Abstract

We demonstrate computational ghost imaging at X-ray wavelengths with only one single-pixel detector. We show that, by using a known designed mask as a diffuser that induces intensity fluctuations in the probe beam, it is possible to compute the propagation of the electromagnetic field in the absence of the investigated object. We correlate these calculations with the measured data when the object is present in order to reconstruct the images of 50 μm and 80 μm slits. Our results open the possibilities for X-ray high-resolution imaging with partially coherent X-ray sources and can lead to a powerful tool for X-ray three-dimensional imaging.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
X-ray ghost imaging with a laboratory source

A. Schori and S. Shwartz
Opt. Express 25(13) 14822-14828 (2017)

Noise reduction in computational ghost imaging by interpolated monitoring

Zhaohua Yang, Yuzhe Sun, Shaofan Qu, Yuanjin Yu, Ruitao Yan, Ai-Xin Zhang, and Ling-An Wu
Appl. Opt. 57(21) 6097-6101 (2018)

Improving the noise immunity of 3D computational ghost imaging

Lei Zhang, Zitao Lin, Ruiqing He, Yan Qian, Qian Chen, and Wenwen Zhang
Opt. Express 27(3) 2344-2353 (2019)

References

  • View by:
  • |
  • |
  • |

  1. J. Miao, P. Charalambous, J. Kirz, and D. Sayre, “Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens,” Nature 400(6742), 342–344 (1999).
    [Crossref]
  2. I. McNulty, J. Kirz, C. Jacobsen, E. H. Anderson, M. R. Howells, and D. P. Kern, “High-resolution imaging by Fourier transform X-ray holography,” Science 256(5059), 1009–1012 (1992).
    [Crossref] [PubMed]
  3. S. Eisebitt, J. Lüning, W. F. Schlotter, M. Lörgen, O. Hellwig, W. Eberhardt, and J. Stöhr, “Lensless imaging of magnetic nanostructures by X-ray spectro-holography,” Nature 432(7019), 885–888 (2004).
    [Crossref] [PubMed]
  4. P. Thibault, M. Dierolf, A. Menzel, O. Bunk, C. David, and F. Pfeiffer, “High-resolution scanning x-ray diffraction microscopy,” Science 321(5887), 379–382 (2008).
    [Crossref] [PubMed]
  5. H. N. Chapman and K. A. Nugent, “Coherent lensless X-ray imaging,” Nat. Photonics 4(12), 833–839 (2010).
    [Crossref]
  6. J. Cheng and S. Han, “Incoherent coincidence imaging and its applicability in X-ray diffraction,” Phys. Rev. Lett. 92(9), 093903 (2004).
    [Crossref] [PubMed]
  7. Y. Cai and S. Y. Zhu, “Ghost imaging with incoherent and partially coherent light radiation,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(5), 056607 (2005).
    [Crossref] [PubMed]
  8. R. S. Bennink, S. J. Bentley, and R. W. Boyd, ““Two-Photon” coincidence imaging with a classical source,” Phys. Rev. Lett. 89(11), 113601 (2002).
    [Crossref] [PubMed]
  9. J. H. Shapiro and R. W. Boyd, “The physics of ghost imaging,” Quantum Inform. Process. 11(4), 949–993 (2012).
    [Crossref]
  10. P. Ryczkowski, M. Barbier, A. T. Friberg, J. M. Dudley, and G. Genty, “Ghost imaging in the time domain,” Nat. Photonics 10(3), 167–170 (2016).
    [Crossref]
  11. P. A. Morris, R. S. Aspden, J. E. Bell, R. W. Boyd, and M. J. Padgett, “Imaging with a small number of photons,” Nat. Commun. 6(1), 5913 (2015).
    [Crossref] [PubMed]
  12. C. Thiel, T. Bastin, J. Martin, E. Solano, J. von Zanthier, and G. S. Agarwal, “Quantum imaging with incoherent photons,” Phys. Rev. Lett. 99(13), 133603 (2007).
    [Crossref] [PubMed]
  13. J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78(6), 061802 (2008).
    [Crossref]
  14. J. Cheng, “Ghost imaging through turbulent atmosphere,” Opt. Express 17(10), 7916–7921 (2009).
    [Crossref] [PubMed]
  15. R. E. Meyers, K. S. Deacon, and Y. Shih, “Turbulence-free ghost imaging,” Appl. Phys. Lett. 98(11), 111115 (2011).
    [Crossref]
  16. M. Le, G. Wang, H. Zheng, J. Liu, Y. Zhou, and Z. Xu, “Underwater computational ghost imaging,” Opt. Express 25(19), 22859–22868 (2017).
    [Crossref] [PubMed]
  17. Y. Bromberg, O. Katz, and Y. Silberberg, “Ghost imaging with a single detector,” Phys. Rev. A 79(5), 053840 (2009).
    [Crossref]
  18. . M. Mahdi Khamoushi, Y. Nosrati, and S. H. Tavassoli, “Sinusoidal ghost imaging,” Opt. Lett. 40(15), 3452–3455 (2015).
    [Crossref] [PubMed]
  19. W. Chen and X. Chen, “Object authentication in computational ghost imaging with the realizations less than 5% of Nyquist limit,” Opt. Lett. 38(4), 546–548 (2013).
    [Crossref] [PubMed]
  20. B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340(6134), 844–847 (2013).
    [Crossref] [PubMed]
  21. Z. Zhang, S. Liu, J. Peng, M. Yao, G. Zheng, and J. Zhong, “Simultaneous spatial, spectral, and 3D compressive imaging via efficient Fourier single-pixel measurements,” Optica 5(3), 315–319 (2018).
    [Crossref]
  22. R. Borghi, F. Gori, and M. Santarsiero, “Phase and amplitude retrieval in ghost diffraction from field-correlation measurements,” Phys. Rev. Lett. 96(18), 183901 (2006).
    [Crossref] [PubMed]
  23. H. Yu, R. Lu, S. Han, H. Xie, G. Du, T. Xiao, and D. Zhu, “Fourier-transform ghost imaging with hard X rays” Phys. Rev. Lett. 117(11), 113901‏ (2016).
  24. D. Pelliccia, A. Rack, M. Scheel, V. Cantelli, and D. M. Paganin, “Experimental x-ray ghost imaging,” Phys. Rev. Lett. 117(11), 113902 (2016).
    [Crossref] [PubMed]
  25. D. Pelliccia, M. P. Olbinado, A. Rack, A. M. Kingston, G. R. Myers, and D. M. Paganin, “Towards a practical implementation of X-ray ghost imaging with synchrotron light,” IUCrJ 5(4), 428–438 (2018).
    [Crossref] [PubMed]
  26. A. M. Kingston, D. Pelliccia, A. Rack, M. P. Olbinado, Y. Cheng, G. R. Myers, and D. M. Paganin, “Ghost tomography,” Optica 5(12), 1516–1520 (2018).
    [Crossref]
  27. A. Schori and S. Shwartz, “X-ray ghost imaging with a laboratory source,” Opt. Express 25(13), 14822–14828 (2017).
    [Crossref] [PubMed]
  28. A.-X. Zhang, Y.-H. He, L.-A. Wu, L.-M. Chen, and B.-B. Wang, “Tabletop x-ray ghost imaging with ultra-low radiation,” Optica 5(4), 374–377 (2018).
    [Crossref]
  29. A. Schori, D. Borodin, K. Tamasaku, and S. Shwartz, “Ghost imaging with paired x-ray photons,” Phys. Rev. A (Coll. Park) 97(6), 063804 (2018).
    [Crossref]
  30. B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E= 50-30,000 eV, Z= 1-92,” Atom. data Nucl. data 54(2), 181–342 (1993).
    [Crossref]
  31. J. W. Goodman, Statistical optics (Wiley classics library, 2000), Chap. 5.
  32. K. J. S. Sawhney, I. P. Dolbnya, M. K. Tiwari, L. Alianelli, S. M. Scott, G. M. Preece, U. K. Pedersen, and R. D. Walton, “A test beamline on diamond light source,” in Proceedings of AIP (2010, June), pp. 387–390.
    [Crossref]
  33. B. I. Erkmen and J. H. Shapiro, “Signal-to-noise ratio of Gaussian-state ghost imaging,” Phys. Rev. A 79(2), 023833 (2009).
    [Crossref]
  34. D. Ceddia and D. M. Paganin, “Random-matrix bases, ghost imaging, and x-ray phase contrast computational ghost imaging,” Phys. Rev. A (Coll. Park) 97(6), 062119 (2018).
    [Crossref]
  35. C. Xue, J. Zhao, Y. Wu, H. Yu, S. Yang, L. Wang, W. Zhao, Q. Wu, Z. Zhu, B. Liu, X. Zhang, W. Zhou, and R. Tai, “Fabrication of large-area high-aspect-ratio periodic nanostructures on various substrates by soft X-ray interference lithography,” Appl. Surf. Sci. 425, 553–557 (2017).
    [Crossref]

2018 (6)

D. Pelliccia, M. P. Olbinado, A. Rack, A. M. Kingston, G. R. Myers, and D. M. Paganin, “Towards a practical implementation of X-ray ghost imaging with synchrotron light,” IUCrJ 5(4), 428–438 (2018).
[Crossref] [PubMed]

A. Schori, D. Borodin, K. Tamasaku, and S. Shwartz, “Ghost imaging with paired x-ray photons,” Phys. Rev. A (Coll. Park) 97(6), 063804 (2018).
[Crossref]

D. Ceddia and D. M. Paganin, “Random-matrix bases, ghost imaging, and x-ray phase contrast computational ghost imaging,” Phys. Rev. A (Coll. Park) 97(6), 062119 (2018).
[Crossref]

Z. Zhang, S. Liu, J. Peng, M. Yao, G. Zheng, and J. Zhong, “Simultaneous spatial, spectral, and 3D compressive imaging via efficient Fourier single-pixel measurements,” Optica 5(3), 315–319 (2018).
[Crossref]

A.-X. Zhang, Y.-H. He, L.-A. Wu, L.-M. Chen, and B.-B. Wang, “Tabletop x-ray ghost imaging with ultra-low radiation,” Optica 5(4), 374–377 (2018).
[Crossref]

A. M. Kingston, D. Pelliccia, A. Rack, M. P. Olbinado, Y. Cheng, G. R. Myers, and D. M. Paganin, “Ghost tomography,” Optica 5(12), 1516–1520 (2018).
[Crossref]

2017 (3)

A. Schori and S. Shwartz, “X-ray ghost imaging with a laboratory source,” Opt. Express 25(13), 14822–14828 (2017).
[Crossref] [PubMed]

M. Le, G. Wang, H. Zheng, J. Liu, Y. Zhou, and Z. Xu, “Underwater computational ghost imaging,” Opt. Express 25(19), 22859–22868 (2017).
[Crossref] [PubMed]

C. Xue, J. Zhao, Y. Wu, H. Yu, S. Yang, L. Wang, W. Zhao, Q. Wu, Z. Zhu, B. Liu, X. Zhang, W. Zhou, and R. Tai, “Fabrication of large-area high-aspect-ratio periodic nanostructures on various substrates by soft X-ray interference lithography,” Appl. Surf. Sci. 425, 553–557 (2017).
[Crossref]

2016 (2)

D. Pelliccia, A. Rack, M. Scheel, V. Cantelli, and D. M. Paganin, “Experimental x-ray ghost imaging,” Phys. Rev. Lett. 117(11), 113902 (2016).
[Crossref] [PubMed]

P. Ryczkowski, M. Barbier, A. T. Friberg, J. M. Dudley, and G. Genty, “Ghost imaging in the time domain,” Nat. Photonics 10(3), 167–170 (2016).
[Crossref]

2015 (2)

P. A. Morris, R. S. Aspden, J. E. Bell, R. W. Boyd, and M. J. Padgett, “Imaging with a small number of photons,” Nat. Commun. 6(1), 5913 (2015).
[Crossref] [PubMed]

. M. Mahdi Khamoushi, Y. Nosrati, and S. H. Tavassoli, “Sinusoidal ghost imaging,” Opt. Lett. 40(15), 3452–3455 (2015).
[Crossref] [PubMed]

2013 (2)

W. Chen and X. Chen, “Object authentication in computational ghost imaging with the realizations less than 5% of Nyquist limit,” Opt. Lett. 38(4), 546–548 (2013).
[Crossref] [PubMed]

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340(6134), 844–847 (2013).
[Crossref] [PubMed]

2012 (1)

J. H. Shapiro and R. W. Boyd, “The physics of ghost imaging,” Quantum Inform. Process. 11(4), 949–993 (2012).
[Crossref]

2011 (1)

R. E. Meyers, K. S. Deacon, and Y. Shih, “Turbulence-free ghost imaging,” Appl. Phys. Lett. 98(11), 111115 (2011).
[Crossref]

2010 (1)

H. N. Chapman and K. A. Nugent, “Coherent lensless X-ray imaging,” Nat. Photonics 4(12), 833–839 (2010).
[Crossref]

2009 (3)

Y. Bromberg, O. Katz, and Y. Silberberg, “Ghost imaging with a single detector,” Phys. Rev. A 79(5), 053840 (2009).
[Crossref]

J. Cheng, “Ghost imaging through turbulent atmosphere,” Opt. Express 17(10), 7916–7921 (2009).
[Crossref] [PubMed]

B. I. Erkmen and J. H. Shapiro, “Signal-to-noise ratio of Gaussian-state ghost imaging,” Phys. Rev. A 79(2), 023833 (2009).
[Crossref]

2008 (2)

J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78(6), 061802 (2008).
[Crossref]

P. Thibault, M. Dierolf, A. Menzel, O. Bunk, C. David, and F. Pfeiffer, “High-resolution scanning x-ray diffraction microscopy,” Science 321(5887), 379–382 (2008).
[Crossref] [PubMed]

2007 (1)

C. Thiel, T. Bastin, J. Martin, E. Solano, J. von Zanthier, and G. S. Agarwal, “Quantum imaging with incoherent photons,” Phys. Rev. Lett. 99(13), 133603 (2007).
[Crossref] [PubMed]

2006 (1)

R. Borghi, F. Gori, and M. Santarsiero, “Phase and amplitude retrieval in ghost diffraction from field-correlation measurements,” Phys. Rev. Lett. 96(18), 183901 (2006).
[Crossref] [PubMed]

2005 (1)

Y. Cai and S. Y. Zhu, “Ghost imaging with incoherent and partially coherent light radiation,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(5), 056607 (2005).
[Crossref] [PubMed]

2004 (2)

J. Cheng and S. Han, “Incoherent coincidence imaging and its applicability in X-ray diffraction,” Phys. Rev. Lett. 92(9), 093903 (2004).
[Crossref] [PubMed]

S. Eisebitt, J. Lüning, W. F. Schlotter, M. Lörgen, O. Hellwig, W. Eberhardt, and J. Stöhr, “Lensless imaging of magnetic nanostructures by X-ray spectro-holography,” Nature 432(7019), 885–888 (2004).
[Crossref] [PubMed]

2002 (1)

R. S. Bennink, S. J. Bentley, and R. W. Boyd, ““Two-Photon” coincidence imaging with a classical source,” Phys. Rev. Lett. 89(11), 113601 (2002).
[Crossref] [PubMed]

1999 (1)

J. Miao, P. Charalambous, J. Kirz, and D. Sayre, “Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens,” Nature 400(6742), 342–344 (1999).
[Crossref]

1993 (1)

B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E= 50-30,000 eV, Z= 1-92,” Atom. data Nucl. data 54(2), 181–342 (1993).
[Crossref]

1992 (1)

I. McNulty, J. Kirz, C. Jacobsen, E. H. Anderson, M. R. Howells, and D. P. Kern, “High-resolution imaging by Fourier transform X-ray holography,” Science 256(5059), 1009–1012 (1992).
[Crossref] [PubMed]

Agarwal, G. S.

C. Thiel, T. Bastin, J. Martin, E. Solano, J. von Zanthier, and G. S. Agarwal, “Quantum imaging with incoherent photons,” Phys. Rev. Lett. 99(13), 133603 (2007).
[Crossref] [PubMed]

Alianelli, L.

K. J. S. Sawhney, I. P. Dolbnya, M. K. Tiwari, L. Alianelli, S. M. Scott, G. M. Preece, U. K. Pedersen, and R. D. Walton, “A test beamline on diamond light source,” in Proceedings of AIP (2010, June), pp. 387–390.
[Crossref]

Anderson, E. H.

I. McNulty, J. Kirz, C. Jacobsen, E. H. Anderson, M. R. Howells, and D. P. Kern, “High-resolution imaging by Fourier transform X-ray holography,” Science 256(5059), 1009–1012 (1992).
[Crossref] [PubMed]

Aspden, R. S.

P. A. Morris, R. S. Aspden, J. E. Bell, R. W. Boyd, and M. J. Padgett, “Imaging with a small number of photons,” Nat. Commun. 6(1), 5913 (2015).
[Crossref] [PubMed]

Barbier, M.

P. Ryczkowski, M. Barbier, A. T. Friberg, J. M. Dudley, and G. Genty, “Ghost imaging in the time domain,” Nat. Photonics 10(3), 167–170 (2016).
[Crossref]

Bastin, T.

C. Thiel, T. Bastin, J. Martin, E. Solano, J. von Zanthier, and G. S. Agarwal, “Quantum imaging with incoherent photons,” Phys. Rev. Lett. 99(13), 133603 (2007).
[Crossref] [PubMed]

Bell, J. E.

P. A. Morris, R. S. Aspden, J. E. Bell, R. W. Boyd, and M. J. Padgett, “Imaging with a small number of photons,” Nat. Commun. 6(1), 5913 (2015).
[Crossref] [PubMed]

Bennink, R. S.

R. S. Bennink, S. J. Bentley, and R. W. Boyd, ““Two-Photon” coincidence imaging with a classical source,” Phys. Rev. Lett. 89(11), 113601 (2002).
[Crossref] [PubMed]

Bentley, S. J.

R. S. Bennink, S. J. Bentley, and R. W. Boyd, ““Two-Photon” coincidence imaging with a classical source,” Phys. Rev. Lett. 89(11), 113601 (2002).
[Crossref] [PubMed]

Borghi, R.

R. Borghi, F. Gori, and M. Santarsiero, “Phase and amplitude retrieval in ghost diffraction from field-correlation measurements,” Phys. Rev. Lett. 96(18), 183901 (2006).
[Crossref] [PubMed]

Borodin, D.

A. Schori, D. Borodin, K. Tamasaku, and S. Shwartz, “Ghost imaging with paired x-ray photons,” Phys. Rev. A (Coll. Park) 97(6), 063804 (2018).
[Crossref]

Bowman, A.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340(6134), 844–847 (2013).
[Crossref] [PubMed]

Bowman, R.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340(6134), 844–847 (2013).
[Crossref] [PubMed]

Boyd, R. W.

P. A. Morris, R. S. Aspden, J. E. Bell, R. W. Boyd, and M. J. Padgett, “Imaging with a small number of photons,” Nat. Commun. 6(1), 5913 (2015).
[Crossref] [PubMed]

J. H. Shapiro and R. W. Boyd, “The physics of ghost imaging,” Quantum Inform. Process. 11(4), 949–993 (2012).
[Crossref]

R. S. Bennink, S. J. Bentley, and R. W. Boyd, ““Two-Photon” coincidence imaging with a classical source,” Phys. Rev. Lett. 89(11), 113601 (2002).
[Crossref] [PubMed]

Bromberg, Y.

Y. Bromberg, O. Katz, and Y. Silberberg, “Ghost imaging with a single detector,” Phys. Rev. A 79(5), 053840 (2009).
[Crossref]

Bunk, O.

P. Thibault, M. Dierolf, A. Menzel, O. Bunk, C. David, and F. Pfeiffer, “High-resolution scanning x-ray diffraction microscopy,” Science 321(5887), 379–382 (2008).
[Crossref] [PubMed]

Cai, Y.

Y. Cai and S. Y. Zhu, “Ghost imaging with incoherent and partially coherent light radiation,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(5), 056607 (2005).
[Crossref] [PubMed]

Cantelli, V.

D. Pelliccia, A. Rack, M. Scheel, V. Cantelli, and D. M. Paganin, “Experimental x-ray ghost imaging,” Phys. Rev. Lett. 117(11), 113902 (2016).
[Crossref] [PubMed]

Ceddia, D.

D. Ceddia and D. M. Paganin, “Random-matrix bases, ghost imaging, and x-ray phase contrast computational ghost imaging,” Phys. Rev. A (Coll. Park) 97(6), 062119 (2018).
[Crossref]

Chapman, H. N.

