Abstract

Generally, the fabrication of curved structures such as microlens arrays has been regarded as an expensive and complicated process. Here, we propose a facile method to form a microlens array with controlled lens curvature by combining residue-free nanoimprint lithography (NIL) with V-shaped molds and the successive thermal reflow procedure of the printed polymeric structures. The V-shaped molds used in this study enable the bottom substrate to be exposed after the NIL process when the initial thickness is controlled. Then, we use the thermal reflow to realize hemi-cylindrical curved lenses by applying heat. The polymers are self-pinned on the exposed substrate, which is strong enough to fix the boundary to not dewet or be flattened in the broad temperature range of the reflow process, which is essential for a large-area fabrication. Furthermore, we demonstrate the modulation of the focal lengths of the lenses by controlling the initial polymer thickness coated on a substrate.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Fabrication of polymer microlens array with controllable focal length by modifying surface wettability

Qiao Xu, Bo Dai, Yu Huang, Huansi Wang, Zhuoqing Yang, Kaimin Wang, Songlin Zhuang, and Dawei Zhang
Opt. Express 26(4) 4172-4182 (2018)

Fabrication of high fill factor cylindrical microlens array with isolated thermal reflow

Jinfeng Qiu, Mujun Li, Huichun Ye, Chen Yang, and Cuicui Shi
Appl. Opt. 57(25) 7296-7302 (2018)

Fabrication of polymer microlens arrays using capillary forming with a soft mold of micro-holes array and UV-curable polymer

Chih-Yuan Chang, Sen-Yeu Yang, Long-Sun Huang, and Kuo-Huang Hsieh
Opt. Express 14(13) 6253-6258 (2006)

References

  • View by:
  • |
  • |
  • |

  1. Y. Fu and B. K. A. Ngoi, “Investigation of diffractive-refractive microlens array fabricated by focused ion beam technology,” Opt. Eng. 40(4), 511–517 (2001).
    [Crossref]
  2. J. Long-Wen, H. Yin-Lei, W. Yan, Q. Bing, and Z. Wen-xing, “Preparation of a self-focusing lens for optical communication,” Optics and Precision Engineering 5, 012 (2002).
  3. H. Ren, Y.-H. Fan, Y.-H. Lin, and S.-T. Wu, “Tunable-focus microlens arrays using nanosized polymer-dispersed liquid crystal droplets,” Opt. Commun. 247(1-3), 101–106 (2005).
    [Crossref]
  4. P. Dannberg, L. Erdmann, R. Bierbaum, A. Krehl, A. Bräuer, and E. B. Kley, “Micro-optical elements and their integration to glass and optoelectronic wafers,” Microsyst. Technol. 6, 41–47 (1999).
    [Crossref]
  5. W.-K. Choi, S.-H. Kim, and E.-S. Lee, “Electrochemical micro machining characteristics of Fe 64 Ni 36 invar film using micro WC rod electrode,” Microsyst. Technol. 23(2), 405–410 (2017).
    [Crossref]
  6. S. James and A. Sonate, “Experimental study on micromachining of CFRP/Ti stacks using micro ultrasonic machining process,” Int. J. Adv. Manuf. Tech. 95(1-4), 1539–1547 (2018).
    [Crossref]
  7. L. Li, W. Nie, Z. Li, Q. Lu, C. Romero, J. R. Vázquez de Aldana, and F. Chen, “All-laser-micromachining of ridge waveguides in LiNbO3 crystal for mid-infrared band applications,” Sci. Rep. 7(1), 7034 (2017).
    [Crossref] [PubMed]
  8. H. He, N. Qu, Y. Zeng, and Y. Yao, “Enhancement of mass transport in wire electrochemical micro-machining by using a micro-wire with surface microstructures,” Int. J. Adv. Manuf. Tech. 89(9-12), 3177–3186 (2017).
    [Crossref]
  9. V. Rathod, B. Doloi, and B. Bhattacharyya, “Fabrication of microgrooves with varied cross-sections by electrochemical micromachining,” Int. J. Adv. Manuf. Tech. 92(1-4), 505–518 (2017).
    [Crossref]
  10. C. S. Lau, C. Khor, D. Soares, J. Teixeira, and M. Abdullah, “Thermo-mechanical challenges of reflowed lead-free solder joints in surface mount components: a review,” Solder. Surf. Mt. Technol. 28(2), 41–62 (2016).
    [Crossref]
  11. S.-I. Chang and J.-B. Yoon, “Shape-controlled, high fill-factor microlens arrays fabricated by a 3D diffuser lithography and plastic replication method,” Opt. Express 12(25), 6366–6371 (2004).
    [Crossref] [PubMed]
  12. H. Schift, C. Spreu, A. Schleunitz, and J. J. Lee, “Shape control of polymer reflow structures fabricated by nanoimprint lithography,” Microelectron. Eng. 88(1), 87–92 (2011).
    [Crossref]
  13. C. Peng, X. Liang, Z. Fu, and S. Y. Chou, “High fidelity fabrication of microlens arrays by nanoimprint using conformal mold duplication and low-pressure liquid material curing,” J. Vac. Sci. Technol. B 25(2), 410 (2007).
    [Crossref]
  14. E. Rognin, S. Landis, and L. Davoust, “Dewetting of the residual layer of annealed nanoimprinted polystyrene films,” Microelectron. Eng. 141, 198–202 (2015).
    [Crossref]
  15. A. Schleunitz, C. Spreu, M. Vogler, H. Atasoy, and H. Schift, “Combining nanoimprint lithography and a molecular weight selective thermal reflow for the generation of mixed 3D structures,” J. Vac. Sci. Technol. B 29(6), 06FC01 (2011).
    [Crossref]
  16. J. J. Chae, S. H. Lee, and K. Y. Suh, “Fabrication of Multiscale Gradient Polymer Patterns by Direct Molding and Spatially Controlled Reflow,” Adv. Funct. Mater. 21(6), 1147–1153 (2010).
    [Crossref]
  17. K. Ishihara, M. Fujita, I. Matsubara, T. Asano, S. Noda, H. Ohata, A. Hirasawa, H. Nakada, and N. Shimoji, “Organic light-emitting diodes with photonic crystals on glass substrate fabricated by nanoimprint lithography,” Appl. Phys. Lett. 90(11), 111114 (2007).
    [Crossref]
  18. T. Senn, J. Bischoff, N. Nüsse, M. Schoengen, and B. Löchel, “Fabrication of photonic crystals for applications in the visible range by nanoimprint lithography,” Photon. Nanostructures 9(3), 248–254 (2011).
    [Crossref]
  19. J. L. Charest, M. T. Eliason, A. J. García, and W. P. King, “Combined microscale mechanical topography and chemical patterns on polymer cell culture substrates,” Biomaterials 27(11), 2487–2494 (2006).
    [Crossref] [PubMed]
  20. W. Hu, E. K. Yim, R. M. Reano, K. W. Leong, and S. W. Pang, “Effects of nanoimprinted patterns in tissue-culture polystyrene on cell behavior,” J. Vac. Sci. Technol. A 23(6), 2984–2989 (2005).
    [Crossref] [PubMed]
  21. K. Sakoda and M. Van de Voorde, Micro-and Nanophotonic Technologies (John Wiley & Sons, 2017).
  22. M. D. Austin and S. Y. Chou, “Fabrication of 70 nm channel length polymer organic thin-film transistors using nanoimprint lithography,” Appl. Phys. Lett. 81(23), 4431–4433 (2002).
    [Crossref]
  23. S. H. Kim, K.-D. Lee, J.-Y. Kim, M.-K. Kwon, and S.-J. Park, “Fabrication of photonic crystal structures on light emitting diodes by nanoimprint lithography,” Nanotechnology 18(5), 055306 (2007).
    [Crossref]
  24. M. Li, H. Tan, L. Chen, J. Wang, and S. Y. Chou, “Large area direct nanoimprinting of SiO2–TiO2 gel gratings for optical applications,” J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 21(2), 660–663 (2003).
    [Crossref]
  25. J. Zhang, L. Zhang, L. Han, Z.-W. Tian, Z.-Q. Tian, and D. Zhan, “Electrochemical nanoimprint lithography: when nanoimprint lithography meets metal assisted chemical etching,” Nanoscale 9(22), 7476–7482 (2017).
    [Crossref] [PubMed]
  26. Y. H. Kang, J. H. Han, S. Y. Cho, and C.-G. Choi, “Resist-free antireflective nanostructured film fabricated by thermal-NIL,” Nano Converg. 1(1), 19 (2014).
    [Crossref] [PubMed]
  27. I. Zadorozhnyi, J. Li, S. Pud, M. Petrychuk, and S. Vitusevich, “Single-trap kinetic in Si nanowire FETs: effect of gamma radiation treatment,” MRS Adv. 1(56), 3755–3760 (2016).
    [Crossref]
  28. J. G. Ok, Y. J. Shin, H. J. Park, and L. J. Guo, “A step toward next-generation nanoimprint lithography: extending productivity and applicability,” Appl. Phys., A Mater. Sci. Process. 121(2), 343–356 (2015).
    [Crossref]
  29. H. Schift, “Nanoimprint lithography: An old story in modern times? A review,” J. Vac. Sci. Technol. B 26(2), 458–480 (2008).
  30. H. Yoon, H. Lee, and W. B. Lee, “Toward residual-layer-free nanoimprint lithography in large-area fabrication,” Korea-Aust. Rheol. J. 26, 39–48 (2014).
  31. H. Yoon, K. M. Lee, D. Y. Khang, H. H. Lee, and S. J. Choi, “Rapid flash patterning of nanostructures,” Appl. Phys. Lett. 85(10), 1793–1795 (2004).
    [Crossref]
  32. C. Acikgoz, M. A. Hempenius, J. Huskens, and G. J. Vancso, “Polymers in conventional and alternative lithography for the fabrication of nanostructures,” Eur. Polym. J. 47(11), 2033–2052 (2011).
    [Crossref]
  33. R. Claudy, J. M. Létoffé, Y. Camberlain, and J. R. Pascault, “Glass Transition of Polystyrene Versus Molecular Weight,” Polym. Bull. 9, 208–215 (1983).
    [Crossref]
  34. H. C. Scheer, N. Bogdanski, M. Wissen, and S. Mollenbeck, “Imprintability of polymers for thermal nanoimprint,” Microelectron. Eng. 85(5-6), 890–896 (2008).
    [Crossref]
  35. H.-K. Lee, S.-I. Chang, and E. Yoon, “A flexible polymer tactile sensor: Fabrication and modular expandability for large area deployment,” J. Microelectromech. Syst. 15(6), 1681–1686 (2006).
    [Crossref]
  36. H.-L. Zhang, D. G. Bucknall, and A. Dupuis, “Uniform nanoscopic polystyrene patterns produced from a microscopic mold,” Nano Lett. 4(8), 1513–1519 (2004).
    [Crossref] [PubMed]
  37. B. Radha and G. U. Kulkarni, “Dewetting assisted patterning of polystyrene by soft lithography to create nanotrenches for nanomaterial deposition,” ACS Appl. Mater. Interfaces 1(2), 257–260 (2009).
    [Crossref] [PubMed]
  38. J. Becker, G. Grün, R. Seemann, H. Mantz, K. Jacobs, K. R. Mecke, and R. Blossey, “Complex dewetting scenarios captured by thin-film models,” Nat. Mater. 2(1), 59–63 (2003).
    [Crossref] [PubMed]
  39. J. Peng, R. Xing, Y. Wu, B. Li, Y. Han, W. Knoll, and D. H. Kim, “Dewetting of thin polystyrene films under confinement,” Langmuir 23(5), 2326–2329 (2007).
    [Crossref] [PubMed]
  40. J. Brandrup, E. H. Immergut, E. A. Grulke, A. Abe, and D. R. Bloch, Polymer handbook. 3rd edn, (Wiley New York etc, 1989).
  41. Q. Xu, B. Dai, Y. Huang, H. Wang, Z. Yang, K. Wang, S. Zhuang, and D. Zhang, “Fabrication of polymer microlens array with controllable focal length by modifying surface wettability,” Opt. Express 26(4), 4172–4182 (2018).
    [Crossref] [PubMed]

