Abstract

A Yb:YAG-derived silica fiber was fabricated by a molten-core fabrication method, in which a Yb:YAG crystal was used as the core material and a silica tube was used as the cladding material. The fiber’s transmission loss was measured to be 0.49 dB/m at 1.55 µm, using a cut-back method. The fiber microstructure image showed that the cladding region was a uniform glass structure, while the core structure was amorphous. An all-fiber-integrated cladding-pumped laser based on Yb:YAG-derived silica fiber was demonstrated. With an incident pump power of 28 W, an output power of 6 W was obtained at 1.06 μm, with a slope efficiency of 21.7%.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Multi-kW Yb-doped aluminophosphosilicate fiber

Shuang Liu, Huan Zhan, Kun Peng, Yuwei Li, Shihao Sun, Jiali Jiang, Li Ni, Xiaolong Wang, Juan Yu, Lei Jiang, Rihong Zhu, Jianjun Wang, Feng Jing, and Aoxiang Lin
Opt. Mater. Express 8(8) 2114-2124 (2018)

Efficient 521 nm all-fiber laser: splicing Pr3+-doped ZBLAN fiber to end-coated silica fiber

Hideyuki Okamoto, Ken Kasuga, and Yoshinori Kubota
Opt. Lett. 36(8) 1470-1472 (2011)

Ytterbium-doped double-cladding fiber with 3.5 kW output power, fabricated by chelate gas phase deposition technique

Chaoqi Hou, Yonggang Zhu, Jinkun Zheng, Gang Li, Chao Li, Song Gao, Qi Gao, Lihua Zhang, Chang Chang, Wei Zhao, Weinan Li, and Baoyin Zhao
Opt. Mater. Express 6(4) 979-985 (2016)

References

  • View by:
  • |
  • |
  • |

  1. M. N. Zervas and C. A. Codemard, “High power fiber lasers: a review,” IEEE J. Sel. Top. Quantum Electron. 20(5), 219–241 (2014).
    [Crossref]
  2. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives [Invited],” J. Opt. Soc. Am. B 27(11), B63–B92 (2010).
    [Crossref]
  3. B. Shiner, “The impact of fiber laser technology on the world wide material processing market,” CLEO: Applications and Technology (2013).
  4. H. Yu, X. Wang, R. Tao, P. Zhou, and J. Chen, “1.5 kW, near-diffraction-limited, high-efficiency, single-end-pumped all-fiber-integrated laser oscillator,” Appl. Opt. 53(34), 8055–8059 (2014).
    [Crossref] [PubMed]
  5. H. Yu, H. Zhang, H. Lv, X. Wang, J. Leng, H. Xiao, S. Guo, P. Zhou, X. Xu, and J. Chen, “3.15 kW direct diode-pumped near diffraction-limited all-fiber-integrated fiber laser,” Appl. Opt. 54(14), 4556–4560 (2015).
    [Crossref] [PubMed]
  6. J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. J. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express 16(17), 13240–13266 (2008).
    [Crossref] [PubMed]
  7. J. Ballato and P. Dragic, “Glass: the carrier of light - a brief history of optical fiber,” Int. J. Appl. Glass Sci. 7(4), 413–422 (2016).
    [Crossref]
  8. J. Ballato and P. Dragic, “Rethinking optical fiber: new demands, old glasses,” J. Am. Ceram. Soc. 96(9), 2675–2692 (2013).
    [Crossref]
  9. Y. M. Zhang, W. W. Wang, J. Li, X. S. Xiao, Z. J. Ma, H. T. Guo, G. P. Dong, S. H. Xu, and J. R. Qiu, “Multi-component yttrium aluminosilicate (YAS) fiber prepared by melt-in-tube method for stable single-frequency laser,” J. Am. Ceram. Soc. 00, 16072 (2018).
    [Crossref]
  10. S. Zheng, J. Li, C. Yu, Q. Zhou, and D. Chen, “Preparation and characterizations of Nd:YAG ceramic derived silica fibers drawn by post-feeding molten core approach,” Opt. Express 24(21), 24248–24254 (2016).
    [Crossref] [PubMed]
  11. Y. M. Zhang, G. Q. Qian, X. S. Xiao, X. L. Tian, Z. Chen, J. P. Zhong, Z. J. Ma, H. T. Guo, S. H. Xu, Z. M. Yang, and J. R. Qiu, “A yttrium aluminosilicate glass fiber with graded refractive index fabricated by melt-in-tube method,” J. Am. Ceram. Soc. 101(4), 1616–1622 (2018).
    [Crossref]
  12. P. D. Dragic, Y. S. Liu, J. Ballato, T. Hawkins, and P. Foy, “YAG-derived fiber for high-power narrow-linewidth fiber lasers,” Fiber Lasers IX: Technology, Systems, and Applications 8237(14), 82371E (2012).
    [Crossref]
  13. J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. M. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys. 105(5), 53110 (2009).
    [Crossref]
  14. P. D. Dragic, J. Ballato, T. Hawkins, and P. Foy, “Feasibility study of Yb:YAG-derived silicate fibers with large Yb content as gain media,” Opt. Mater. 34(8), 1294–1298 (2012).
    [Crossref]
  15. P. Dragic, P. C. Law, J. Ballato, T. Hawkins, and P. Foy, “Brillouin spectroscopy of YAG-derived optical fibers,” Opt. Express 18(10), 10055–10067 (2010).
    [Crossref] [PubMed]
  16. S. P. Zheng, J. Li, C. L. Yu, Q. L. Zhou, L. L. Hu, and D. P. Chen, “Preparation and characterizations of Yb:YAG-derived silica fibers drawn by on-line feeding molten core approach,” Ceram. Int. 43(7), 5837–5841 (2017).
    [Crossref]
  17. L. Li, M. Wang, T. Liu, J. Leng, P. Zhou, and J. Chen, “High-power, cladding-pumped all-fiber laser with selective transverse mode generation property,” Appl. Opt. 56(17), 4967–4970 (2017).
    [Crossref] [PubMed]
  18. K. Lyytikainen, J. Canning, J. Digweed, and J. Zagari, “Geometry control of air-silica structured optical fibres using pressurisation,” International Microwave & Optoelectronics Conference IEEE, 1001–1005 (2003).
  19. Y. C. Huang, J. S. Wang, Y. K. Lu, W. K. Liu, K. Y. Huang, S. L. Huang, and W. H. Cheng, “Preform fabrication and fiber drawing of 300 nm broadband Cr-doped fibers,” Opt. Express 15(22), 14382–14388 (2007).
    [Crossref] [PubMed]
  20. T. L. Cheng, M. S. Liao, X. J. Xue, J. Li, W. Q. Gao, X. Li, D. P. Chen, S. P. Zheng, Y. B. Pan, T. Suzuki, and Y. Ohishi, “A silica optical fiber doped with yttrium aluminosilicate nanoparticles for supercontinuum generation,” Opt. Mater. 53, 39–43 (2016).
    [Crossref]
  21. X. Y. Ji, S. M. Lei, S. Y. Yu, H. Y. Cheng, W. J. Liu, N. Poilvert, Y. H. Xiong, I. Dabo, S. E. Mohney, J. V. Badding, and V. Gopalan, “Single-crystal silicon optical fiber by direct laser crystallization,” ACS Photonics 4(1), 85–92 (2017).
    [Crossref]
  22. C. C. Lai, K. Y. Huang, H. J. Tsai, K. Y. Hsu, S. K. Liu, C. T. Cheng, K. D. Ji, C. P. Ke, S. R. Lin, and S. L. Huang, “Yb3+:YAG silica fiber laser,” Opt. Lett. 34(15), 2357–2359 (2009).
    [Crossref] [PubMed]
  23. C. Yang, D. Chen, S. Xu, H. Deng, W. Lin, Q. Zhao, Y. Zhang, K. Zhou, Z. Feng, Q. Qian, and Z. Yang, “Short all Tm3+-doped germanate glass fiber MOPA single-frequency laser at 1.95 μm,” Opt. Express 24(10), 10956–10961 (2016).
    [Crossref] [PubMed]
  24. C. C. Lai, K. Y. Huang, H. J. Tsai, K. Y. Hsu, S. K. Liu, C. T. Cheng, K. D. Ji, C. P. Ke, S. R. Lin, and S. L. Huang, “Yb3+:YAG silica fiber laser,” Opt. Lett. 34(15), 2357–2359 (2009).
    [Crossref] [PubMed]

