012).
[Crossref] [PubMed]

Zhong, J.

Zhu, L.

L. Zhu, W. Zhang, D. Elnatan, and B. Huang, “Faster STORM using compressed sensing,” Nat. Methods 9(7), 721–723 (2012).
[Crossref] [PubMed]

Zhuang, X.

H. P. Babcock and X. Zhuang, “Analyzing single molecule localization microscopy data using cubic splines,” Sci. Rep. 7(1), 552 (2017).
[Crossref] [PubMed]

S. Jia, J. C. Vaughan, and X. Zhuang, “Isotropic 3D Super-resolution Imaging with a Self-bending Point Spread Function,” Nat. Photonics 8, 302–306 (2014).
[Crossref] [PubMed]

Anal. Chem. (1)

V. Sundaresan, K. Marchuk, Y. Yu, E. J. Titus, A. J. Wilson, C. M. Armstrong, B. Zhang, and K. A. Willets, “Visualizing and calculating tip–substrate distance in nanoscale scanning electrochemical microscopy using 3-dimensional super-resolution optical imaging,” Anal. Chem. 89(1), 922–928 (2017).
[Crossref] [PubMed]

Annu. Rev. Phys. Chem. (1)

N. A. Moringo, H. Shen, L. D. C. Bishop, W. Wang, and C. F. Landes, “Enhancing analytical separations using super-resolution microscopy,” Annu. Rev. Phys. Chem. 69(1), 353–375 (2018).
[Crossref] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

M. Badieirostami, M. D. Lew, M. A. Thompson, and W. E. Moerner, “Three-dimensional localization precision of the double-helix point spread function versus astigmatism and biplane,” Appl. Phys. Lett. 97(16), 161103 (2010).
[Crossref] [PubMed]

Biomed. Opt. Express (1)

Biophys. J. (1)

R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise nanometer localization analysis for individual fluorescent probes,” Biophys. J. 82(5), 2775–2783 (2002).
[Crossref] [PubMed]

Chem. Rev. (2)

H. Shen, L. J. Tauzin, R. Baiyasi, W. Wang, N. Moringo, B. Shuang, and C. F. Landes, “Single particle tracking: from theory to biophysical applications,” Chem. Rev. 117(11), 7331–7376 (2017).
[Crossref] [PubMed]

A. von Diezmann, Y. Shechtman, and W. E. Moerner, “Three-dimensional localization of single molecules for super-resolution imaging and single-particle tracking,” Chem. Rev. 117(11), 7244–7275 (2017).
[Crossref] [PubMed]

Faraday Discuss. (1)

W. E. Moerner, Y. Shechtman, and Q. Wang, “Single-molecule spectroscopy and imaging over the decades,” Faraday Discuss. 184, 9–36 (2015).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (2)

J. Phys. Chem. B (1)

A. S. Backer and W. E. Moerner, “Extending single-molecule microscopy using optical Fourier processing,” J. Phys. Chem. B 118(28), 8313–8329 (2014).
[Crossref] [PubMed]

J. Phys. Chem. Lett. (1)

W. Wang, H. Shen, B. Shuang, B. S. Hoener, L. J. Tauzin, N. A. Moringo, K. F. Kelly, and C. F. Landes, “Super Temporal-Resolved Microscopy (STReM),” J. Phys. Chem. Lett. 7(22), 4524–4529 (2016).
[Crossref] [PubMed]

Langmuir (1)

W. Wang, H. Shen, N. A. Moringo, N. C. Carrejo, F. Ye, J. T. Robinson, and C. F. Landes, “Super-temporal resolved microscopy reveals multistep desorption kinetics of α-lactalbumin from nylon,” Langmuir 34(23), 6697–6702 (2018).
[Crossref] [PubMed]

Nano Lett. (1)

Y. Shechtman, L. E. Weiss, A. S. Backer, S. J. Sahl, and W. E. Moerner, “Precise three-dimensional scan-free multiple-particle tracking over large axial ranges with tetrapod point spread functions,” Nano Lett. 15(6), 4194–4199 (2015).
[Crossref] [PubMed]

Nat. Methods (2)