2018 (2)

S. James and A. Sonate, “Experimental study on micromachining of CFRP/Ti stacks using micro ultrasonic machining process,” Int. J. Adv. Manuf. Tech. 95(1-4), 1539–1547 (2018).
[Crossref]

Q. Xu, B. Dai, Y. Huang, H. Wang, Z. Yang, K. Wang, S. Zhuang, and D. Zhang, “Fabrication of polymer microlens array with controllable focal length by modifying surface wettability,” Opt. Express 26(4), 4172–4182 (2018).
[Crossref] [PubMed]

2017 (5)

W.-K. Choi, S.-H. Kim, and E.-S. Lee, “Electrochemical micro machining characteristics of Fe 64 Ni 36 invar film using micro WC rod electrode,” Microsyst. Technol. 23(2), 405–410 (2017).
[Crossref]

L. Li, W. Nie, Z. Li, Q. Lu, C. Romero, J. R. Vázquez de Aldana, and F. Chen, “All-laser-micromachining of ridge waveguides in LiNbO3 crystal for mid-infrared band applications,” Sci. Rep. 7(1), 7034 (2017).
[Crossref] [PubMed]

H. He, N. Qu, Y. Zeng, and Y. Yao, “Enhancement of mass transport in wire electrochemical micro-machining by using a micro-wire with surface microstructures,” Int. J. Adv. Manuf. Tech. 89(9-12), 3177–3186 (2017).
[Crossref]

V. Rathod, B. Doloi, and B. Bhattacharyya, “Fabrication of microgrooves with varied cross-sections by electrochemical micromachining,” Int. J. Adv. Manuf. Tech. 92(1-4), 505–518 (2017).
[Crossref]

J. Zhang, L. Zhang, L. Han, Z.-W. Tian, Z.-Q. Tian, and D. Zhan, “Electrochemical nanoimprint lithography: when nanoimprint lithography meets metal assisted chemical etching,” Nanoscale 9(22), 7476–7482 (2017).
[Crossref] [PubMed]

2016 (2)

I. Zadorozhnyi, J. Li, S. Pud, M. Petrychuk, and S. Vitusevich, “Single-trap kinetic in Si nanowire FETs: effect of gamma radiation treatment,” MRS Adv. 1(56), 3755–3760 (2016).
[Crossref]

C. S. Lau, C. Khor, D. Soares, J. Teixeira, and M. Abdullah, “Thermo-mechanical challenges of reflowed lead-free solder joints in surface mount components: a review,” Solder. Surf. Mt. Technol. 28(2), 41–62 (2016).
[Crossref]

2015 (2)

J. G. Ok, Y. J. Shin, H. J. Park, and L. J. Guo, “A step toward next-generation nanoimprint lithography: extending productivity and applicability,” Appl. Phys., A Mater. Sci. Process. 121(2), 343–356 (2015).
[Crossref]

E. Rognin, S. Landis, and L. Davoust, “Dewetting of the residual layer of annealed nanoimprinted polystyrene films,” Microelectron. Eng. 141, 198–202 (2015).
[Crossref]

2014 (2)

Y. H. Kang, J. H. Han, S. Y. Cho, and C.-G. Choi, “Resist-free antireflective nanostructured film fabricated by thermal-NIL,” Nano Converg. 1(1), 19 (2014).
[Crossref] [PubMed]

H. Yoon, H. Lee, and W. B. Lee, “Toward residual-layer-free nanoimprint lithography in large-area fabrication,” Korea-Aust. Rheol. J. 26, 39–48 (2014).

2011 (4)

C. Acikgoz, M. A. Hempenius, J. Huskens, and G. J. Vancso, “Polymers in conventional and alternative lithography for the fabrication of nanostructures,” Eur. Polym. J. 47(11), 2033–2052 (2011).
[Crossref]

H. Schift, C. Spreu, A. Schleunitz, and J. J. Lee, “Shape control of polymer reflow structures fabricated by nanoimprint lithography,” Microelectron. Eng. 88(1), 87–92 (2011).
[Crossref]

A. Schleunitz, C. Spreu, M. Vogler, H. Atasoy, and H. Schift, “Combining nanoimprint lithography and a molecular weight selective thermal reflow for the generation of mixed 3D structures,” J. Vac. Sci. Technol. B 29(6), 06FC01 (2011).
[Crossref]

T. Senn, J. Bischoff, N. Nüsse, M. Schoengen, and B. Löchel, “Fabrication of photonic crystals for applications in the visible range by nanoimprint lithography,” Photon. Nanostructures 9(3), 248–254 (2011).
[Crossref]

2010 (1)

J. J. Chae, S. H. Lee, and K. Y. Suh, “Fabrication of Multiscale Gradient Polymer Patterns by Direct Molding and Spatially Controlled Reflow,” Adv. Funct. Mater. 21(6), 1147–1153 (2010).
[Crossref]

2009 (1)

B. Radha and G. U. Kulkarni, “Dewetting assisted patterning of polystyrene by soft lithography to create nanotrenches for nanomaterial deposition,” ACS Appl. Mater. Interfaces 1(2), 257–260 (2009).
[Crossref] [PubMed]

2008 (2)

H. C. Scheer, N. Bogdanski, M. Wissen, and S. Mollenbeck, “Imprintability of polymers for thermal nanoimprint,” Microelectron. Eng. 85(5-6), 890–896 (2008).
[Crossref]

H. Schift, “Nanoimprint lithography: An old story in modern times? A review,” J. Vac. Sci. Technol. B 26(2), 458–480 (2008).

2007 (4)

C. Peng, X. Liang, Z. Fu, and S. Y. Chou, “High fidelity fabrication of microlens arrays by nanoimprint using conformal mold duplication and low-pressure liquid material curing,” J. Vac. Sci. Technol. B 25(2), 410 (2007).
[Crossref]

S. H. Kim, K.-D. Lee, J.-Y. Kim, M.-K. Kwon, and S.-J. Park, “Fabrication of photonic crystal structures on light emitting diodes by nanoimprint lithography,” Nanotechnology 18(5), 055306 (2007).
[Crossref]

K. Ishihara, M. Fujita, I. Matsubara, T. Asano, S. Noda, H. Ohata, A. Hirasawa, H. Nakada, and N. Shimoji, “Organic light-emitting diodes with photonic crystals on glass substrate fabricated by nanoimprint lithography,” Appl. Phys. Lett. 90(11), 111114 (2007).
[Crossref]

J. Peng, R. Xing, Y. Wu, B. Li, Y. Han, W. Knoll, and D. H. Kim, “Dewetting of thin polystyrene films under confinement,” Langmuir 23(5), 2326–2329 (2007).
[Crossref] [PubMed]

2006 (2)

H.-K. Lee, S.-I. Chang, and E. Yoon, “A flexible polymer tactile sensor: Fabrication and modular expandability for large area deployment,” J. Microelectromech. Syst. 15(6), 1681–1686 (2006).
[Crossref]

J. L. Charest, M. T. Eliason, A. J. García, and W. P. King, “Combined microscale mechanical topography and chemical patterns on polymer cell culture substrates,” Biomaterials 27(11), 2487–2494 (2006).
[Crossref] [PubMed]

2005 (2)

W. Hu, E. K. Yim, R. M. Reano, K. W. Leong, and S. W. Pang, “Effects of nanoimprinted patterns in tissue-culture polystyrene on cell behavior,” J. Vac. Sci. Technol. A 23(6), 2984–2989 (2005).
[Crossref] [PubMed]

H. Ren, Y.-H. Fan, Y.-H. Lin, and S.-T. Wu, “Tunable-focus microlens arrays using nanosized polymer-dispersed liquid crystal droplets,” Opt. Commun. 247(1-3), 101–106 (2005).
[Crossref]