2018 (2)

Y. M. Zhang, W. W. Wang, J. Li, X. S. Xiao, Z. J. Ma, H. T. Guo, G. P. Dong, S. H. Xu, and J. R. Qiu, “Multi-component yttrium aluminosilicate (YAS) fiber prepared by melt-in-tube method for stable single-frequency laser,” J. Am. Ceram. Soc. 00, 16072 (2018).
[Crossref]

Y. M. Zhang, G. Q. Qian, X. S. Xiao, X. L. Tian, Z. Chen, J. P. Zhong, Z. J. Ma, H. T. Guo, S. H. Xu, Z. M. Yang, and J. R. Qiu, “A yttrium aluminosilicate glass fiber with graded refractive index fabricated by melt-in-tube method,” J. Am. Ceram. Soc. 101(4), 1616–1622 (2018).
[Crossref]

2017 (3)

S. P. Zheng, J. Li, C. L. Yu, Q. L. Zhou, L. L. Hu, and D. P. Chen, “Preparation and characterizations of Yb:YAG-derived silica fibers drawn by on-line feeding molten core approach,” Ceram. Int. 43(7), 5837–5841 (2017).
[Crossref]

L. Li, M. Wang, T. Liu, J. Leng, P. Zhou, and J. Chen, “High-power, cladding-pumped all-fiber laser with selective transverse mode generation property,” Appl. Opt. 56(17), 4967–4970 (2017).
[Crossref] [PubMed]

X. Y. Ji, S. M. Lei, S. Y. Yu, H. Y. Cheng, W. J. Liu, N. Poilvert, Y. H. Xiong, I. Dabo, S. E. Mohney, J. V. Badding, and V. Gopalan, “Single-crystal silicon optical fiber by direct laser crystallization,” ACS Photonics 4(1), 85–92 (2017).
[Crossref]

2016 (4)

C. Yang, D. Chen, S. Xu, H. Deng, W. Lin, Q. Zhao, Y. Zhang, K. Zhou, Z. Feng, Q. Qian, and Z. Yang, “Short all Tm3+-doped germanate glass fiber MOPA single-frequency laser at 1.95 μm,” Opt. Express 24(10), 10956–10961 (2016).
[Crossref] [PubMed]

T. L. Cheng, M. S. Liao, X. J. Xue, J. Li, W. Q. Gao, X. Li, D. P. Chen, S. P. Zheng, Y. B. Pan, T. Suzuki, and Y. Ohishi, “A silica optical fiber doped with yttrium aluminosilicate nanoparticles for supercontinuum generation,” Opt. Mater. 53, 39–43 (2016).
[Crossref]