L. Zhu, W. Zhang, D. Elnatan, and B. Huang, “Faster STORM using compressed sensing,” Nat. Methods 9(7), 721–723 (2012).
[Crossref] [PubMed]

Y. Li, M. Mund, P. Hoess, J. Deschamps, U. Matti, B. Nijmeijer, V. J. Sabinina, J. Ellenberg, I. Schoen, and J. Ries, “Real-time 3D single-molecule localization using experimental point spread functions,” Nat. Methods 15(5), 367–369 (2018).
[Crossref] [PubMed]

Nat. Photonics (1)

S. Jia, J. C. Vaughan, and X. Zhuang, “Isotropic 3D Super-resolution Imaging with a Self-bending Point Spread Function,” Nat. Photonics 8, 302–306 (2014).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (2)

Optica (2)

Phys. Rev. Lett. (1)

Y. Shechtman, S. J. Sahl, A. S. Backer, and W. E. Moerner, “Optimal point spread function design for 3D imaging,” Phys. Rev. Lett. 113(13), 133902 (2014).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (3)

M. A. Thompson, J. M. Casolari, M. Badieirostami, P. O. Brown, and W. E. Moerner, “Three-dimensional tracking of single mRNA particles in Saccharomyces cerevisiae using a double-helix point spread function,” Proc. Natl. Acad. Sci. U.S.A. 107(42), 17864–17871 (2010).
[Crossref] [PubMed]

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. U.S.A. 106(9), 2995–2999 (2009).
[Crossref] [PubMed]

M. P. Backlund, M. D. Lew, A. S. Backer, S. J. Sahl, G. Grover, A. Agrawal, R. Piestun, and W. E. Moerner, “Simultaneous, accurate measurement of the 3D position and orientation of single molecules,” Proc. Natl. Acad. Sci. U.S.A. 109(47), 19087–19092 (2012).
[Crossref] [PubMed]

Sci. Adv. (1)

J. K. Adams, V. Boominathan, B. W. Avants, D. G. Vercosa, F. Ye, R. G. Baraniuk, J. T. Robinson, and A. Veeraraghavan, “Single-frame 3D fluorescence microscopy with ultraminiature lensless FlatScope,” Sci. Adv. 3(12), e1701548 (2017).
[Crossref] [PubMed]

Sci. Rep. (5)

H. Sasaki, K. Yamamoto, Y. Ichihashi, and T. Senoh, “Image Size Scalable Full-parallax Coloured Three-dimensional Video by Electronic Holography,” Sci. Rep. 4(1), 4000 (2015).
[Crossref] [PubMed]

S. Yamada, T. Kakue, T. Shimobaba, and T. Ito, “Interactive Holographic Display Based on Finger Gestures,” Sci. Rep. 8(1), 2010 (2018).
[Crossref] [PubMed]

B. Shuang, W. Wang, H. Shen, L. J. Tauzin, C. Flatebo, J. Chen, N. A. Moringo, L. D. C. Bishop, K. F. Kelly, and C. F. Landes, “Generalized recovery algorithm for 3D super-resolution microscopy using rotating point spread functions,” Sci. Rep. 6(1), 30826 (2016).
[Crossref] [PubMed]

H. P. Babcock and X. Zhuang, “Analyzing single molecule localization microscopy data using cubic splines,” Sci. Rep. 7(1), 552 (2017).
[Crossref] [PubMed]

H. Mazidi, J. Lu, A. Nehorai, and M. D. Lew, “Minimizing structural bias in single-molecule super-resolution microscopy,” Sci. Rep. 8(1), 13133 (2018).
[Crossref] [PubMed]

Science (2)

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335(6067), 427 (2012).
[Crossref] [PubMed]

Sens. Actuator B-Chem. (1)

A. Rammohan, P. K. Dwivedi, R. Martinez-Duarte, H. Katepalli, M. J. Madou, and A. Sharma, “One-step maskless grayscale lithography for the fabrication of 3-dimensional structures in SU-8,” Sens. Actuator B-Chem. 153(1), 125–134 (2011).
[Crossref]

Other (4)

L. Bottou, “Large-scale machine learning with stochastic gradient descent,” in Proceedings of COMPSTAT’2010(Springer, 2010), pp. 177–186.
[Crossref]

B. Recht, C. Re, S. Wright, and F. Niu, “Hogwild: A lock-free approach to parallelizing stochastic gradient descent,” in Advances in neural information processing systems(2011), pp. 693–701.

