Abstract

This paper describes a simple procedure to determine the local thickness of a thin anisotropic layer. It also discriminates between isotropic and anisotropic regions, provided a smoothness hypothesis on the refractive index distribution is satisfied. The procedure is based on the analysis of surface plasmon resonance (SPR) data acquired in an imaging mode. The general arrangement of the setup is the Kretschmann configuration. We show, on an azobenzene modified polymer layer, good agreement between atomic force microscopy and optical measurements of thickness variation.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
An improved refractive index sensor based on genetic optimization of plasmon waveguide resonance

Farshid Bahrami, Mathieu Maisonneuve, Michel Meunier, J. Stewart Aitchison, and Mo Mojahedi
Opt. Express 21(18) 20863-20872 (2013)

Self-referenced spectroscopy using plasmon waveguide resonance biosensor

Farshid Bahrami, Mathieu Maisonneuve, Michel Meunier, J. Stewart Aitchison, and Mo Mojahedi
Biomed. Opt. Express 5(8) 2481-2487 (2014)

Plasmon waveguide resonance sensor using an Au–MgF2 structure

Yanfei Zhou, Pengfei Zhang, Yonghong He, Zihao Xu, Le Liu, Yanhong Ji, and Hui Ma
Appl. Opt. 53(28) 6344-6350 (2014)

References

  • View by:
  • |
  • |
  • |

  1. A. Mashaghi, M. Swann, J. Popplewell, M. Textor, and E. Reimhult, “Optical anisotropy of supported lipid structures probed by waveguide spectroscopy and its application to study of supported lipid bilayer formation kinetics,”Anal. Chem. 80,3666–3676 (2008).
    [Crossref] [PubMed]
  2. K. Tawa and W. Knoll, “Out-of-plane photoreorientation of azo dyes in polymer thin films studied by surface plasmon resonance spectroscopy,”Macromolecules 35,7018–7023 (2002).
    [Crossref]
  3. E. Harté, N. Maalouli, A. Shalabney, E. Texier, K. Berthelot, S. Lecomte, and I. Alves, “Probing the kinetics of lipid membrane formation and the interaction of a nontoxic and a toxic amyloid with plasmon waveguide resonance,”Chemical Communications 50,4168–4171 (2014).
    [Crossref]
  4. Z. Salamon, H. A. Macleod, and G. Tollin, “Coupled plasmon-waveguide resonators: A new spectroscopic tool for probing proteolipid film structure and properties,”Biophys J. 73,2791–2797 (1997).
    [Crossref]
  5. Z. Salamon, S. Devanathan, I. D. Alves, and G. Tollin, “Plasmon-waveguide resonance studies of lateral segregation of lipids and proteins into microdomains (Rafts) in solid-supported bilayers,”Journal of Biological Chemistry 280,11175–11184 (2005).
    [Crossref]
  6. L. Laplatine, L. Leroy, R. Calemczuk, D. Baganizi, P. N. Marche, Y. Roupioz, and T. Livache, “Spatial resolution in prism- based surface plasmon resonance microscopy,”Opt Express 22,22771–22785 (2014).
    [Crossref]
  7. W. Hickel and W. Knoll, “Surface plasmon optical characterization of lipid monolayers at 5um lateral resolution,”J. Appl. Phys. 67,3572–3575 (1990).
    [Crossref]
  8. M. G. Somekh, S. G. Liu, T. S. Velinov, and C. W. See, “Optical V(z) for high-resolution 2π surface plasmon microscopy,”Opt. Lett. 25(11),823–825 (2000).
    [Crossref]
  9. L. Berguiga, S. J. Zhang, F. Argoul, and J. Elezgaray, “High resolution surface-plasmon imaging in air and water: V(z) curve and operating conditions,”Opt. Lett. 32(5),509–511 (2007).
    [Crossref]
  10. S. Cowen and J. R. Sambles, “Resolving the apparent ambiguity in determining the relative permittivity and thickness of a metal film using optical excitation of surface plasmon-polaritons,”Opt. Comm. 79(6),427–430 (1990).
    [Crossref]
  11. H. E. de Brujin, B. S. F. Altenburg, R. P. H. Kooyman, and J. Greve, “Determination of thickness and dielectric constant of thin transparent dielectric layers using Surface Plasmon Resonance,”Opt. Comm. 82(5–6),425–432 (1991).
    [Crossref]
  12. K. A. Peterlinz and R. Georgiadis, “Two-color approach for determination of thickness and dielectric constant of thin films using Surface Plasmon Resonance Spectroscopy,”Opt. Comm. 130(4–6),260–266 (1996).
    [Crossref]
  13. C. C. Jung, M. Rutloh, and J. Stumpe, “Waveguide spectroscopic characterization of 3D anisotropies in conventionally photooriented and annealed films of liquid crystalline and amorphous azobenzene polymers,”Journal of Physical Chemistry B 109(16),7865–7871 (2005).
    [Crossref]
  14. T. Del Rosso, J. E. Hernandez Sanchez, R. Dos Santos Carvalho, O. Pandoli, and M. Cremona, “Accurate and simultaneous measurement of thickness and refractive index of thermally evaporated thin organic films by surface plasmon resonance spectroscopy,”Opt. Express 22(16),18914–18923 (2014).
    [Crossref]
  15. N. Skievesen, R. Horvath, S. Thinggaard, N. B. Larsen, and H. C. Pedersen, “Deep-probe metal-clad waveguide biosensor,”Biosensors and Biolec. 221282–1288 (2007).
    [Crossref]
  16. M. Born and E. Wolf, Principles of Optics(Pergamon,1987).
  17. T. Del Rosso, Q. Zaman, M. Cremona, O. Pandoli, and A.R.J. Barreto, “SPR sensors for monitoring the degradation processes of Eu(dbm)3(phen) and Alq3 thin films under atmospheric and UVA exposure, ”Applied Surface Science 442,759–766 (2018).
    [Crossref]
  18. T. Todorov, N. Tomova, and L. Nikolova, “High-sensitivity material with reversible photo-induced anisotropy,”Optics Comm. 47(2),123–126 (1983).
    [Crossref]
  19. J. Stumpe, L. Lasker, T. Fischer, M. Rutloh, S. Kostromin, and R. Ruhmann, “Photo-orientation in amorphous and aligned films of photochromic liquid crystalline polymers,”Thin Solid Films 284-285,252–256 (1996).
    [Crossref]
  20. C. C. Jung, R. Rosenhauer, M. Rutloh, C. Kempe, and J. Stumpe, “The generation of three-dimensional anisotropies in thin polymer films by angular selective photoproduct formation and annealing,”Macromolecules 38(10),4324–4330 (2005).
    [Crossref]
  21. S. Bian, L. Li, J. Kumar, D. Y. Kim, J. Williams, and S. K. Tripathy, “Single laser beam-induced surface deformation on azobenzene polymer films,”Applied Physics Lett. 73(13),1817–1819 (1998).
    [Crossref]
  22. Z. Sekkat and M. Dumont, “Photoinduced orientation of azo dyes in polymeric films. Characterization of molecular angular mobility,”Synthetic Metals 54(1–3),373–381 (1993).
    [Crossref]
  23. A. Natansohn, P. Rochon, J. Gosselin, and S. Xie, “Azo polymers for reversible optical storage. 1. Poly[4’-[[2-(acryloyloxi)ethyl]ethylamino] -4 - nitroazobenzene],”Macromolecules 25(8),2268–2273 (1992).
    [Crossref]
  24. A. Natansohn and P. Rochon, “Photoinduced motions in azo-containing polymers”,Chem. Rev. 1024139 (2002).
    [Crossref]
  25. B. C. Galarreta, I. Rupar, A. Young, and F. Lagugné-Labarthet, “Mapping Hot-spots in hexagonal arrays of metallic nanotriangles with azobenzene polymer thin films,”J. Phys. Chem. C 11515318–15323 (2011).
    [Crossref]
  26. S. Morino, S. Machida, T. Yamashita, and K. Horie, “Photoinduced refractive index change and birefringence in poly(methyl methacrylate) containing p-(dimethylamino)azobenzene,”Journal of Physical Chemistry 99(25),10280–10284 (1995).
    [Crossref]
  27. C. I. Chuang, S. H. Lin, and Y. F. Chao, “Dynamic characterization of photo-alignment of azo-dye-doped polymer using phase modulated polarimetry,”Optical Materials 35(3),366–371 (2013).
    [Crossref]
  28. M. Dumont, “3D characterization of photo-induced anisotropy and all-optical poling of organic films,”Nonlinear Optics Quantum Optics 43(1–4),239–257 (2012).
  29. C. C. Jung and J. Stumpe, “Immersion transmission ellipsometry (ITE) for the determination of orientation gradients in photoalignment layers,”Applied Physics B: Lasers and Optics 116533–539 (2014).
    [Crossref]
  30. G. Pellegrini and G. Mattei, “High-Performance Magneto-Optic Surface Plasmon Resonance Sensor Design: An Optimization Approach,”Plasmonics 9(6),1–6 (2014).
    [Crossref]
  31. M. Mansuripur, “Analysis of multilayer thin-film structures containing magneto-optic and anisotropic media at oblique incidence using 2x2 matrices,”J. Appl. Phys. 676466 (1990).
    [Crossref]
  32. B. P. Flannery, S. Teukolsky, W.H. Press, and W.T. Vetterling, Numerical Recipes in Fortran(Cambridge University,1986).
  33. P. C. Hansen and D. Prost O’Leary, “The use of the L-curve in the regularization of discrete ill-posed problems,”SIAM J. on Sci. Comp. 141487–1503 (1993).
    [Crossref]