S. Zheng, J. Li, C. Yu, Q. Zhou, and D. Chen, “Preparation and characterizations of Nd:YAG ceramic derived silica fibers drawn by post-feeding molten core approach,” Opt. Express 24(21), 24248–24254 (2016).
[Crossref] [PubMed]

J. Ballato and P. Dragic, “Glass: the carrier of light - a brief history of optical fiber,” Int. J. Appl. Glass Sci. 7(4), 413–422 (2016).
[Crossref]

2015 (1)

2014 (2)

2013 (1)

J. Ballato and P. Dragic, “Rethinking optical fiber: new demands, old glasses,” J. Am. Ceram. Soc. 96(9), 2675–2692 (2013).
[Crossref]

2012 (2)

P. D. Dragic, Y. S. Liu, J. Ballato, T. Hawkins, and P. Foy, “YAG-derived fiber for high-power narrow-linewidth fiber lasers,” Fiber Lasers IX: Technology, Systems, and Applications 8237(14), 82371E (2012).
[Crossref]

P. D. Dragic, J. Ballato, T. Hawkins, and P. Foy, “Feasibility study of Yb:YAG-derived silicate fibers with large Yb content as gain media,” Opt. Mater. 34(8), 1294–1298 (2012).
[Crossref]

2010 (2)

2009 (3)

2008 (1)

2007 (1)

Badding, J. V.

X. Y. Ji, S. M. Lei, S. Y. Yu, H. Y. Cheng, W. J. Liu, N. Poilvert, Y. H. Xiong, I. Dabo, S. E. Mohney, J. V. Badding, and V. Gopalan, “Single-crystal silicon optical fiber by direct laser crystallization,” ACS Photonics 4(1), 85–92 (2017).
[Crossref]

Ballato, J.

J. Ballato and P. Dragic, “Glass: the carrier of light - a brief history of optical fiber,” Int. J. Appl. Glass Sci. 7(4), 413–422 (2016).
[Crossref]

J. Ballato and P. Dragic, “Rethinking optical fiber: new demands, old glasses,” J. Am. Ceram. Soc. 96(9), 2675–2692 (2013).
[Crossref]

P. D. Dragic, Y. S. Liu, J. Ballato, T. Hawkins, and P. Foy, “YAG-derived fiber for high-power narrow-linewidth fiber lasers,” Fiber Lasers IX: Technology, Systems, and Applications 8237(14), 82371E (2012).
[Crossref]

P. D. Dragic, J. Ballato, T. Hawkins, and P. Foy, “Feasibility study of Yb:YAG-derived silicate fibers with large Yb content as gain media,” Opt. Mater. 34(8), 1294–1298 (2012).
[Crossref]

P. Dragic, P. C. Law, J. Ballato, T. Hawkins, and P. Foy, “Brillouin spectroscopy of YAG-derived optical fibers,” Opt. Express 18(10), 10055–10067 (2010).
[Crossref] [PubMed]

J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. M. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys. 105(5), 53110 (2009).
[Crossref]

Barty, C. P. J.

Beach, R. J.

Chen, D.

Chen, D. P.

S. P. Zheng, J. Li, C. L. Yu, Q. L. Zhou, L. L. Hu, and D. P. Chen, “Preparation and characterizations of Yb:YAG-derived silica fibers drawn by on-line feeding molten core approach,” Ceram. Int. 43(7), 5837–5841 (2017).
[Crossref]

T. L. Cheng, M. S. Liao, X. J. Xue, J. Li, W. Q. Gao, X. Li, D. P. Chen, S. P. Zheng, Y. B. Pan, T. Suzuki, and Y. Ohishi, “A silica optical fiber doped with yttrium aluminosilicate nanoparticles for supercontinuum generation,” Opt. Mater. 53, 39–43 (2016).
[Crossref]

Chen, J.

Chen, Z.

Y. M. Zhang, G. Q. Qian, X. S. Xiao, X. L. Tian, Z. Chen, J. P. Zhong, Z. J. Ma, H. T. Guo, S. H. Xu, Z. M. Yang, and J. R. Qiu, “A yttrium aluminosilicate glass fiber with graded refractive index fabricated by melt-in-tube method,” J. Am. Ceram. Soc. 101(4), 1616–1622 (2018).
[Crossref]

Cheng, C. T.

Cheng, H. Y.

X. Y. Ji, S. M. Lei, S. Y. Yu, H. Y. Cheng, W. J. Liu, N. Poilvert, Y. H. Xiong, I. Dabo, S. E. Mohney, J. V. Badding, and V. Gopalan, “Single-crystal silicon optical fiber by direct laser crystallization,” ACS Photonics 4(1), 85–92 (2017).
[Crossref]

Cheng, T. L.

T. L. Cheng, M. S. Liao, X. J. Xue, J. Li, W. Q. Gao, X. Li, D. P. Chen, S. P. Zheng, Y. B. Pan, T. Suzuki, and Y. Ohishi, “A silica optical fiber doped with yttrium aluminosilicate nanoparticles for supercontinuum generation,” Opt. Mater. 53, 39–43 (2016).
[Crossref]

Cheng, W. H.

Clarkson, W. A.

Codemard, C. A.

M. N. Zervas and C. A. Codemard, “High power fiber lasers: a review,” IEEE J. Sel. Top. Quantum Electron. 20(5), 219–241 (2014).
[Crossref]

Dabo, I.