Å. Björck, Numerical Methods for Least Squares Problems.

M. D. Lew, M. A. Thompson, M. Badieirostami, and W. E. Moerner, “In vivo three-dimensional superresolution fluorescence tracking using a double-helix point spread function,” Proc SPIE Int Soc Opt Eng 7571, 75710Z–75710Z (2010).
[Crossref]

Supplementary Material (2)

NameDescription
» Visualization 1       Experimental movie of stretching-lobe point spread function with the emitter moving in depth.
» Visualization 2       Simulated movie of stretching-lobe point spread function with the emitter moving in depth.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (18)

Fig. 1
Fig. 1 Layout of a typical PM based 3D super-resolution microscope. The 4f system is shown in the red box consisting of two lenses and a PM at the Fourier plane. Emission light is modulated by the 4f system and projected to a camera.
Fig. 2
Fig. 2 Fabrication process of a PM using photolithography and RIE. A total of nine iterations are involved with each using a different photomask. Patterns are etched to the substrates after photoresists are developed in each iteration of photolithography. Scale bar = 100 μm in SEM image.
Fig. 3
Fig. 3 PM fabricated using the RIE method and corresponding DH PSFs. (A) Initial guess for the PM pattern. (B) Intensity profiles of the desired PSFs. These intensity profiles are used as the input for the PM design. Each PSF contains two Gaussian distributed lobes and the orientation varies at different depth. The white crosses denote the center position of the lobes, which is the lateral position of the emitter in 3D super-resolution microscopy. (C, D) The recovered PM (C) and its corresponding PSFs at different depths (D). (E, F) The fabricated PM (E) and the measured PSFs at different depths (F). The scale bar in A, C, and E is 500 µm and 1 µm in B, D, and F.
Fig. 4
Fig. 4 PM fabricated using the RIE and corresponding stretching-lobe PSFs. (A) Initial guess for the PM pattern. (B) Intensity profiles of the desired PSF. Each PSF contains two Gaussian distributed lobes and the distance between two lobes varies at different depth. The white crosses denote the center position of the lobes, which is usually the lateral position of the emitter in 3D super-resolution microscopy. (C, D) The recovered PM (C) and its corresponding PSFs at different depths (D). Simulated PSFs of emitter at more depth positions can be found in Visualization 1. (E, F) The fabricated PM (E) and the measured PSFs at different depths (F). Experimental PSFs of emitter at more depth position can be found in Visualization 2. The scale bar in A, C, and E is 500 µm and 1 µm in B, D, and F.
Fig. 5
Fig. 5 Localization precision of the stretching-lobe PSFs. Localization precision in both lateral and depth dimensions predicted by 1,000 Monte Carlo simulations per data point with additional Poisson noise of 6 and 12 photons per pixel.
Fig. 6
Fig. 6 Final PSFs of stationary green beads when rotating the stretching-lobe PM fabricated using gray scale lithography. PSFs of different orientations (rows) denote different time; PSFs of different lobe distance (columns) denote different depth of the emitter. The scale bar is 1 µm.
Fig. 7
Fig. 7 PM fabricated using the RIE method for complicated PSFs. (A) Initial guess for the PM pattern. (B) Intensity profiles of the desired PSF. Four letters at different depths serve as four constraints. (C, D) The recovered PM (C) and its corresponding PSFs at different depths (D). (E, F) The fabricated PM (E) and the measured PSFs at different depths (F). The scale bar is 500 µm in A, C, and E, while it equals to 1 µm in B, D, and F.
Fig. 8
Fig. 8 Convergence curve of L2 norm residual of (A) Stochastic gradient descent method (B) Gauss-Newton method.
Fig. 9
Fig. 9 DH PM recovery result with Gerchberg–Saxton algorithm. The recovery results for each depth layer are averaged in each iteration with equal weight. The algorithm converges at a local minimum.
Fig. 10
Fig. 10 DH PM recovery result with stochastic gradient descent method. In each iteration only one PSF in one depth constrains the optimization. The recovery result is finished within 400 iterations.
Fig. 11
Fig. 11 The corkscrew PM designed with the proposed method in simulation. (A) The random initial guess where the PM design starts. (B) The desired PSF intensity profiles as the input to the PM design code. Each PSF contains one Gaussian distributed lobe and the orientation varies at different depth. The crosses denote the lateral position of the emitter. (C) The recovered PM from the new algorithm and (D) the corresponding PSFs at different depths. (E) The experimentally fabricated PM and (F) the measured PSFs at different depths. The scale bar is 500 µm in (A, C, and E); the scale bar = 1 µm in (B, D, and F).
Fig. 12
Fig. 12 (A) Recovered stretching-lobe PMs with different initial guesses. (B) The corresponding PSFs at the focal plane from each PM shown in A. Scale bar = 1 μm.
Fig. 13
Fig. 13 (A) The recovered stretching-lobe PM and (B) the corresponding stretching-lobe PSF in the focal plane. The photons in the two lobes account for 47.3% out of the 2,000 total simulated photons. (C) The PM is smoothed by averaging values within the region denoted by the green block. (D) The corresponding stretching-lobe PSF in the focal plane. The photons in the two lobes account for 45.8% out of the 2,000 total simulated photons.
Fig. 14
Fig. 14 Stretching PM design with different depth range. (A, C, and E) The recovered PM pattern with 1.5 μm, 3.0 μm, and 6.0 μm depth range. (B, D, and F) Representative stretching PSFs of the corresponding PM pattern at different depth layers. The scale bar is 500 µm in (A, C, and E); the scale bar = 1 µm in (B, D, and F).
Fig. 15
Fig. 15 Scanning electron microscope (SEM) image of two regions on stretching-lobe PM fabricated using RIE method. Different depths of the surface feature is achieved by multiple layer light-lithography.
Fig. 16
Fig. 16 Cramer-Rao lower bound for the DH PSF (A, B) and stretching-lobe PSF (C, D). In (A) and (C) the emitted photons are 2,000 and background noise are simulated as a Poisson distribution with a mean value of 6 photons per pixel. In (A) and (C) the emitted photons are 2,000 and background noise are simulated as a Poisson distribution with mean value of 12 photons per pixel.
Fig. 17
Fig. 17 Stretching-lobe PM of high resolution (80 by 80 pixels).
Fig. 18
Fig. 18 Simulation of the PSFs from the fabricated PMs. The PMs in A, B, and C are from Fig. 3(E), 4(E), and 7(E) respectively, which is characterized by profilometer.