2004 (3)

S.-I. Chang and J.-B. Yoon, “Shape-controlled, high fill-factor microlens arrays fabricated by a 3D diffuser lithography and plastic replication method,” Opt. Express 12(25), 6366–6371 (2004).
[Crossref] [PubMed]

H.-L. Zhang, D. G. Bucknall, and A. Dupuis, “Uniform nanoscopic polystyrene patterns produced from a microscopic mold,” Nano Lett. 4(8), 1513–1519 (2004).
[Crossref] [PubMed]

H. Yoon, K. M. Lee, D. Y. Khang, H. H. Lee, and S. J. Choi, “Rapid flash patterning of nanostructures,” Appl. Phys. Lett. 85(10), 1793–1795 (2004).
[Crossref]

2003 (2)

J. Becker, G. Grün, R. Seemann, H. Mantz, K. Jacobs, K. R. Mecke, and R. Blossey, “Complex dewetting scenarios captured by thin-film models,” Nat. Mater. 2(1), 59–63 (2003).
[Crossref] [PubMed]

M. Li, H. Tan, L. Chen, J. Wang, and S. Y. Chou, “Large area direct nanoimprinting of SiO2–TiO2 gel gratings for optical applications,” J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 21(2), 660–663 (2003).
[Crossref]

2002 (2)

M. D. Austin and S. Y. Chou, “Fabrication of 70 nm channel length polymer organic thin-film transistors using nanoimprint lithography,” Appl. Phys. Lett. 81(23), 4431–4433 (2002).
[Crossref]

J. Long-Wen, H. Yin-Lei, W. Yan, Q. Bing, and Z. Wen-xing, “Preparation of a self-focusing lens for optical communication,” Optics and Precision Engineering 5, 012 (2002).

2001 (1)

Y. Fu and B. K. A. Ngoi, “Investigation of diffractive-refractive microlens array fabricated by focused ion beam technology,” Opt. Eng. 40(4), 511–517 (2001).
[Crossref]

1999 (1)

P. Dannberg, L. Erdmann, R. Bierbaum, A. Krehl, A. Bräuer, and E. B. Kley, “Micro-optical elements and their integration to glass and optoelectronic wafers,” Microsyst. Technol. 6, 41–47 (1999).
[Crossref]

1983 (1)

R. Claudy, J. M. Létoffé, Y. Camberlain, and J. R. Pascault, “Glass Transition of Polystyrene Versus Molecular Weight,” Polym. Bull. 9, 208–215 (1983).
[Crossref]

Abdullah, M.

C. S. Lau, C. Khor, D. Soares, J. Teixeira, and M. Abdullah, “Thermo-mechanical challenges of reflowed lead-free solder joints in surface mount components: a review,” Solder. Surf. Mt. Technol. 28(2), 41–62 (2016).
[Crossref]

Acikgoz, C.

C. Acikgoz, M. A. Hempenius, J. Huskens, and G. J. Vancso, “Polymers in conventional and alternative lithography for the fabrication of nanostructures,” Eur. Polym. J. 47(11), 2033–2052 (2011).
[Crossref]

Asano, T.

K. Ishihara, M. Fujita, I. Matsubara, T. Asano, S. Noda, H. Ohata, A. Hirasawa, H. Nakada, and N. Shimoji, “Organic light-emitting diodes with photonic crystals on glass substrate fabricated by nanoimprint lithography,” Appl. Phys. Lett. 90(11), 111114 (2007).
[Crossref]

Atasoy, H.

A. Schleunitz, C. Spreu, M. Vogler, H. Atasoy, and H. Schift, “Combining nanoimprint lithography and a molecular weight selective thermal reflow for the generation of mixed 3D structures,” J. Vac. Sci. Technol. B 29(6), 06FC01 (2011).
[Crossref]

Austin, M. D.

M. D. Austin and S. Y. Chou, “Fabrication of 70 nm channel length polymer organic thin-film transistors using nanoimprint lithography,” Appl. Phys. Lett. 81(23), 4431–4433 (2002).
[Crossref]

Becker, J.

J. Becker, G. Grün, R. Seemann, H. Mantz, K. Jacobs, K. R. Mecke, and R. Blossey, “Complex dewetting scenarios captured by thin-film models,” Nat. Mater. 2(1), 59–63 (2003).
[Crossref] [PubMed]

Bhattacharyya, B.

V. Rathod, B. Doloi, and B. Bhattacharyya, “Fabrication of microgrooves with varied cross-sections by electrochemical micromachining,” Int. J. Adv. Manuf. Tech. 92(1-4), 505–518 (2017).
[Crossref]

Bierbaum, R.

P. Dannberg, L. Erdmann, R. Bierbaum, A. Krehl, A. Bräuer, and E. B. Kley, “Micro-optical elements and their integration to glass and optoelectronic wafers,” Microsyst. Technol. 6, 41–47 (1999).
[Crossref]

Bing, Q.

J. Long-Wen, H. Yin-Lei, W. Yan, Q. Bing, and Z. Wen-xing, “Preparation of a self-focusing lens for optical communication,” Optics and Precision Engineering 5, 012 (2002).

Bischoff, J.

T. Senn, J. Bischoff, N. Nüsse, M. Schoengen, and B. Löchel, “Fabrication of photonic crystals for applications in the visible range by nanoimprint lithography,” Photon. Nanostructures 9(3), 248–254 (2011).
[Crossref]

Blossey, R.

J. Becker, G. Grün, R. Seemann, H. Mantz, K. Jacobs, K. R. Mecke, and R. Blossey, “Complex dewetting scenarios captured by thin-film models,” Nat. Mater. 2(1), 59–63 (2003).
[Crossref] [PubMed]

Bogdanski, N.

H. C. Scheer, N. Bogdanski, M. Wissen, and S. Mollenbeck, “Imprintability of polymers for thermal nanoimprint,” Microelectron. Eng. 85(5-6), 890–896 (2008).
[Crossref]

Bräuer, A.

P. Dannberg, L. Erdmann, R. Bierbaum, A. Krehl, A. Bräuer, and E. B. Kley, “Micro-optical elements and their integration to glass and optoelectronic wafers,” Microsyst. Technol. 6, 41–47 (1999).
[Crossref]

Bucknall, D. G.

H.-L. Zhang, D. G. Bucknall, and A. Dupuis, “Uniform nanoscopic polystyrene patterns produced from a microscopic mold,” Nano Lett. 4(8), 1513–1519 (2004).
[Crossref] [PubMed]

Camberlain, Y.

R. Claudy, J. M. Létoffé, Y. Camberlain, and J. R. Pascault, “Glass Transition of Polystyrene Versus Molecular Weight,” Polym. Bull. 9, 208–215 (1983).
[Crossref]

Chae, J. J.

J. J. Chae, S. H. Lee, and K. Y. Suh, “Fabrication of Multiscale Gradient Polymer Patterns by Direct Molding and Spatially Controlled Reflow,” Adv. Funct. Mater. 21(6), 1147–1153 (2010).
[Crossref]

Chang, S.-I.

H.-K. Lee, S.-I. Chang, and E. Yoon, “A flexible polymer tactile sensor: Fabrication and modular expandability for large area deployment,” J. Microelectromech. Syst. 15(6), 1681–1686 (2006).
[Crossref]

S.-I. Chang and J.-B. Yoon, “Shape-controlled, high fill-factor microlens arrays fabricated by a 3D diffuser lithography and plastic replication method,” Opt. Express 12(25), 6366–6371 (2004).
[Crossref] [PubMed]

Charest, J. L.

J. L. Charest, M. T. Eliason, A. J. García, and W. P. King, “Combined microscale mechanical topography and chemical patterns on polymer cell culture substrates,” Biomaterials 27(11), 2487–2494 (2006).
[Crossref] [PubMed]

Chen, F.

L. Li, W. Nie, Z. Li, Q. Lu, C. Romero, J. R. Vázquez de Aldana, and F. Chen, “All-laser-micromachining of ridge waveguides in LiNbO3 crystal for mid-infrared band applications,” Sci. Rep. 7(1), 7034 (2017).
[Crossref] [PubMed]

Chen, L.

M. Li, H. Tan, L. Chen, J. Wang, and S. Y. Chou, “Large area direct nanoimprinting of SiO2–TiO2 gel gratings for optical applications,” J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 21(2), 660–663 (2003).
[Crossref]

Cho, S. Y.

Y. H. Kang, J. H. Han, S. Y. Cho, and C.-G. Choi, “Resist-free antireflective nanostructured film fabricated by thermal-NIL,” Nano Converg. 1(1), 19 (2014).
[Crossref] [PubMed]

Choi, C.-G.

Y. H. Kang, J. H. Han, S. Y. Cho, and C.-G. Choi, “Resist-free antireflective nanostructured film fabricated by thermal-NIL,” Nano Converg. 1(1), 19 (2014).
[Crossref] [PubMed]

Choi, S. J.

H. Yoon, K. M. Lee, D. Y. Khang, H. H. Lee, and S. J. Choi, “Rapid flash patterning of nanostructures,” Appl. Phys. Lett. 85(10), 1793–1795 (2004).
[Crossref]

Choi, W.-K.

W.-K. Choi, S.-H. Kim, and E.-S. Lee, “Electrochemical micro machining characteristics of Fe 64 Ni 36 invar film using micro WC rod electrode,” Microsyst. Technol. 23(2), 405–410 (2017).
[Crossref]

Chou, S. Y.

C. Peng, X. Liang, Z. Fu, and S. Y. Chou, “High fidelity fabrication of microlens arrays by nanoimprint using conformal mold duplication and low-pressure liquid material curing,” J. Vac. Sci. Technol. B 25(2), 410 (2007).
[Crossref]

M. Li, H. Tan, L. Chen, J. Wang, and S. Y. Chou, “Large area direct nanoimprinting of SiO2–TiO2 gel gratings for optical applications,” J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 21(2), 660–663 (2003).
[Crossref]

M. D. Austin and S. Y. Chou, “Fabrication of 70 nm channel length polymer organic thin-film transistors using nanoimprint lithography,” Appl. Phys. Lett. 81(23), 4431–4433 (2002).
[Crossref]

Claudy, R.