X. Y. Ji, S. M. Lei, S. Y. Yu, H. Y. Cheng, W. J. Liu, N. Poilvert, Y. H. Xiong, I. Dabo, S. E. Mohney, J. V. Badding, and V. Gopalan, “Single-crystal silicon optical fiber by direct laser crystallization,” ACS Photonics 4(1), 85–92 (2017).
[Crossref]

Daw, M.

J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. M. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys. 105(5), 53110 (2009).
[Crossref]

Dawson, J. W.

Deng, H.

Dong, G. P.

Y. M. Zhang, W. W. Wang, J. Li, X. S. Xiao, Z. J. Ma, H. T. Guo, G. P. Dong, S. H. Xu, and J. R. Qiu, “Multi-component yttrium aluminosilicate (YAS) fiber prepared by melt-in-tube method for stable single-frequency laser,” J. Am. Ceram. Soc. 00, 16072 (2018).
[Crossref]

Dragic, P.

J. Ballato and P. Dragic, “Glass: the carrier of light - a brief history of optical fiber,” Int. J. Appl. Glass Sci. 7(4), 413–422 (2016).
[Crossref]

J. Ballato and P. Dragic, “Rethinking optical fiber: new demands, old glasses,” J. Am. Ceram. Soc. 96(9), 2675–2692 (2013).
[Crossref]

P. Dragic, P. C. Law, J. Ballato, T. Hawkins, and P. Foy, “Brillouin spectroscopy of YAG-derived optical fibers,” Opt. Express 18(10), 10055–10067 (2010).
[Crossref] [PubMed]

Dragic, P. D.

P. D. Dragic, Y. S. Liu, J. Ballato, T. Hawkins, and P. Foy, “YAG-derived fiber for high-power narrow-linewidth fiber lasers,” Fiber Lasers IX: Technology, Systems, and Applications 8237(14), 82371E (2012).
[Crossref]

P. D. Dragic, J. Ballato, T. Hawkins, and P. Foy, “Feasibility study of Yb:YAG-derived silicate fibers with large Yb content as gain media,” Opt. Mater. 34(8), 1294–1298 (2012).
[Crossref]

Dubinskii, M.

J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. M. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys. 105(5), 53110 (2009).
[Crossref]

Feng, Z.

Foy, P.

P. D. Dragic, Y. S. Liu, J. Ballato, T. Hawkins, and P. Foy, “YAG-derived fiber for high-power narrow-linewidth fiber lasers,” Fiber Lasers IX: Technology, Systems, and Applications 8237(14), 82371E (2012).
[Crossref]

P. D. Dragic, J. Ballato, T. Hawkins, and P. Foy, “Feasibility study of Yb:YAG-derived silicate fibers with large Yb content as gain media,” Opt. Mater. 34(8), 1294–1298 (2012).
[Crossref]

P. Dragic, P. C. Law, J. Ballato, T. Hawkins, and P. Foy, “Brillouin spectroscopy of YAG-derived optical fibers,” Opt. Express 18(10), 10055–10067 (2010).
[Crossref] [PubMed]

J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. M. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys. 105(5), 53110 (2009).
[Crossref]

Gao, W. Q.

T. L. Cheng, M. S. Liao, X. J. Xue, J. Li, W. Q. Gao, X. Li, D. P. Chen, S. P. Zheng, Y. B. Pan, T. Suzuki, and Y. Ohishi, “A silica optical fiber doped with yttrium aluminosilicate nanoparticles for supercontinuum generation,” Opt. Mater. 53, 39–43 (2016).
[Crossref]

Gopalan, V.

X. Y. Ji, S. M. Lei, S. Y. Yu, H. Y. Cheng, W. J. Liu, N. Poilvert, Y. H. Xiong, I. Dabo, S. E. Mohney, J. V. Badding, and V. Gopalan, “Single-crystal silicon optical fiber by direct laser crystallization,” ACS Photonics 4(1), 85–92 (2017).
[Crossref]

Guo, H. T.

Y. M. Zhang, W. W. Wang, J. Li, X. S. Xiao, Z. J. Ma, H. T. Guo, G. P. Dong, S. H. Xu, and J. R. Qiu, “Multi-component yttrium aluminosilicate (YAS) fiber prepared by melt-in-tube method for stable single-frequency laser,” J. Am. Ceram. Soc. 00, 16072 (2018).
[Crossref]

Y. M. Zhang, G. Q. Qian, X. S. Xiao, X. L. Tian, Z. Chen, J. P. Zhong, Z. J. Ma, H. T. Guo, S. H. Xu, Z. M. Yang, and J. R. Qiu, “A yttrium aluminosilicate glass fiber with graded refractive index fabricated by melt-in-tube method,” J. Am. Ceram. Soc. 101(4), 1616–1622 (2018).
[Crossref]

Guo, S.

Hawkins, T.

P. D. Dragic, Y. S. Liu, J. Ballato, T. Hawkins, and P. Foy, “YAG-derived fiber for high-power narrow-linewidth fiber lasers,” Fiber Lasers IX: Technology, Systems, and Applications 8237(14), 82371E (2012).
[Crossref]

P. D. Dragic, J. Ballato, T. Hawkins, and P. Foy, “Feasibility study of Yb:YAG-derived silicate fibers with large Yb content as gain media,” Opt. Mater. 34(8), 1294–1298 (2012).
[Crossref]

P. Dragic, P. C. Law, J. Ballato, T. Hawkins, and P. Foy, “Brillouin spectroscopy of YAG-derived optical fibers,” Opt. Express 18(10), 10055–10067 (2010).
[Crossref] [PubMed]

J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. M. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys. 105(5), 53110 (2009).
[Crossref]

Heebner, J. E.

Hsu, K. Y.

Hu, L. L.

S. P. Zheng, J. Li, C. L. Yu, Q. L. Zhou, L. L. Hu, and D. P. Chen, “Preparation and characterizations of Yb:YAG-derived silica fibers drawn by on-line feeding molten core approach,” Ceram. Int. 43(7), 5837–5841 (2017).
[Crossref]

Huang, K. Y.

Huang, S. L.

Huang, Y. C.

Ji, K. D.

Ji, X. Y.

X. Y. Ji, S. M. Lei, S. Y. Yu, H. Y. Cheng, W. J. Liu, N. Poilvert, Y. H. Xiong, I. Dabo, S. E. Mohney, J. V. Badding, and V. Gopalan, “Single-crystal silicon optical fiber by direct laser crystallization,” ACS Photonics 4(1), 85–92 (2017).
[Crossref]

Ke, C. P.

Kokuoz, B.

J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. M. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys. 105(5), 53110 (2009).
[Crossref]

Lai, C. C.

Law, P. C.

Lei, S. M.

X. Y. Ji, S. M. Lei, S. Y. Yu, H. Y. Cheng, W. J. Liu, N. Poilvert, Y. H. Xiong, I. Dabo, S. E. Mohney, J. V. Badding, and V. Gopalan, “Single-crystal silicon optical fiber by direct laser crystallization,” ACS Photonics 4(1), 85–92 (2017).
[Crossref]

Leng, J.

Li, J.

Y. M. Zhang, W. W. Wang, J. Li, X. S. Xiao, Z. J. Ma, H. T. Guo, G. P. Dong, S. H. Xu, and J. R. Qiu, “Multi-component yttrium aluminosilicate (YAS) fiber prepared by melt-in-tube method for stable single-frequency laser,” J. Am. Ceram. Soc. 00, 16072 (2018).
[Crossref]

S. P. Zheng, J. Li, C. L. Yu, Q. L. Zhou, L. L. Hu, and D. P. Chen, “Preparation and characterizations of Yb:YAG-derived silica fibers drawn by on-line feeding molten core approach,” Ceram. Int. 43(7), 5837–5841 (2017).
[Crossref]

T. L. Cheng, M. S. Liao, X. J. Xue, J. Li, W. Q. Gao, X. Li, D. P. Chen, S. P. Zheng, Y. B. Pan, T. Suzuki, and Y. Ohishi, “A silica optical fiber doped with yttrium aluminosilicate nanoparticles for supercontinuum generation,” Opt. Mater. 53, 39–43 (2016).
[Crossref]

S. Zheng, J. Li, C. Yu, Q. Zhou, and D. Chen, “Preparation and characterizations of Nd:YAG ceramic derived silica fibers drawn by post-feeding molten core approach,” Opt. Express 24(21), 24248–24254 (2016).
[Crossref] [PubMed]

Li, L.

Li, X.

T. L. Cheng, M. S. Liao, X. J. Xue, J. Li, W. Q. Gao, X. Li, D. P. Chen, S. P. Zheng, Y. B. Pan, T. Suzuki, and Y. Ohishi, “A silica optical fiber doped with yttrium aluminosilicate nanoparticles for supercontinuum generation,” Opt. Mater. 53, 39–43 (2016).
[Crossref]

Liao, M. S.

T. L. Cheng, M. S. Liao, X. J. Xue, J. Li, W. Q. Gao, X. Li, D. P. Chen, S. P. Zheng, Y. B. Pan, T. Suzuki, and Y. Ohishi, “A silica optical fiber doped with yttrium aluminosilicate nanoparticles for supercontinuum generation,” Opt. Mater. 53, 39–43 (2016).
[Crossref]

Lin, S. R.

Lin, W.

Liu, S. K.

Liu, T.

Liu, W. J.

X. Y. Ji, S. M. Lei, S. Y. Yu, H. Y. Cheng, W. J. Liu, N. Poilvert, Y. H. Xiong, I. Dabo, S. E. Mohney, J. V. Badding, and V. Gopalan, “Single-crystal silicon optical fiber by direct laser crystallization,” ACS Photonics 4(1), 85–92 (2017).
[Crossref]

Liu, W. K.

Liu, Y. S.

P. D. Dragic, Y. S. Liu, J. Ballato, T. Hawkins, and P. Foy, “YAG-derived fiber for high-power narrow-linewidth fiber lasers,” Fiber Lasers IX: Technology, Systems, and Applications 8237(14), 82371E (2012).
[Crossref]

Lu, Y. K.

Lv, H.

Ma, Z. J.

Y. M. Zhang, G. Q. Qian, X. S. Xiao, X. L. Tian, Z. Chen, J. P. Zhong, Z. J. Ma, H. T. Guo, S. H. Xu, Z. M. Yang, and J. R. Qiu, “A yttrium aluminosilicate glass fiber with graded refractive index fabricated by melt-in-tube method,” J. Am. Ceram. Soc. 101(4), 1616–1622 (2018).
[Crossref]

Y. M. Zhang, W. W. Wang, J. Li, X. S. Xiao, Z. J. Ma, H. T. Guo, G. P. Dong, S. H. Xu, and J. R. Qiu, “Multi-component yttrium aluminosilicate (YAS) fiber prepared by melt-in-tube method for stable single-frequency laser,” J. Am. Ceram. Soc. 00, 16072 (2018).
[Crossref]

Matthewson, M. J.