Tables (2)

Tables Icon

Algorithm 1 CStochastic gradient descent

Tables Icon

Algorithm 2 Gauss-Newton

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

I ( i , j , z ) = | { F F T [ m a s k c i r ° exp ( 1 i · ( P + P d e f o c u s ( z ) ) ) ] } | 2 , P d e f o c u s ( z ) = 2 π λ ( D 2 + ( f + z ) 2 D 2 + f 2 )
I ( i , j , z ) = d ( i , j , z )
r ( z ) = I ( z ) d ( z ) = | F F T [ m a s k c i r ° exp ( 1 i · ( P + P d e f o c u s ( z ) ) ) ] | 2 d ( z )
F = 1 2 z r ( z ) 2 2
P = arg min ( F ) P = arg min ( 1 2 z r ( z ) 2 2 ) P
X = H P ( f )
H =   [ exp ( 2 π i × ( 1 1 ) × 1 1 N ) exp ( 2 π i × ( 1 1 ) × N 1 N ) exp ( 2 π i × ( K 1 ) × 1 1 N ) exp ( 2 π i × ( K 1 ) × N 1 N ) ]
r ( z ) = I ( z ) d ( z ) = H · ( m a s k c i r ° exp ( 1 i · ( P + P d e f o c u s ) ) ) 2 d ( z )
J =     r ( f ) = [ r 1 f 1 r 1 f N r K f 1 r K f N ]
F ( x ) = J T r ( x )
S N R = E ( S 2 ) σ N 2

Metrics