2018 (1)

T. Del Rosso, Q. Zaman, M. Cremona, O. Pandoli, and A.R.J. Barreto, “SPR sensors for monitoring the degradation processes of Eu(dbm)3(phen) and Alq3 thin films under atmospheric and UVA exposure, ”Applied Surface Science 442,759–766 (2018).
[Crossref]

2014 (5)

T. Del Rosso, J. E. Hernandez Sanchez, R. Dos Santos Carvalho, O. Pandoli, and M. Cremona, “Accurate and simultaneous measurement of thickness and refractive index of thermally evaporated thin organic films by surface plasmon resonance spectroscopy,”Opt. Express 22(16),18914–18923 (2014).
[Crossref]

E. Harté, N. Maalouli, A. Shalabney, E. Texier, K. Berthelot, S. Lecomte, and I. Alves, “Probing the kinetics of lipid membrane formation and the interaction of a nontoxic and a toxic amyloid with plasmon waveguide resonance,”Chemical Communications 50,4168–4171 (2014).
[Crossref]

L. Laplatine, L. Leroy, R. Calemczuk, D. Baganizi, P. N. Marche, Y. Roupioz, and T. Livache, “Spatial resolution in prism- based surface plasmon resonance microscopy,”Opt Express 22,22771–22785 (2014).
[Crossref]

C. C. Jung and J. Stumpe, “Immersion transmission ellipsometry (ITE) for the determination of orientation gradients in photoalignment layers,”Applied Physics B: Lasers and Optics 116533–539 (2014).
[Crossref]

G. Pellegrini and G. Mattei, “High-Performance Magneto-Optic Surface Plasmon Resonance Sensor Design: An Optimization Approach,”Plasmonics 9(6),1–6 (2014).
[Crossref]

2013 (1)

C. I. Chuang, S. H. Lin, and Y. F. Chao, “Dynamic characterization of photo-alignment of azo-dye-doped polymer using phase modulated polarimetry,”Optical Materials 35(3),366–371 (2013).
[Crossref]

2012 (1)

M. Dumont, “3D characterization of photo-induced anisotropy and all-optical poling of organic films,”Nonlinear Optics Quantum Optics 43(1–4),239–257 (2012).

2011 (1)

B. C. Galarreta, I. Rupar, A. Young, and F. Lagugné-Labarthet, “Mapping Hot-spots in hexagonal arrays of metallic nanotriangles with azobenzene polymer thin films,”J. Phys. Chem. C 11515318–15323 (2011).
[Crossref]

2008 (1)

A. Mashaghi, M. Swann, J. Popplewell, M. Textor, and E. Reimhult, “Optical anisotropy of supported lipid structures probed by waveguide spectroscopy and its application to study of supported lipid bilayer formation kinetics,”Anal. Chem. 80,3666–3676 (2008).
[Crossref] [PubMed]

2007 (2)

N. Skievesen, R. Horvath, S. Thinggaard, N. B. Larsen, and H. C. Pedersen, “Deep-probe metal-clad waveguide biosensor,”Biosensors and Biolec. 221282–1288 (2007).
[Crossref]

L. Berguiga, S. J. Zhang, F. Argoul, and J. Elezgaray, “High resolution surface-plasmon imaging in air and water: V(z) curve and operating conditions,”Opt. Lett. 32(5),509–511 (2007).
[Crossref]

2005 (3)

Z. Salamon, S. Devanathan, I. D. Alves, and G. Tollin, “Plasmon-waveguide resonance studies of lateral segregation of lipids and proteins into microdomains (Rafts) in solid-supported bilayers,”Journal of Biological Chemistry 280,11175–11184 (2005).
[Crossref]

C. C. Jung, M. Rutloh, and J. Stumpe, “Waveguide spectroscopic characterization of 3D anisotropies in conventionally photooriented and annealed films of liquid crystalline and amorphous azobenzene polymers,”Journal of Physical Chemistry B 109(16),7865–7871 (2005).
[Crossref]

C. C. Jung, R. Rosenhauer, M. Rutloh, C. Kempe, and J. Stumpe, “The generation of three-dimensional anisotropies in thin polymer films by angular selective photoproduct formation and annealing,”Macromolecules 38(10),4324–4330 (2005).
[Crossref]

2002 (2)

A. Natansohn and P. Rochon, “Photoinduced motions in azo-containing polymers”,Chem. Rev. 1024139 (2002).
[Crossref]

K. Tawa and W. Knoll, “Out-of-plane photoreorientation of azo dyes in polymer thin films studied by surface plasmon resonance spectroscopy,”Macromolecules 35,7018–7023 (2002).
[Crossref]

2000 (1)

1998 (1)

S. Bian, L. Li, J. Kumar, D. Y. Kim, J. Williams, and S. K. Tripathy, “Single laser beam-induced surface deformation on azobenzene polymer films,”Applied Physics Lett. 73(13),1817–1819 (1998).
[Crossref]

1997 (1)

