Abstract

Optical chaos communication has advantages of high speed and long transmission distance. Unfortunately, the key space of the traditional transceiver, i.e. semiconductor laser with mirror feedback, is limited due to the time delay signature. In this paper, we propose and numerically demonstrate a key space enhancement by using semiconductor laser with optical feedback from a chirped fiber Bragg grating (FBG). The chirped FBG feedback can make feedback delay a key parameter by eliminating the time delay signature. Moreover, the grating dispersion and center frequency can also be used as new keys. As a result, the dimension of key space is increased. By taking a bidirectional communication scheme as an example, numerical results show that the key space is raised by 244 times as against mirror feedback with a data rate of 2.5 Gb/s and a coupling strength of 0.447. As the coupling strength decreases, the key space increases due to the fact that chaos synchronization becomes more sensitive to parameter mismatch.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Time delay signature elimination of chaos in a semiconductor laser by dispersive feedback from a chirped FBG

Daming Wang, Longsheng Wang, Tong Zhao, Hua Gao, Yuncai Wang, Xianfeng Chen, and Anbang Wang
Opt. Express 25(10) 10911-10924 (2017)

Chaos synchronization and communication in closed-loop semiconductor lasers subject to common chaotic phase-modulated feedback

Ning Jiang, Anke Zhao, Shiqin Liu, Chenpeng Xue, and Kun Qiu
Opt. Express 26(25) 32404-32416 (2018)

Security-enhanced chaotic communications with optical temporal encryption based on phase modulation and phase-to-intensity conversion

Ning Jiang, Anke Zhao, Yajun Wang, Shiqin Liu, Jianming Tang, and Kun Qiu
OSA Continuum 2(12) 3422-3437 (2019)