J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. M. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys. 105(5), 53110 (2009).
[Crossref]

McMillen, C.

J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. M. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys. 105(5), 53110 (2009).
[Crossref]

Messerly, M. J.

Mohney, S. E.

X. Y. Ji, S. M. Lei, S. Y. Yu, H. Y. Cheng, W. J. Liu, N. Poilvert, Y. H. Xiong, I. Dabo, S. E. Mohney, J. V. Badding, and V. Gopalan, “Single-crystal silicon optical fiber by direct laser crystallization,” ACS Photonics 4(1), 85–92 (2017).
[Crossref]

Nilsson, J.

Ohishi, Y.

T. L. Cheng, M. S. Liao, X. J. Xue, J. Li, W. Q. Gao, X. Li, D. P. Chen, S. P. Zheng, Y. B. Pan, T. Suzuki, and Y. Ohishi, “A silica optical fiber doped with yttrium aluminosilicate nanoparticles for supercontinuum generation,” Opt. Mater. 53, 39–43 (2016).
[Crossref]

Pan, Y. B.

T. L. Cheng, M. S. Liao, X. J. Xue, J. Li, W. Q. Gao, X. Li, D. P. Chen, S. P. Zheng, Y. B. Pan, T. Suzuki, and Y. Ohishi, “A silica optical fiber doped with yttrium aluminosilicate nanoparticles for supercontinuum generation,” Opt. Mater. 53, 39–43 (2016).
[Crossref]

Pax, P. H.

Poilvert, N.

X. Y. Ji, S. M. Lei, S. Y. Yu, H. Y. Cheng, W. J. Liu, N. Poilvert, Y. H. Xiong, I. Dabo, S. E. Mohney, J. V. Badding, and V. Gopalan, “Single-crystal silicon optical fiber by direct laser crystallization,” ACS Photonics 4(1), 85–92 (2017).
[Crossref]

Qian, G. Q.

Y. M. Zhang, G. Q. Qian, X. S. Xiao, X. L. Tian, Z. Chen, J. P. Zhong, Z. J. Ma, H. T. Guo, S. H. Xu, Z. M. Yang, and J. R. Qiu, “A yttrium aluminosilicate glass fiber with graded refractive index fabricated by melt-in-tube method,” J. Am. Ceram. Soc. 101(4), 1616–1622 (2018).
[Crossref]

Qian, Q.

Qiu, J. R.

Y. M. Zhang, W. W. Wang, J. Li, X. S. Xiao, Z. J. Ma, H. T. Guo, G. P. Dong, S. H. Xu, and J. R. Qiu, “Multi-component yttrium aluminosilicate (YAS) fiber prepared by melt-in-tube method for stable single-frequency laser,” J. Am. Ceram. Soc. 00, 16072 (2018).
[Crossref]

Y. M. Zhang, G. Q. Qian, X. S. Xiao, X. L. Tian, Z. Chen, J. P. Zhong, Z. J. Ma, H. T. Guo, S. H. Xu, Z. M. Yang, and J. R. Qiu, “A yttrium aluminosilicate glass fiber with graded refractive index fabricated by melt-in-tube method,” J. Am. Ceram. Soc. 101(4), 1616–1622 (2018).
[Crossref]

Richardson, D. J.

Sanamyan, T.

J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. M. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys. 105(5), 53110 (2009).
[Crossref]

Shverdin, M. Y.

Siders, C. W.

Sridharan, A. K.

Stappaerts, E. A.

Stolen, R.

J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. M. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys. 105(5), 53110 (2009).
[Crossref]

Su, Z.

J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. M. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys. 105(5), 53110 (2009).
[Crossref]

Suzuki, T.

T. L. Cheng, M. S. Liao, X. J. Xue, J. Li, W. Q. Gao, X. Li, D. P. Chen, S. P. Zheng, Y. B. Pan, T. Suzuki, and Y. Ohishi, “A silica optical fiber doped with yttrium aluminosilicate nanoparticles for supercontinuum generation,” Opt. Mater. 53, 39–43 (2016).
[Crossref]

Tao, R.

Tian, X. L.

Y. M. Zhang, G. Q. Qian, X. S. Xiao, X. L. Tian, Z. Chen, J. P. Zhong, Z. J. Ma, H. T. Guo, S. H. Xu, Z. M. Yang, and J. R. Qiu, “A yttrium aluminosilicate glass fiber with graded refractive index fabricated by melt-in-tube method,” J. Am. Ceram. Soc. 101(4), 1616–1622 (2018).
[Crossref]

Tritt, T. M.

J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. M. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys. 105(5), 53110 (2009).
[Crossref]

Tsai, H. J.

Wang, J. S.

Wang, M.

Wang, W. W.

Y. M. Zhang, W. W. Wang, J. Li, X. S. Xiao, Z. J. Ma, H. T. Guo, G. P. Dong, S. H. Xu, and J. R. Qiu, “Multi-component yttrium aluminosilicate (YAS) fiber prepared by melt-in-tube method for stable single-frequency laser,” J. Am. Ceram. Soc. 00, 16072 (2018).
[Crossref]

Wang, X.

Xiao, H.

Xiao, X. S.

Y. M. Zhang, G. Q. Qian, X. S. Xiao, X. L. Tian, Z. Chen, J. P. Zhong, Z. J. Ma, H. T. Guo, S. H. Xu, Z. M. Yang, and J. R. Qiu, “A yttrium aluminosilicate glass fiber with graded refractive index fabricated by melt-in-tube method,” J. Am. Ceram. Soc. 101(4), 1616–1622 (2018).
[Crossref]

Y. M. Zhang, W. W. Wang, J. Li, X. S. Xiao, Z. J. Ma, H. T. Guo, G. P. Dong, S. H. Xu, and J. R. Qiu, “Multi-component yttrium aluminosilicate (YAS) fiber prepared by melt-in-tube method for stable single-frequency laser,” J. Am. Ceram. Soc. 00, 16072 (2018).
[Crossref]

Xiong, Y. H.

X. Y. Ji, S. M. Lei, S. Y. Yu, H. Y. Cheng, W. J. Liu, N. Poilvert, Y. H. Xiong, I. Dabo, S. E. Mohney, J. V. Badding, and V. Gopalan, “Single-crystal silicon optical fiber by direct laser crystallization,” ACS Photonics 4(1), 85–92 (2017).
[Crossref]

Xu, S.

Xu, S. H.

Y. M. Zhang, W. W. Wang, J. Li, X. S. Xiao, Z. J. Ma, H. T. Guo, G. P. Dong, S. H. Xu, and J. R. Qiu, “Multi-component yttrium aluminosilicate (YAS) fiber prepared by melt-in-tube method for stable single-frequency laser,” J. Am. Ceram. Soc. 00, 16072 (2018).
[Crossref]

Y. M. Zhang, G. Q. Qian, X. S. Xiao, X. L. Tian, Z. Chen, J. P. Zhong, Z. J. Ma, H. T. Guo, S. H. Xu, Z. M. Yang, and J. R. Qiu, “A yttrium aluminosilicate glass fiber with graded refractive index fabricated by melt-in-tube method,” J. Am. Ceram. Soc. 101(4), 1616–1622 (2018).
[Crossref]

Xu, X.

Xue, X. J.

T. L. Cheng, M. S. Liao, X. J. Xue, J. Li, W. Q. Gao, X. Li, D. P. Chen, S. P. Zheng, Y. B. Pan, T. Suzuki, and Y. Ohishi, “A silica optical fiber doped with yttrium aluminosilicate nanoparticles for supercontinuum generation,” Opt. Mater. 53, 39–43 (2016).
[Crossref]

Yang, C.

Yang, Z.

Yang, Z. M.

Y. M. Zhang, G. Q. Qian, X. S. Xiao, X. L. Tian, Z. Chen, J. P. Zhong, Z. J. Ma, H. T. Guo, S. H. Xu, Z. M. Yang, and J. R. Qiu, “A yttrium aluminosilicate glass fiber with graded refractive index fabricated by melt-in-tube method,” J. Am. Ceram. Soc. 101(4), 1616–1622 (2018).
[Crossref]

Yu, C.

Yu, C. L.

S. P. Zheng, J. Li, C. L. Yu, Q. L. Zhou, L. L. Hu, and D. P. Chen, “Preparation and characterizations of Yb:YAG-derived silica fibers drawn by on-line feeding molten core approach,” Ceram. Int. 43(7), 5837–5841 (2017).
[Crossref]

Yu, H.

Yu, S. Y.

X. Y. Ji, S. M. Lei, S. Y. Yu, H. Y. Cheng, W. J. Liu, N. Poilvert, Y. H. Xiong, I. Dabo, S. E. Mohney, J. V. Badding, and V. Gopalan, “Single-crystal silicon optical fiber by direct laser crystallization,” ACS Photonics 4(1), 85–92 (2017).
[Crossref]

Zervas, M. N.

M. N. Zervas and C. A. Codemard, “High power fiber lasers: a review,” IEEE J. Sel. Top. Quantum Electron. 20(5), 219–241 (2014).
[Crossref]

Zhang, H.

Zhang, J.

J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. M. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys. 105(5), 53110 (2009).
[Crossref]

Zhang, Y.

Zhang, Y. M.

Y. M. Zhang, W. W. Wang, J. Li, X. S. Xiao, Z. J. Ma, H. T. Guo, G. P. Dong, S. H. Xu, and J. R. Qiu, “Multi-component yttrium aluminosilicate (YAS) fiber prepared by melt-in-tube method for stable single-frequency laser,” J. Am. Ceram. Soc. 00, 16072 (2018).
[Crossref]

Y. M. Zhang, G. Q. Qian, X. S. Xiao, X. L. Tian, Z. Chen, J. P. Zhong, Z. J. Ma, H. T. Guo, S. H. Xu, Z. M. Yang, and J. R. Qiu, “A yttrium aluminosilicate glass fiber with graded refractive index fabricated by melt-in-tube method,” J. Am. Ceram. Soc. 101(4), 1616–1622 (2018).
[Crossref]

Zhao, Q.

Zheng, S.

Zheng, S. P.

S. P. Zheng, J. Li, C. L. Yu, Q. L. Zhou, L. L. Hu, and D. P. Chen, “Preparation and characterizations of Yb:YAG-derived silica fibers drawn by on-line feeding molten core approach,” Ceram. Int. 43(7), 5837–5841 (2017).
[Crossref]

T. L. Cheng, M. S. Liao, X. J. Xue, J. Li, W. Q. Gao, X. Li, D. P. Chen, S. P. Zheng, Y. B. Pan, T. Suzuki, and Y. Ohishi, “A silica optical fiber doped with yttrium aluminosilicate nanoparticles for supercontinuum generation,” Opt. Mater. 53, 39–43 (2016).
[Crossref]

Zhong, J. P.