Z. Salamon, H. A. Macleod, and G. Tollin, “Coupled plasmon-waveguide resonators: A new spectroscopic tool for probing proteolipid film structure and properties,”Biophys J. 73,2791–2797 (1997).
[Crossref]

1996 (2)

K. A. Peterlinz and R. Georgiadis, “Two-color approach for determination of thickness and dielectric constant of thin films using Surface Plasmon Resonance Spectroscopy,”Opt. Comm. 130(4–6),260–266 (1996).
[Crossref]

J. Stumpe, L. Lasker, T. Fischer, M. Rutloh, S. Kostromin, and R. Ruhmann, “Photo-orientation in amorphous and aligned films of photochromic liquid crystalline polymers,”Thin Solid Films 284-285,252–256 (1996).
[Crossref]

1995 (1)

S. Morino, S. Machida, T. Yamashita, and K. Horie, “Photoinduced refractive index change and birefringence in poly(methyl methacrylate) containing p-(dimethylamino)azobenzene,”Journal of Physical Chemistry 99(25),10280–10284 (1995).
[Crossref]

1993 (2)

Z. Sekkat and M. Dumont, “Photoinduced orientation of azo dyes in polymeric films. Characterization of molecular angular mobility,”Synthetic Metals 54(1–3),373–381 (1993).
[Crossref]

P. C. Hansen and D. Prost O’Leary, “The use of the L-curve in the regularization of discrete ill-posed problems,”SIAM J. on Sci. Comp. 141487–1503 (1993).
[Crossref]

1992 (1)

A. Natansohn, P. Rochon, J. Gosselin, and S. Xie, “Azo polymers for reversible optical storage. 1. Poly[4’-[[2-(acryloyloxi)ethyl]ethylamino] -4 - nitroazobenzene],”Macromolecules 25(8),2268–2273 (1992).
[Crossref]

1991 (1)

H. E. de Brujin, B. S. F. Altenburg, R. P. H. Kooyman, and J. Greve, “Determination of thickness and dielectric constant of thin transparent dielectric layers using Surface Plasmon Resonance,”Opt. Comm. 82(5–6),425–432 (1991).
[Crossref]

1990 (3)

S. Cowen and J. R. Sambles, “Resolving the apparent ambiguity in determining the relative permittivity and thickness of a metal film using optical excitation of surface plasmon-polaritons,”Opt. Comm. 79(6),427–430 (1990).
[Crossref]

W. Hickel and W. Knoll, “Surface plasmon optical characterization of lipid monolayers at 5um lateral resolution,”J. Appl. Phys. 67,3572–3575 (1990).
[Crossref]

M. Mansuripur, “Analysis of multilayer thin-film structures containing magneto-optic and anisotropic media at oblique incidence using 2x2 matrices,”J. Appl. Phys. 676466 (1990).
[Crossref]

1983 (1)

T. Todorov, N. Tomova, and L. Nikolova, “High-sensitivity material with reversible photo-induced anisotropy,”Optics Comm. 47(2),123–126 (1983).
[Crossref]

Altenburg, B. S. F.

H. E. de Brujin, B. S. F. Altenburg, R. P. H. Kooyman, and J. Greve, “Determination of thickness and dielectric constant of thin transparent dielectric layers using Surface Plasmon Resonance,”Opt. Comm. 82(5–6),425–432 (1991).
[Crossref]

Alves, I.

E. Harté, N. Maalouli, A. Shalabney, E. Texier, K. Berthelot, S. Lecomte, and I. Alves, “Probing the kinetics of lipid membrane formation and the interaction of a nontoxic and a toxic amyloid with plasmon waveguide resonance,”Chemical Communications 50,4168–4171 (2014).
[Crossref]

Alves, I. D.

Z. Salamon, S. Devanathan, I. D. Alves, and G. Tollin, “Plasmon-waveguide resonance studies of lateral segregation of lipids and proteins into microdomains (Rafts) in solid-supported bilayers,”Journal of Biological Chemistry 280,11175–11184 (2005).
[Crossref]

Argoul, F.

Baganizi, D.

L. Laplatine, L. Leroy, R. Calemczuk, D. Baganizi, P. N. Marche, Y. Roupioz, and T. Livache, “Spatial resolution in prism- based surface plasmon resonance microscopy,”Opt Express 22,22771–22785 (2014).
[Crossref]

Barreto, A.R.J.

T. Del Rosso, Q. Zaman, M. Cremona, O. Pandoli, and A.R.J. Barreto, “SPR sensors for monitoring the degradation processes of Eu(dbm)3(phen) and Alq3 thin films under atmospheric and UVA exposure, ”Applied Surface Science 442,759–766 (2018).
[Crossref]

Berguiga, L.

Berthelot, K.

E. Harté, N. Maalouli, A. Shalabney, E. Texier, K. Berthelot, S. Lecomte, and I. Alves, “Probing the kinetics of lipid membrane formation and the interaction of a nontoxic and a toxic amyloid with plasmon waveguide resonance,”Chemical Communications 50,4168–4171 (2014).
[Crossref]

Bian, S.

S. Bian, L. Li, J. Kumar, D. Y. Kim, J. Williams, and S. K. Tripathy, “Single laser beam-induced surface deformation on azobenzene polymer films,”Applied Physics Lett. 73(13),1817–1819 (1998).
[Crossref]

Born, M.

M. Born and E. Wolf, Principles of Optics(Pergamon,1987).

Calemczuk, R.

L. Laplatine, L. Leroy, R. Calemczuk, D. Baganizi, P. N. Marche, Y. Roupioz, and T. Livache, “Spatial resolution in prism- based surface plasmon resonance microscopy,”Opt Express 22,22771–22785 (2014).
[Crossref]

Chao, Y. F.

C. I. Chuang, S. H. Lin, and Y. F. Chao, “Dynamic characterization of photo-alignment of azo-dye-doped polymer using phase modulated polarimetry,”Optical Materials 35(3),366–371 (2013).
[Crossref]

Chuang, C. I.

C. I. Chuang, S. H. Lin, and Y. F. Chao, “Dynamic characterization of photo-alignment of azo-dye-doped polymer using phase modulated polarimetry,”Optical Materials 35(3),366–371 (2013).
[Crossref]

Cowen, S.

S. Cowen and J. R. Sambles, “Resolving the apparent ambiguity in determining the relative permittivity and thickness of a metal film using optical excitation of surface plasmon-polaritons,”Opt. Comm. 79(6),427–430 (1990).
[Crossref]

Cremona, M.

T. Del Rosso, Q. Zaman, M. Cremona, O. Pandoli, and A.R.J. Barreto, “SPR sensors for monitoring the degradation processes of Eu(dbm)3(phen) and Alq3 thin films under atmospheric and UVA exposure, ”Applied Surface Science 442,759–766 (2018).
[Crossref]

T. Del Rosso, J. E. Hernandez Sanchez, R. Dos Santos Carvalho, O. Pandoli, and M. Cremona, “Accurate and simultaneous measurement of thickness and refractive index of thermally evaporated thin organic films by surface plasmon resonance spectroscopy,”Opt. Express 22(16),18914–18923 (2014).
[Crossref]

de Brujin, H. E.

H. E. de Brujin, B. S. F. Altenburg, R. P. H. Kooyman, and J. Greve, “Determination of thickness and dielectric constant of thin transparent dielectric layers using Surface Plasmon Resonance,”Opt. Comm. 82(5–6),425–432 (1991).
[Crossref]

Del Rosso, T.

T. Del Rosso, Q. Zaman, M. Cremona, O. Pandoli, and A.R.J. Barreto, “SPR sensors for monitoring the degradation processes of Eu(dbm)3(phen) and Alq3 thin films under atmospheric and UVA exposure, ”Applied Surface Science 442,759–766 (2018).
[Crossref]

T. Del Rosso, J. E. Hernandez Sanchez, R. Dos Santos Carvalho, O. Pandoli, and M. Cremona, “Accurate and simultaneous measurement of thickness and refractive index of thermally evaporated thin organic films by surface plasmon resonance spectroscopy,”Opt. Express 22(16),18914–18923 (2014).
[Crossref]

Devanathan, S.

Z. Salamon, S. Devanathan, I. D. Alves, and G. Tollin, “Plasmon-waveguide resonance studies of lateral segregation of lipids and proteins into microdomains (Rafts) in solid-supported bilayers,”Journal of Biological Chemistry 280,11175–11184 (2005).
[Crossref]

Dos Santos Carvalho, R.

Dumont, M.

M. Dumont, “3D characterization of photo-induced anisotropy and all-optical poling of organic films,”Nonlinear Optics Quantum Optics 43(1–4),239–257 (2012).

Z. Sekkat and M. Dumont, “Photoinduced orientation of azo dyes in polymeric films. Characterization of molecular angular mobility,”Synthetic Metals 54(1–3),373–381 (1993).
[Crossref]

Elezgaray, J.

Fischer, T.

J. Stumpe, L. Lasker, T. Fischer, M. Rutloh, S. Kostromin, and R. Ruhmann, “Photo-orientation in amorphous and aligned films of photochromic liquid crystalline polymers,”Thin Solid Films 284-285,252–256 (1996).
[Crossref]

Flannery, B. P.

B. P. Flannery, S. Teukolsky, W.H. Press, and W.T. Vetterling, Numerical Recipes in Fortran(Cambridge University,1986).

Galarreta, B. C.

B. C. Galarreta, I. Rupar, A. Young, and F. Lagugné-Labarthet, “Mapping Hot-spots in hexagonal arrays of metallic nanotriangles with azobenzene polymer thin films,”J. Phys. Chem. C 11515318–15323 (2011).
[Crossref]

Georgiadis, R.

K. A. Peterlinz and R. Georgiadis, “Two-color approach for determination of thickness and dielectric constant of thin films using Surface Plasmon Resonance Spectroscopy,”Opt. Comm. 130(4–6),260–266 (1996).
[Crossref]

Gosselin, J.

A. Natansohn, P. Rochon, J. Gosselin, and S. Xie, “Azo polymers for reversible optical storage. 1. Poly[4’-[[2-(acryloyloxi)ethyl]ethylamino] -4 - nitroazobenzene],”Macromolecules 25(8),2268–2273 (1992).
[Crossref]

Greve, J.

H. E. de Brujin, B. S. F. Altenburg, R. P. H. Kooyman, and J. Greve, “Determination of thickness and dielectric constant of thin transparent dielectric layers using Surface Plasmon Resonance,”Opt. Comm. 82(5–6),425–432 (1991).
[Crossref]

Hansen, P. C.

P. C. Hansen and D. Prost O’Leary, “The use of the L-curve in the regularization of discrete ill-posed problems,”SIAM J. on Sci. Comp. 141487–1503 (1993).
[Crossref]

Harté, E.

E. Harté, N. Maalouli, A. Shalabney, E. Texier, K. Berthelot, S. Lecomte, and I. Alves, “Probing the kinetics of lipid membrane formation and the interaction of a nontoxic and a toxic amyloid with plasmon waveguide resonance,”Chemical Communications 50,4168–4171 (2014).
[Crossref]

Hickel, W.

W. Hickel and W. Knoll, “Surface plasmon optical characterization of lipid monolayers at 5um lateral resolution,”J. Appl. Phys. 67,3572–3575 (1990).
[Crossref]

Horie, K.

S. Morino, S. Machida, T. Yamashita, and K. Horie, “Photoinduced refractive index change and birefringence in poly(methyl methacrylate) containing p-(dimethylamino)azobenzene,”Journal of Physical Chemistry 99(25),10280–10284 (1995).
[Crossref]

Horvath, R.

N. Skievesen, R. Horvath, S. Thinggaard, N. B. Larsen, and H. C. Pedersen, “Deep-probe metal-clad waveguide biosensor,”Biosensors and Biolec. 221282–1288 (2007).
[Crossref]

Jung, C. C.

C. C. Jung and J. Stumpe, “Immersion transmission ellipsometry (ITE) for the determination of orientation gradients in photoalignment layers,”Applied Physics B: Lasers and Optics 116533–539 (2014).
[Crossref]

C. C. Jung, M. Rutloh, and J. Stumpe, “Waveguide spectroscopic characterization of 3D anisotropies in conventionally photooriented and annealed films of liquid crystalline and amorphous azobenzene polymers,”Journal of Physical Chemistry B 109(16),7865–7871 (2005).
[Crossref]

C. C. Jung, R. Rosenhauer, M. Rutloh, C. Kempe, and J. Stumpe, “The generation of three-dimensional anisotropies in thin polymer films by angular selective photoproduct formation and annealing,”Macromolecules 38(10),4324–4330 (2005).
[Crossref]

Kempe, C.

C. C. Jung, R. Rosenhauer, M. Rutloh, C. Kempe, and J. Stumpe, “The generation of three-dimensional anisotropies in thin polymer films by angular selective photoproduct formation and annealing,”Macromolecules 38(10),4324–4330 (2005).
[Crossref]

Kim, D. Y.

S. Bian, L. Li, J. Kumar, D. Y. Kim, J. Williams, and S. K. Tripathy, “Single laser beam-induced surface deformation on azobenzene polymer films,”Applied Physics Lett. 73(13),1817–1819 (1998).
[Crossref]

Knoll, W.

K. Tawa and W. Knoll, “Out-of-plane photoreorientation of azo dyes in polymer thin films studied by surface plasmon resonance spectroscopy,”Macromolecules 35,7018–7023 (2002).
[Crossref]

W. Hickel and W. Knoll, “Surface plasmon optical characterization of lipid monolayers at 5um lateral resolution,”J. Appl. Phys. 67,3572–3575 (1990).
[Crossref]

Kooyman, R. P. H.

H. E. de Brujin, B. S. F. Altenburg, R. P. H. Kooyman, and J. Greve, “Determination of thickness and dielectric constant of thin transparent dielectric layers using Surface Plasmon Resonance,”Opt. Comm. 82(5–6),425–432 (1991).
[Crossref]

Kostromin, S.

J. Stumpe, L. Lasker, T. Fischer, M. Rutloh, S. Kostromin, and R. Ruhmann, “Photo-orientation in amorphous and aligned films of photochromic liquid crystalline polymers,”Thin Solid Films 284-285,252–256 (1996).
[Crossref]

Kumar, J.

S. Bian, L. Li, J. Kumar, D. Y. Kim, J. Williams, and S. K. Tripathy, “Single laser beam-induced surface deformation on azobenzene polymer films,”Applied Physics Lett. 73(13),1817–1819 (1998).
[Crossref]

Lagugné-Labarthet, F.

B. C. Galarreta, I. Rupar, A. Young, and F. Lagugné-Labarthet, “Mapping Hot-spots in hexagonal arrays of metallic nanotriangles with azobenzene polymer thin films,”J. Phys. Chem. C 11515318–15323 (2011).
[Crossref]

Laplatine, L.

L. Laplatine, L. Leroy, R. Calemczuk, D. Baganizi, P. N. Marche, Y. Roupioz, and T. Livache, “Spatial resolution in prism- based surface plasmon resonance microscopy,”Opt Express 22,22771–22785 (2014).
[Crossref]

Larsen, N. B.

N. Skievesen, R. Horvath, S. Thinggaard, N. B. Larsen, and H. C. Pedersen, “Deep-probe metal-clad waveguide biosensor,”Biosensors and Biolec. 221282–1288 (2007).
[Crossref]

Lasker, L.

J. Stumpe, L. Lasker, T. Fischer, M. Rutloh, S. Kostromin, and R. Ruhmann, “Photo-orientation in amorphous and aligned films of photochromic liquid crystalline polymers,”Thin Solid Films 284-285,252–256 (1996).
[Crossref]

Lecomte, S.

E. Harté, N. Maalouli, A. Shalabney, E. Texier, K. Berthelot, S. Lecomte, and I. Alves, “Probing the kinetics of lipid membrane formation and the interaction of a nontoxic and a toxic amyloid with plasmon waveguide resonance,”Chemical Communications 50,4168–4171 (2014).
[Crossref]

Leroy, L.

L. Laplatine, L. Leroy, R. Calemczuk, D. Baganizi, P. N. Marche, Y. Roupioz, and T. Livache, “Spatial resolution in prism- based surface plasmon resonance microscopy,”Opt Express 22,22771–22785 (2014).
[Crossref]

Li, L.

S. Bian, L. Li, J. Kumar, D. Y. Kim, J. Williams, and S. K. Tripathy, “Single laser beam-induced surface deformation on azobenzene polymer films,”Applied Physics Lett. 73(13),1817–1819 (1998).
[Crossref]

Lin, S. H.

C. I. Chuang, S. H. Lin, and Y. F. Chao, “Dynamic characterization of photo-alignment of azo-dye-doped polymer using phase modulated polarimetry,”Optical Materials 35(3),366–371 (2013).
[Crossref]

Liu, S. G.

Livache, T.

L. Laplatine, L. Leroy, R. Calemczuk, D. Baganizi, P. N. Marche, Y. Roupioz, and T. Livache, “Spatial resolution in prism- based surface plasmon resonance microscopy,”Opt Express 22,22771–22785 (2014).
[Crossref]

Maalouli, N.

E. Harté, N. Maalouli, A. Shalabney, E. Texier, K. Berthelot, S. Lecomte, and I. Alves, “Probing the kinetics of lipid membrane formation and the interaction of a nontoxic and a toxic amyloid with plasmon waveguide resonance,”Chemical Communications 50,4168–4171 (2014).
[Crossref]

Machida, S.

S. Morino, S. Machida, T. Yamashita, and K. Horie, “Photoinduced refractive index change and birefringence in poly(methyl methacrylate) containing p-(dimethylamino)azobenzene,”Journal of Physical Chemistry 99(25),10280–10284 (1995).
[Crossref]

Macleod, H. A.

Z. Salamon, H. A. Macleod, and G. Tollin, “Coupled plasmon-waveguide resonators: A new spectroscopic tool for probing proteolipid film structure and properties,”Biophys J. 73,2791–2797 (1997).
[Crossref]

Mansuripur, M.

M. Mansuripur, “Analysis of multilayer thin-film structures containing magneto-optic and anisotropic media at oblique incidence using 2x2 matrices,”J. Appl. Phys. 676466 (1990).
[Crossref]

Marche, P. N.

L. Laplatine, L. Leroy, R. Calemczuk, D. Baganizi, P. N. Marche, Y. Roupioz, and T. Livache, “Spatial resolution in prism- based surface plasmon resonance microscopy,”Opt Express 22,22771–22785 (2014).
[Crossref]

Mashaghi, A.

A. Mashaghi, M. Swann, J. Popplewell, M. Textor, and E. Reimhult, “Optical anisotropy of supported lipid structures probed by waveguide spectroscopy and its application to study of supported lipid bilayer formation kinetics,”Anal. Chem. 80,3666–3676 (2008).
[Crossref] [PubMed]

Mattei, G.

G. Pellegrini and G. Mattei, “High-Performance Magneto-Optic Surface Plasmon Resonance Sensor Design: An Optimization Approach,”Plasmonics 9(6),1–6 (2014).
[Crossref]

Morino, S.

S. Morino, S. Machida, T. Yamashita, and K. Horie, “Photoinduced refractive index change and birefringence in poly(methyl methacrylate) containing p-(dimethylamino)azobenzene,”Journal of Physical Chemistry 99(25),10280–10284 (1995).
[Crossref]

Natansohn, A.

A. Natansohn and P. Rochon, “Photoinduced motions in azo-containing polymers”,Chem. Rev. 1024139 (2002).
[Crossref]

A. Natansohn, P. Rochon, J. Gosselin, and S. Xie, “Azo polymers for reversible optical storage. 1. Poly[4’-[[2-(acryloyloxi)ethyl]ethylamino] -4 - nitroazobenzene],”Macromolecules 25(8),2268–2273 (1992).
[Crossref]

Nikolova, L.

T. Todorov, N. Tomova, and L. Nikolova, “High-sensitivity material with reversible photo-induced anisotropy,”Optics Comm. 47(2),123–126 (1983).
[Crossref]

O’Leary, D. Prost

P. C. Hansen and D. Prost O’Leary, “The use of the L-curve in the regularization of discrete ill-posed problems,”SIAM J. on Sci. Comp. 141487–1503 (1993).
[Crossref]

Pandoli, O.

T. Del Rosso, Q. Zaman, M. Cremona, O. Pandoli, and A.R.J. Barreto, “SPR sensors for monitoring the degradation processes of Eu(dbm)3(phen) and Alq3 thin films under atmospheric and UVA exposure, ”Applied Surface Science 442,759–766 (2018).
[Crossref]

T. Del Rosso, J. E. Hernandez Sanchez, R. Dos Santos Carvalho, O. Pandoli, and M. Cremona, “Accurate and simultaneous measurement of thickness and refractive index of thermally evaporated thin organic films by surface plasmon resonance spectroscopy,”Opt. Express 22(16),18914–18923 (2014).
[Crossref]

Pedersen, H. C.

N. Skievesen, R. Horvath, S. Thinggaard, N. B. Larsen, and H. C. Pedersen, “Deep-probe metal-clad waveguide biosensor,”Biosensors and Biolec. 221282–1288 (2007).
[Crossref]

Pellegrini, G.

G. Pellegrini and G. Mattei, “High-Performance Magneto-Optic Surface Plasmon Resonance Sensor Design: An Optimization Approach,”Plasmonics 9(6),1–6 (2014).
[Crossref]

Peterlinz, K. A.