References

  • View by:
  • |
  • |
  • |

  1. G. D. VanWiggeren and R. Roy, “Communication with chaotic lasers,” Science 279(5354), 1198–1200 (1998).
    [Crossref] [PubMed]
  2. A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
    [Crossref] [PubMed]
  3. R. Lavrov, M. Jacquot, and L. Larger, “Nonlocal nonlinear electro-optic phase dynamics demonstrating 10 Gb/s chaos communications,” IEEE J. Quantum Electron. 46(10), 1430–1435 (2010).
    [Crossref]
  4. J. Ke, L. Yi, G. Xia, and W. Hu, “Chaotic optical communications over 100-km fiber transmission at 30-Gb/s bit rate,” Opt. Lett. 43(6), 1323–1326 (2018).
    [Crossref] [PubMed]
  5. D. Rontani, A. Locquet, M. Sciamanna, D. S. Citrin, and S. Ortin, “Time-delay identification in a chaotic semiconductor laser with optical feedback: a dynamical point of view,” IEEE J. Quantum Electron. 45(7), 879–891 (2009).
    [Crossref]
  6. J. G. Wu, G. Q. Xia, and Z. M. Wu, “Suppression of time delay signatures of chaotic output in a semiconductor laser with double optical feedback,” Opt. Express 17(22), 20124–20133 (2009).
    [Crossref] [PubMed]
  7. N. Oliver, M. C. Soriano, D. W. Sukow, and I. Fischer, “Dynamics of a semiconductor laser with polarization-rotated feedback and its utilization for random bit generation,” Opt. Lett. 36(23), 4632–4634 (2011).
    [Crossref] [PubMed]
  8. S. S. Li, Q. Liu, and S. C. Chan, “Distributed feedbacks for time-delay signature suppression of chaos generated from a semiconductor laser,” IEEE Photonics J. 4(5), 1930–1935 (2012).
    [Crossref]
  9. Z. Q. Zhong, Z. M. Wu, and G. Q. Xia, “Experimental investigation on the time-delay signature of chaotic output from a 1550 nm VCSEL subject to FBG feedback,” Photon. Res. 5(1), 6–10 (2017).
    [Crossref]
  10. Y. Xu, M. Zhang, L. Zhang, P. Lu, S. Mihailov, and X. Bao, “Time-delay signature suppression in a chaotic semiconductor laser by fiber random grating induced random distributed feedback,” Opt. Lett. 42(20), 4107–4110 (2017).
    [Crossref] [PubMed]
  11. J. Zhang, C. Feng, M. Zhang, Y. Liu, and Y. Zhang, “Suppression of time delay signature based on Brillouin backscattering of chaotic laser,” IEEE Photonics J. 9(2), 1502408 (2017).
    [Crossref]
  12. J. G. Wu, Z. M. Wu, X. Tang, X. D. Lin, T. Deng, G. Q. Xia, and G. Y. Feng, “Simultaneous generation of two sets of time delay signature eliminated chaotic signals by using mutually coupled semiconductor lasers,” IEEE Photonics Technol. Lett. 23(12), 759–761 (2011).
    [Crossref]
  13. N. Li, W. Pan, S. Xiang, L. Yan, B. Luo, and X. Zou, “Loss of time delay signature in broadband cascade-coupled semiconductor lasers,” IEEE Photonics Technol. Lett. 24(23), 2187–2190 (2012).
    [Crossref]
  14. T. Wu, W. Sun, X. Zhang, and S. Zhang, “Concealment of time delay signature of chaotic output in a slave semiconductor laser with chaos laser injection,” Opt. Commun. 381, 174–179 (2016).
    [Crossref]
  15. A. Wang, Y. Yang, B. Wang, B. Zhang, L. Li, and Y. Wang, “Generation of wideband chaos with suppressed time-delay signature by delayed self-interference,” Opt. Express 21(7), 8701–8710 (2013).
    [Crossref] [PubMed]
  16. A. Wang, B. Wang, L. Li, Y. Wang, and K. A. Shore, “Optical heterodyne generation of high-dimensional and broadband white chaos,” IEEE J. Sel. Top. Quantum Electron. 21(6), 531–540 (2015).
    [Crossref]
  17. M. Cheng, X. Gao, L. Deng, L. Liu, Y. Deng, S. Fu, M. Zhang, and D. Liu, “Time-delay concealment in a three-dimensional electro-optic chaos system,” IEEE Photonics Technol. Lett. 27(9), 1030–1033 (2015).
    [Crossref]
  18. N. Jiang, C. Wang, C. Xue, G. Li, S. Lin, and K. Qiu, “Generation of flat wideband chaos with suppressed time delay signature by using optical time lens,” Opt. Express 25(13), 14359–14367 (2017).
    [Crossref] [PubMed]
  19. D. Wang, L. Wang, T. Zhao, H. Gao, Y. Wang, X. Chen, and A. Wang, “Time delay signature elimination of chaos in a semiconductor laser by dispersive feedback from a chirped FBG,” Opt. Express 25(10), 10911–10924 (2017).
    [Crossref] [PubMed]
  20. T. T. Hou, L. L. Yi, X. L. Yang, J. X. Ke, Y. Hu, Q. Yang, P. Zhou, and W. S. Hu, “Maximizing the security of chaotic optical communications,” Opt. Express 24(20), 23439–23449 (2016).
    [Crossref] [PubMed]
  21. E. Klein, N. Gross, E. Kopelowitz, M. Rosenbluh, L. Khaykovich, W. Kinzel, and I. Kanter, “Public-channel cryptography based on mutual chaos pass filters,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(4 Pt 2), 046201 (2006).
    [Crossref] [PubMed]
  22. R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16(3), 347–355 (1980).
    [Crossref]
  23. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
    [Crossref]
  24. A. Argyris, E. Grivas, A. Bogris, and D. Syvridis, “Transmission effects in wavelength division multiplexed chaotic optical communication systems,” J. Lightwave Technol. 28(21), 3107–3114 (2010).
    [Crossref]
  25. A. Uchida, Optical communication with chaotic lasers: applications of nonlinear dynamics and synchronization (Wiley-VCH, 2012), Chap. 3.
  26. Y. Wang, A. Wang, and T. Zhao, “Generation of the non-periodic and delay-signature-free chaotic light,” in Proceedings of International Symposium on Nonlinear Theory and its Applications (Academic, 2012), p. 126.

2018 (1)

2017 (5)

2016 (2)

T. T. Hou, L. L. Yi, X. L. Yang, J. X. Ke, Y. Hu, Q. Yang, P. Zhou, and W. S. Hu, “Maximizing the security of chaotic optical communications,” Opt. Express 24(20), 23439–23449 (2016).
[Crossref] [PubMed]

T. Wu, W. Sun, X. Zhang, and S. Zhang, “Concealment of time delay signature of chaotic output in a slave semiconductor laser with chaos laser injection,” Opt. Commun. 381, 174–179 (2016).
[Crossref]

2015 (2)

A. Wang, B. Wang, L. Li, Y. Wang, and K. A. Shore, “Optical heterodyne generation of high-dimensional and broadband white chaos,” IEEE J. Sel. Top. Quantum Electron. 21(6), 531–540 (2015).
[Crossref]

M. Cheng, X. Gao, L. Deng, L. Liu, Y. Deng, S. Fu, M. Zhang, and D. Liu, “Time-delay concealment in a three-dimensional electro-optic chaos system,” IEEE Photonics Technol. Lett. 27(9), 1030–1033 (2015).
[Crossref]

2013 (1)

2012 (2)

S. S. Li, Q. Liu, and S. C. Chan, “Distributed feedbacks for time-delay signature suppression of chaos generated from a semiconductor laser,” IEEE Photonics J. 4(5), 1930–1935 (2012).
[Crossref]

N. Li, W. Pan, S. Xiang, L. Yan, B. Luo, and X. Zou, “Loss of time delay signature in broadband cascade-coupled semiconductor lasers,” IEEE Photonics Technol. Lett. 24(23), 2187–2190 (2012).
[Crossref]

2011 (2)

N. Oliver, M. C. Soriano, D. W. Sukow, and I. Fischer, “Dynamics of a semiconductor laser with polarization-rotated feedback and its utilization for random bit generation,” Opt. Lett. 36(23), 4632–4634 (2011).
[Crossref] [PubMed]

J. G. Wu, Z. M. Wu, X. Tang, X. D. Lin, T. Deng, G. Q. Xia, and G. Y. Feng, “Simultaneous generation of two sets of time delay signature eliminated chaotic signals by using mutually coupled semiconductor lasers,” IEEE Photonics Technol. Lett. 23(12), 759–761 (2011).
[Crossref]

2010 (2)

R. Lavrov, M. Jacquot, and L. Larger, “Nonlocal nonlinear electro-optic phase dynamics demonstrating 10 Gb/s chaos communications,” IEEE J. Quantum Electron. 46(10), 1430–1435 (2010).
[Crossref]

A. Argyris, E. Grivas, A. Bogris, and D. Syvridis, “Transmission effects in wavelength division multiplexed chaotic optical communication systems,” J. Lightwave Technol. 28(21), 3107–3114 (2010).
[Crossref]

2009 (2)

D. Rontani, A. Locquet, M. Sciamanna, D. S. Citrin, and S. Ortin, “Time-delay identification in a chaotic semiconductor laser with optical feedback: a dynamical point of view,” IEEE J. Quantum Electron. 45(7), 879–891 (2009).
[Crossref]

J. G. Wu, G. Q. Xia, and Z. M. Wu, “Suppression of time delay signatures of chaotic output in a semiconductor laser with double optical feedback,” Opt. Express 17(22), 20124–20133 (2009).
[Crossref] [PubMed]

2006 (1)

E. Klein, N. Gross, E. Kopelowitz, M. Rosenbluh, L. Khaykovich, W. Kinzel, and I. Kanter, “Public-channel cryptography based on mutual chaos pass filters,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(4 Pt 2), 046201 (2006).
[Crossref] [PubMed]

2005 (1)

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

1998 (1)

G. D. VanWiggeren and R. Roy, “Communication with chaotic lasers,” Science 279(5354), 1198–1200 (1998).
[Crossref] [PubMed]

1997 (1)

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
[Crossref]

1980 (1)

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16(3), 347–355 (1980).
[Crossref]

Annovazzi-Lodi, V.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Argyris, A.

A. Argyris, E. Grivas, A. Bogris, and D. Syvridis, “Transmission effects in wavelength division multiplexed chaotic optical communication systems,” J. Lightwave Technol. 28(21), 3107–3114 (2010).
[Crossref]

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Bao, X.

Bogris, A.

Chan, S. C.

S. S. Li, Q. Liu, and S. C. Chan, “Distributed feedbacks for time-delay signature suppression of chaos generated from a semiconductor laser,” IEEE Photonics J. 4(5), 1930–1935 (2012).
[Crossref]

Chen, X.

Cheng, M.

M. Cheng, X. Gao, L. Deng, L. Liu, Y. Deng, S. Fu, M. Zhang, and D. Liu, “Time-delay concealment in a three-dimensional electro-optic chaos system,” IEEE Photonics Technol. Lett. 27(9), 1030–1033 (2015).
[Crossref]

Citrin, D. S.

D. Rontani, A. Locquet, M. Sciamanna, D. S. Citrin, and S. Ortin, “Time-delay identification in a chaotic semiconductor laser with optical feedback: a dynamical point of view,” IEEE J. Quantum Electron. 45(7), 879–891 (2009).
[Crossref]

Colet, P.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Deng, L.

M. Cheng, X. Gao, L. Deng, L. Liu, Y. Deng, S. Fu, M. Zhang, and D. Liu, “Time-delay concealment in a three-dimensional electro-optic chaos system,” IEEE Photonics Technol. Lett. 27(9), 1030–1033 (2015).
[Crossref]

Deng, T.

J. G. Wu, Z. M. Wu, X. Tang, X. D. Lin, T. Deng, G. Q. Xia, and G. Y. Feng, “Simultaneous generation of two sets of time delay signature eliminated chaotic signals by using mutually coupled semiconductor lasers,” IEEE Photonics Technol. Lett. 23(12), 759–761 (2011).
[Crossref]

Deng, Y.

M. Cheng, X. Gao, L. Deng, L. Liu, Y. Deng, S. Fu, M. Zhang, and D. Liu, “Time-delay concealment in a three-dimensional electro-optic chaos system,” IEEE Photonics Technol. Lett. 27(9), 1030–1033 (2015).
[Crossref]

Erdogan, T.

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
[Crossref]

Feng, C.

J. Zhang, C. Feng, M. Zhang, Y. Liu, and Y. Zhang, “Suppression of time delay signature based on Brillouin backscattering of chaotic laser,” IEEE Photonics J. 9(2), 1502408 (2017).
[Crossref]

Feng, G. Y.

J. G. Wu, Z. M. Wu, X. Tang, X. D. Lin, T. Deng, G. Q. Xia, and G. Y. Feng, “Simultaneous generation of two sets of time delay signature eliminated chaotic signals by using mutually coupled semiconductor lasers,” IEEE Photonics Technol. Lett. 23(12), 759–761 (2011).
[Crossref]

Fischer, I.

N. Oliver, M. C. Soriano, D. W. Sukow, and I. Fischer, “Dynamics of a semiconductor laser with polarization-rotated feedback and its utilization for random bit generation,” Opt. Lett. 36(23), 4632–4634 (2011).
[Crossref] [PubMed]

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Fu, S.

M. Cheng, X. Gao, L. Deng, L. Liu, Y. Deng, S. Fu, M. Zhang, and D. Liu, “Time-delay concealment in a three-dimensional electro-optic chaos system,” IEEE Photonics Technol. Lett. 27(9), 1030–1033 (2015).
[Crossref]

Gao, H.

Gao, X.

M. Cheng, X. Gao, L. Deng, L. Liu, Y. Deng, S. Fu, M. Zhang, and D. Liu, “Time-delay concealment in a three-dimensional electro-optic chaos system,” IEEE Photonics Technol. Lett. 27(9), 1030–1033 (2015).
[Crossref]

García-Ojalvo, J.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Grivas, E.

Gross, N.

E. Klein, N. Gross, E. Kopelowitz, M. Rosenbluh, L. Khaykovich, W. Kinzel, and I. Kanter, “Public-channel cryptography based on mutual chaos pass filters,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(4 Pt 2), 046201 (2006).
[Crossref] [PubMed]

Hou, T. T.

Hu, W.

Hu, W. S.

Hu, Y.

Jacquot, M.

R. Lavrov, M. Jacquot, and L. Larger, “Nonlocal nonlinear electro-optic phase dynamics demonstrating 10 Gb/s chaos communications,” IEEE J. Quantum Electron. 46(10), 1430–1435 (2010).
[Crossref]

Jiang, N.

Kanter, I.

E. Klein, N. Gross, E. Kopelowitz, M. Rosenbluh, L. Khaykovich, W. Kinzel, and I. Kanter, “Public-channel cryptography based on mutual chaos pass filters,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(4 Pt 2), 046201 (2006).
[Crossref] [PubMed]

Ke, J.

Ke, J. X.

Khaykovich, L.

E. Klein, N. Gross, E. Kopelowitz, M. Rosenbluh, L. Khaykovich, W. Kinzel, and I. Kanter, “Public-channel cryptography based on mutual chaos pass filters,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(4 Pt 2), 046201 (2006).
[Crossref] [PubMed]

Kinzel, W.

E. Klein, N. Gross, E. Kopelowitz, M. Rosenbluh, L. Khaykovich, W. Kinzel, and I. Kanter, “Public-channel cryptography based on mutual chaos pass filters,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(4 Pt 2), 046201 (2006).
[Crossref] [PubMed]

Klein, E.

E. Klein, N. Gross, E. Kopelowitz, M. Rosenbluh, L. Khaykovich, W. Kinzel, and I. Kanter, “Public-channel cryptography based on mutual chaos pass filters,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(4 Pt 2), 046201 (2006).
[Crossref] [PubMed]

Kobayashi, K.

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16(3), 347–355 (1980).
[Crossref]

Kopelowitz, E.

E. Klein, N. Gross, E. Kopelowitz, M. Rosenbluh, L. Khaykovich, W. Kinzel, and I. Kanter, “Public-channel cryptography based on mutual chaos pass filters,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(4 Pt 2), 046201 (2006).
[Crossref] [PubMed]

Lang, R.

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16(3), 347–355 (1980).
[Crossref]

Larger, L.

R. Lavrov, M. Jacquot, and L. Larger, “Nonlocal nonlinear electro-optic phase dynamics demonstrating 10 Gb/s chaos communications,” IEEE J. Quantum Electron. 46(10), 1430–1435 (2010).
[Crossref]

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Lavrov, R.

R. Lavrov, M. Jacquot, and L. Larger, “Nonlocal nonlinear electro-optic phase dynamics demonstrating 10 Gb/s chaos communications,” IEEE J. Quantum Electron. 46(10), 1430–1435 (2010).
[Crossref]

Li, G.

Li, L.

A. Wang, B. Wang, L. Li, Y. Wang, and K. A. Shore, “Optical heterodyne generation of high-dimensional and broadband white chaos,” IEEE J. Sel. Top. Quantum Electron. 21(6), 531–540 (2015).
[Crossref]

A. