Abstract

Heterogeneous silicon photonics is uniquely positioned to address the photonic sensing needs of upcoming autonomous cars and provide the necessary cost reduction for widespread deployment. This is because it allows for wafer-scale active/passive integration, including optical sources. We present our recent research and the development of interferometric optical gyroscopes and LiDAR sensors. More specifically, we show a fully integrated gyroscope front-end occupying an area of only 4.5 mm2. We also show the first dense pitch optical phased array using heterogeneous phase shifters. The 4 µm pitch heterogeneous phase shifters provide very low V of only 0.35-1.4 V across 200 nm, low residual amplitude modulation of only 0.1-0.15 dB for 2π phase shift, extremely low static power consumption (<3 nW), and high speed (> 1 GHz). All of these factors make them ideal for next-generation LiDAR systems that employ optical phased arrays.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Sub-wavelength-pitch silicon-photonic optical phased array for large field-of-regard coherent optical beam steering

Yu Zhang, Yi-Chun Ling, Kaiqi Zhang, Cale Gentry, David Sadighi, Greg Whaley, James Colosimo, Paul Suni, and S. J. Ben Yoo
Opt. Express 27(3) 1929-1940 (2019)

Sparse aperiodic arrays for optical beam forming and LIDAR

Tin Komljenovic, Roger Helkey, Larry Coldren, and John E. Bowers
Opt. Express 25(3) 2511-2528 (2017)

SiN integrated optical phased arrays for two-dimensional beam steering at a single near-infrared wavelength

Nicola A. Tyler, Daivid Fowler, Stephane Malhouitre, Stephanie Garcia, Philippe Grosse, Wilfried Rabaud, and Bertrand Szelag
Opt. Express 27(4) 5851-5858 (2019)

References

  • View by:
  • |
  • |
  • |

  1. T. Komljenovic, D. Huang, P. Pintus, M. A. Tran, M. L. Davenport, and J. E. Bowers, “Photonic integrated circuits using heterogeneous integration on silicon,” in Proc. of the IEEE, doi:
    [Crossref]
  2. A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14(20), 9203–9210 (2006).
    [Crossref] [PubMed]
  3. R. Jones, P. Doussiere, J. B. Driscoll, W. Lin, H. Yu, Y. Akulova, T. Komljenovic, and J. E. Bowers, “Heterogeneously integrated photonics,” IEEE Nanotechnol. Mag. (In Press).
  4. G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and inter-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010).
    [Crossref]
  5. D. Liang, G. Roelkens, R. Baets, and J. E. Bowers, “Hybrid integrated platforms for silicon photonics,” Materials (Basel) 3(3), 1782–1802 (2010).
    [Crossref]
  6. M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. B. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
    [Crossref]
  7. B. R. Koch, A. W. Fang, O. Cohen, and J. E. Bowers, “Mode-locked silicon evanescent lasers,” Opt. Express 15(18), 11225–11233 (2007).
    [Crossref] [PubMed]
  8. A. W. Fang, B. R. Koch, K. G. Gan, H. Park, R. Jones, O. Cohen, M. J. Paniccia, D. J. Blumenthal, and J. E. Bowers, “A racetrack mode-locked silicon evanescent laser,” Opt. Express 16(2), 1393–1398 (2008).
    [Crossref] [PubMed]
  9. T. Komljenovic, S. Srinivasan, E. Norberg, M. Davenport, G. Fish, and J. E. Bowers, “Widely tunable narrow-linewidth monolithically integrated external-cavity semiconductor Lasers,” IEEE J. Sel. Top. Quantum Electron. 21(6), 214–222 (2015).
    [Crossref]
  10. M. A. Tran, D. Huang, T. Komljenovic, J. Peters, and J. E. Bowers, “A 2.5 kHz linewidth widely tunable laser with booster SOA integrated on silicon,” 2018 IEEE International Semiconductor Laser Conference (ISLC), 1 (2018).
    [Crossref]
  11. H. Park, A. W. Fang, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “A hybrid AlGaInAs-silicon evanescent amplifier,” IEEE Photonics Technol. Lett. 19(4), 230–232 (2007).
    [Crossref]
  12. M. L. Davenport, S. Skendzic, N. Volet, J. C. Hulme, M. J. R. Heck, and J. E. Bowers, “Heterogeneous silicon/III-V semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 22(6), 78–88 (2016).
    [Crossref]
  13. H. W. Chen, Y. H. Kuo, and J. E. Bowers, “A hybrid silicon-AlGaInAs phase modulator,” IEEE Photonics Technol. Lett. 20(23), 1920–1922 (2008).
    [Crossref]
  14. H. W. Chen, Y. H. Kuo, and J. E. Bowers, “High speed hybrid silicon evanescent Mach-Zehnder modulator and switch,” Opt. Express 16(25), 20571–20576 (2008).
    [Crossref] [PubMed]
  15. H. W. Chen, J. D. Peters, and J. E. Bowers, “Forty Gb/s hybrid silicon Mach-Zehnder modulator with low chirp,” Opt. Express 19(2), 1455–1460 (2011).
    [Crossref] [PubMed]
  16. H. Park, A. W. Fang, R. Jones, O. Cohen, O. Raday, M. N. Sysak, M. J. Paniccia, and J. E. Bowers, “A hybrid AlGaInAs-silicon evanescent waveguide photodetector,” Opt. Express 15(10), 6044–6052 (2007).
    [Crossref] [PubMed]
  17. H. Park, Y. H. Kuo, A. W. Fang, R. Jones, O. Cohen, M. J. Paniccia, and J. E. Bowers, “A hybrid AlGaInAs-silicon evanescent preamplifier and photodetector,” Opt. Express 15(21), 13539–13546 (2007).
    [Crossref] [PubMed]
  18. C. Zhang, S. J. Zhang, J. D. Peters, and J. E. Bowers, “8 x 8 x 40 Gbps fully integrated silicon photonic network on chip,” Optica 3(7), 785–786 (2016).
    [Crossref]
  19. M. A. Tran, T. Komljenovic, J. C. Hulme, M. J. Kennedy, D. J. Blumenthal, and J. E. Bowers, “Integrated optical driver for interferometric optical gyroscopes,” Opt. Express 25(4), 3826–3840 (2017).
    [Crossref] [PubMed]
  20. J. C. Hulme, J. K. Doylend, M. J. R. Heck, J. D. Peters, M. L. Davenport, J. T. Bovington, L. A. Coldren, and J. E. Bowers, “Fully integrated hybrid silicon two dimensional beam scanner,” Opt. Express 23(5), 5861–5874 (2015).
    [Crossref] [PubMed]
  21. H. C. Lefevre, The Fiber-Optic Gyroscope, second edition (Artech House, 2014).
  22. S. Gundavarapu, M. Belt, T. A. Huffman, M. A. Tran, T. Komljenovic, J. E. Bowers, and D. J. Blumenthal, “Interferometric optical gyroscope based on an integrated Si3N4 low-loss waveguide coil,” J. Lightwave Technol. 36(4), 1185–1191 (2018).
    [Crossref]
  23. F. Dell’Olio, T. Tatoli, C. Ciminelli, and M. N. Armenise, “Recent advances in miniaturized optical gyroscopes,” J. Eur. Opt. Soc-Rapid. 91 (2014).
  24. J. Li, M. G. Suh, and K. Vahala, “Microresonator Brillouin gyroscope,” Optica 4(3), 346–348 (2017).
    [Crossref]
  25. W. Liang, V. S. Ilchenko, A. A. Savchenkov, E. Dale, D. Eliyahu, A. B. Matsko, and L. Maleki, “Resonant microphotonic gyroscope,” Optica 4(1), 114–117 (2017).
    [Crossref]
  26. P. P. Khial, A. D. White, and A. Hajimiri, “Nanophotonic optical gyroscope with reciprocal sensitivity enhancement,” Nat. Photonics 12(11), 671–675 (2018).
    [Crossref]
  27. J. Sawyer, P. B. Ruffin, and C. C. Sung, “Investigation of the effects of temporal thermal gradients in fiber optic gyroscope sensing coils,” Opt. Eng. 36(1), 29–34 (1997).
    [Crossref]
  28. https://www.bmw.com/en/innovation/mapping.html
  29. K. Van Acoleyen, W. Bogaerts, J. Jágerská, N. Le Thomas, R. Houdré, and R. Baets, “Off-chip beam steering with a one-dimensional optical phased array on silicon-on-insulator,” Opt. Lett. 34(9), 1477–1479 (2009).
    [Crossref] [PubMed]
  30. K. Van Acoleyen, H. Rogier, and R. Baets, “Two-dimensional optical phased array antenna on silicon-on-insulator,” Opt. Express 18(13), 13655–13660 (2010).
    [Crossref] [PubMed]
  31. K. Van Acoleyen, K. Komorowska, W. Bogaerts, and R. Baets, “One-dimensional off-chip beam steering and shaping using optical phased arrays on silicon-on-insulator,” J. Lightwave Technol. 29(23), 3500–3505 (2011).
    [Crossref]
  32. J. K. Doylend, M. J. R. Heck, J. T. Bovington, J. D. Peters, L. A. Coldren, and J. E. Bowers, “Two-dimensional free-space beam steering with an optical phased array on silicon-on-insulator,” Opt. Express 19(22), 21595–21604 (2011).
    [Crossref] [PubMed]
  33. J. K. Doylend, M. J. R. Heck, J. T. Bovington, J. D. Peters, M. L. Davenport, L. A. Coldren, and J. E. Bowers, “Hybrid III/V silicon photonic source with integrated 1D free-space beam steering,” Opt. Lett. 37(20), 4257–4259 (2012).
    [Crossref] [PubMed]
  34. J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
    [Crossref] [PubMed]
  35. D. Kwong, A. Hosseini, J. Covey, Y. Zhang, X. Xu, H. Subbaraman, and R. T. Chen, “On-chip silicon optical phased array for two-dimensional beam steering,” Opt. Lett. 39(4), 941–944 (2014).
    [Crossref] [PubMed]
  36. H. Abediasl and H. Hashemi, “Monolithic optical phased-array transceiver in a standard SOI CMOS process,” Opt. Express 23(5), 6509–6519 (2015).
    [Crossref] [PubMed]
  37. D. N. Hutchison, J. Sun, J. K. Doylend, R. Kumar, J. Heck, W. Kim, C. T. Phare, A. Feshali, and H. S. Rong, “High-resolution aliasing-free optical beam steering,” Optica 3(8), 887–890 (2016).
    [Crossref]
  38. T. Komljenovic, R. Helkey, L. Coldren, and J. E. Bowers, “Sparse aperiodic arrays for optical beam forming and LIDAR,” Opt. Express 25(3), 2511–2528 (2017).
    [Crossref] [PubMed]
  39. C. V. Poulton, A. Yaacobi, D. B. Cole, M. J. Byrd, M. Raval, D. Vermeulen, and M. R. Watts, “Coherent solid-state LIDAR with silicon photonic optical phased arrays,” Opt. Lett. 42(20), 4091–4094 (2017).
    [Crossref] [PubMed]
  40. C. V. Poulton, P. Russo, E. Timurdogan, M. Whitson, M. J. Byrd, E. Hosseini, B. Moss, Z. Su, D. Vermeulen, and M. R. Watts, “High-performance integrated optical phased arrays for chip-scale beam steering and LiDAR,” in Conference on Lasers and Electro-Optics. p. ATu3R.2 (2018).
    [Crossref]
  41. C. V. Poulton, M. J. Byrd, E. Timurdogan, P. Russo, D. Vermeulen, and M. R. Watts, “Optical phased arrays for integrated beam steering,” 15th International Conference on Group IV Photonics (GFP) (2018).
    [Crossref]
  42. G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
    [Crossref]
  43. X. Xiao, H. Xu, X. Li, Z. Li, T. Chu, Y. Yu, and J. Yu, “High-speed, low-loss silicon Mach-Zehnder modulators with doping optimization,” Opt. Express 21(4), 4116–4125 (2013).
    [Crossref] [PubMed]
  44. Q. S. Huang, Y. C. Wu, K. Q. Ma, J. H. Zhang, W. Q. Xie, X. Fu, Y. C. Shi, K. X. Chen, J. J. He, D. Van Thourhout, G. Roelkens, L. Liu, and S. L. He, “Low driving voltage band-filling-based III-V-on-silicon electroabsorption modulator,” Appl. Phys. Lett. 108(14), 141104 (2016).
    [Crossref]
  45. T. Hiraki, T. Aihara, K. Hasebe, K. Takeda, T. Fujii, T. Kakitsuka, T. Tsuchizawa, H. Fukuda, and S. Matsuo, “Heterogeneously integrated III-V/Si MOS capacitor Mach-Zehnder modulator,” Nat. Photonics 11(8), 482–485 (2017).
    [Crossref]
  46. J. H. Han, F. Boeuf, J. Fujikata, S. Takahashi, S. Takagi, and M. Takenaka, “Efficient low-loss InGaAsP/Si hybrid MOS optical modulator,” Nat. Photonics 11(8), 486–490 (2017).
    [Crossref]
  47. M. Raval, C. V. Poulton, and M. R. Watts, “Unidirectional waveguide grating antennas with uniform emission for optical phased arrays,” Opt. Lett. 42(13), 2563–2566 (2017).
    [Crossref] [PubMed]
  48. M. Zadka, Y. C. Chang, A. Mohanty, C. T. Phare, S. P. Roberts, and M. Lipson, “On-chip platform for a phased array with minimal beam divergence and wide field-of-view,” Opt. Express 26(3), 2528–2534 (2018).
    [Crossref] [PubMed]
  49. W. Xie, J. Huang, T. Komljenovic, L. Coldren, and J. E. Bowers, “Diffraction limited centimeter scale radiator: metasurface grating antenna for phased array LiDAR,” arXiv:1810.00109 (2018).
  50. E. J. Stanton, N. Volet, T. Komljenovic, and J. E. Bowers, “Star coupler for high-etendue LIDAR,” in Conference on Lasers and Electro-Optics. STh1M.4 (2017).
    [Crossref]
  51. M. R. Kossey, C. Rizk, and A. C. Foster, “End-fire silicon optical phased array with half-wavelength spacing,” APL Photonics 3(1), 011301 (2018).
    [Crossref]
  52. W. Xie, T. Komljenovic, J. Huang, M. L. Davenport, and J. E. Bowers, “Dense III-V/Si phase-shifter based optical phased array,” arXiv (2019).
  53. M. A. Tran, T. Komljenovic, J. C. Hulme, M. L. Davenport, and J. E. Bowers, “A robust method for characterization of optical waveguides and couplers,” IEEE Photonics Technol. Lett. 28(14), 1517–1520 (2016).
    [Crossref]

2018 (4)

2017 (8)

T. Hiraki, T. Aihara, K. Hasebe, K. Takeda, T. Fujii, T. Kakitsuka, T. Tsuchizawa, H. Fukuda, and S. Matsuo, “Heterogeneously integrated III-V/Si MOS capacitor Mach-Zehnder modulator,” Nat. Photonics 11(8), 482–485 (2017).
[Crossref]

J. H. Han, F. Boeuf, J. Fujikata, S. Takahashi, S. Takagi, and M. Takenaka, “Efficient low-loss InGaAsP/Si hybrid MOS optical modulator,” Nat. Photonics 11(8), 486–490 (2017).
[Crossref]

W. Liang, V. S. Ilchenko, A. A. Savchenkov, E. Dale, D. Eliyahu, A. B. Matsko, and L. Maleki, “Resonant microphotonic gyroscope,” Optica 4(1), 114–117 (2017).
[Crossref]

T. Komljenovic, R. Helkey, L. Coldren, and J. E. Bowers, “Sparse aperiodic arrays for optical beam forming and LIDAR,” Opt. Express 25(3), 2511–2528 (2017).
[Crossref] [PubMed]

M. A. Tran, T. Komljenovic, J. C. Hulme, M. J. Kennedy, D. J. Blumenthal, and J. E. Bowers, “Integrated optical driver for interferometric optical gyroscopes,” Opt. Express 25(4), 3826–3840 (2017).
[Crossref] [PubMed]

J. Li, M. G. Suh, and K. Vahala, “Microresonator Brillouin gyroscope,” Optica 4(3), 346–348 (2017).
[Crossref]

M. Raval, C. V. Poulton, and M. R. Watts, “Unidirectional waveguide grating antennas with uniform emission for optical phased arrays,” Opt. Lett. 42(13), 2563–2566 (2017).
[Crossref] [PubMed]

C. V. Poulton, A. Yaacobi, D. B. Cole, M. J. Byrd, M. Raval, D. Vermeulen, and M. R. Watts, “Coherent solid-state LIDAR with silicon photonic optical phased arrays,” Opt. Lett. 42(20), 4091–4094 (2017).
[Crossref] [PubMed]

2016 (5)

M. A. Tran, T. Komljenovic, J. C. Hulme, M. L. Davenport, and J. E. Bowers, “A robust method for characterization of optical waveguides and couplers,” IEEE Photonics Technol. Lett. 28(14), 1517–1520 (2016).
[Crossref]

Q. S. Huang, Y. C. Wu, K. Q. Ma, J. H. Zhang, W. Q. Xie, X. Fu, Y. C. Shi, K. X. Chen, J. J. He, D. Van Thourhout, G. Roelkens, L. Liu, and S. L. He, “Low driving voltage band-filling-based III-V-on-silicon electroabsorption modulator,” Appl. Phys. Lett. 108(14), 141104 (2016).
[Crossref]

M. L. Davenport, S. Skendzic, N. Volet, J. C. Hulme, M. J. R. Heck, and J. E. Bowers, “Heterogeneous silicon/III-V semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 22(6), 78–88 (2016).
[Crossref]

C. Zhang, S. J. Zhang, J. D. Peters, and J. E. Bowers, “8 x 8 x 40 Gbps fully integrated silicon photonic network on chip,” Optica 3(7), 785–786 (2016).
[Crossref]

D. N. Hutchison, J. Sun, J. K. Doylend, R. Kumar, J. Heck, W. Kim, C. T. Phare, A. Feshali, and H. S. Rong, “High-resolution aliasing-free optical beam steering,” Optica 3(8), 887–890 (2016).
[Crossref]

2015 (3)

2014 (2)

F. Dell’Olio, T. Tatoli, C. Ciminelli, and M. N. Armenise, “Recent advances in miniaturized optical gyroscopes,” J. Eur. Opt. Soc-Rapid. 91 (2014).

D. Kwong, A. Hosseini, J. Covey, Y. Zhang, X. Xu, H. Subbaraman, and R. T. Chen, “On-chip silicon optical phased array for two-dimensional beam steering,” Opt. Lett. 39(4), 941–944 (2014).
[Crossref] [PubMed]

2013 (3)

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. B. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[Crossref] [PubMed]

X. Xiao, H. Xu, X. Li, Z. Li, T. Chu, Y. Yu, and J. Yu, “High-speed, low-loss silicon Mach-Zehnder modulators with doping optimization,” Opt. Express 21(4), 4116–4125 (2013).
[Crossref] [PubMed]

2012 (1)

2011 (3)

2010 (4)

K. Van Acoleyen, H. Rogier, and R. Baets, “Two-dimensional optical phased array antenna on silicon-on-insulator,” Opt. Express 18(13), 13655–13660 (2010).
[Crossref] [PubMed]

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and inter-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010).
[Crossref]

D. Liang, G. Roelkens, R. Baets, and J. E. Bowers, “Hybrid integrated platforms for silicon photonics,” Materials (Basel) 3(3), 1782–1802 (2010).
[Crossref]

2009 (1)

2008 (3)

2007 (4)

2006 (1)

1997 (1)

J. Sawyer, P. B. Ruffin, and C. C. Sung, “Investigation of the effects of temporal thermal gradients in fiber optic gyroscope sensing coils,” Opt. Eng. 36(1), 29–34 (1997).
[Crossref]

Abediasl, H.

Aihara, T.

T. Hiraki, T. Aihara, K. Hasebe, K. Takeda, T. Fujii, T. Kakitsuka, T. Tsuchizawa, H. Fukuda, and S. Matsuo, “Heterogeneously integrated III-V/Si MOS capacitor Mach-Zehnder modulator,” Nat. Photonics 11(8), 482–485 (2017).
[Crossref]

Akulova, Y.

R. Jones, P. Doussiere, J. B. Driscoll, W. Lin, H. Yu, Y. Akulova, T. Komljenovic, and J. E. Bowers, “Heterogeneously integrated photonics,” IEEE Nanotechnol. Mag. (In Press).

Armenise, M. N.

F. Dell’Olio, T. Tatoli, C. Ciminelli, and M. N. Armenise, “Recent advances in miniaturized optical gyroscopes,” J. Eur. Opt. Soc-Rapid. 91 (2014).

Baets, R.

Bauters, J. F.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. B. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

Belt, M.

Blumenthal, D. J.

Boeuf, F.

J. H. Han, F. Boeuf, J. Fujikata, S. Takahashi, S. Takagi, and M. Takenaka, “Efficient low-loss InGaAsP/Si hybrid MOS optical modulator,” Nat. Photonics 11(8), 486–490 (2017).
[Crossref]

Bogaerts, W.

Bovington, J. T.

Bowers, J.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and inter-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010).
[Crossref]

Bowers, J. E.

S. Gundavarapu, M. Belt, T. A. Huffman, M. A. Tran, T. Komljenovic, J. E. Bowers, and D. J. Blumenthal, “Interferometric optical gyroscope based on an integrated Si3N4 low-loss waveguide coil,” J. Lightwave Technol. 36(4), 1185–1191 (2018).
[Crossref]

M. A. Tran, T. Komljenovic, J. C. Hulme, M. J. Kennedy, D. J. Blumenthal, and J. E. Bowers, “Integrated optical driver for interferometric optical gyroscopes,” Opt. Express 25(4), 3826–3840 (2017).
[Crossref] [PubMed]

T. Komljenovic, R. Helkey, L. Coldren, and J. E. Bowers, “Sparse aperiodic arrays for optical beam forming and LIDAR,” Opt. Express 25(3), 2511–2528 (2017).
[Crossref] [PubMed]

C. Zhang, S. J. Zhang, J. D. Peters, and J. E. Bowers, “8 x 8 x 40 Gbps fully integrated silicon photonic network on chip,” Optica 3(7), 785–786 (2016).
[Crossref]

M. L. Davenport, S. Skendzic, N. Volet, J. C. Hulme, M. J. R. Heck, and J. E. Bowers, “Heterogeneous silicon/III-V semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 22(6), 78–88 (2016).
[Crossref]

M. A. Tran, T. Komljenovic, J. C. Hulme, M. L. Davenport, and J. E. Bowers, “A robust method for characterization of optical waveguides and couplers,” IEEE Photonics Technol. Lett. 28(14), 1517–1520 (2016).
[Crossref]

T. Komljenovic, S. Srinivasan, E. Norberg, M. Davenport, G. Fish, and J. E. Bowers, “Widely tunable narrow-linewidth monolithically integrated external-cavity semiconductor Lasers,” IEEE J. Sel. Top. Quantum Electron. 21(6), 214–222 (2015).
[Crossref]

J. C. Hulme, J. K. Doylend, M. J. R. Heck, J. D. Peters, M. L. Davenport, J. T. Bovington, L. A. Coldren, and J. E. Bowers, “Fully integrated hybrid silicon two dimensional beam scanner,” Opt. Express 23(5), 5861–5874 (2015).
[Crossref] [PubMed]

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. B. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

J. K. Doylend, M. J. R. Heck, J. T. Bovington, J. D. Peters, M. L. Davenport, L. A. Coldren, and J. E. Bowers, “Hybrid III/V silicon photonic source with integrated 1D free-space beam steering,” Opt. Lett. 37(20), 4257–4259 (2012).
[Crossref] [PubMed]

H. W. Chen, J. D. Peters, and J. E. Bowers, “Forty Gb/s hybrid silicon Mach-Zehnder modulator with low chirp,” Opt. Express 19(2), 1455–1460 (2011).
[Crossref] [PubMed]

J. K. Doylend, M. J. R. Heck, J. T. Bovington, J. D. Peters, L. A. Coldren, and J. E. Bowers, “Two-dimensional free-space beam steering with an optical phased array on silicon-on-insulator,” Opt. Express 19(22), 21595–21604 (2011).
[Crossref] [PubMed]

D. Liang, G. Roelkens, R. Baets, and J. E. Bowers, “Hybrid integrated platforms for silicon photonics,” Materials (Basel) 3(3), 1782–1802 (2010).
[Crossref]

H. W. Chen, Y. H. Kuo, and J. E. Bowers, “A hybrid silicon-AlGaInAs phase modulator,” IEEE Photonics Technol. Lett. 20(23), 1920–1922 (2008).
[Crossref]

A. W. Fang, B. R. Koch, K. G. Gan, H. Park, R. Jones, O. Cohen, M. J. Paniccia, D. J. Blumenthal, and J. E. Bowers, “A racetrack mode-locked silicon evanescent laser,” Opt. Express 16(2), 1393–1398 (2008).
[Crossref] [PubMed]

H. W. Chen, Y. H. Kuo, and J. E. Bowers, “High speed hybrid silicon evanescent Mach-Zehnder modulator and switch,” Opt. Express 16(25), 20571–20576 (2008).
[Crossref] [PubMed]

H. Park, A. W. Fang, R. Jones, O. Cohen, O. Raday, M. N. Sysak, M. J. Paniccia, and J. E. Bowers, “A hybrid AlGaInAs-silicon evanescent waveguide photodetector,” Opt. Express 15(10), 6044–6052 (2007).
[Crossref] [PubMed]

B. R. Koch, A. W. Fang, O. Cohen, and J. E. Bowers, “Mode-locked silicon evanescent lasers,” Opt. Express 15(18), 11225–11233 (2007).
[Crossref] [PubMed]

H. Park, Y. H. Kuo, A. W. Fang, R. Jones, O. Cohen, M. J. Paniccia, and J. E. Bowers, “A hybrid AlGaInAs-silicon evanescent preamplifier and photodetector,” Opt. Express 15(21), 13539–13546 (2007).
[Crossref] [PubMed]

H. Park, A. W. Fang, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “A hybrid AlGaInAs-silicon evanescent amplifier,” IEEE Photonics Technol. Lett. 19(4), 230–232 (2007).
[Crossref]

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14(20), 9203–9210 (2006).
[Crossref] [PubMed]

W. Xie, T. Komljenovic, J. Huang, M. L. Davenport, and J. E. Bowers, “Dense III-V/Si phase-shifter based optical phased array,” arXiv (2019).

T. Komljenovic, D. Huang, P. Pintus, M. A. Tran, M. L. Davenport, and J. E. Bowers, “Photonic integrated circuits using heterogeneous integration on silicon,” in Proc. of the IEEE, doi:
[Crossref]

M. A. Tran, D. Huang, T. Komljenovic, J. Peters, and J. E. Bowers, “A 2.5 kHz linewidth widely tunable laser with booster SOA integrated on silicon,” 2018 IEEE International Semiconductor Laser Conference (ISLC), 1 (2018).
[Crossref]

R. Jones, P. Doussiere, J. B. Driscoll, W. Lin, H. Yu, Y. Akulova, T. Komljenovic, and J. E. Bowers, “Heterogeneously integrated photonics,” IEEE Nanotechnol. Mag. (In Press).

Byrd, M. J.

C. V. Poulton, A. Yaacobi, D. B. Cole, M. J. Byrd, M. Raval, D. Vermeulen, and M. R. Watts, “Coherent solid-state LIDAR with silicon photonic optical phased arrays,” Opt. Lett. 42(20), 4091–4094 (2017).
[Crossref] [PubMed]

C. V. Poulton, M. J. Byrd, E. Timurdogan, P. Russo, D. Vermeulen, and M. R. Watts, “Optical phased arrays for integrated beam steering,” 15th International Conference on Group IV Photonics (GFP) (2018).
[Crossref]

C. V. Poulton, P. Russo, E. Timurdogan, M. Whitson, M. J. Byrd, E. Hosseini, B. Moss, Z. Su, D. Vermeulen, and M. R. Watts, “High-performance integrated optical phased arrays for chip-scale beam steering and LiDAR,” in Conference on Lasers and Electro-Optics. p. ATu3R.2 (2018).
[Crossref]

Chang, Y. C.

Chen, H. W.

Chen, K. X.

Q. S. Huang, Y. C. Wu, K. Q. Ma, J. H. Zhang, W. Q. Xie, X. Fu, Y. C. Shi, K. X. Chen, J. J. He, D. Van Thourhout, G. Roelkens, L. Liu, and S. L. He, “Low driving voltage band-filling-based III-V-on-silicon electroabsorption modulator,” Appl. Phys. Lett. 108(14), 141104 (2016).
[Crossref]

Chen, R. T.

Chu, T.

Ciminelli, C.

F. Dell’Olio, T. Tatoli, C. Ciminelli, and M. N. Armenise, “Recent advances in miniaturized optical gyroscopes,” J. Eur. Opt. Soc-Rapid. 91 (2014).

Cohen, O.

Coldren, L.

Coldren, L. A.

Cole, D. B.

Covey, J.

Dale, E.

Davenport, M.

T. Komljenovic, S. Srinivasan, E. Norberg, M. Davenport, G. Fish, and J. E. Bowers, “Widely tunable narrow-linewidth monolithically integrated external-cavity semiconductor Lasers,” IEEE J. Sel. Top. Quantum Electron. 21(6), 214–222 (2015).
[Crossref]

Davenport, M. L.

M. L. Davenport, S. Skendzic, N. Volet, J. C. Hulme, M. J. R. Heck, and J. E. Bowers, “Heterogeneous silicon/III-V semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 22(6), 78–88 (2016).
[Crossref]

M. A. Tran, T. Komljenovic, J. C. Hulme, M. L. Davenport, and J. E. Bowers, “A robust method for characterization of optical waveguides and couplers,” IEEE Photonics Technol. Lett. 28(14), 1517–1520 (2016).
[Crossref]

J. C. Hulme, J. K. Doylend, M. J. R. Heck, J. D. Peters, M. L. Davenport, J. T. Bovington, L. A. Coldren, and J. E. Bowers, “Fully integrated hybrid silicon two dimensional beam scanner,” Opt. Express 23(5), 5861–5874 (2015).
[Crossref] [PubMed]

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. B. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

J. K. Doylend, M. J. R. Heck, J. T. Bovington, J. D. Peters, M. L. Davenport, L. A. Coldren, and J. E. Bowers, “Hybrid III/V silicon photonic source with integrated 1D free-space beam steering,” Opt. Lett. 37(20), 4257–4259 (2012).
[Crossref] [PubMed]

T. Komljenovic, D. Huang, P. Pintus, M. A. Tran, M. L. Davenport, and J. E. Bowers, “Photonic integrated circuits using heterogeneous integration on silicon,” in Proc. of the IEEE, doi:
[Crossref]

W. Xie, T. Komljenovic, J. Huang, M. L. Davenport, and J. E. Bowers, “Dense III-V/Si phase-shifter based optical phased array,” arXiv (2019).

Dell’Olio, F.

F. Dell’Olio, T. Tatoli, C. Ciminelli, and M. N. Armenise, “Recent advances in miniaturized optical gyroscopes,” J. Eur. Opt. Soc-Rapid. 91 (2014).

Doussiere, P.

R. Jones, P. Doussiere, J. B. Driscoll, W. Lin, H. Yu, Y. Akulova, T. Komljenovic, and J. E. Bowers, “Heterogeneously integrated photonics,” IEEE Nanotechnol. Mag. (In Press).

Doylend, J. K.

Driscoll, J. B.

R. Jones, P. Doussiere, J. B. Driscoll, W. Lin, H. Yu, Y. Akulova, T. Komljenovic, and J. E. Bowers, “Heterogeneously integrated photonics,” IEEE Nanotechnol. Mag. (In Press).

Eliyahu, D.

Fang, A.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and inter-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010).
[Crossref]

Fang, A. W.

Feshali, A.

Fish, G.

T. Komljenovic, S. Srinivasan, E. Norberg, M. Davenport, G. Fish, and J. E. Bowers, “Widely tunable narrow-linewidth monolithically integrated external-cavity semiconductor Lasers,” IEEE J. Sel. Top. Quantum Electron. 21(6), 214–222 (2015).
[Crossref]

Foster, A. C.

M. R. Kossey, C. Rizk, and A. C. Foster, “End-fire silicon optical phased array with half-wavelength spacing,” APL Photonics 3(1), 011301 (2018).
[Crossref]

Fu, X.

Q. S. Huang, Y. C. Wu, K. Q. Ma, J. H. Zhang, W. Q. Xie, X. Fu, Y. C. Shi, K. X. Chen, J. J. He, D. Van Thourhout, G. Roelkens, L. Liu, and S. L. He, “Low driving voltage band-filling-based III-V-on-silicon electroabsorption modulator,” Appl. Phys. Lett. 108(14), 141104 (2016).
[Crossref]

Fujii, T.

T. Hiraki, T. Aihara, K. Hasebe, K. Takeda, T. Fujii, T. Kakitsuka, T. Tsuchizawa, H. Fukuda, and S. Matsuo, “Heterogeneously integrated III-V/Si MOS capacitor Mach-Zehnder modulator,” Nat. Photonics 11(8), 482–485 (2017).
[Crossref]

Fujikata, J.

J. H. Han, F. Boeuf, J. Fujikata, S. Takahashi, S. Takagi, and M. Takenaka, “Efficient low-loss InGaAsP/Si hybrid MOS optical modulator,” Nat. Photonics 11(8), 486–490 (2017).
[Crossref]

Fukuda, H.

T. Hiraki, T. Aihara, K. Hasebe, K. Takeda, T. Fujii, T. Kakitsuka, T. Tsuchizawa, H. Fukuda, and S. Matsuo, “Heterogeneously integrated III-V/Si MOS capacitor Mach-Zehnder modulator,” Nat. Photonics 11(8), 482–485 (2017).
[Crossref]

Gan, K. G.

Gardes, F. Y.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

Gundavarapu, S.

Hajimiri, A.

P. P. Khial, A. D. White, and A. Hajimiri, “Nanophotonic optical gyroscope with reciprocal sensitivity enhancement,” Nat. Photonics 12(11), 671–675 (2018).
[Crossref]

Han, J. H.

J. H. Han, F. Boeuf, J. Fujikata, S. Takahashi, S. Takagi, and M. Takenaka, “Efficient low-loss InGaAsP/Si hybrid MOS optical modulator,” Nat. Photonics 11(8), 486–490 (2017).
[Crossref]

Hasebe, K.

T. Hiraki, T. Aihara, K. Hasebe, K. Takeda, T. Fujii, T. Kakitsuka, T. Tsuchizawa, H. Fukuda, and S. Matsuo, “Heterogeneously integrated III-V/Si MOS capacitor Mach-Zehnder modulator,” Nat. Photonics 11(8), 482–485 (2017).
[Crossref]

Hashemi, H.

He, J. J.

Q. S. Huang, Y. C. Wu, K. Q. Ma, J. H. Zhang, W. Q. Xie, X. Fu, Y. C. Shi, K. X. Chen, J. J. He, D. Van Thourhout, G. Roelkens, L. Liu, and S. L. He, “Low driving voltage band-filling-based III-V-on-silicon electroabsorption modulator,” Appl. Phys. Lett. 108(14), 141104 (2016).
[Crossref]

He, S. L.

Q. S. Huang, Y. C. Wu, K. Q. Ma, J. H. Zhang, W. Q. Xie, X. Fu, Y. C. Shi, K. X. Chen, J. J. He, D. Van Thourhout, G. Roelkens, L. Liu, and S. L. He, “Low driving voltage band-filling-based III-V-on-silicon electroabsorption modulator,” Appl. Phys. Lett. 108(14), 141104 (2016).
[Crossref]

Heck, J.

Heck, M. J. R.

Helkey, R.

Hiraki, T.

T. Hiraki, T. Aihara, K. Hasebe, K. Takeda, T. Fujii, T. Kakitsuka, T. Tsuchizawa, H. Fukuda, and S. Matsuo, “Heterogeneously integrated III-V/Si MOS capacitor Mach-Zehnder modulator,” Nat. Photonics 11(8), 482–485 (2017).
[Crossref]

Hosseini, A.

Hosseini, E.

C. V. Poulton, P. Russo, E. Timurdogan, M. Whitson, M. J. Byrd, E. Hosseini, B. Moss, Z. Su, D. Vermeulen, and M. R. Watts, “High-performance integrated optical phased arrays for chip-scale beam steering and LiDAR,” in Conference on Lasers and Electro-Optics. p. ATu3R.2 (2018).
[Crossref]

Hosseini, E. S.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[Crossref] [PubMed]

Houdré, R.

Huang, D.

T. Komljenovic, D. Huang, P. Pintus, M. A. Tran, M. L. Davenport, and J. E. Bowers, “Photonic integrated circuits using heterogeneous integration on silicon,” in Proc. of the IEEE, doi:
[Crossref]

M. A. Tran, D. Huang, T. Komljenovic, J. Peters, and J. E. Bowers, “A 2.5 kHz linewidth widely tunable laser with booster SOA integrated on silicon,” 2018 IEEE International Semiconductor Laser Conference (ISLC), 1 (2018).
[Crossref]

Huang, J.

W. Xie, T. Komljenovic, J. Huang, M. L. Davenport, and J. E. Bowers, “Dense III-V/Si phase-shifter based optical phased array,” arXiv (2019).

Huang, Q. S.

Q. S. Huang, Y. C. Wu, K. Q. Ma, J. H. Zhang, W. Q. Xie, X. Fu, Y. C. Shi, K. X. Chen, J. J. He, D. Van Thourhout, G. Roelkens, L. Liu, and S. L. He, “Low driving voltage band-filling-based III-V-on-silicon electroabsorption modulator,” Appl. Phys. Lett. 108(14), 141104 (2016).
[Crossref]

Huffman, T. A.

Hulme, J. C.

M. A. Tran, T. Komljenovic, J. C. Hulme, M. J. Kennedy, D. J. Blumenthal, and J. E. Bowers, “Integrated optical driver for interferometric optical gyroscopes,” Opt. Express 25(4), 3826–3840 (2017).
[Crossref] [PubMed]

M. A. Tran, T. Komljenovic, J. C. Hulme, M. L. Davenport, and J. E. Bowers, “A robust method for characterization of optical waveguides and couplers,” IEEE Photonics Technol. Lett. 28(14), 1517–1520 (2016).
[Crossref]

M. L. Davenport, S. Skendzic, N. Volet, J. C. Hulme, M. J. R. Heck, and J. E. Bowers, “Heterogeneous silicon/III-V semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 22(6), 78–88 (2016).
[Crossref]

J. C. Hulme, J. K. Doylend, M. J. R. Heck, J. D. Peters, M. L. Davenport, J. T. Bovington, L. A. Coldren, and J. E. Bowers, “Fully integrated hybrid silicon two dimensional beam scanner,” Opt. Express 23(5), 5861–5874 (2015).
[Crossref] [PubMed]

Hutchison, D. N.

Ilchenko, V. S.

Jágerská, J.

Jain, S.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. B. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

Jones, R.

Kakitsuka, T.

T. Hiraki, T. Aihara, K. Hasebe, K. Takeda, T. Fujii, T. Kakitsuka, T. Tsuchizawa, H. Fukuda, and S. Matsuo, “Heterogeneously integrated III-V/Si MOS capacitor Mach-Zehnder modulator,” Nat. Photonics 11(8), 482–485 (2017).
[Crossref]

Kennedy, M. J.

Khial, P. P.

P. P. Khial, A. D. White, and A. Hajimiri, “Nanophotonic optical gyroscope with reciprocal sensitivity enhancement,” Nat. Photonics 12(11), 671–675 (2018).
[Crossref]

Kim, W.

Koch, B.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and inter-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010).
[Crossref]

Koch, B. R.

Komljenovic, T.

S. Gundavarapu, M. Belt, T. A. Huffman, M. A. Tran, T. Komljenovic, J. E. Bowers, and D. J. Blumenthal, “Interferometric optical gyroscope based on an integrated Si3N4 low-loss waveguide coil,” J. Lightwave Technol. 36(4), 1185–1191 (2018).
[Crossref]

M. A. Tran, T. Komljenovic, J. C. Hulme, M. J. Kennedy, D. J. Blumenthal, and J. E. Bowers, “Integrated optical driver for interferometric optical gyroscopes,” Opt. Express 25(4), 3826–3840 (2017).
[Crossref] [PubMed]

T. Komljenovic, R. Helkey, L. Coldren, and J. E. Bowers, “Sparse aperiodic arrays for optical beam forming and LIDAR,” Opt. Express 25(3), 2511–2528 (2017).
[Crossref] [PubMed]

M. A. Tran, T. Komljenovic, J. C. Hulme, M. L. Davenport, and J. E. Bowers, “A robust method for characterization of optical waveguides and couplers,” IEEE Photonics Technol. Lett. 28(14), 1517–1520 (2016).
[Crossref]

T. Komljenovic, S. Srinivasan, E. Norberg, M. Davenport, G. Fish, and J. E. Bowers, “Widely tunable narrow-linewidth monolithically integrated external-cavity semiconductor Lasers,” IEEE J. Sel. Top. Quantum Electron. 21(6), 214–222 (2015).
[Crossref]

M. A. Tran, D. Huang, T. Komljenovic, J. Peters, and J. E. Bowers, “A 2.5 kHz linewidth widely tunable laser with booster SOA integrated on silicon,” 2018 IEEE International Semiconductor Laser Conference (ISLC), 1 (2018).
[Crossref]

R. Jones, P. Doussiere, J. B. Driscoll, W. Lin, H. Yu, Y. Akulova, T. Komljenovic, and J. E. Bowers, “Heterogeneously integrated photonics,” IEEE Nanotechnol. Mag. (In Press).

T. Komljenovic, D. Huang, P. Pintus, M. A. Tran, M. L. Davenport, and J. E. Bowers, “Photonic integrated circuits using heterogeneous integration on silicon,” in Proc. of the IEEE, doi:
[Crossref]

W. Xie, T. Komljenovic, J. Huang, M. L. Davenport, and J. E. Bowers, “Dense III-V/Si phase-shifter based optical phased array,” arXiv (2019).

Komorowska, K.

Kossey, M. R.

M. R. Kossey, C. Rizk, and A. C. Foster, “End-fire silicon optical phased array with half-wavelength spacing,” APL Photonics 3(1), 011301 (2018).
[Crossref]

Kumar, R.

Kuo, Y. H.

Kurczveil, G.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. B. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

Kwong, D.

Le Thomas, N.

Li, J.

Li, X.

Li, Z.

Liang, D.

D. Liang, G. Roelkens, R. Baets, and J. E. Bowers, “Hybrid integrated platforms for silicon photonics,” Materials (Basel) 3(3), 1782–1802 (2010).
[Crossref]

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and inter-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010).
[Crossref]

Liang, W.

Lin, W.

R. Jones, P. Doussiere, J. B. Driscoll, W. Lin, H. Yu, Y. Akulova, T. Komljenovic, and J. E. Bowers, “Heterogeneously integrated photonics,” IEEE Nanotechnol. Mag. (In Press).

Lipson, M.

Liu, L.

Q. S. Huang, Y. C. Wu, K. Q. Ma, J. H. Zhang, W. Q. Xie, X. Fu, Y. C. Shi, K. X. Chen, J. J. He, D. Van Thourhout, G. Roelkens, L. Liu, and S. L. He, “Low driving voltage band-filling-based III-V-on-silicon electroabsorption modulator,” Appl. Phys. Lett. 108(14), 141104 (2016).
[Crossref]

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and inter-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010).
[Crossref]

Ma, K. Q.

Q. S. Huang, Y. C. Wu, K. Q. Ma, J. H. Zhang, W. Q. Xie, X. Fu, Y. C. Shi, K. X. Chen, J. J. He, D. Van Thourhout, G. Roelkens, L. Liu, and S. L. He, “Low driving voltage band-filling-based III-V-on-silicon electroabsorption modulator,” Appl. Phys. Lett. 108(14), 141104 (2016).
[Crossref]

Maleki, L.

Mashanovich, G.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

Matsko, A. B.

Matsuo, S.

T. Hiraki, T. Aihara, K. Hasebe, K. Takeda, T. Fujii, T. Kakitsuka, T. Tsuchizawa, H. Fukuda, and S. Matsuo, “Heterogeneously integrated III-V/Si MOS capacitor Mach-Zehnder modulator,” Nat. Photonics 11(8), 482–485 (2017).
[Crossref]

Mohanty, A.

Moss, B.

C. V. Poulton, P. Russo, E. Timurdogan, M. Whitson, M. J. Byrd, E. Hosseini, B. Moss, Z. Su, D. Vermeulen, and M. R. Watts, “High-performance integrated optical phased arrays for chip-scale beam steering and LiDAR,” in Conference on Lasers and Electro-Optics. p. ATu3R.2 (2018).
[Crossref]

Norberg, E.

T. Komljenovic, S. Srinivasan, E. Norberg, M. Davenport, G. Fish, and J. E. Bowers, “Widely tunable narrow-linewidth monolithically integrated external-cavity semiconductor Lasers,” IEEE J. Sel. Top. Quantum Electron. 21(6), 214–222 (2015).
[Crossref]

Paniccia, M. J.

Park, H.

Peters, J.

M. A. Tran, D. Huang, T. Komljenovic, J. Peters, and J. E. Bowers, “A 2.5 kHz linewidth widely tunable laser with booster SOA integrated on silicon,” 2018 IEEE International Semiconductor Laser Conference (ISLC), 1 (2018).
[Crossref]

Peters, J. D.

Phare, C. T.

Pintus, P.

T. Komljenovic, D. Huang, P. Pintus, M. A. Tran, M. L. Davenport, and J. E. Bowers, “Photonic integrated circuits using heterogeneous integration on silicon,” in Proc. of the IEEE, doi:
[Crossref]

Poulton, C. V.

M. Raval, C. V. Poulton, and M. R. Watts, “Unidirectional waveguide grating antennas with uniform emission for optical phased arrays,” Opt. Lett. 42(13), 2563–2566 (2017).
[Crossref] [PubMed]

C. V. Poulton, A. Yaacobi, D. B. Cole, M. J. Byrd, M. Raval, D. Vermeulen, and M. R. Watts, “Coherent solid-state LIDAR with silicon photonic optical phased arrays,” Opt. Lett. 42(20), 4091–4094 (2017).
[Crossref] [PubMed]

C. V. Poulton, M. J. Byrd, E. Timurdogan, P. Russo, D. Vermeulen, and M. R. Watts, “Optical phased arrays for integrated beam steering,” 15th International Conference on Group IV Photonics (GFP) (2018).
[Crossref]

C. V. Poulton, P. Russo, E. Timurdogan, M. Whitson, M. J. Byrd, E. Hosseini, B. Moss, Z. Su, D. Vermeulen, and M. R. Watts, “High-performance integrated optical phased arrays for chip-scale beam steering and LiDAR,” in Conference on Lasers and Electro-Optics. p. ATu3R.2 (2018).
[Crossref]

Raday, O.

Raval, M.

Reed, G. T.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

Rizk, C.

M. R. Kossey, C. Rizk, and A. C. Foster, “End-fire silicon optical phased array with half-wavelength spacing,” APL Photonics 3(1), 011301 (2018).
[Crossref]

Roberts, S. P.

Roelkens, G.

Q. S. Huang, Y. C. Wu, K. Q. Ma, J. H. Zhang, W. Q. Xie, X. Fu, Y. C. Shi, K. X. Chen, J. J. He, D. Van Thourhout, G. Roelkens, L. Liu, and S. L. He, “Low driving voltage band-filling-based III-V-on-silicon electroabsorption modulator,” Appl. Phys. Lett. 108(14), 141104 (2016).
[Crossref]

D. Liang, G. Roelkens, R. Baets, and J. E. Bowers, “Hybrid integrated platforms for silicon photonics,” Materials (Basel) 3(3), 1782–1802 (2010).
[Crossref]

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and inter-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010).
[Crossref]

Rogier, H.

Rong, H. S.

Ruffin, P. B.

J. Sawyer, P. B. Ruffin, and C. C. Sung, “Investigation of the effects of temporal thermal gradients in fiber optic gyroscope sensing coils,” Opt. Eng. 36(1), 29–34 (1997).
[Crossref]

Russo, P.

C. V. Poulton, P. Russo, E. Timurdogan, M. Whitson, M. J. Byrd, E. Hosseini, B. Moss, Z. Su, D. Vermeulen, and M. R. Watts, “High-performance integrated optical phased arrays for chip-scale beam steering and LiDAR,” in Conference on Lasers and Electro-Optics. p. ATu3R.2 (2018).
[Crossref]

C. V. Poulton, M. J. Byrd, E. Timurdogan, P. Russo, D. Vermeulen, and M. R. Watts, “Optical phased arrays for integrated beam steering,” 15th International Conference on Group IV Photonics (GFP) (2018).
[Crossref]

Savchenkov, A. A.

Sawyer, J.

J. Sawyer, P. B. Ruffin, and C. C. Sung, “Investigation of the effects of temporal thermal gradients in fiber optic gyroscope sensing coils,” Opt. Eng. 36(1), 29–34 (1997).
[Crossref]

Shi, Y. C.

Q. S. Huang, Y. C. Wu, K. Q. Ma, J. H. Zhang, W. Q. Xie, X. Fu, Y. C. Shi, K. X. Chen, J. J. He, D. Van Thourhout, G. Roelkens, L. Liu, and S. L. He, “Low driving voltage band-filling-based III-V-on-silicon electroabsorption modulator,” Appl. Phys. Lett. 108(14), 141104 (2016).
[Crossref]

Skendzic, S.

M. L. Davenport, S. Skendzic, N. Volet, J. C. Hulme, M. J. R. Heck, and J. E. Bowers, “Heterogeneous silicon/III-V semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 22(6), 78–88 (2016).
[Crossref]

Srinivasan, S.

T. Komljenovic, S. Srinivasan, E. Norberg, M. Davenport, G. Fish, and J. E. Bowers, “Widely tunable narrow-linewidth monolithically integrated external-cavity semiconductor Lasers,” IEEE J. Sel. Top. Quantum Electron. 21(6), 214–222 (2015).
[Crossref]

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. B. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

Su, Z.

C. V. Poulton, P. Russo, E. Timurdogan, M. Whitson, M. J. Byrd, E. Hosseini, B. Moss, Z. Su, D. Vermeulen, and M. R. Watts, “High-performance integrated optical phased arrays for chip-scale beam steering and LiDAR,” in Conference on Lasers and Electro-Optics. p. ATu3R.2 (2018).
[Crossref]

Subbaraman, H.

Suh, M. G.

Sun, J.

Sung, C. C.

J. Sawyer, P. B. Ruffin, and C. C. Sung, “Investigation of the effects of temporal thermal gradients in fiber optic gyroscope sensing coils,” Opt. Eng. 36(1), 29–34 (1997).
[Crossref]

Sysak, M. N.

Takagi, S.

J. H. Han, F. Boeuf, J. Fujikata, S. Takahashi, S. Takagi, and M. Takenaka, “Efficient low-loss InGaAsP/Si hybrid MOS optical modulator,” Nat. Photonics 11(8), 486–490 (2017).
[Crossref]

Takahashi, S.

J. H. Han, F. Boeuf, J. Fujikata, S. Takahashi, S. Takagi, and M. Takenaka, “Efficient low-loss InGaAsP/Si hybrid MOS optical modulator,” Nat. Photonics 11(8), 486–490 (2017).
[Crossref]

Takeda, K.

T. Hiraki, T. Aihara, K. Hasebe, K. Takeda, T. Fujii, T. Kakitsuka, T. Tsuchizawa, H. Fukuda, and S. Matsuo, “Heterogeneously integrated III-V/Si MOS capacitor Mach-Zehnder modulator,” Nat. Photonics 11(8), 482–485 (2017).
[Crossref]

Takenaka, M.

J. H. Han, F. Boeuf, J. Fujikata, S. Takahashi, S. Takagi, and M. Takenaka, “Efficient low-loss InGaAsP/Si hybrid MOS optical modulator,” Nat. Photonics 11(8), 486–490 (2017).
[Crossref]

Tang, Y. B.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. B. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

Tatoli, T.

F. Dell’Olio, T. Tatoli, C. Ciminelli, and M. N. Armenise, “Recent advances in miniaturized optical gyroscopes,” J. Eur. Opt. Soc-Rapid. 91 (2014).

Thomson, D. J.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

Timurdogan, E.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[Crossref] [PubMed]

C. V. Poulton, M. J. Byrd, E. Timurdogan, P. Russo, D. Vermeulen, and M. R. Watts, “Optical phased arrays for integrated beam steering,” 15th International Conference on Group IV Photonics (GFP) (2018).
[Crossref]

C. V. Poulton, P. Russo, E. Timurdogan, M. Whitson, M. J. Byrd, E. Hosseini, B. Moss, Z. Su, D. Vermeulen, and M. R. Watts, “High-performance integrated optical phased arrays for chip-scale beam steering and LiDAR,” in Conference on Lasers and Electro-Optics. p. ATu3R.2 (2018).
[Crossref]

Tran, M. A.

S. Gundavarapu, M. Belt, T. A. Huffman, M. A. Tran, T. Komljenovic, J. E. Bowers, and D. J. Blumenthal, “Interferometric optical gyroscope based on an integrated Si3N4 low-loss waveguide coil,” J. Lightwave Technol. 36(4), 1185–1191 (2018).
[Crossref]

M. A. Tran, T. Komljenovic, J. C. Hulme, M. J. Kennedy, D. J. Blumenthal, and J. E. Bowers, “Integrated optical driver for interferometric optical gyroscopes,” Opt. Express 25(4), 3826–3840 (2017).
[Crossref] [PubMed]

M. A. Tran, T. Komljenovic, J. C. Hulme, M. L. Davenport, and J. E. Bowers, “A robust method for characterization of optical waveguides and couplers,” IEEE Photonics Technol. Lett. 28(14), 1517–1520 (2016).
[Crossref]

T. Komljenovic, D. Huang, P. Pintus, M. A. Tran, M. L. Davenport, and J. E. Bowers, “Photonic integrated circuits using heterogeneous integration on silicon,” in Proc. of the IEEE, doi:
[Crossref]

M. A. Tran, D. Huang, T. Komljenovic, J. Peters, and J. E. Bowers, “A 2.5 kHz linewidth widely tunable laser with booster SOA integrated on silicon,” 2018 IEEE International Semiconductor Laser Conference (ISLC), 1 (2018).
[Crossref]

Tsuchizawa, T.

T. Hiraki, T. Aihara, K. Hasebe, K. Takeda, T. Fujii, T. Kakitsuka, T. Tsuchizawa, H. Fukuda, and S. Matsuo, “Heterogeneously integrated III-V/Si MOS capacitor Mach-Zehnder modulator,” Nat. Photonics 11(8), 482–485 (2017).
[Crossref]

Vahala, K.

Van Acoleyen, K.

Van Thourhout, D.

Q. S. Huang, Y. C. Wu, K. Q. Ma, J. H. Zhang, W. Q. Xie, X. Fu, Y. C. Shi, K. X. Chen, J. J. He, D. Van Thourhout, G. Roelkens, L. Liu, and S. L. He, “Low driving voltage band-filling-based III-V-on-silicon electroabsorption modulator,” Appl. Phys. Lett. 108(14), 141104 (2016).
[Crossref]

Vermeulen, D.

C. V. Poulton, A. Yaacobi, D. B. Cole, M. J. Byrd, M. Raval, D. Vermeulen, and M. R. Watts, “Coherent solid-state LIDAR with silicon photonic optical phased arrays,” Opt. Lett. 42(20), 4091–4094 (2017).
[Crossref] [PubMed]

C. V. Poulton, P. Russo, E. Timurdogan, M. Whitson, M. J. Byrd, E. Hosseini, B. Moss, Z. Su, D. Vermeulen, and M. R. Watts, “High-performance integrated optical phased arrays for chip-scale beam steering and LiDAR,” in Conference on Lasers and Electro-Optics. p. ATu3R.2 (2018).
[Crossref]

C. V. Poulton, M. J. Byrd, E. Timurdogan, P. Russo, D. Vermeulen, and M. R. Watts, “Optical phased arrays for integrated beam steering,” 15th International Conference on Group IV Photonics (GFP) (2018).
[Crossref]

Volet, N.

M. L. Davenport, S. Skendzic, N. Volet, J. C. Hulme, M. J. R. Heck, and J. E. Bowers, “Heterogeneous silicon/III-V semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 22(6), 78–88 (2016).
[Crossref]

Watts, M. R.

C. V. Poulton, A. Yaacobi, D. B. Cole, M. J. Byrd, M. Raval, D. Vermeulen, and M. R. Watts, “Coherent solid-state LIDAR with silicon photonic optical phased arrays,” Opt. Lett. 42(20), 4091–4094 (2017).
[Crossref] [PubMed]

M. Raval, C. V. Poulton, and M. R. Watts, “Unidirectional waveguide grating antennas with uniform emission for optical phased arrays,” Opt. Lett. 42(13), 2563–2566 (2017).
[Crossref] [PubMed]

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[Crossref] [PubMed]

C. V. Poulton, M. J. Byrd, E. Timurdogan, P. Russo, D. Vermeulen, and M. R. Watts, “Optical phased arrays for integrated beam steering,” 15th International Conference on Group IV Photonics (GFP) (2018).
[Crossref]

C. V. Poulton, P. Russo, E. Timurdogan, M. Whitson, M. J. Byrd, E. Hosseini, B. Moss, Z. Su, D. Vermeulen, and M. R. Watts, “High-performance integrated optical phased arrays for chip-scale beam steering and LiDAR,” in Conference on Lasers and Electro-Optics. p. ATu3R.2 (2018).
[Crossref]

White, A. D.

P. P. Khial, A. D. White, and A. Hajimiri, “Nanophotonic optical gyroscope with reciprocal sensitivity enhancement,” Nat. Photonics 12(11), 671–675 (2018).
[Crossref]

Whitson, M.

C. V. Poulton, P. Russo, E. Timurdogan, M. Whitson, M. J. Byrd, E. Hosseini, B. Moss, Z. Su, D. Vermeulen, and M. R. Watts, “High-performance integrated optical phased arrays for chip-scale beam steering and LiDAR,” in Conference on Lasers and Electro-Optics. p. ATu3R.2 (2018).
[Crossref]

Wu, Y. C.

Q. S. Huang, Y. C. Wu, K. Q. Ma, J. H. Zhang, W. Q. Xie, X. Fu, Y. C. Shi, K. X. Chen, J. J. He, D. Van Thourhout, G. Roelkens, L. Liu, and S. L. He, “Low driving voltage band-filling-based III-V-on-silicon electroabsorption modulator,” Appl. Phys. Lett. 108(14), 141104 (2016).
[Crossref]

Xiao, X.

Xie, W.

W. Xie, T. Komljenovic, J. Huang, M. L. Davenport, and J. E. Bowers, “Dense III-V/Si phase-shifter based optical phased array,” arXiv (2019).

Xie, W. Q.

Q. S. Huang, Y. C. Wu, K. Q. Ma, J. H. Zhang, W. Q. Xie, X. Fu, Y. C. Shi, K. X. Chen, J. J. He, D. Van Thourhout, G. Roelkens, L. Liu, and S. L. He, “Low driving voltage band-filling-based III-V-on-silicon electroabsorption modulator,” Appl. Phys. Lett. 108(14), 141104 (2016).
[Crossref]

Xu, H.

Xu, X.

Yaacobi, A.

Yu, H.

R. Jones, P. Doussiere, J. B. Driscoll, W. Lin, H. Yu, Y. Akulova, T. Komljenovic, and J. E. Bowers, “Heterogeneously integrated photonics,” IEEE Nanotechnol. Mag. (In Press).

Yu, J.

Yu, Y.

Zadka, M.

Zhang, C.

Zhang, J. H.

Q. S. Huang, Y. C. Wu, K. Q. Ma, J. H. Zhang, W. Q. Xie, X. Fu, Y. C. Shi, K. X. Chen, J. J. He, D. Van Thourhout, G. Roelkens, L. Liu, and S. L. He, “Low driving voltage band-filling-based III-V-on-silicon electroabsorption modulator,” Appl. Phys. Lett. 108(14), 141104 (2016).
[Crossref]

Zhang, S. J.

Zhang, Y.

APL Photonics (1)

M. R. Kossey, C. Rizk, and A. C. Foster, “End-fire silicon optical phased array with half-wavelength spacing,” APL Photonics 3(1), 011301 (2018).
[Crossref]

Appl. Phys. Lett. (1)

Q. S. Huang, Y. C. Wu, K. Q. Ma, J. H. Zhang, W. Q. Xie, X. Fu, Y. C. Shi, K. X. Chen, J. J. He, D. Van Thourhout, G. Roelkens, L. Liu, and S. L. He, “Low driving voltage band-filling-based III-V-on-silicon electroabsorption modulator,” Appl. Phys. Lett. 108(14), 141104 (2016).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. B. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

T. Komljenovic, S. Srinivasan, E. Norberg, M. Davenport, G. Fish, and J. E. Bowers, “Widely tunable narrow-linewidth monolithically integrated external-cavity semiconductor Lasers,” IEEE J. Sel. Top. Quantum Electron. 21(6), 214–222 (2015).
[Crossref]

M. L. Davenport, S. Skendzic, N. Volet, J. C. Hulme, M. J. R. Heck, and J. E. Bowers, “Heterogeneous silicon/III-V semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 22(6), 78–88 (2016).
[Crossref]

IEEE Photonics Technol. Lett. (3)

H. W. Chen, Y. H. Kuo, and J. E. Bowers, “A hybrid silicon-AlGaInAs phase modulator,” IEEE Photonics Technol. Lett. 20(23), 1920–1922 (2008).
[Crossref]

H. Park, A. W. Fang, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “A hybrid AlGaInAs-silicon evanescent amplifier,” IEEE Photonics Technol. Lett. 19(4), 230–232 (2007).
[Crossref]

M. A. Tran, T. Komljenovic, J. C. Hulme, M. L. Davenport, and J. E. Bowers, “A robust method for characterization of optical waveguides and couplers,” IEEE Photonics Technol. Lett. 28(14), 1517–1520 (2016).
[Crossref]

J. Eur. Opt. Soc-Rapid. (1)

F. Dell’Olio, T. Tatoli, C. Ciminelli, and M. N. Armenise, “Recent advances in miniaturized optical gyroscopes,” J. Eur. Opt. Soc-Rapid. 91 (2014).

J. Lightwave Technol. (2)

Laser Photonics Rev. (1)

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and inter-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010).
[Crossref]

Materials (Basel) (1)

D. Liang, G. Roelkens, R. Baets, and J. E. Bowers, “Hybrid integrated platforms for silicon photonics,” Materials (Basel) 3(3), 1782–1802 (2010).
[Crossref]

Nat. Photonics (4)

P. P. Khial, A. D. White, and A. Hajimiri, “Nanophotonic optical gyroscope with reciprocal sensitivity enhancement,” Nat. Photonics 12(11), 671–675 (2018).
[Crossref]

T. Hiraki, T. Aihara, K. Hasebe, K. Takeda, T. Fujii, T. Kakitsuka, T. Tsuchizawa, H. Fukuda, and S. Matsuo, “Heterogeneously integrated III-V/Si MOS capacitor Mach-Zehnder modulator,” Nat. Photonics 11(8), 482–485 (2017).
[Crossref]

J. H. Han, F. Boeuf, J. Fujikata, S. Takahashi, S. Takagi, and M. Takenaka, “Efficient low-loss InGaAsP/Si hybrid MOS optical modulator,” Nat. Photonics 11(8), 486–490 (2017).
[Crossref]

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

Nature (1)

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[Crossref] [PubMed]

Opt. Eng. (1)

J. Sawyer, P. B. Ruffin, and C. C. Sung, “Investigation of the effects of temporal thermal gradients in fiber optic gyroscope sensing coils,” Opt. Eng. 36(1), 29–34 (1997).
[Crossref]

Opt. Express (15)

J. K. Doylend, M. J. R. Heck, J. T. Bovington, J. D. Peters, L. A. Coldren, and J. E. Bowers, “Two-dimensional free-space beam steering with an optical phased array on silicon-on-insulator,” Opt. Express 19(22), 21595–21604 (2011).
[Crossref] [PubMed]

H. Abediasl and H. Hashemi, “Monolithic optical phased-array transceiver in a standard SOI CMOS process,” Opt. Express 23(5), 6509–6519 (2015).
[Crossref] [PubMed]

T. Komljenovic, R. Helkey, L. Coldren, and J. E. Bowers, “Sparse aperiodic arrays for optical beam forming and LIDAR,” Opt. Express 25(3), 2511–2528 (2017).
[Crossref] [PubMed]

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14(20), 9203–9210 (2006).
[Crossref] [PubMed]

B. R. Koch, A. W. Fang, O. Cohen, and J. E. Bowers, “Mode-locked silicon evanescent lasers,” Opt. Express 15(18), 11225–11233 (2007).
[Crossref] [PubMed]

A. W. Fang, B. R. Koch, K. G. Gan, H. Park, R. Jones, O. Cohen, M. J. Paniccia, D. J. Blumenthal, and J. E. Bowers, “A racetrack mode-locked silicon evanescent laser,” Opt. Express 16(2), 1393–1398 (2008).
[Crossref] [PubMed]

M. A. Tran, T. Komljenovic, J. C. Hulme, M. J. Kennedy, D. J. Blumenthal, and J. E. Bowers, “Integrated optical driver for interferometric optical gyroscopes,” Opt. Express 25(4), 3826–3840 (2017).
[Crossref] [PubMed]

J. C. Hulme, J. K. Doylend, M. J. R. Heck, J. D. Peters, M. L. Davenport, J. T. Bovington, L. A. Coldren, and J. E. Bowers, “Fully integrated hybrid silicon two dimensional beam scanner,” Opt. Express 23(5), 5861–5874 (2015).
[Crossref] [PubMed]

H. W. Chen, Y. H. Kuo, and J. E. Bowers, “High speed hybrid silicon evanescent Mach-Zehnder modulator and switch,” Opt. Express 16(25), 20571–20576 (2008).
[Crossref] [PubMed]

H. W. Chen, J. D. Peters, and J. E. Bowers, “Forty Gb/s hybrid silicon Mach-Zehnder modulator with low chirp,” Opt. Express 19(2), 1455–1460 (2011).
[Crossref] [PubMed]

H. Park, A. W. Fang, R. Jones, O. Cohen, O. Raday, M. N. Sysak, M. J. Paniccia, and J. E. Bowers, “A hybrid AlGaInAs-silicon evanescent waveguide photodetector,” Opt. Express 15(10), 6044–6052 (2007).
[Crossref] [PubMed]

H. Park, Y. H. Kuo, A. W. Fang, R. Jones, O. Cohen, M. J. Paniccia, and J. E. Bowers, “A hybrid AlGaInAs-silicon evanescent preamplifier and photodetector,” Opt. Express 15(21), 13539–13546 (2007).
[Crossref] [PubMed]

X. Xiao, H. Xu, X. Li, Z. Li, T. Chu, Y. Yu, and J. Yu, “High-speed, low-loss silicon Mach-Zehnder modulators with doping optimization,” Opt. Express 21(4), 4116–4125 (2013).
[Crossref] [PubMed]

M. Zadka, Y. C. Chang, A. Mohanty, C. T. Phare, S. P. Roberts, and M. Lipson, “On-chip platform for a phased array with minimal beam divergence and wide field-of-view,” Opt. Express 26(3), 2528–2534 (2018).
[Crossref] [PubMed]

K. Van Acoleyen, H. Rogier, and R. Baets, “Two-dimensional optical phased array antenna on silicon-on-insulator,” Opt. Express 18(13), 13655–13660 (2010).
[Crossref] [PubMed]

Opt. Lett. (5)

Optica (4)

Other (10)

H. C. Lefevre, The Fiber-Optic Gyroscope, second edition (Artech House, 2014).

T. Komljenovic, D. Huang, P. Pintus, M. A. Tran, M. L. Davenport, and J. E. Bowers, “Photonic integrated circuits using heterogeneous integration on silicon,” in Proc. of the IEEE, doi:
[Crossref]

M. A. Tran, D. Huang, T. Komljenovic, J. Peters, and J. E. Bowers, “A 2.5 kHz linewidth widely tunable laser with booster SOA integrated on silicon,” 2018 IEEE International Semiconductor Laser Conference (ISLC), 1 (2018).
[Crossref]

R. Jones, P. Doussiere, J. B. Driscoll, W. Lin, H. Yu, Y. Akulova, T. Komljenovic, and J. E. Bowers, “Heterogeneously integrated photonics,” IEEE Nanotechnol. Mag. (In Press).

C. V. Poulton, P. Russo, E. Timurdogan, M. Whitson, M. J. Byrd, E. Hosseini, B. Moss, Z. Su, D. Vermeulen, and M. R. Watts, “High-performance integrated optical phased arrays for chip-scale beam steering and LiDAR,” in Conference on Lasers and Electro-Optics. p. ATu3R.2 (2018).
[Crossref]

C. V. Poulton, M. J. Byrd, E. Timurdogan, P. Russo, D. Vermeulen, and M. R. Watts, “Optical phased arrays for integrated beam steering,” 15th International Conference on Group IV Photonics (GFP) (2018).
[Crossref]

https://www.bmw.com/en/innovation/mapping.html

W. Xie, J. Huang, T. Komljenovic, L. Coldren, and J. E. Bowers, “Diffraction limited centimeter scale radiator: metasurface grating antenna for phased array LiDAR,” arXiv:1810.00109 (2018).

E. J. Stanton, N. Volet, T. Komljenovic, and J. E. Bowers, “Star coupler for high-etendue LIDAR,” in Conference on Lasers and Electro-Optics. STh1M.4 (2017).
[Crossref]

W. Xie, T. Komljenovic, J. Huang, M. L. Davenport, and J. E. Bowers, “Dense III-V/Si phase-shifter based optical phased array,” arXiv (2019).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (23)

Fig. 1
Fig. 1 (a-i) Schematic process flow of III-V/Si heterogeneous integration of an array structure.
Fig. 2
Fig. 2 (a) The cross-sectional SEM image of the bonding interface between Si waveguide and III-V. (b) SEM images of the selectively opened and probed n- and p- contacts (c).
Fig. 3
Fig. 3 (a) 3D schematic (not to scale) of the integrated optical driver (IOD) for fiber optic gyroscopes. (b) A set of 12 devices next to a US quarter coin for size comparison. (c) Photograph of a fabricated IOD chip with close-ups of its components. (d) Top view of fabricated 3 m waveguide coil illuminated using a red laser.
Fig. 4
Fig. 4 Sketch of Si waveguide-surface grating emitter with strip lines on top.
Fig. 5
Fig. 5 Top view sketches of two surface gratings of (a) strip-line grating and (b) fishbone grating. The parameters are defined as: a − waveguide width, Λ − grating period, d − strip width (duty cycle = d/Λ), and w − fishbone width.
Fig. 6
Fig. 6 Wavelength-dependent emission strength vs grating geometric parameters for the strip-line (a) and fishbone (b) gratings respectively. (c) Optimized emission strength profile for the two gratings with a length of 10 mm and the corresponding far field beams (d).
Fig. 7
Fig. 7 SEM image of fabricated SiN/Si strip-line (a) and fishbone (b) gratings.
Fig. 8
Fig. 8 Fourier imaging setup for characterization of far-field beams of grating or OPA.
Fig. 9
Fig. 9 (a) IR images of far field beams for strip-line and fishbone gratings with the wavelength tuning from 1520 nm to 1580 nm with a 10 nm increment. (b) Measured beam angle change in θ axis as a function of wavelength for the strip-line and fishbone gratings, respectively. (c) High-resolution beam profiles of strip-line and fishbone gratings at the wavelength of 1550 nm. The FWHM beam width of 0.008° for strip-line and 0.01° for fishbone gratings are obtained by fitting a Gaussian function. (d) Transmission spectra of a reference Si waveguide and the SiN/Si waveguide gratings.
Fig. 10
Fig. 10 (a) SEM image of a fabricated Si waveguide grating. (b) AFM image of the Si grating. (c) Measured height profile across the grating as indicated in (b) by the dashed line, showing the waveguide height of 231 ± 5 nm and the grating depth of 14 ± 0.5 nm.
Fig. 11
Fig. 11 (a) Far field images of the emission from Si grating. (b) Beam profiles for different wavelengths. (c) Measured and calculated emission angle θ as a function of wavelength. (d) High-resolution beam profile at the wavelength of 1550 nm. The fitted FWHM beam width is 0.02°. Note that except for the main beam the sidelobe peaks are also present in the high-resolution beam profile.
Fig. 12
Fig. 12 (a) Microscope image of the fabricated 1 × 240 star coupler. The insets show the SEM images of the input waveguide and arrayed waveguides at free propagation region. (b) IR image of the star splitter region when coupling light in and the corresponding IR image of the output waveguide facets. (d) Measured transmission power every 10th channel and Gaussian fitting of the transmission profile.
Fig. 13
Fig. 13 (a) Schematics of MZI modulator composed of two 2 × 2 MMI couplers and a III-V/Si phase shifter on one arm. (b) Cross section of the designed III-V/Si phase shifter. (c) Simulated mode profile at the cross section of III-V/Si waveguide.
Fig. 14
Fig. 14 (a) Optical microscope image (upper) of a fabricated MZI modulator with a 5 mm long III-V phase shifter. The zoom-in images in the lower panel correspond to different parts of the device as indicated by the red dashed boxes. (b) SEM images of the MZI, MMI, III-V taper and probe pads.
Fig. 15
Fig. 15 (a) Transmission spectra of the MZI. (b) I-V characteristics of the III-V diode.
Fig. 16
Fig. 16 (a) Bias-dependent transmission (normalized) at different wavelengths for a 5 mm long III-V/Si waveguide. (b) Bias voltage-dependent transmission of the MZI at 1550 nm from the port 1 to 3 and 1 to 4 respectively. (c) Bias voltage (black) and total absorption loss (blue) at a 2π phase shift for different wavelengths. (d) Frequency response of the phase shifter.
Fig. 17
Fig. 17 Schematics of a III-V/Si OPA system consisting of a 1 × N star coupler, III-V/Si phase-shifter array, and waveguide-grating array. The light path is illustrated by the red arrows and the beam emitting angles is defined accordingly.
Fig. 18
Fig. 18 (a) Optical microscope image of a fully fabricated 240-channel OPA. (b) Overview of a 32-channel OPA (upper panel) and zoom-in SEM images (lower panel) for different parts of the OPA taken after n/p metallization.
Fig. 19
Fig. 19 (a) Optical microscope image of the probed 32-channel OPA under test (upper panel). Lower panel: zoom-in image of the tested chip. (b) I-V curves of the 32 phase shifters. The inset shows the zoom-in data around −1 V bias.
Fig. 20
Fig. 20 (a) Far-field images of the beam after different iterations of i = 0, 5, and 25, steered at ψ = 0 at the wavelength of 1550 nm. (b) Beam profiles in a 3D plot along ψ axis corresponding to the images in (a).
Fig. 21
Fig. 21 (a) Beam profiles with the beam steering over 22° in ψ axis at a 2.8° increment at 1550 nm wavelength in the 4µm-pitch OPA with the 4µm grating pitch as well. (b) Beam profiles of the OPA with a 2 µm grating pitch and the beam steering across 51° in ψ axis at a 4.6° increment at 1550 nm.
Fig. 22
Fig. 22 (a) IR images of far field beams for the wavelength tuning from 1450 nm to 1650 nm with a 20 nm increment. (b) Beam profiles along θ axis (ψ = 0) by tuning the wavelength from 1450 nm to 1650 nm (right to left) at a 10 nm increment.
Fig. 23
Fig. 23 Plots of 2D beam profiles steering in θ and ψ axes with a wavelength tuning range from 1520 nm to 1580 nm in the OPAs with 4 µm (a) and 2 µm (b) grating pitch respectively.