R. Claudy, J. M. Létoffé, Y. Camberlain, and J. R. Pascault, “Glass Transition of Polystyrene Versus Molecular Weight,” Polym. Bull. 9, 208–215 (1983).
[Crossref]

Dai, B.

Dannberg, P.

P. Dannberg, L. Erdmann, R. Bierbaum, A. Krehl, A. Bräuer, and E. B. Kley, “Micro-optical elements and their integration to glass and optoelectronic wafers,” Microsyst. Technol. 6, 41–47 (1999).
[Crossref]

Davoust, L.

E. Rognin, S. Landis, and L. Davoust, “Dewetting of the residual layer of annealed nanoimprinted polystyrene films,” Microelectron. Eng. 141, 198–202 (2015).
[Crossref]

Doloi, B.

V. Rathod, B. Doloi, and B. Bhattacharyya, “Fabrication of microgrooves with varied cross-sections by electrochemical micromachining,” Int. J. Adv. Manuf. Tech. 92(1-4), 505–518 (2017).
[Crossref]

Dupuis, A.

H.-L. Zhang, D. G. Bucknall, and A. Dupuis, “Uniform nanoscopic polystyrene patterns produced from a microscopic mold,” Nano Lett. 4(8), 1513–1519 (2004).
[Crossref] [PubMed]

Eliason, M. T.

J. L. Charest, M. T. Eliason, A. J. García, and W. P. King, “Combined microscale mechanical topography and chemical patterns on polymer cell culture substrates,” Biomaterials 27(11), 2487–2494 (2006).
[Crossref] [PubMed]

Erdmann, L.

P. Dannberg, L. Erdmann, R. Bierbaum, A. Krehl, A. Bräuer, and E. B. Kley, “Micro-optical elements and their integration to glass and optoelectronic wafers,” Microsyst. Technol. 6, 41–47 (1999).
[Crossref]

Fan, Y.-H.

H. Ren, Y.-H. Fan, Y.-H. Lin, and S.-T. Wu, “Tunable-focus microlens arrays using nanosized polymer-dispersed liquid crystal droplets,” Opt. Commun. 247(1-3), 101–106 (2005).
[Crossref]

Fu, Y.

Y. Fu and B. K. A. Ngoi, “Investigation of diffractive-refractive microlens array fabricated by focused ion beam technology,” Opt. Eng. 40(4), 511–517 (2001).
[Crossref]

Fu, Z.

C. Peng, X. Liang, Z. Fu, and S. Y. Chou, “High fidelity fabrication of microlens arrays by nanoimprint using conformal mold duplication and low-pressure liquid material curing,” J. Vac. Sci. Technol. B 25(2), 410 (2007).
[Crossref]

Fujita, M.

K. Ishihara, M. Fujita, I. Matsubara, T. Asano, S. Noda, H. Ohata, A. Hirasawa, H. Nakada, and N. Shimoji, “Organic light-emitting diodes with photonic crystals on glass substrate fabricated by nanoimprint lithography,” Appl. Phys. Lett. 90(11), 111114 (2007).
[Crossref]

García, A. J.

J. L. Charest, M. T. Eliason, A. J. García, and W. P. King, “Combined microscale mechanical topography and chemical patterns on polymer cell culture substrates,” Biomaterials 27(11), 2487–2494 (2006).
[Crossref] [PubMed]

Grün, G.

J. Becker, G. Grün, R. Seemann, H. Mantz, K. Jacobs, K. R. Mecke, and R. Blossey, “Complex dewetting scenarios captured by thin-film models,” Nat. Mater. 2(1), 59–63 (2003).
[Crossref] [PubMed]

Guo, L. J.

J. G. Ok, Y. J. Shin, H. J. Park, and L. J. Guo, “A step toward next-generation nanoimprint lithography: extending productivity and applicability,” Appl. Phys., A Mater. Sci. Process. 121(2), 343–356 (2015).
[Crossref]

Han, J. H.

Y. H. Kang, J. H. Han, S. Y. Cho, and C.-G. Choi, “Resist-free antireflective nanostructured film fabricated by thermal-NIL,” Nano Converg. 1(1), 19 (2014).
[Crossref] [PubMed]

Han, L.

J. Zhang, L. Zhang, L. Han, Z.-W. Tian, Z.-Q. Tian, and D. Zhan, “Electrochemical nanoimprint lithography: when nanoimprint lithography meets metal assisted chemical etching,” Nanoscale 9(22), 7476–7482 (2017).
[Crossref] [PubMed]

Han, Y.

J. Peng, R. Xing, Y. Wu, B. Li, Y. Han, W. Knoll, and D. H. Kim, “Dewetting of thin polystyrene films under confinement,” Langmuir 23(5), 2326–2329 (2007).
[Crossref] [PubMed]

He, H.

H. He, N. Qu, Y. Zeng, and Y. Yao, “Enhancement of mass transport in wire electrochemical micro-machining by using a micro-wire with surface microstructures,” Int. J. Adv. Manuf. Tech. 89(9-12), 3177–3186 (2017).
[Crossref]

Hempenius, M. A.

C. Acikgoz, M. A. Hempenius, J. Huskens, and G. J. Vancso, “Polymers in conventional and alternative lithography for the fabrication of nanostructures,” Eur. Polym. J. 47(11), 2033–2052 (2011).
[Crossref]

Hirasawa, A.

K. Ishihara, M. Fujita, I. Matsubara, T. Asano, S. Noda, H. Ohata, A. Hirasawa, H. Nakada, and N. Shimoji, “Organic light-emitting diodes with photonic crystals on glass substrate fabricated by nanoimprint lithography,” Appl. Phys. Lett. 90(11), 111114 (2007).
[Crossref]

Hu, W.

W. Hu, E. K. Yim, R. M. Reano, K. W. Leong, and S. W. Pang, “Effects of nanoimprinted patterns in tissue-culture polystyrene on cell behavior,” J. Vac. Sci. Technol. A 23(6), 2984–2989 (2005).
[Crossref] [PubMed]

Huang, Y.

Huskens, J.

C. Acikgoz, M. A. Hempenius, J. Huskens, and G. J. Vancso, “Polymers in conventional and alternative lithography for the fabrication of nanostructures,” Eur. Polym. J. 47(11), 2033–2052 (2011).
[Crossref]

Ishihara, K.

K. Ishihara, M. Fujita, I. Matsubara, T. Asano, S. Noda, H. Ohata, A. Hirasawa, H. Nakada, and N. Shimoji, “Organic light-emitting diodes with photonic crystals on glass substrate fabricated by nanoimprint lithography,” Appl. Phys. Lett. 90(11), 111114 (2007).
[Crossref]

Jacobs, K.

J. Becker, G. Grün, R. Seemann, H. Mantz, K. Jacobs, K. R. Mecke, and R. Blossey, “Complex dewetting scenarios captured by thin-film models,” Nat. Mater. 2(1), 59–63 (2003).
[Crossref] [PubMed]

James, S.

S. James and A. Sonate, “Experimental study on micromachining of CFRP/Ti stacks using micro ultrasonic machining process,” Int. J. Adv. Manuf. Tech. 95(1-4), 1539–1547 (2018).
[Crossref]

Kang, Y. H.

Y. H. Kang, J. H. Han, S. Y. Cho, and C.-G. Choi, “Resist-free antireflective nanostructured film fabricated by thermal-NIL,” Nano Converg. 1(1), 19 (2014).
[Crossref] [PubMed]

Khang, D. Y.

H. Yoon, K. M. Lee, D. Y. Khang, H. H. Lee, and S. J. Choi, “Rapid flash patterning of nanostructures,” Appl. Phys. Lett. 85(10), 1793–1795 (2004).
[Crossref]

Khor, C.

C. S. Lau, C. Khor, D. Soares, J. Teixeira, and M. Abdullah, “Thermo-mechanical challenges of reflowed lead-free solder joints in surface mount components: a review,” Solder. Surf. Mt. Technol. 28(2), 41–62 (2016).
[Crossref]

Kim, D. H.

J. Peng, R. Xing, Y. Wu, B. Li, Y. Han, W. Knoll, and D. H. Kim, “Dewetting of thin polystyrene films under confinement,” Langmuir 23(5), 2326–2329 (2007).
[Crossref] [PubMed]

Kim, J.-Y.

S. H. Kim, K.-D. Lee, J.-Y. Kim, M.-K. Kwon, and S.-J. Park, “Fabrication of photonic crystal structures on light emitting diodes by nanoimprint lithography,” Nanotechnology 18(5), 055306 (2007).
[Crossref]

Kim, S. H.

S. H. Kim, K.-D. Lee, J.-Y. Kim, M.-K. Kwon, and S.-J. Park, “Fabrication of photonic crystal structures on light emitting diodes by nanoimprint lithography,” Nanotechnology 18(5), 055306 (2007).
[Crossref]

Kim, S.-H.

W.-K. Choi, S.-H. Kim, and E.-S. Lee, “Electrochemical micro machining characteristics of Fe 64 Ni 36 invar film using micro WC rod electrode,” Microsyst. Technol. 23(2), 405–410 (2017).
[Crossref]

King, W. P.

J. L. Charest, M. T. Eliason, A. J. García, and W. P. King, “Combined microscale mechanical topography and chemical patterns on polymer cell culture substrates,” Biomaterials 27(11), 2487–2494 (2006).
[Crossref] [PubMed]

Kley, E. B.

P. Dannberg, L. Erdmann, R. Bierbaum, A. Krehl, A. Bräuer, and E. B. Kley, “Micro-optical elements and their integration to glass and optoelectronic wafers,” Microsyst. Technol. 6, 41–47 (1999).
[Crossref]

Knoll, W.

J. Peng, R. Xing, Y. Wu, B. Li, Y. Han, W. Knoll, and D. H. Kim, “Dewetting of thin polystyrene films under confinement,” Langmuir 23(5), 2326–2329 (2007).
[Crossref] [PubMed]

Krehl, A.

P. Dannberg, L. Erdmann, R. Bierbaum, A. Krehl, A. Bräuer, and E. B. Kley, “Micro-optical elements and their integration to glass and optoelectronic wafers,” Microsyst. Technol. 6, 41–47 (1999).
[Crossref]

Kulkarni, G. U.

B. Radha and G. U. Kulkarni, “Dewetting assisted patterning of polystyrene by soft lithography to create nanotrenches for nanomaterial deposition,” ACS Appl. Mater. Interfaces 1(2), 257–260 (2009).
[Crossref] [PubMed]

Kwon, M.-K.

S. H. Kim, K.-D. Lee, J.-Y. Kim, M.-K. Kwon, and S.-J. Park, “Fabrication of photonic crystal structures on light emitting diodes by nanoimprint lithography,” Nanotechnology 18(5), 055306 (2007).
[Crossref]

Landis, S.

E. Rognin, S. Landis, and L. Davoust, “Dewetting of the residual layer of annealed nanoimprinted polystyrene films,” Microelectron. Eng. 141, 198–202 (2015).
[Crossref]

Lau, C. S.

C. S. Lau, C. Khor, D. Soares, J. Teixeira, and M. Abdullah, “Thermo-mechanical challenges of reflowed lead-free solder joints in surface mount components: a review,” Solder. Surf. Mt. Technol. 28(2), 41–62 (2016).
[Crossref]

Lee, E.-S.

W.-K. Choi, S.-H. Kim, and E.-S. Lee, “Electrochemical micro machining characteristics of Fe 64 Ni 36 invar film using micro WC rod electrode,” Microsyst. Technol. 23(2), 405–410 (2017).
[Crossref]

Lee, H.

H. Yoon, H. Lee, and W. B. Lee, “Toward residual-layer-free nanoimprint lithography in large-area fabrication,” Korea-Aust. Rheol. J. 26, 39–48 (2014).

Lee, H. H.

H. Yoon, K. M. Lee, D. Y. Khang, H. H. Lee, and S. J. Choi, “Rapid flash patterning of nanostructures,” Appl. Phys. Lett. 85(10), 1793–1795 (2004).
[Crossref]

Lee, H.-K.

H.-K. Lee, S.-I. Chang, and E. Yoon, “A flexible polymer tactile sensor: Fabrication and modular expandability for large area deployment,” J. Microelectromech. Syst. 15(6), 1681–1686 (2006).
[Crossref]

Lee, J. J.

H. Schift, C. Spreu, A. Schleunitz, and J. J. Lee, “Shape control of polymer reflow structures fabricated by nanoimprint lithography,” Microelectron. Eng. 88(1), 87–92 (2011).
[Crossref]

Lee, K. M.

H. Yoon, K. M. Lee, D. Y. Khang, H. H. Lee, and S. J. Choi, “Rapid flash patterning of nanostructures,” Appl. Phys. Lett. 85(10), 1793–1795 (2004).
[Crossref]

Lee, K.-D.

S. H. Kim, K.-D. Lee, J.-Y. Kim, M.-K. Kwon, and S.-J. Park, “Fabrication of photonic crystal structures on light emitting diodes by nanoimprint lithography,” Nanotechnology 18(5), 055306 (2007).
[Crossref]

Lee, S. H.

J. J. Chae, S. H. Lee, and K. Y. Suh, “Fabrication of Multiscale Gradient Polymer Patterns by Direct Molding and Spatially Controlled Reflow,” Adv. Funct. Mater. 21(6), 1147–1153 (2010).
[Crossref]

Lee, W. B.

H. Yoon, H. Lee, and W. B. Lee, “Toward residual-layer-free nanoimprint lithography in large-area fabrication,” Korea-Aust. Rheol. J. 26, 39–48 (2014).

Leong, K. W.

W. Hu, E. K. Yim, R. M. Reano, K. W. Leong, and S. W. Pang, “Effects of nanoimprinted patterns in tissue-culture polystyrene on cell behavior,” J. Vac. Sci. Technol. A 23(6), 2984–2989 (2005).
[Crossref] [PubMed]

Létoffé, J. M.

R. Claudy, J. M. Létoffé, Y. Camberlain, and J. R. Pascault, “Glass Transition of Polystyrene Versus Molecular Weight,” Polym. Bull. 9, 208–215 (1983).
[Crossref]

Li, B.

J. Peng, R. Xing, Y. Wu, B. Li, Y. Han, W. Knoll, and D. H. Kim, “Dewetting of thin polystyrene films under confinement,” Langmuir 23(5), 2326–2329 (2007).
[Crossref] [PubMed]

Li, J.

I. Zadorozhnyi, J. Li, S. Pud, M. Petrychuk, and S. Vitusevich, “Single-trap kinetic in Si nanowire FETs: effect of gamma radiation treatment,” MRS Adv. 1(56), 3755–3760 (2016).
[Crossref]

Li, L.

L. Li, W. Nie, Z. Li, Q. Lu, C. Romero, J. R. Vázquez de Aldana, and F. Chen, “All-laser-micromachining of ridge waveguides in LiNbO3 crystal for mid-infrared band applications,” Sci. Rep. 7(1), 7034 (2017).
[Crossref] [PubMed]

Li, M.

M. Li, H. Tan, L. Chen, J. Wang, and S. Y. Chou, “Large area direct nanoimprinting of SiO2–TiO2 gel gratings for optical applications,” J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 21(2), 660–663 (2003).
[Crossref]

Li, Z.

L. Li, W. Nie, Z. Li, Q. Lu, C. Romero, J. R. Vázquez de Aldana, and F. Chen, “All-laser-micromachining of ridge waveguides in LiNbO3 crystal for mid-infrared band applications,” Sci. Rep. 7(1), 7034 (2017).
[Crossref] [PubMed]

Liang, X.

C. Peng, X. Liang, Z. Fu, and S. Y. Chou, “High fidelity fabrication of microlens arrays by nanoimprint using conformal mold duplication and low-pressure liquid material curing,” J. Vac. Sci. Technol. B 25(2), 410 (2007).
[Crossref]

Lin, Y.-H.

H. Ren, Y.-H. Fan, Y.-H. Lin, and S.-T. Wu, “Tunable-focus microlens arrays using nanosized polymer-dispersed liquid crystal droplets,” Opt. Commun. 247(1-3), 101–106 (2005).
[Crossref]

Löchel, B.

T. Senn, J. Bischoff, N. Nüsse, M. Schoengen, and B. Löchel, “Fabrication of photonic crystals for applications in the visible range by nanoimprint lithography,” Photon. Nanostructures 9(3), 248–254 (2011).
[Crossref]

Long-Wen, J.

J. Long-Wen, H. Yin-Lei, W. Yan, Q. Bing, and Z. Wen-xing, “Preparation of a self-focusing lens for optical communication,” Optics and Precision Engineering 5, 012 (2002).

Lu, Q.

L. Li, W. Nie, Z. Li, Q. Lu, C. Romero, J. R. Vázquez de Aldana, and F. Chen, “All-laser-micromachining of ridge waveguides in LiNbO3 crystal for mid-infrared band applications,” Sci. Rep. 7(1), 7034 (2017).
[Crossref] [PubMed]

Mantz, H.

J. Becker, G. Grün, R. Seemann, H. Mantz, K. Jacobs, K. R. Mecke, and R. Blossey, “Complex dewetting scenarios captured by thin-film models,” Nat. Mater. 2(1), 59–63 (2003).
[Crossref] [PubMed]

Matsubara, I.

K. Ishihara, M. Fujita, I. Matsubara, T. Asano, S. Noda, H. Ohata, A. Hirasawa, H. Nakada, and N. Shimoji, “Organic light-emitting diodes with photonic crystals on glass substrate fabricated by nanoimprint lithography,” Appl. Phys. Lett. 90(11), 111114 (2007).
[Crossref]

Mecke, K. R.

J. Becker, G. Grün, R. Seemann, H. Mantz, K. Jacobs, K. R. Mecke, and R. Blossey, “Complex dewetting scenarios captured by thin-film models,” Nat. Mater. 2(1), 59–63 (2003).
[Crossref] [PubMed]

Mollenbeck, S.

H. C. Scheer, N. Bogdanski, M. Wissen, and S. Mollenbeck, “Imprintability of polymers for thermal nanoimprint,” Microelectron. Eng. 85(5-6), 890–896 (2008).
[Crossref]

Nakada, H.

K. Ishihara, M. Fujita, I. Matsubara, T. Asano, S. Noda, H. Ohata, A. Hirasawa, H. Nakada, and N. Shimoji, “Organic light-emitting diodes with photonic crystals on glass substrate fabricated by nanoimprint lithography,” Appl. Phys. Lett. 90(11), 111114 (2007).
[Crossref]

Ngoi, B. K. A.

Y. Fu and B. K. A. Ngoi, “Investigation of diffractive-refractive microlens array fabricated by focused ion beam technology,” Opt. Eng. 40(4), 511–517 (2001).
[Crossref]

Nie, W.

L. Li, W. Nie, Z. Li, Q. Lu, C. Romero, J. R. Vázquez de Aldana, and F. Chen, “All-laser-micromachining of ridge waveguides in LiNbO3 crystal for mid-infrared band applications,” Sci. Rep. 7(1), 7034 (2017).
[Crossref] [PubMed]

Noda, S.

K. Ishihara, M. Fujita, I. Matsubara, T. Asano, S. Noda, H. Ohata, A. Hirasawa, H. Nakada, and N. Shimoji, “Organic light-emitting diodes with photonic crystals on glass substrate fabricated by nanoimprint lithography,” Appl. Phys. Lett. 90(11), 111114 (2007).
[Crossref]

Nüsse, N.

T. Senn, J. Bischoff, N. Nüsse, M. Schoengen, and B. Löchel, “Fabrication of photonic crystals for applications in the visible range by nanoimprint lithography,” Photon. Nanostructures 9(3), 248–254 (2011).
[Crossref]

Ohata, H.

K. Ishihara, M. Fujita, I. Matsubara, T. Asano, S. Noda, H. Ohata, A. Hirasawa, H. Nakada, and N. Shimoji, “Organic light-emitting diodes with photonic crystals on glass substrate fabricated by nanoimprint lithography,” Appl. Phys. Lett. 90(11), 111114 (2007).
[Crossref]

Ok, J. G.

J. G. Ok, Y. J. Shin, H. J. Park, and L. J. Guo, “A step toward next-generation nanoimprint lithography: extending productivity and applicability,” Appl. Phys., A Mater. Sci. Process. 121(2), 343–356 (2015).
[Crossref]

Pang, S. W.

W. Hu, E. K. Yim, R. M. Reano, K. W. Leong, and S. W. Pang, “Effects of nanoimprinted patterns in tissue-culture polystyrene on cell behavior,” J. Vac. Sci. Technol. A 23(6), 2984–2989 (2005).
[Crossref] [PubMed]

Park, H. J.

J. G. Ok, Y. J. Shin, H. J. Park, and L. J. Guo, “A step toward next-generation nanoimprint lithography: extending productivity and applicability,” Appl. Phys., A Mater. Sci. Process. 121(2), 343–356 (2015).
[Crossref]

Park, S.-J.

S. H. Kim, K.-D. Lee, J.-Y. Kim, M.-K. Kwon, and S.-J. Park, “Fabrication of photonic crystal structures on light emitting diodes by nanoimprint lithography,” Nanotechnology 18(5), 055306 (2007).
[Crossref]

Pascault, J. R.

R. Claudy, J. M. Létoffé, Y. Camberlain, and J. R. Pascault, “Glass Transition of Polystyrene Versus Molecular Weight,” Polym. Bull. 9, 208–215 (1983).
[Crossref]

Peng, C.

C. Peng, X. Liang, Z. Fu, and S. Y. Chou, “High fidelity fabrication of microlens arrays by nanoimprint using conformal mold duplication and low-pressure liquid material curing,” J. Vac. Sci. Technol. B 25(2), 410 (2007).
[Crossref]

Peng, J.

J. Peng, R. Xing, Y. Wu, B. Li, Y. Han, W. Knoll, and D. H. Kim, “Dewetting of thin polystyrene films under confinement,” Langmuir 23(5), 2326–2329 (2007).
[Crossref] [PubMed]

Petrychuk, M.

I. Zadorozhnyi, J. Li, S. Pud, M. Petrychuk, and S. Vitusevich, “Single-trap kinetic in Si nanowire FETs: effect of gamma radiation treatment,” MRS Adv. 1(56), 3755–3760 (2016).
[Crossref]

Pud, S.

I. Zadorozhnyi, J. Li, S. Pud, M. Petrychuk, and S. Vitusevich, “Single-trap kinetic in Si nanowire FETs: effect of gamma radiation treatment,” MRS Adv. 1(56), 3755–3760 (2016).
[Crossref]

Qu, N.

H. He, N. Qu, Y. Zeng, and Y. Yao, “Enhancement of mass transport in wire electrochemical micro-machining by using a micro-wire with surface microstructures,” Int. J. Adv. Manuf. Tech. 89(9-12), 3177–3186 (2017).
[Crossref]

Radha, B.

B. Radha and G. U. Kulkarni, “Dewetting assisted patterning of polystyrene by soft lithography to create nanotrenches for nanomaterial deposition,” ACS Appl. Mater. Interfaces 1(2), 257–260 (2009).
[Crossref] [PubMed]

Rathod, V.

V. Rathod, B. Doloi, and B. Bhattacharyya, “Fabrication of microgrooves with varied cross-sections by electrochemical micromachining,” Int. J. Adv. Manuf. Tech. 92(1-4), 505–518 (2017).
[Crossref]

Reano, R. M.

W. Hu, E. K. Yim, R. M. Reano, K. W. Leong, and S. W. Pang, “Effects of nanoimprinted patterns in tissue-culture polystyrene on cell behavior,” J. Vac. Sci. Technol. A 23(6), 2984–2989 (2005).
[Crossref] [PubMed]

Ren, H.

H. Ren, Y.-H. Fan, Y.-H. Lin, and S.-T. Wu, “Tunable-focus microlens arrays using nanosized polymer-dispersed liquid crystal droplets,” Opt. Commun. 247(1-3), 101–106 (2005).
[Crossref]

Rognin, E.

E. Rognin, S. Landis, and L. Davoust, “Dewetting of the residual layer of annealed nanoimprinted polystyrene films,” Microelectron. Eng. 141, 198–202 (2015).
[Crossref]

Romero, C.

L. Li, W. Nie, Z. Li, Q. Lu, C. Romero, J. R. Vázquez de Aldana, and F. Chen, “All-laser-micromachining of ridge waveguides in LiNbO3 crystal for mid-infrared band applications,” Sci. Rep. 7(1), 7034 (2017).
[Crossref] [PubMed]

Scheer, H. C.

H. C. Scheer, N. Bogdanski, M. Wissen, and S. Mollenbeck, “Imprintability of polymers for thermal nanoimprint,” Microelectron. Eng. 85(5-6), 890–896 (2008).
[Crossref]

Schift, H.

H. Schift, C. Spreu, A. Schleunitz, and J. J. Lee, “Shape control of polymer reflow structures fabricated by nanoimprint lithography,” Microelectron. Eng. 88(1), 87–92 (2011).
[Crossref]

A. Schleunitz, C. Spreu, M. Vogler, H. Atasoy, and H. Schift, “Combining nanoimprint lithography and a molecular weight selective thermal reflow for the generation of mixed 3D structures,” J. Vac. Sci. Technol. B 29(6), 06FC01 (2011).
[Crossref]

H. Schift, “Nanoimprint lithography: An old story in modern times? A review,” J. Vac. Sci. Technol. B 26(2), 458–480 (2008).

Schleunitz, A.

A. Schleunitz, C. Spreu, M. Vogler, H. Atasoy, and H. Schift, “Combining nanoimprint lithography and a molecular weight selective thermal reflow for the generation of mixed 3D structures,” J. Vac. Sci. Technol. B 29(6), 06FC01 (2011).
[Crossref]

H. Schift, C. Spreu, A. Schleunitz, and J. J. Lee, “Shape control of polymer reflow structures fabricated by nanoimprint lithography,” Microelectron. Eng. 88(1), 87–92 (2011).
[Crossref]

Schoengen, M.

T. Senn, J. Bischoff, N. Nüsse, M. Schoengen, and B. Löchel, “Fabrication of photonic crystals for applications in the visible range by nanoimprint lithography,” Photon. Nanostructures 9(3), 248–254 (2011).
[Crossref]

Seemann, R.

J. Becker, G. Grün, R. Seemann, H. Mantz, K. Jacobs, K. R. Mecke, and R. Blossey, “Complex dewetting scenarios captured by thin-film models,” Nat. Mater. 2(1), 59–63 (2003).
[Crossref] [PubMed]

Senn, T.

T. Senn, J. Bischoff, N. Nüsse, M. Schoengen, and B. Löchel, “Fabrication of photonic crystals for applications in the visible range by nanoimprint lithography,” Photon. Nanostructures 9(3), 248–254 (2011).
[Crossref]

Shimoji, N.

K. Ishihara, M. Fujita, I. Matsubara, T. Asano, S. Noda, H. Ohata, A. Hirasawa, H. Nakada, and N. Shimoji, “Organic light-emitting diodes with photonic crystals on glass substrate fabricated by nanoimprint lithography,” Appl. Phys. Lett. 90(11), 111114 (2007).
[Crossref]

Shin, Y. J.

J. G. Ok, Y. J. Shin, H. J. Park, and L. J. Guo, “A step toward next-generation nanoimprint lithography: extending productivity and applicability,” Appl. Phys., A Mater. Sci. Process. 121(2), 343–356 (2015).
[Crossref]

Soares, D.

C. S. Lau, C. Khor, D. Soares, J. Teixeira, and M. Abdullah, “Thermo-mechanical challenges of reflowed lead-free solder joints in surface mount components: a review,” Solder. Surf. Mt. Technol. 28(2), 41–62 (2016).
[Crossref]

Sonate, A.

S. James and A. Sonate, “Experimental study on micromachining of CFRP/Ti stacks using micro ultrasonic machining process,” Int. J. Adv. Manuf. Tech. 95(1-4), 1539–1547 (2018).
[Crossref]

Spreu, C.

H. Schift, C. Spreu, A. Schleunitz, and J. J. Lee, “Shape control of polymer reflow structures fabricated by nanoimprint lithography,” Microelectron. Eng. 88(1), 87–92 (2011).
[Crossref]

A. Schleunitz, C. Spreu, M. Vogler, H. Atasoy, and H. Schift, “Combining nanoimprint lithography and a molecular weight selective thermal reflow for the generation of mixed 3D structures,” J. Vac. Sci. Technol. B 29(6), 06FC01 (2011).
[Crossref]

Suh, K. Y.

J. J. Chae, S. H. Lee, and K. Y. Suh, “Fabrication of Multiscale Gradient Polymer Patterns by Direct Molding and Spatially Controlled Reflow,” Adv. Funct. Mater. 21(6), 1147–1153 (2010).
[Crossref]

Tan, H.

M. Li, H. Tan, L. Chen, J. Wang, and S. Y. Chou, “Large area direct nanoimprinting of SiO2–TiO2 gel gratings for optical applications,” J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 21(2), 660–663 (2003).
[Crossref]

Teixeira, J.

C. S. Lau, C. Khor, D. Soares, J. Teixeira, and M. Abdullah, “Thermo-mechanical challenges of reflowed lead-free solder joints in surface mount components: a review,” Solder. Surf. Mt. Technol. 28(2), 41–62 (2016).
[Crossref]

Tian, Z.-Q.

J. Zhang, L. Zhang, L. Han, Z.-W. Tian, Z.-Q. Tian, and D. Zhan, “Electrochemical nanoimprint lithography: when nanoimprint lithography meets metal assisted chemical etching,” Nanoscale 9(22), 7476–7482 (2017).
[Crossref] [PubMed]

Tian, Z.-W.

J. Zhang, L. Zhang, L. Han, Z.-W. Tian, Z.-Q. Tian, and D. Zhan, “Electrochemical nanoimprint lithography: when nanoimprint lithography meets metal assisted chemical etching,” Nanoscale 9(22), 7476–7482 (2017).
[Crossref] [PubMed]

Vancso, G. J.

C. Acikgoz, M. A. Hempenius, J. Huskens, and G. J. Vancso, “Polymers in conventional and alternative lithography for the fabrication of nanostructures,” Eur. Polym. J. 47(11), 2033–2052 (2011).
[Crossref]

Vázquez de Aldana, J. R.

L. Li, W. Nie, Z. Li, Q. Lu, C. Romero, J. R. Vázquez de Aldana, and F. Chen, “All-laser-micromachining of ridge waveguides in LiNbO3 crystal for mid-infrared band applications,” Sci. Rep. 7(1), 7034 (2017).
[Crossref] [PubMed]

Vitusevich, S.

I. Zadorozhnyi, J. Li, S. Pud, M. Petrychuk, and S. Vitusevich, “Single-trap kinetic in Si nanowire FETs: effect of gamma radiation treatment,” MRS Adv. 1(56), 3755–3760 (2016).
[Crossref]

Vogler, M.

A. Schleunitz, C. Spreu, M. Vogler, H. Atasoy, and H. Schift, “Combining nanoimprint lithography and a molecular weight selective thermal reflow for the generation of mixed 3D structures,” J. Vac. Sci. Technol. B 29(6), 06FC01 (2011).
[Crossref]

Wang, H.

Wang, J.

M. Li, H. Tan, L. Chen, J. Wang, and S. Y. Chou, “Large area direct nanoimprinting of SiO2–TiO2 gel gratings for optical applications,” J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 21(2), 660–663 (2003).
[Crossref]

Wang, K.

Wen-xing, Z.

J. Long-Wen, H. Yin-Lei, W. Yan, Q. Bing, and Z. Wen-xing, “Preparation of a self-focusing lens for optical communication,” Optics and Precision Engineering 5, 012 (2002).

Wissen, M.

H. C. Scheer, N. Bogdanski, M. Wissen, and S. Mollenbeck, “Imprintability of polymers for thermal nanoimprint,” Microelectron. Eng. 85(5-6), 890–896 (2008).
[Crossref]

Wu, S.-T.

H. Ren, Y.-H. Fan, Y.-H. Lin, and S.-T. Wu, “Tunable-focus microlens arrays using nanosized polymer-dispersed liquid crystal droplets,” Opt. Commun. 247(1-3), 101–106 (2005).
[Crossref]

Wu, Y.

J. Peng, R. Xing, Y. Wu, B. Li, Y. Han, W. Knoll, and D. H. Kim, “Dewetting of thin polystyrene films under confinement,” Langmuir 23(5), 2326–2329 (2007).
[Crossref] [PubMed]

Xing, R.

J. Peng, R. Xing, Y. Wu, B. Li, Y. Han, W. Knoll, and D. H. Kim, “Dewetting of thin polystyrene films under confinement,” Langmuir 23(5), 2326–2329 (2007).
[Crossref] [PubMed]

Xu, Q.

Yan, W.

J. Long-Wen, H. Yin-Lei, W. Yan, Q. Bing, and Z. Wen-xing, “Preparation of a self-focusing lens for optical communication,” Optics and Precision Engineering 5, 012 (2002).

Yang, Z.

Yao, Y.

H. He, N. Qu, Y. Zeng, and Y. Yao, “Enhancement of mass transport in wire electrochemical micro-machining by using a micro-wire with surface microstructures,” Int. J. Adv. Manuf. Tech. 89(9-12), 3177–3186 (2017).
[Crossref]

Yim, E. K.

W. Hu, E. K. Yim, R. M. Reano, K. W. Leong, and S. W. Pang, “Effects of nanoimprinted patterns in tissue-culture polystyrene on cell behavior,” J. Vac. Sci. Technol. A 23(6), 2984–2989 (2005).
[Crossref] [PubMed]

Yin-Lei, H.

J. Long-Wen, H. Yin-Lei, W. Yan, Q. Bing, and Z. Wen-xing, “Preparation of a self-focusing lens for optical communication,” Optics and Precision Engineering 5, 012 (2002).

Yoon, E.

H.-K. Lee, S.-I. Chang, and E. Yoon, “A flexible polymer tactile sensor: Fabrication and modular expandability for large area deployment,” J. Microelectromech. Syst. 15(6), 1681–1686 (2006).
[Crossref]

Yoon, H.

H. Yoon, H. Lee, and W. B. Lee, “Toward residual-layer-free nanoimprint lithography in large-area fabrication,” Korea-Aust. Rheol. J. 26, 39–48 (2014).

H. Yoon, K. M. Lee, D. Y. Khang, H. H. Lee, and S. J. Choi, “Rapid flash patterning of nanostructures,” Appl. Phys. Lett. 85(10), 1793–1795 (2004).
[Crossref]

Yoon, J.-B.

Zadorozhnyi, I.

I. Zadorozhnyi, J. Li, S. Pud, M. Petrychuk, and S. Vitusevich, “Single-trap kinetic in Si nanowire FETs: effect of gamma radiation treatment,” MRS Adv. 1(56), 3755–3760 (2016).
[Crossref]

Zeng, Y.

H. He, N. Qu, Y. Zeng, and Y. Yao, “Enhancement of mass transport in wire electrochemical micro-machining by using a micro-wire with surface microstructures,” Int. J. Adv. Manuf. Tech. 89(9-12), 3177–3186 (2017).
[Crossref]

Zhan, D.

J. Zhang, L. Zhang, L. Han, Z.-W. Tian, Z.-Q. Tian, and D. Zhan, “Electrochemical nanoimprint lithography: when nanoimprint lithography meets metal assisted chemical etching,” Nanoscale 9(22), 7476–7482 (2017).
[Crossref] [PubMed]

Zhang, D.

Zhang, H.-L.

H.-L. Zhang, D. G. Bucknall, and A. Dupuis, “Uniform nanoscopic polystyrene patterns produced from a microscopic mold,” Nano Lett. 4(8), 1513–1519 (2004).
[Crossref] [PubMed]

Zhang, J.

J. Zhang, L. Zhang, L. Han, Z.-W. Tian, Z.-Q. Tian, and D. Zhan, “Electrochemical nanoimprint lithography: when nanoimprint lithography meets metal assisted chemical etching,” Nanoscale 9(22), 7476–7482 (2017).
[Crossref] [PubMed]

Zhang, L.

J. Zhang, L. Zhang, L. Han, Z.-W. Tian, Z.-Q. Tian, and D. Zhan, “Electrochemical nanoimprint lithography: when nanoimprint lithography meets metal assisted chemical etching,” Nanoscale 9(22), 7476–7482 (2017).
[Crossref] [PubMed]

Zhuang, S.

ACS Appl. Mater. Interfaces (1)

B. Radha and G. U. Kulkarni, “Dewetting assisted patterning of polystyrene by soft lithography to create nanotrenches for nanomaterial deposition,” ACS Appl. Mater. Interfaces 1(2), 257–260 (2009).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

J. J. Chae, S. H. Lee, and K. Y. Suh, “Fabrication of Multiscale Gradient Polymer Patterns by Direct Molding and Spatially Controlled Reflow,” Adv. Funct. Mater. 21(6), 1147–1153 (2010).
[Crossref]

Appl. Phys. Lett. (3)

K. Ishihara, M. Fujita, I. Matsubara, T. Asano, S. Noda, H. Ohata, A. Hirasawa, H. Nakada, and N. Shimoji, “Organic light-emitting diodes with photonic crystals on glass substrate fabricated by nanoimprint lithography,” Appl. Phys. Lett. 90(11), 111114 (2007).
[Crossref]

M. D. Austin and S. Y. Chou, “Fabrication of 70 nm channel length polymer organic thin-film transistors using nanoimprint lithography,” Appl. Phys. Lett. 81(23), 4431–4433 (2002).
[Crossref]

H. Yoon, K. M. Lee, D. Y. Khang, H. H. Lee, and S. J. Choi, “Rapid flash patterning of nanostructures,” Appl. Phys. Lett. 85(10), 1793–1795 (2004).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

J. G. Ok, Y. J. Shin, H. J. Park, and L. J. Guo, “A step toward next-generation nanoimprint lithography: extending productivity and applicability,” Appl. Phys., A Mater. Sci. Process. 121(2), 343–356 (2015).
[Crossref]

Biomaterials (1)

J. L. Charest, M. T. Eliason, A. J. García, and W. P. King, “Combined microscale mechanical topography and chemical patterns on polymer cell culture substrates,” Biomaterials 27(11), 2487–2494 (2006).
[Crossref] [PubMed]

Eur. Polym. J. (1)

C. Acikgoz, M. A. Hempenius, J. Huskens, and G. J. Vancso, “Polymers in conventional and alternative lithography for the fabrication of nanostructures,” Eur. Polym. J. 47(11), 2033–2052 (2011).
[Crossref]

Int. J. Adv. Manuf. Tech. (3)

S. James and A. Sonate, “Experimental study on micromachining of CFRP/Ti stacks using micro ultrasonic machining process,” Int. J. Adv. Manuf. Tech. 95(1-4), 1539–1547 (2018).
[Crossref]

H. He, N. Qu, Y. Zeng, and Y. Yao, “Enhancement of mass transport in wire electrochemical micro-machining by using a micro-wire with surface microstructures,” Int. J. Adv. Manuf. Tech. 89(9-12), 3177–3186 (2017).
[Crossref]

V. Rathod, B. Doloi, and B. Bhattacharyya, “Fabrication of microgrooves with varied cross-sections by electrochemical micromachining,” Int. J. Adv. Manuf. Tech. 92(1-4), 505–518 (2017).
[Crossref]

J. Microelectromech. Syst. (1)

H.-K. Lee, S.-I. Chang, and E. Yoon, “A flexible polymer tactile sensor: Fabrication and modular expandability for large area deployment,” J. Microelectromech. Syst. 15(6), 1681–1686 (2006).
[Crossref]

J. Vac. Sci. Technol. A (1)

W. Hu, E. K. Yim, R. M. Reano, K. W. Leong, and S. W. Pang, “Effects of nanoimprinted patterns in tissue-culture polystyrene on cell behavior,” J. Vac. Sci. Technol. A 23(6), 2984–2989 (2005).
[Crossref] [PubMed]

J. Vac. Sci. Technol. B (3)

C. Peng, X. Liang, Z. Fu, and S. Y. Chou, “High fidelity fabrication of microlens arrays by nanoimprint using conformal mold duplication and low-pressure liquid material curing,” J. Vac. Sci. Technol. B 25(2), 410 (2007).
[Crossref]

A. Schleunitz, C. Spreu, M. Vogler, H. Atasoy, and H. Schift, “Combining nanoimprint lithography and a molecular weight selective thermal reflow for the generation of mixed 3D structures,” J. Vac. Sci. Technol. B 29(6), 06FC01 (2011).
[Crossref]

H. Schift, “Nanoimprint lithography: An old story in modern times? A review,” J. Vac. Sci. Technol. B 26(2), 458–480 (2008).

J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. (1)

M. Li, H. Tan, L. Chen, J. Wang, and S. Y. Chou, “Large area direct nanoimprinting of SiO2–TiO2 gel gratings for optical applications,” J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 21(2), 660–663 (2003).
[Crossref]

Korea-Aust. Rheol. J. (1)

H. Yoon, H. Lee, and W. B. Lee, “Toward residual-layer-free nanoimprint lithography in large-area fabrication,” Korea-Aust. Rheol. J. 26, 39–48 (2014).

Langmuir (1)

J. Peng, R. Xing, Y. Wu, B. Li, Y. Han, W. Knoll, and D. H. Kim, “Dewetting of thin polystyrene films under confinement,” Langmuir 23(5), 2326–2329 (2007).
[Crossref] [PubMed]

Microelectron. Eng. (3)

H. C. Scheer, N. Bogdanski, M. Wissen, and S. Mollenbeck, “Imprintability of polymers for thermal nanoimprint,” Microelectron. Eng. 85(5-6), 890–896 (2008).
[Crossref]

H. Schift, C. Spreu, A. Schleunitz, and J. J. Lee, “Shape control of polymer reflow structures fabricated by nanoimprint lithography,” Microelectron. Eng. 88(1), 87–92 (2011).
[Crossref]

E. Rognin, S. Landis, and L. Davoust, “Dewetting of the residual layer of annealed nanoimprinted polystyrene films,” Microelectron. Eng. 141, 198–202 (2015).
[Crossref]

Microsyst. Technol. (2)

P. Dannberg, L. Erdmann, R. Bierbaum, A. Krehl, A. Bräuer, and E. B. Kley, “Micro-optical elements and their integration to glass and optoelectronic wafers,” Microsyst. Technol. 6, 41–47 (1999).
[Crossref]

W.-K. Choi, S.-H. Kim, and E.-S. Lee, “Electrochemical micro machining characteristics of Fe 64 Ni 36 invar film using micro WC rod electrode,” Microsyst. Technol. 23(2), 405–410 (2017).
[Crossref]

MRS Adv. (1)

I. Zadorozhnyi, J. Li, S. Pud, M. Petrychuk, and S. Vitusevich, “Single-trap kinetic in Si nanowire FETs: effect of gamma radiation treatment,” MRS Adv. 1(56), 3755–3760 (2016).
[Crossref]

Nano Converg. (1)

Y. H. Kang, J. H. Han, S. Y. Cho, and C.-G. Choi, “Resist-free antireflective nanostructured film fabricated by thermal-NIL,” Nano Converg. 1(1), 19 (2014).
[Crossref] [PubMed]

Nano Lett. (1)

H.-L. Zhang, D. G. Bucknall, and A. Dupuis, “Uniform nanoscopic polystyrene patterns produced from a microscopic mold,” Nano Lett. 4(8), 1513–1519 (2004).
[Crossref] [PubMed]

Nanoscale (1)

J. Zhang, L. Zhang, L. Han, Z.-W. Tian, Z.-Q. Tian, and D. Zhan, “Electrochemical nanoimprint lithography: when nanoimprint lithography meets metal assisted chemical etching,” Nanoscale 9(22), 7476–7482 (2017).
[Crossref] [PubMed]

Nanotechnology (1)

S. H. Kim, K.-D. Lee, J.-Y. Kim, M.-K. Kwon, and S.-J. Park, “Fabrication of photonic crystal structures on light emitting diodes by nanoimprint lithography,” Nanotechnology 18(5), 055306 (2007).
[Crossref]

Nat. Mater. (1)

J. Becker, G. Grün, R. Seemann, H. Mantz, K. Jacobs, K. R. Mecke, and R. Blossey, “Complex dewetting scenarios captured by thin-film models,” Nat. Mater. 2(1), 59–63 (2003).
[Crossref] [PubMed]

Opt. Commun. (1)

H. Ren, Y.-H. Fan, Y.-H. Lin, and S.-T. Wu, “Tunable-focus microlens arrays using nanosized polymer-dispersed liquid crystal droplets,” Opt. Commun. 247(1-3), 101–106 (2005).
[Crossref]

Opt. Eng. (1)

Y. Fu and B. K. A. Ngoi, “Investigation of diffractive-refractive microlens array fabricated by focused ion beam technology,” Opt. Eng. 40(4), 511–517 (2001).
[Crossref]

Opt. Express (2)

Optics and Precision Engineering (1)

J. Long-Wen, H. Yin-Lei, W. Yan, Q. Bing, and Z. Wen-xing, “Preparation of a self-focusing lens for optical communication,” Optics and Precision Engineering 5, 012 (2002).

Photon. Nanostructures (1)

T. Senn, J. Bischoff, N. Nüsse, M. Schoengen, and B. Löchel, “Fabrication of photonic crystals for applications in the visible range by nanoimprint lithography,” Photon. Nanostructures 9(3), 248–254 (2011).
[Crossref]

Polym. Bull. (1)

R. Claudy, J. M. Létoffé, Y. Camberlain, and J. R. Pascault, “Glass Transition of Polystyrene Versus Molecular Weight,” Polym. Bull. 9, 208–215 (1983).
[Crossref]

Sci. Rep. (1)

L. Li, W. Nie, Z. Li, Q. Lu, C. Romero, J. R. Vázquez de Aldana, and F. Chen, “All-laser-micromachining of ridge waveguides in LiNbO3 crystal for mid-infrared band applications,” Sci. Rep. 7(1), 7034 (2017).
[Crossref] [PubMed]

Solder. Surf. Mt. Technol. (1)

C. S. Lau, C. Khor, D. Soares, J. Teixeira, and M. Abdullah, “Thermo-mechanical challenges of reflowed lead-free solder joints in surface mount components: a review,” Solder. Surf. Mt. Technol. 28(2), 41–62 (2016).
[Crossref]

Other (2)

J. Brandrup, E. H. Immergut, E. A. Grulke, A. Abe, and D. R. Bloch, Polymer handbook. 3rd edn, (Wiley New York etc, 1989).

K. Sakoda and M. Van de Voorde, Micro-and Nanophotonic Technologies (John Wiley & Sons, 2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 A schematic illustration of the experimental procedure for fabricating a curved tunable microlens array.
Fig. 2
Fig. 2 Schematic representation of our concept of NIL by initial PS solution thickness and reflow process in appropriate conditions (a) when the initial PS thickness is thick, V-shaped patterns (width: 25 μm) after NIL are made with the residual layer. We assume that V-shaped patterns with the residual layer are flattened under the same reflow conditions compared with (b),(c) when the initial PS thickness for the residue-free state after NIL is perfect or insufficient, we presume lens shapes of different heights are formed after the reflow process.
Fig. 3
Fig. 3 Scanning microscopic (SEM) images (scale bar: 10 μm) of patterns imprinted with a V-shaped mold in three different thickness ranges. The leftmost panels represent the patterns produced by nanoimprinting and before thermal reflow. Images after the thermal reflow at different temperatures when the coating thickness is (a) 7.8 μm, (b) 4.2 μm, and (c) 1.9 μm.
Fig. 4
Fig. 4 SEM images of (a) a lenticular lens array (pitch: 10 μm) and (b) a two-dimensional lens array.
Fig. 5
Fig. 5 SEM images of lens shapes with different curvatures with the control of the initial thickness at (a) 1.9 μm, (b) 2.4 μm, (c) 3.7 μm, (d) 4.1 μm, and (e) 4.2 μm. The left and right panels represent the SEM images before and after the thermal reflow (for 10 min at 200 °C), respectively. (Scale bar: 5 μm)
Fig. 6
Fig. 6 (a) Schematic images showing the mass balance before and after the process. Graphs showing the relation of (b) coating thickness versus contact angle, (c) optical simulation results on focal lengths of lenses, (d) coating thickness versus focal length from Eq. (4) and optical simulation.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

cosθ= γ SiO2 - γ PS-SiO2 γ PS
  γ PS-SiO2 = γ PS + γ SiO2 - 4 γ PS d γ SiO2 d γ PS d + γ SiO2 d - 4 γ PS p γ SiO2 p γ PS p + γ SiO2 p
Lt= 1 2 R 2 (θ-sin2θ),2Rsinθ=L
f= R n-1

Metrics