H. N. Chapman and K. A. Nugent, “Coherent lensless X-ray imaging,” Nat. Photonics 4(12), 833–839 (2010).
[Crossref]

Charalambous, P.

J. Miao, P. Charalambous, J. Kirz, and D. Sayre, “Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens,” Nature 400(6742), 342–344 (1999).
[Crossref]

Chen, L.-M.

Chen, W.

Chen, X.

Cheng, J.

J. Cheng, “Ghost imaging through turbulent atmosphere,” Opt. Express 17(10), 7916–7921 (2009).
[Crossref] [PubMed]

J. Cheng and S. Han, “Incoherent coincidence imaging and its applicability in X-ray diffraction,” Phys. Rev. Lett. 92(9), 093903 (2004).
[Crossref] [PubMed]

Cheng, Y.

David, C.

P. Thibault, M. Dierolf, A. Menzel, O. Bunk, C. David, and F. Pfeiffer, “High-resolution scanning x-ray diffraction microscopy,” Science 321(5887), 379–382 (2008).
[Crossref] [PubMed]

Davis, J. C.

B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E= 50-30,000 eV, Z= 1-92,” Atom. data Nucl. data 54(2), 181–342 (1993).
[Crossref]

Deacon, K. S.

R. E. Meyers, K. S. Deacon, and Y. Shih, “Turbulence-free ghost imaging,” Appl. Phys. Lett. 98(11), 111115 (2011).
[Crossref]

Dierolf, M.

P. Thibault, M. Dierolf, A. Menzel, O. Bunk, C. David, and F. Pfeiffer, “High-resolution scanning x-ray diffraction microscopy,” Science 321(5887), 379–382 (2008).
[Crossref] [PubMed]

Dolbnya, I. P.

K. J. S. Sawhney, I. P. Dolbnya, M. K. Tiwari, L. Alianelli, S. M. Scott, G. M. Preece, U. K. Pedersen, and R. D. Walton, “A test beamline on diamond light source,” in Proceedings of AIP (2010, June), pp. 387–390.
[Crossref]

Dudley, J. M.

P. Ryczkowski, M. Barbier, A. T. Friberg, J. M. Dudley, and G. Genty, “Ghost imaging in the time domain,” Nat. Photonics 10(3), 167–170 (2016).
[Crossref]

Eberhardt, W.

S. Eisebitt, J. Lüning, W. F. Schlotter, M. Lörgen, O. Hellwig, W. Eberhardt, and J. Stöhr, “Lensless imaging of magnetic nanostructures by X-ray spectro-holography,” Nature 432(7019), 885–888 (2004).
[Crossref] [PubMed]

Edgar, M. P.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340(6134), 844–847 (2013).
[Crossref] [PubMed]

Eisebitt, S.

S. Eisebitt, J. Lüning, W. F. Schlotter, M. Lörgen, O. Hellwig, W. Eberhardt, and J. Stöhr, “Lensless imaging of magnetic nanostructures by X-ray spectro-holography,” Nature 432(7019), 885–888 (2004).
[Crossref] [PubMed]

Erkmen, B. I.

B. I. Erkmen and J. H. Shapiro, “Signal-to-noise ratio of Gaussian-state ghost imaging,” Phys. Rev. A 79(2), 023833 (2009).
[Crossref]

Friberg, A. T.

P. Ryczkowski, M. Barbier, A. T. Friberg, J. M. Dudley, and G. Genty, “Ghost imaging in the time domain,” Nat. Photonics 10(3), 167–170 (2016).
[Crossref]

Genty, G.

P. Ryczkowski, M. Barbier, A. T. Friberg, J. M. Dudley, and G. Genty, “Ghost imaging in the time domain,” Nat. Photonics 10(3), 167–170 (2016).
[Crossref]

Gori, F.

R. Borghi, F. Gori, and M. Santarsiero, “Phase and amplitude retrieval in ghost diffraction from field-correlation measurements,” Phys. Rev. Lett. 96(18), 183901 (2006).
[Crossref] [PubMed]

Gullikson, E. M.

B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E= 50-30,000 eV, Z= 1-92,” Atom. data Nucl. data 54(2), 181–342 (1993).
[Crossref]

Han, S.

J. Cheng and S. Han, “Incoherent coincidence imaging and its applicability in X-ray diffraction,” Phys. Rev. Lett. 92(9), 093903 (2004).
[Crossref] [PubMed]

He, Y.-H.

Hellwig, O.

S. Eisebitt, J. Lüning, W. F. Schlotter, M. Lörgen, O. Hellwig, W. Eberhardt, and J. Stöhr, “Lensless imaging of magnetic nanostructures by X-ray spectro-holography,” Nature 432(7019), 885–888 (2004).
[Crossref] [PubMed]

Henke, B. L.

B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E= 50-30,000 eV, Z= 1-92,” Atom. data Nucl. data 54(2), 181–342 (1993).
[Crossref]

Howells, M. R.

I. McNulty, J. Kirz, C. Jacobsen, E. H. Anderson, M. R. Howells, and D. P. Kern, “High-resolution imaging by Fourier transform X-ray holography,” Science 256(5059), 1009–1012 (1992).
[Crossref] [PubMed]

Jacobsen, C.

I. McNulty, J. Kirz, C. Jacobsen, E. H. Anderson, M. R. Howells, and D. P. Kern, “High-resolution imaging by Fourier transform X-ray holography,” Science 256(5059), 1009–1012 (1992).
[Crossref] [PubMed]

Katz, O.

Y. Bromberg, O. Katz, and Y. Silberberg, “Ghost imaging with a single detector,” Phys. Rev. A 79(5), 053840 (2009).
[Crossref]

Kern, D. P.

I. McNulty, J. Kirz, C. Jacobsen, E. H. Anderson, M. R. Howells, and D. P. Kern, “High-resolution imaging by Fourier transform X-ray holography,” Science 256(5059), 1009–1012 (1992).
[Crossref] [PubMed]

Kingston, A. M.

D. Pelliccia, M. P. Olbinado, A. Rack, A. M. Kingston, G. R. Myers, and D. M. Paganin, “Towards a practical implementation of X-ray ghost imaging with synchrotron light,” IUCrJ 5(4), 428–438 (2018).
[Crossref] [PubMed]

A. M. Kingston, D. Pelliccia, A. Rack, M. P. Olbinado, Y. Cheng, G. R. Myers, and D. M. Paganin, “Ghost tomography,” Optica 5(12), 1516–1520 (2018).
[Crossref]

Kirz, J.

J. Miao, P. Charalambous, J. Kirz, and D. Sayre, “Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens,” Nature 400(6742), 342–344 (1999).
[Crossref]

I. McNulty, J. Kirz, C. Jacobsen, E. H. Anderson, M. R. Howells, and D. P. Kern, “High-resolution imaging by Fourier transform X-ray holography,” Science 256(5059), 1009–1012 (1992).
[Crossref] [PubMed]

Le, M.

Liu, B.

C. Xue, J. Zhao, Y. Wu, H. Yu, S. Yang, L. Wang, W. Zhao, Q. Wu, Z. Zhu, B. Liu, X. Zhang, W. Zhou, and R. Tai, “Fabrication of large-area high-aspect-ratio periodic nanostructures on various substrates by soft X-ray interference lithography,” Appl. Surf. Sci. 425, 553–557 (2017).
[Crossref]

Liu, J.

Liu, S.

Lörgen, M.

S. Eisebitt, J. Lüning, W. F. Schlotter, M. Lörgen, O. Hellwig, W. Eberhardt, and J. Stöhr, “Lensless imaging of magnetic nanostructures by X-ray spectro-holography,” Nature 432(7019), 885–888 (2004).
[Crossref] [PubMed]

Lüning, J.

S. Eisebitt, J. Lüning, W. F. Schlotter, M. Lörgen, O. Hellwig, W. Eberhardt, and J. Stöhr, “Lensless imaging of magnetic nanostructures by X-ray spectro-holography,” Nature 432(7019), 885–888 (2004).
[Crossref] [PubMed]

Mahdi Khamoushi, . M.

Martin, J.

C. Thiel, T. Bastin, J. Martin, E. Solano, J. von Zanthier, and G. S. Agarwal, “Quantum imaging with incoherent photons,” Phys. Rev. Lett. 99(13), 133603 (2007).
[Crossref] [PubMed]

McNulty, I.

I. McNulty, J. Kirz, C. Jacobsen, E. H. Anderson, M. R. Howells, and D. P. Kern, “High-resolution imaging by Fourier transform X-ray holography,” Science 256(5059), 1009–1012 (1992).
[Crossref] [PubMed]

Menzel, A.

P. Thibault, M. Dierolf, A. Menzel, O. Bunk, C. David, and F. Pfeiffer, “High-resolution scanning x-ray diffraction microscopy,” Science 321(5887), 379–382 (2008).
[Crossref] [PubMed]

Meyers, R. E.

R. E. Meyers, K. S. Deacon, and Y. Shih, “Turbulence-free ghost imaging,” Appl. Phys. Lett. 98(11), 111115 (2011).
[Crossref]

Miao, J.

J. Miao, P. Charalambous, J. Kirz, and D. Sayre, “Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens,” Nature 400(6742), 342–344 (1999).
[Crossref]

Morris, P. A.

P. A. Morris, R. S. Aspden, J. E. Bell, R. W. Boyd, and M. J. Padgett, “Imaging with a small number of photons,” Nat. Commun. 6(1), 5913 (2015).
[Crossref] [PubMed]

Myers, G. R.

D. Pelliccia, M. P. Olbinado, A. Rack, A. M. Kingston, G. R. Myers, and D. M. Paganin, “Towards a practical implementation of X-ray ghost imaging with synchrotron light,” IUCrJ 5(4), 428–438 (2018).
[Crossref] [PubMed]

A. M. Kingston, D. Pelliccia, A. Rack, M. P. Olbinado, Y. Cheng, G. R. Myers, and D. M. Paganin, “Ghost tomography,” Optica 5(12), 1516–1520 (2018).
[Crossref]

Nosrati, Y.

Nugent, K. A.

H. N. Chapman and K. A. Nugent, “Coherent lensless X-ray imaging,” Nat. Photonics 4(12), 833–839 (2010).
[Crossref]

Olbinado, M. P.

D. Pelliccia, M. P. Olbinado, A. Rack, A. M. Kingston, G. R. Myers, and D. M. Paganin, “Towards a practical implementation of X-ray ghost imaging with synchrotron light,” IUCrJ 5(4), 428–438 (2018).
[Crossref] [PubMed]

A. M. Kingston, D. Pelliccia, A. Rack, M. P. Olbinado, Y. Cheng, G. R. Myers, and D. M. Paganin, “Ghost tomography,” Optica 5(12), 1516–1520 (2018).
[Crossref]

Padgett, M. J.

P. A. Morris, R. S. Aspden, J. E. Bell, R. W. Boyd, and M. J. Padgett, “Imaging with a small number of photons,” Nat. Commun. 6(1), 5913 (2015).
[Crossref] [PubMed]

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340(6134), 844–847 (2013).
[Crossref] [PubMed]

Paganin, D. M.

D. Pelliccia, M. P. Olbinado, A. Rack, A. M. Kingston, G. R. Myers, and D. M. Paganin, “Towards a practical implementation of X-ray ghost imaging with synchrotron light,” IUCrJ 5(4), 428–438 (2018).
[Crossref] [PubMed]

A. M. Kingston, D. Pelliccia, A. Rack, M. P. Olbinado, Y. Cheng, G. R. Myers, and D. M. Paganin, “Ghost tomography,” Optica 5(12), 1516–1520 (2018).
[Crossref]

D. Ceddia and D. M. Paganin, “Random-matrix bases, ghost imaging, and x-ray phase contrast computational ghost imaging,” Phys. Rev. A (Coll. Park) 97(6), 062119 (2018).
[Crossref]

D. Pelliccia, A. Rack, M. Scheel, V. Cantelli, and D. M. Paganin, “Experimental x-ray ghost imaging,” Phys. Rev. Lett. 117(11), 113902 (2016).
[Crossref] [PubMed]

Pedersen, U. K.

K. J. S. Sawhney, I. P. Dolbnya, M. K. Tiwari, L. Alianelli, S. M. Scott, G. M. Preece, U. K. Pedersen, and R. D. Walton, “A test beamline on diamond light source,” in Proceedings of AIP (2010, June), pp. 387–390.
[Crossref]

Pelliccia, D.

A. M. Kingston, D. Pelliccia, A. Rack, M. P. Olbinado, Y. Cheng, G. R. Myers, and D. M. Paganin, “Ghost tomography,” Optica 5(12), 1516–1520 (2018).
[Crossref]

D. Pelliccia, M. P. Olbinado, A. Rack, A. M. Kingston, G. R. Myers, and D. M. Paganin, “Towards a practical implementation of X-ray ghost imaging with synchrotron light,” IUCrJ 5(4), 428–438 (2018).
[Crossref] [PubMed]

D. Pelliccia, A. Rack, M. Scheel, V. Cantelli, and D. M. Paganin, “Experimental x-ray ghost imaging,” Phys. Rev. Lett. 117(11), 113902 (2016).
[Crossref] [PubMed]

Peng, J.

Pfeiffer, F.

P. Thibault, M. Dierolf, A. Menzel, O. Bunk, C. David, and F. Pfeiffer, “High-resolution scanning x-ray diffraction microscopy,” Science 321(5887), 379–382 (2008).
[Crossref] [PubMed]

Preece, G. M.

K. J. S. Sawhney, I. P. Dolbnya, M. K. Tiwari, L. Alianelli, S. M. Scott, G. M. Preece, U. K. Pedersen, and R. D. Walton, “A test beamline on diamond light source,” in Proceedings of AIP (2010, June), pp. 387–390.
[Crossref]

Rack, A.

A. M. Kingston, D. Pelliccia, A. Rack, M. P. Olbinado, Y. Cheng, G. R. Myers, and D. M. Paganin, “Ghost tomography,” Optica 5(12), 1516–1520 (2018).
[Crossref]

D. Pelliccia, M. P. Olbinado, A. Rack, A. M. Kingston, G. R. Myers, and D. M. Paganin, “Towards a practical implementation of X-ray ghost imaging with synchrotron light,” IUCrJ 5(4), 428–438 (2018).
[Crossref] [PubMed]

D. Pelliccia, A. Rack, M. Scheel, V. Cantelli, and D. M. Paganin, “Experimental x-ray ghost imaging,” Phys. Rev. Lett. 117(11), 113902 (2016).
[Crossref] [PubMed]

Ryczkowski, P.

P. Ryczkowski, M. Barbier, A. T. Friberg, J. M. Dudley, and G. Genty, “Ghost imaging in the time domain,” Nat. Photonics 10(3), 167–170 (2016).
[Crossref]

Santarsiero, M.

R. Borghi, F. Gori, and M. Santarsiero, “Phase and amplitude retrieval in ghost diffraction from field-correlation measurements,” Phys. Rev. Lett. 96(18), 183901 (2006).
[Crossref] [PubMed]

Sawhney, K. J. S.

K. J. S. Sawhney, I. P. Dolbnya, M. K. Tiwari, L. Alianelli, S. M. Scott, G. M. Preece, U. K. Pedersen, and R. D. Walton, “A test beamline on diamond light source,” in Proceedings of AIP (2010, June), pp. 387–390.
[Crossref]

Sayre, D.

J. Miao, P. Charalambous, J. Kirz, and D. Sayre, “Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens,” Nature 400(6742), 342–344 (1999).
[Crossref]

Scheel, M.

D. Pelliccia, A. Rack, M. Scheel, V. Cantelli, and D. M. Paganin, “Experimental x-ray ghost imaging,” Phys. Rev. Lett. 117(11), 113902 (2016).
[Crossref] [PubMed]

Schlotter, W. F.

S. Eisebitt, J. Lüning, W. F. Schlotter, M. Lörgen, O. Hellwig, W. Eberhardt, and J. Stöhr, “Lensless imaging of magnetic nanostructures by X-ray spectro-holography,” Nature 432(7019), 885–888 (2004).
[Crossref] [PubMed]

Schori, A.

A. Schori, D. Borodin, K. Tamasaku, and S. Shwartz, “Ghost imaging with paired x-ray photons,” Phys. Rev. A (Coll. Park) 97(6), 063804 (2018).
[Crossref]

A. Schori and S. Shwartz, “X-ray ghost imaging with a laboratory source,” Opt. Express 25(13), 14822–14828 (2017).
[Crossref] [PubMed]

Scott, S. M.

K. J. S. Sawhney, I. P. Dolbnya, M. K. Tiwari, L. Alianelli, S. M. Scott, G. M. Preece, U. K. Pedersen, and R. D. Walton, “A test beamline on diamond light source,” in Proceedings of AIP (2010, June), pp. 387–390.
[Crossref]

Shapiro, J. H.

J. H. Shapiro and R. W. Boyd, “The physics of ghost imaging,” Quantum Inform. Process. 11(4), 949–993 (2012).
[Crossref]

B. I. Erkmen and J. H. Shapiro, “Signal-to-noise ratio of Gaussian-state ghost imaging,” Phys. Rev. A 79(2), 023833 (2009).
[Crossref]

J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78(6), 061802 (2008).
[Crossref]

Shih, Y.

R. E. Meyers, K. S. Deacon, and Y. Shih, “Turbulence-free ghost imaging,” Appl. Phys. Lett. 98(11), 111115 (2011).
[Crossref]

Shwartz, S.

A. Schori, D. Borodin, K. Tamasaku, and S. Shwartz, “Ghost imaging with paired x-ray photons,” Phys. Rev. A (Coll. Park) 97(6), 063804 (2018).
[Crossref]

A. Schori and S. Shwartz, “X-ray ghost imaging with a laboratory source,” Opt. Express 25(13), 14822–14828 (2017).
[Crossref] [PubMed]

Silberberg, Y.

Y. Bromberg, O. Katz, and Y. Silberberg, “Ghost imaging with a single detector,” Phys. Rev. A 79(5), 053840 (2009).
[Crossref]

Solano, E.

C. Thiel, T. Bastin, J. Martin, E. Solano, J. von Zanthier, and G. S. Agarwal, “Quantum imaging with incoherent photons,” Phys. Rev. Lett. 99(13), 133603 (2007).
[Crossref] [PubMed]

Stöhr, J.

S. Eisebitt, J. Lüning, W. F. Schlotter, M. Lörgen, O. Hellwig, W. Eberhardt, and J. Stöhr, “Lensless imaging of magnetic nanostructures by X-ray spectro-holography,” Nature 432(7019), 885–888 (2004).
[Crossref] [PubMed]

Sun, B.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340(6134), 844–847 (2013).
[Crossref] [PubMed]

Tai, R.

C. Xue, J. Zhao, Y. Wu, H. Yu, S. Yang, L. Wang, W. Zhao, Q. Wu, Z. Zhu, B. Liu, X. Zhang, W. Zhou, and R. Tai, “Fabrication of large-area high-aspect-ratio periodic nanostructures on various substrates by soft X-ray interference lithography,” Appl. Surf. Sci. 425, 553–557 (2017).
[Crossref]

Tamasaku, K.

A. Schori, D. Borodin, K. Tamasaku, and S. Shwartz, “Ghost imaging with paired x-ray photons,” Phys. Rev. A (Coll. Park) 97(6), 063804 (2018).
[Crossref]

Tavassoli, S. H.

Thibault, P.

P. Thibault, M. Dierolf, A. Menzel, O. Bunk, C. David, and F. Pfeiffer, “High-resolution scanning x-ray diffraction microscopy,” Science 321(5887), 379–382 (2008).
[Crossref] [PubMed]

Thiel, C.

C. Thiel, T. Bastin, J. Martin, E. Solano, J. von Zanthier, and G. S. Agarwal, “Quantum imaging with incoherent photons,” Phys. Rev. Lett. 99(13), 133603 (2007).
[Crossref] [PubMed]

Tiwari, M. K.

K. J. S. Sawhney, I. P. Dolbnya, M. K. Tiwari, L. Alianelli, S. M. Scott, G. M. Preece, U. K. Pedersen, and R. D. Walton, “A test beamline on diamond light source,” in Proceedings of AIP (2010, June), pp. 387–390.
[Crossref]

Vittert, L. E.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340(6134), 844–847 (2013).
[Crossref] [PubMed]

von Zanthier, J.

C. Thiel, T. Bastin, J. Martin, E. Solano, J. von Zanthier, and G. S. Agarwal, “Quantum imaging with incoherent photons,” Phys. Rev. Lett. 99(13), 133603 (2007).
[Crossref] [PubMed]

Walton, R. D.

K. J. S. Sawhney, I. P. Dolbnya, M. K. Tiwari, L. Alianelli, S. M. Scott, G. M. Preece, U. K. Pedersen, and R. D. Walton, “A test beamline on diamond light source,” in Proceedings of AIP (2010, June), pp. 387–390.
[Crossref]

Wang, B.-B.

Wang, G.

Wang, L.

C. Xue, J. Zhao, Y. Wu, H. Yu, S. Yang, L. Wang, W. Zhao, Q. Wu, Z. Zhu, B. Liu, X. Zhang, W. Zhou, and R. Tai, “Fabrication of large-area high-aspect-ratio periodic nanostructures on various substrates by soft X-ray interference lithography,” Appl. Surf. Sci. 425, 553–557 (2017).
[Crossref]

Welsh, S.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340(6134), 844–847 (2013).
[Crossref] [PubMed]

Wu, L.-A.

Wu, Q.

C. Xue, J. Zhao, Y. Wu, H. Yu, S. Yang, L. Wang, W. Zhao, Q. Wu, Z. Zhu, B. Liu, X. Zhang, W. Zhou, and R. Tai, “Fabrication of large-area high-aspect-ratio periodic nanostructures on various substrates by soft X-ray interference lithography,” Appl. Surf. Sci. 425, 553–557 (2017).
[Crossref]

Wu, Y.

C. Xue, J. Zhao, Y. Wu, H. Yu, S. Yang, L. Wang, W. Zhao, Q. Wu, Z. Zhu, B. Liu, X. Zhang, W. Zhou, and R. Tai, “Fabrication of large-area high-aspect-ratio periodic nanostructures on various substrates by soft X-ray interference lithography,” Appl. Surf. Sci. 425, 553–557 (2017).
[Crossref]

Xu, Z.

Xue, C.

C. Xue, J. Zhao, Y. Wu, H. Yu, S. Yang, L. Wang, W. Zhao, Q. Wu, Z. Zhu, B. Liu, X. Zhang, W. Zhou, and R. Tai, “Fabrication of large-area high-aspect-ratio periodic nanostructures on various substrates by soft X-ray interference lithography,” Appl. Surf. Sci. 425, 553–557 (2017).
[Crossref]

Yang, S.

C. Xue, J. Zhao, Y. Wu, H. Yu, S. Yang, L. Wang, W. Zhao, Q. Wu, Z. Zhu, B. Liu, X. Zhang, W. Zhou, and R. Tai, “Fabrication of large-area high-aspect-ratio periodic nanostructures on various substrates by soft X-ray interference lithography,” Appl. Surf. Sci. 425, 553–557 (2017).
[Crossref]

Yao, M.

Yu, H.

C. Xue, J. Zhao, Y. Wu, H. Yu, S. Yang, L. Wang, W. Zhao, Q. Wu, Z. Zhu, B. Liu, X. Zhang, W. Zhou, and R. Tai, “Fabrication of large-area high-aspect-ratio periodic nanostructures on various substrates by soft X-ray interference lithography,” Appl. Surf. Sci. 425, 553–557 (2017).
[Crossref]

Zhang, A.-X.

Zhang, X.

C. Xue, J. Zhao, Y. Wu, H. Yu, S. Yang, L. Wang, W. Zhao, Q. Wu, Z. Zhu, B. Liu, X. Zhang, W. Zhou, and R. Tai, “Fabrication of large-area high-aspect-ratio periodic nanostructures on various substrates by soft X-ray interference lithography,” Appl. Surf. Sci. 425, 553–557 (2017).
[Crossref]

Zhang, Z.

Zhao, J.

C. Xue, J. Zhao, Y. Wu, H. Yu, S. Yang, L. Wang, W. Zhao, Q. Wu, Z. Zhu, B. Liu, X. Zhang, W. Zhou, and R. Tai, “Fabrication of large-area high-aspect-ratio periodic nanostructures on various substrates by soft X-ray interference lithography,” Appl. Surf. Sci. 425, 553–557 (2017).
[Crossref]

Zhao, W.

C. Xue, J. Zhao, Y. Wu, H. Yu, S. Yang, L. Wang, W. Zhao, Q. Wu, Z. Zhu, B. Liu, X. Zhang, W. Zhou, and R. Tai, “Fabrication of large-area high-aspect-ratio periodic nanostructures on various substrates by soft X-ray interference lithography,” Appl. Surf. Sci. 425, 553–557 (2017).
[Crossref]

Zheng, G.

Zheng, H.

Zhong, J.

Zhou, W.

C. Xue, J. Zhao, Y. Wu, H. Yu, S. Yang, L. Wang, W. Zhao, Q. Wu, Z. Zhu, B. Liu, X. Zhang, W. Zhou, and R. Tai, “Fabrication of large-area high-aspect-ratio periodic nanostructures on various substrates by soft X-ray interference lithography,” Appl. Surf. Sci. 425, 553–557 (2017).
[Crossref]

Zhou, Y.

Zhu, S. Y.

Y. Cai and S. Y. Zhu, “Ghost imaging with incoherent and partially coherent light radiation,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(5), 056607 (2005).
[Crossref] [PubMed]

Zhu, Z.

C. Xue, J. Zhao, Y. Wu, H. Yu, S. Yang, L. Wang, W. Zhao, Q. Wu, Z. Zhu, B. Liu, X. Zhang, W. Zhou, and R. Tai, “Fabrication of large-area high-aspect-ratio periodic nanostructures on various substrates by soft X-ray interference lithography,” Appl. Surf. Sci. 425, 553–557 (2017).
[Crossref]

Appl. Phys. Lett. (1)

R. E. Meyers, K. S. Deacon, and Y. Shih, “Turbulence-free ghost imaging,” Appl. Phys. Lett. 98(11), 111115 (2011).
[Crossref]

Appl. Surf. Sci. (1)

C. Xue, J. Zhao, Y. Wu, H. Yu, S. Yang, L. Wang, W. Zhao, Q. Wu, Z. Zhu, B. Liu, X. Zhang, W. Zhou, and R. Tai, “Fabrication of large-area high-aspect-ratio periodic nanostructures on various substrates by soft X-ray interference lithography,” Appl. Surf. Sci. 425, 553–557 (2017).
[Crossref]

Atom. data Nucl. data (1)

B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E= 50-30,000 eV, Z= 1-92,” Atom. data Nucl. data 54(2), 181–342 (1993).
[Crossref]

IUCrJ (1)

D. Pelliccia, M. P. Olbinado, A. Rack, A. M. Kingston, G. R. Myers, and D. M. Paganin, “Towards a practical implementation of X-ray ghost imaging with synchrotron light,” IUCrJ 5(4), 428–438 (2018).
[Crossref] [PubMed]

Nat. Commun. (1)

P. A. Morris, R. S. Aspden, J. E. Bell, R. W. Boyd, and M. J. Padgett, “Imaging with a small number of photons,” Nat. Commun. 6(1), 5913 (2015).
[Crossref] [PubMed]

Nat. Photonics (2)

P. Ryczkowski, M. Barbier, A. T. Friberg, J. M. Dudley, and G. Genty, “Ghost imaging in the time domain,” Nat. Photonics 10(3), 167–170 (2016).
[Crossref]

H. N. Chapman and K. A. Nugent, “Coherent lensless X-ray imaging,” Nat. Photonics 4(12), 833–839 (2010).
[Crossref]

Nature (2)

J. Miao, P. Charalambous, J. Kirz, and D. Sayre, “Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens,” Nature 400(6742), 342–344 (1999).
[Crossref]

S. Eisebitt, J. Lüning, W. F. Schlotter, M. Lörgen, O. Hellwig, W. Eberhardt, and J. Stöhr, “Lensless imaging of magnetic nanostructures by X-ray spectro-holography,” Nature 432(7019), 885–888 (2004).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (2)

Optica (3)

Phys. Rev. A (3)

B. I. Erkmen and J. H. Shapiro, “Signal-to-noise ratio of Gaussian-state ghost imaging,” Phys. Rev. A 79(2), 023833 (2009).
[Crossref]

J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78(6), 061802 (2008).
[Crossref]

Y. Bromberg, O. Katz, and Y. Silberberg, “Ghost imaging with a single detector,” Phys. Rev. A 79(5), 053840 (2009).
[Crossref]

Phys. Rev. A (Coll. Park) (2)

D. Ceddia and D. M. Paganin, “Random-matrix bases, ghost imaging, and x-ray phase contrast computational ghost imaging,” Phys. Rev. A (Coll. Park) 97(6), 062119 (2018).
[Crossref]

A. Schori, D. Borodin, K. Tamasaku, and S. Shwartz, “Ghost imaging with paired x-ray photons,” Phys. Rev. A (Coll. Park) 97(6), 063804 (2018).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

Y. Cai and S. Y. Zhu, “Ghost imaging with incoherent and partially coherent light radiation,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(5), 056607 (2005).
[Crossref] [PubMed]

Phys. Rev. Lett. (5)

R. S. Bennink, S. J. Bentley, and R. W. Boyd, ““Two-Photon” coincidence imaging with a classical source,” Phys. Rev. Lett. 89(11), 113601 (2002).
[Crossref] [PubMed]

J. Cheng and S. Han, “Incoherent coincidence imaging and its applicability in X-ray diffraction,” Phys. Rev. Lett. 92(9), 093903 (2004).
[Crossref] [PubMed]

R. Borghi, F. Gori, and M. Santarsiero, “Phase and amplitude retrieval in ghost diffraction from field-correlation measurements,” Phys. Rev. Lett. 96(18), 183901 (2006).
[Crossref] [PubMed]

C. Thiel, T. Bastin, J. Martin, E. Solano, J. von Zanthier, and G. S. Agarwal, “Quantum imaging with incoherent photons,” Phys. Rev. Lett. 99(13), 133603 (2007).
[Crossref] [PubMed]

D. Pelliccia, A. Rack, M. Scheel, V. Cantelli, and D. M. Paganin, “Experimental x-ray ghost imaging,” Phys. Rev. Lett. 117(11), 113902 (2016).
[Crossref] [PubMed]

Quantum Inform. Process. (1)

J. H. Shapiro and R. W. Boyd, “The physics of ghost imaging,” Quantum Inform. Process. 11(4), 949–993 (2012).
[Crossref]

Science (3)

P. Thibault, M. Dierolf, A. Menzel, O. Bunk, C. David, and F. Pfeiffer, “High-resolution scanning x-ray diffraction microscopy,” Science 321(5887), 379–382 (2008).
[Crossref] [PubMed]

I. McNulty, J. Kirz, C. Jacobsen, E. H. Anderson, M. R. Howells, and D. P. Kern, “High-resolution imaging by Fourier transform X-ray holography,” Science 256(5059), 1009–1012 (1992).
[Crossref] [PubMed]

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340(6134), 844–847 (2013).
[Crossref] [PubMed]

Other (3)

J. W. Goodman, Statistical optics (Wiley classics library, 2000), Chap. 5.

K. J. S. Sawhney, I. P. Dolbnya, M. K. Tiwari, L. Alianelli, S. M. Scott, G. M. Preece, U. K. Pedersen, and R. D. Walton, “A test beamline on diamond light source,” in Proceedings of AIP (2010, June), pp. 387–390.
[Crossref]

H. Yu, R. Lu, S. Han, H. Xie, G. Du, T. Xiao, and D. Zhu, “Fourier-transform ghost imaging with hard X rays” Phys. Rev. Lett. 117(11), 113901‏ (2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Schematic of the computational ghost imaging experimental setup. A diffuser is mounted on linear stages. The beam hits a small portion of the diffuser, then it propagates through the object and is detected by a single-pixel detector mounted as close as possible to the object. (b) An example of an illuminated area of mask 2, which is a random pattern of long rectangles with dimensions of 2 μm x 0.2 μm. The pattern changes only in x axis. (c) Two examples of calculated diffraction patterns for two different realizations.
Fig. 2
Fig. 2 Experimental results of computational ghost imaging for (a) a 50 μm slit with mask number 2, (b) an 80 μm slit with mask number 2, and (c) an 80 μm slit with mask number 1. The solid lines are guides for the eye.
Fig. 3
Fig. 3 CGI simulations for several coherent lengths. R is the ratio between the spatial coherence length and the minimum features size of the diffuser. The object is a 15 μm slit (the purple lines are the theoretical slit). In panels (a)-(d) the mask is an amplitude mask and in panels (e)-(h) the mask is a phase mask. The propagation distance we use for the simulations is 100 mm.
Fig. 4
Fig. 4 The SNR as a function of the number of realizations N for CGI results with the 50 μm slit that we show in Fig. 2(a). The black dots are experimental results and the blue solid line is the analytic fitting function a√N. See details in the text.
Fig. 5
Fig. 5 Comparison between the CGI experimental results (blue dotted line), CGI simulation with the mask that we used in the experiment (green dashed line), and simulation with an ideal mask modulation (red dashed line) for a 50-μm slit (the purple line is the actual shape of the slit). In panel (a) the distance between the diffuser and the object is 100 mm. In panel (b) the distance is 30 mm.

Tables (2)

Tables Icon

Table 1 Specifications of the phase masks

Tables Icon

Table 2 Parameters of the CGI experiments

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

U r (x)= B r (x) e i φ r (x)
I C r (x',z)= | dx E in (x) U r (x) e ik 2z (x-x') 2 | 2
E in (x)= 0 T d dt A e i(kx-ωt+ϕ(x,t))
G(x)= 1 N r=1 N ( I B r - I B ) I C r = I B I C - I B I C

Metrics