K. A. Peterlinz and R. Georgiadis, “Two-color approach for determination of thickness and dielectric constant of thin films using Surface Plasmon Resonance Spectroscopy,”Opt. Comm. 130(4–6),260–266 (1996).
[Crossref]

Popplewell, J.

A. Mashaghi, M. Swann, J. Popplewell, M. Textor, and E. Reimhult, “Optical anisotropy of supported lipid structures probed by waveguide spectroscopy and its application to study of supported lipid bilayer formation kinetics,”Anal. Chem. 80,3666–3676 (2008).
[Crossref] [PubMed]

Press, W.H.

B. P. Flannery, S. Teukolsky, W.H. Press, and W.T. Vetterling, Numerical Recipes in Fortran(Cambridge University,1986).

Reimhult, E.

A. Mashaghi, M. Swann, J. Popplewell, M. Textor, and E. Reimhult, “Optical anisotropy of supported lipid structures probed by waveguide spectroscopy and its application to study of supported lipid bilayer formation kinetics,”Anal. Chem. 80,3666–3676 (2008).
[Crossref] [PubMed]

Rochon, P.

A. Natansohn and P. Rochon, “Photoinduced motions in azo-containing polymers”,Chem. Rev. 1024139 (2002).
[Crossref]

A. Natansohn, P. Rochon, J. Gosselin, and S. Xie, “Azo polymers for reversible optical storage. 1. Poly[4’-[[2-(acryloyloxi)ethyl]ethylamino] -4 - nitroazobenzene],”Macromolecules 25(8),2268–2273 (1992).
[Crossref]

Rosenhauer, R.

C. C. Jung, R. Rosenhauer, M. Rutloh, C. Kempe, and J. Stumpe, “The generation of three-dimensional anisotropies in thin polymer films by angular selective photoproduct formation and annealing,”Macromolecules 38(10),4324–4330 (2005).
[Crossref]

Roupioz, Y.

L. Laplatine, L. Leroy, R. Calemczuk, D. Baganizi, P. N. Marche, Y. Roupioz, and T. Livache, “Spatial resolution in prism- based surface plasmon resonance microscopy,”Opt Express 22,22771–22785 (2014).
[Crossref]

Ruhmann, R.

J. Stumpe, L. Lasker, T. Fischer, M. Rutloh, S. Kostromin, and R. Ruhmann, “Photo-orientation in amorphous and aligned films of photochromic liquid crystalline polymers,”Thin Solid Films 284-285,252–256 (1996).
[Crossref]

Rupar, I.

B. C. Galarreta, I. Rupar, A. Young, and F. Lagugné-Labarthet, “Mapping Hot-spots in hexagonal arrays of metallic nanotriangles with azobenzene polymer thin films,”J. Phys. Chem. C 11515318–15323 (2011).
[Crossref]

Rutloh, M.

C. C. Jung, M. Rutloh, and J. Stumpe, “Waveguide spectroscopic characterization of 3D anisotropies in conventionally photooriented and annealed films of liquid crystalline and amorphous azobenzene polymers,”Journal of Physical Chemistry B 109(16),7865–7871 (2005).
[Crossref]

C. C. Jung, R. Rosenhauer, M. Rutloh, C. Kempe, and J. Stumpe, “The generation of three-dimensional anisotropies in thin polymer films by angular selective photoproduct formation and annealing,”Macromolecules 38(10),4324–4330 (2005).
[Crossref]

J. Stumpe, L. Lasker, T. Fischer, M. Rutloh, S. Kostromin, and R. Ruhmann, “Photo-orientation in amorphous and aligned films of photochromic liquid crystalline polymers,”Thin Solid Films 284-285,252–256 (1996).
[Crossref]

Salamon, Z.

Z. Salamon, S. Devanathan, I. D. Alves, and G. Tollin, “Plasmon-waveguide resonance studies of lateral segregation of lipids and proteins into microdomains (Rafts) in solid-supported bilayers,”Journal of Biological Chemistry 280,11175–11184 (2005).
[Crossref]

Z. Salamon, H. A. Macleod, and G. Tollin, “Coupled plasmon-waveguide resonators: A new spectroscopic tool for probing proteolipid film structure and properties,”Biophys J. 73,2791–2797 (1997).
[Crossref]

Sambles, J. R.

S. Cowen and J. R. Sambles, “Resolving the apparent ambiguity in determining the relative permittivity and thickness of a metal film using optical excitation of surface plasmon-polaritons,”Opt. Comm. 79(6),427–430 (1990).
[Crossref]

Sanchez, J. E. Hernandez

See, C. W.

Sekkat, Z.

Z. Sekkat and M. Dumont, “Photoinduced orientation of azo dyes in polymeric films. Characterization of molecular angular mobility,”Synthetic Metals 54(1–3),373–381 (1993).
[Crossref]

Shalabney, A.

E. Harté, N. Maalouli, A. Shalabney, E. Texier, K. Berthelot, S. Lecomte, and I. Alves, “Probing the kinetics of lipid membrane formation and the interaction of a nontoxic and a toxic amyloid with plasmon waveguide resonance,”Chemical Communications 50,4168–4171 (2014).
[Crossref]

Skievesen, N.

N. Skievesen, R. Horvath, S. Thinggaard, N. B. Larsen, and H. C. Pedersen, “Deep-probe metal-clad waveguide biosensor,”Biosensors and Biolec. 221282–1288 (2007).
[Crossref]

Somekh, M. G.

Stumpe, J.

C. C. Jung and J. Stumpe, “Immersion transmission ellipsometry (ITE) for the determination of orientation gradients in photoalignment layers,”Applied Physics B: Lasers and Optics 116533–539 (2014).
[Crossref]

C. C. Jung, M. Rutloh, and J. Stumpe, “Waveguide spectroscopic characterization of 3D anisotropies in conventionally photooriented and annealed films of liquid crystalline and amorphous azobenzene polymers,”Journal of Physical Chemistry B 109(16),7865–7871 (2005).
[Crossref]

C. C. Jung, R. Rosenhauer, M. Rutloh, C. Kempe, and J. Stumpe, “The generation of three-dimensional anisotropies in thin polymer films by angular selective photoproduct formation and annealing,”Macromolecules 38(10),4324–4330 (2005).
[Crossref]

J. Stumpe, L. Lasker, T. Fischer, M. Rutloh, S. Kostromin, and R. Ruhmann, “Photo-orientation in amorphous and aligned films of photochromic liquid crystalline polymers,”Thin Solid Films 284-285,252–256 (1996).
[Crossref]

Swann, M.

A. Mashaghi, M. Swann, J. Popplewell, M. Textor, and E. Reimhult, “Optical anisotropy of supported lipid structures probed by waveguide spectroscopy and its application to study of supported lipid bilayer formation kinetics,”Anal. Chem. 80,3666–3676 (2008).
[Crossref] [PubMed]

Tawa, K.

K. Tawa and W. Knoll, “Out-of-plane photoreorientation of azo dyes in polymer thin films studied by surface plasmon resonance spectroscopy,”Macromolecules 35,7018–7023 (2002).
[Crossref]

Teukolsky, S.

B. P. Flannery, S. Teukolsky, W.H. Press, and W.T. Vetterling, Numerical Recipes in Fortran(Cambridge University,1986).

Texier, E.

E. Harté, N. Maalouli, A. Shalabney, E. Texier, K. Berthelot, S. Lecomte, and I. Alves, “Probing the kinetics of lipid membrane formation and the interaction of a nontoxic and a toxic amyloid with plasmon waveguide resonance,”Chemical Communications 50,4168–4171 (2014).
[Crossref]

Textor, M.

A. Mashaghi, M. Swann, J. Popplewell, M. Textor, and E. Reimhult, “Optical anisotropy of supported lipid structures probed by waveguide spectroscopy and its application to study of supported lipid bilayer formation kinetics,”Anal. Chem. 80,3666–3676 (2008).
[Crossref] [PubMed]

Thinggaard, S.

N. Skievesen, R. Horvath, S. Thinggaard, N. B. Larsen, and H. C. Pedersen, “Deep-probe metal-clad waveguide biosensor,”Biosensors and Biolec. 221282–1288 (2007).
[Crossref]

Todorov, T.

T. Todorov, N. Tomova, and L. Nikolova, “High-sensitivity material with reversible photo-induced anisotropy,”Optics Comm. 47(2),123–126 (1983).
[Crossref]

Tollin, G.

Z. Salamon, S. Devanathan, I. D. Alves, and G. Tollin, “Plasmon-waveguide resonance studies of lateral segregation of lipids and proteins into microdomains (Rafts) in solid-supported bilayers,”Journal of Biological Chemistry 280,11175–11184 (2005).
[Crossref]

Z. Salamon, H. A. Macleod, and G. Tollin, “Coupled plasmon-waveguide resonators: A new spectroscopic tool for probing proteolipid film structure and properties,”Biophys J. 73,2791–2797 (1997).
[Crossref]

Tomova, N.

T. Todorov, N. Tomova, and L. Nikolova, “High-sensitivity material with reversible photo-induced anisotropy,”Optics Comm. 47(2),123–126 (1983).
[Crossref]

Tripathy, S. K.

S. Bian, L. Li, J. Kumar, D. Y. Kim, J. Williams, and S. K. Tripathy, “Single laser beam-induced surface deformation on azobenzene polymer films,”Applied Physics Lett. 73(13),1817–1819 (1998).
[Crossref]

Velinov, T. S.

Vetterling, W.T.

B. P. Flannery, S. Teukolsky, W.H. Press, and W.T. Vetterling, Numerical Recipes in Fortran(Cambridge University,1986).

Williams, J.

S. Bian, L. Li, J. Kumar, D. Y. Kim, J. Williams, and S. K. Tripathy, “Single laser beam-induced surface deformation on azobenzene polymer films,”Applied Physics Lett. 73(13),1817–1819 (1998).
[Crossref]

Wolf, E.

M. Born and E. Wolf, Principles of Optics(Pergamon,1987).

Xie, S.

A. Natansohn, P. Rochon, J. Gosselin, and S. Xie, “Azo polymers for reversible optical storage. 1. Poly[4’-[[2-(acryloyloxi)ethyl]ethylamino] -4 - nitroazobenzene],”Macromolecules 25(8),2268–2273 (1992).
[Crossref]

Yamashita, T.

S. Morino, S. Machida, T. Yamashita, and K. Horie, “Photoinduced refractive index change and birefringence in poly(methyl methacrylate) containing p-(dimethylamino)azobenzene,”Journal of Physical Chemistry 99(25),10280–10284 (1995).
[Crossref]

Young, A.

B. C. Galarreta, I. Rupar, A. Young, and F. Lagugné-Labarthet, “Mapping Hot-spots in hexagonal arrays of metallic nanotriangles with azobenzene polymer thin films,”J. Phys. Chem. C 11515318–15323 (2011).
[Crossref]

Zaman, Q.

T. Del Rosso, Q. Zaman, M. Cremona, O. Pandoli, and A.R.J. Barreto, “SPR sensors for monitoring the degradation processes of Eu(dbm)3(phen) and Alq3 thin films under atmospheric and UVA exposure, ”Applied Surface Science 442,759–766 (2018).
[Crossref]

Zhang, S. J.

Anal. Chem. (1)

A. Mashaghi, M. Swann, J. Popplewell, M. Textor, and E. Reimhult, “Optical anisotropy of supported lipid structures probed by waveguide spectroscopy and its application to study of supported lipid bilayer formation kinetics,”Anal. Chem. 80,3666–3676 (2008).
[Crossref] [PubMed]

Applied Physics B: Lasers and Optics (1)

C. C. Jung and J. Stumpe, “Immersion transmission ellipsometry (ITE) for the determination of orientation gradients in photoalignment layers,”Applied Physics B: Lasers and Optics 116533–539 (2014).
[Crossref]

Applied Physics Lett. (1)

S. Bian, L. Li, J. Kumar, D. Y. Kim, J. Williams, and S. K. Tripathy, “Single laser beam-induced surface deformation on azobenzene polymer films,”Applied Physics Lett. 73(13),1817–1819 (1998).
[Crossref]

Applied Surface Science (1)

T. Del Rosso, Q. Zaman, M. Cremona, O. Pandoli, and A.R.J. Barreto, “SPR sensors for monitoring the degradation processes of Eu(dbm)3(phen) and Alq3 thin films under atmospheric and UVA exposure, ”Applied Surface Science 442,759–766 (2018).
[Crossref]

Biophys J. (1)

Z. Salamon, H. A. Macleod, and G. Tollin, “Coupled plasmon-waveguide resonators: A new spectroscopic tool for probing proteolipid film structure and properties,”Biophys J. 73,2791–2797 (1997).
[Crossref]

Biosensors and Biolec. (1)

N. Skievesen, R. Horvath, S. Thinggaard, N. B. Larsen, and H. C. Pedersen, “Deep-probe metal-clad waveguide biosensor,”Biosensors and Biolec. 221282–1288 (2007).
[Crossref]

Chem. Rev. (1)

A. Natansohn and P. Rochon, “Photoinduced motions in azo-containing polymers”,Chem. Rev. 1024139 (2002).
[Crossref]

Chemical Communications (1)

E. Harté, N. Maalouli, A. Shalabney, E. Texier, K. Berthelot, S. Lecomte, and I. Alves, “Probing the kinetics of lipid membrane formation and the interaction of a nontoxic and a toxic amyloid with plasmon waveguide resonance,”Chemical Communications 50,4168–4171 (2014).
[Crossref]

J. Appl. Phys. (2)

W. Hickel and W. Knoll, “Surface plasmon optical characterization of lipid monolayers at 5um lateral resolution,”J. Appl. Phys. 67,3572–3575 (1990).
[Crossref]

M. Mansuripur, “Analysis of multilayer thin-film structures containing magneto-optic and anisotropic media at oblique incidence using 2x2 matrices,”J. Appl. Phys. 676466 (1990).
[Crossref]

J. Phys. Chem. C (1)

B. C. Galarreta, I. Rupar, A. Young, and F. Lagugné-Labarthet, “Mapping Hot-spots in hexagonal arrays of metallic nanotriangles with azobenzene polymer thin films,”J. Phys. Chem. C 11515318–15323 (2011).
[Crossref]

Journal of Biological Chemistry (1)

Z. Salamon, S. Devanathan, I. D. Alves, and G. Tollin, “Plasmon-waveguide resonance studies of lateral segregation of lipids and proteins into microdomains (Rafts) in solid-supported bilayers,”Journal of Biological Chemistry 280,11175–11184 (2005).
[Crossref]

Journal of Physical Chemistry (1)

S. Morino, S. Machida, T. Yamashita, and K. Horie, “Photoinduced refractive index change and birefringence in poly(methyl methacrylate) containing p-(dimethylamino)azobenzene,”Journal of Physical Chemistry 99(25),10280–10284 (1995).
[Crossref]

Journal of Physical Chemistry B (1)

C. C. Jung, M. Rutloh, and J. Stumpe, “Waveguide spectroscopic characterization of 3D anisotropies in conventionally photooriented and annealed films of liquid crystalline and amorphous azobenzene polymers,”Journal of Physical Chemistry B 109(16),7865–7871 (2005).
[Crossref]

Macromolecules (3)

C. C. Jung, R. Rosenhauer, M. Rutloh, C. Kempe, and J. Stumpe, “The generation of three-dimensional anisotropies in thin polymer films by angular selective photoproduct formation and annealing,”Macromolecules 38(10),4324–4330 (2005).
[Crossref]

K. Tawa and W. Knoll, “Out-of-plane photoreorientation of azo dyes in polymer thin films studied by surface plasmon resonance spectroscopy,”Macromolecules 35,7018–7023 (2002).
[Crossref]

A. Natansohn, P. Rochon, J. Gosselin, and S. Xie, “Azo polymers for reversible optical storage. 1. Poly[4’-[[2-(acryloyloxi)ethyl]ethylamino] -4 - nitroazobenzene],”Macromolecules 25(8),2268–2273 (1992).
[Crossref]

Nonlinear Optics Quantum Optics (1)

M. Dumont, “3D characterization of photo-induced anisotropy and all-optical poling of organic films,”Nonlinear Optics Quantum Optics 43(1–4),239–257 (2012).

Opt Express (1)

L. Laplatine, L. Leroy, R. Calemczuk, D. Baganizi, P. N. Marche, Y. Roupioz, and T. Livache, “Spatial resolution in prism- based surface plasmon resonance microscopy,”Opt Express 22,22771–22785 (2014).
[Crossref]

Opt. Comm. (3)

S. Cowen and J. R. Sambles, “Resolving the apparent ambiguity in determining the relative permittivity and thickness of a metal film using optical excitation of surface plasmon-polaritons,”Opt. Comm. 79(6),427–430 (1990).
[Crossref]

H. E. de Brujin, B. S. F. Altenburg, R. P. H. Kooyman, and J. Greve, “Determination of thickness and dielectric constant of thin transparent dielectric layers using Surface Plasmon Resonance,”Opt. Comm. 82(5–6),425–432 (1991).
[Crossref]

K. A. Peterlinz and R. Georgiadis, “Two-color approach for determination of thickness and dielectric constant of thin films using Surface Plasmon Resonance Spectroscopy,”Opt. Comm. 130(4–6),260–266 (1996).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Optical Materials (1)

C. I. Chuang, S. H. Lin, and Y. F. Chao, “Dynamic characterization of photo-alignment of azo-dye-doped polymer using phase modulated polarimetry,”Optical Materials 35(3),366–371 (2013).
[Crossref]

Optics Comm. (1)

T. Todorov, N. Tomova, and L. Nikolova, “High-sensitivity material with reversible photo-induced anisotropy,”Optics Comm. 47(2),123–126 (1983).
[Crossref]

Plasmonics (1)

G. Pellegrini and G. Mattei, “High-Performance Magneto-Optic Surface Plasmon Resonance Sensor Design: An Optimization Approach,”Plasmonics 9(6),1–6 (2014).
[Crossref]

SIAM J. on Sci. Comp. (1)

P. C. Hansen and D. Prost O’Leary, “The use of the L-curve in the regularization of discrete ill-posed problems,”SIAM J. on Sci. Comp. 141487–1503 (1993).
[Crossref]

Synthetic Metals (1)

Z. Sekkat and M. Dumont, “Photoinduced orientation of azo dyes in polymeric films. Characterization of molecular angular mobility,”Synthetic Metals 54(1–3),373–381 (1993).
[Crossref]

Thin Solid Films (1)

J. Stumpe, L. Lasker, T. Fischer, M. Rutloh, S. Kostromin, and R. Ruhmann, “Photo-orientation in amorphous and aligned films of photochromic liquid crystalline polymers,”Thin Solid Films 284-285,252–256 (1996).
[Crossref]

Other (2)

M. Born and E. Wolf, Principles of Optics(Pergamon,1987).

B. P. Flannery, S. Teukolsky, W.H. Press, and W.T. Vetterling, Numerical Recipes in Fortran(Cambridge University,1986).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic representation of the PWRi setup. COL is a collimator converting the divergent light of the 525 nm diode into a parallel beam filtered with BP, a 3 nm-bandpass filter centered at 630 nm. The objective collects the light and an image is formed on the tilted camera TAS via TL, the tube lens of the infinity-corrected microscope objective. θ is the angle of incidence of the beam on the sample, as well as the angle under which the sample is being observed. The prism is fixed on an optical post. The rotation stage is a ring with an empty central area. This allows the optical post supporting the prism to be installed inside the free space located at center of the ring.
Fig. 2
Fig. 2 Comparison between the measured (continuous line) and computed (dashed line) reflectance spectra obtained with p- (minimum located near 43.5°) and s-polarized light (minimum located near 49.5°). Vertical dotted lines correspond to the angular position of the two minima.
Fig. 3
Fig. 3 Optical image of the azo-coating, patterned along the four lines 1, 2, 3 and 4. The region 5 corresponds to an uncoated region. It was used as a reference for the PWRi spectra. Red arrows indicate the polarization used to engrave each line. Molecules are preferentially oriented perpendicular to the polarization. As an example, molecules in line 2 will be preferentially oriented along the x axes.
Fig. 4
Fig. 4 a) Topography profiles across the low-power (lanes 1 and 2 from Fig. 3) and b) high-power (lanes 3 and 4 from Fig. 3) patterns, with polarization of the engraving laser being parallel (blue), or perpendicular (green) to the engraving direction. The depth variation of the pattern is ∼ 6 nm (low intensity) and ∼10 nm for the high-power pattern.
Fig. 5
Fig. 5 PWRi images as measured at four different incident angles, successively (a) 49.33°, (b) 49.449°, (c) 49.504° and (d) 49.654°. 1, 2, 3 and 4 label each of the engraved patterns.
Fig. 6
Fig. 6 Thickness (blue) and refractive index (red) determination under the isotropic hypothesis. Gray dashed lines point to places where engraved patterns are expected. Positions of the patterns 1 and 3 are correctly captured by the isotropic model, on the opposite, patterns 2 and 4 are completely missed.
Fig. 7
Fig. 7 Determination of the polymer thickness with, respectively, the isotropic model (blue line), anisotropic model a = 0.1 (green dots) and a = 10 (red dots). Grey dashed lines point to places where engraved patterns are expected.
Fig. 8
Fig. 8 Anisotropic optical indices, as determined from the minimization of the cost function C for a = 0.1 . Colors are: blue (nx), green (ny) and red (nz). The continuous line corresponds to the isotropic model. Grey dashed lines point to places where engraved patterns are expected.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

C = | | d n d y | | 2 + a ( n x n y ) 2 + a ( n x n z ) 2 + F ( n ) d y

Metrics