Y. M. Zhang, G. Q. Qian, X. S. Xiao, X. L. Tian, Z. Chen, J. P. Zhong, Z. J. Ma, H. T. Guo, S. H. Xu, Z. M. Yang, and J. R. Qiu, “A yttrium aluminosilicate glass fiber with graded refractive index fabricated by melt-in-tube method,” J. Am. Ceram. Soc. 101(4), 1616–1622 (2018).
[Crossref]

Zhou, K.

Zhou, P.

Zhou, Q.

Zhou, Q. L.

S. P. Zheng, J. Li, C. L. Yu, Q. L. Zhou, L. L. Hu, and D. P. Chen, “Preparation and characterizations of Yb:YAG-derived silica fibers drawn by on-line feeding molten core approach,” Ceram. Int. 43(7), 5837–5841 (2017).
[Crossref]

ACS Photonics (1)

X. Y. Ji, S. M. Lei, S. Y. Yu, H. Y. Cheng, W. J. Liu, N. Poilvert, Y. H. Xiong, I. Dabo, S. E. Mohney, J. V. Badding, and V. Gopalan, “Single-crystal silicon optical fiber by direct laser crystallization,” ACS Photonics 4(1), 85–92 (2017).
[Crossref]

Appl. Opt. (3)

Ceram. Int. (1)

S. P. Zheng, J. Li, C. L. Yu, Q. L. Zhou, L. L. Hu, and D. P. Chen, “Preparation and characterizations of Yb:YAG-derived silica fibers drawn by on-line feeding molten core approach,” Ceram. Int. 43(7), 5837–5841 (2017).
[Crossref]

Fiber Lasers IX: Technology, Systems, and Applications (1)

P. D. Dragic, Y. S. Liu, J. Ballato, T. Hawkins, and P. Foy, “YAG-derived fiber for high-power narrow-linewidth fiber lasers,” Fiber Lasers IX: Technology, Systems, and Applications 8237(14), 82371E (2012).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M. N. Zervas and C. A. Codemard, “High power fiber lasers: a review,” IEEE J. Sel. Top. Quantum Electron. 20(5), 219–241 (2014).
[Crossref]

Int. J. Appl. Glass Sci. (1)

J. Ballato and P. Dragic, “Glass: the carrier of light - a brief history of optical fiber,” Int. J. Appl. Glass Sci. 7(4), 413–422 (2016).
[Crossref]

J. Am. Ceram. Soc. (3)

J. Ballato and P. Dragic, “Rethinking optical fiber: new demands, old glasses,” J. Am. Ceram. Soc. 96(9), 2675–2692 (2013).
[Crossref]

Y. M. Zhang, W. W. Wang, J. Li, X. S. Xiao, Z. J. Ma, H. T. Guo, G. P. Dong, S. H. Xu, and J. R. Qiu, “Multi-component yttrium aluminosilicate (YAS) fiber prepared by melt-in-tube method for stable single-frequency laser,” J. Am. Ceram. Soc. 00, 16072 (2018).
[Crossref]

Y. M. Zhang, G. Q. Qian, X. S. Xiao, X. L. Tian, Z. Chen, J. P. Zhong, Z. J. Ma, H. T. Guo, S. H. Xu, Z. M. Yang, and J. R. Qiu, “A yttrium aluminosilicate glass fiber with graded refractive index fabricated by melt-in-tube method,” J. Am. Ceram. Soc. 101(4), 1616–1622 (2018).
[Crossref]

J. Appl. Phys. (1)

J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. M. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys. 105(5), 53110 (2009).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Express (5)

Opt. Lett. (2)

Opt. Mater. (2)

T. L. Cheng, M. S. Liao, X. J. Xue, J. Li, W. Q. Gao, X. Li, D. P. Chen, S. P. Zheng, Y. B. Pan, T. Suzuki, and Y. Ohishi, “A silica optical fiber doped with yttrium aluminosilicate nanoparticles for supercontinuum generation,” Opt. Mater. 53, 39–43 (2016).
[Crossref]

P. D. Dragic, J. Ballato, T. Hawkins, and P. Foy, “Feasibility study of Yb:YAG-derived silicate fibers with large Yb content as gain media,” Opt. Mater. 34(8), 1294–1298 (2012).
[Crossref]

Other (2)

K. Lyytikainen, J. Canning, J. Digweed, and J. Zagari, “Geometry control of air-silica structured optical fibres using pressurisation,” International Microwave & Optoelectronics Conference IEEE, 1001–1005 (2003).

B. Shiner, “The impact of fiber laser technology on the world wide material processing market,” CLEO: Applications and Technology (2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) SEM image of the fibers cross-section and (b) composition distribution profiles.
Fig. 2
Fig. 2 TEM and electron diffraction images of optical fibers. (a) Fiber TEM sample made by FIB. (b) TEM image of junction area between core and cladding. (c) TEM image of cladding region. (d) TEM image of core region. (e) Electron diffraction image of fiber.
Fig. 3
Fig. 3 The optical fiber loss at 1.5 µm measured by cut-back method. (a) The transmission loss at 1.55 µm. (b) The transmission loss from 1520 nm to 1564 nm.
Fig. 4
Fig. 4 The experimental setup for the all-fiber-integrated laser.
Fig. 5
Fig. 5 The 1064 nm output powers with various output end reflectivities for the YDSF.
Fig. 6
Fig. 6 The 1064 nm output powers with (a) various FBGs and (b) various fiber lengths.
Fig. 7
Fig. 7 The spectral information of the fiber laser.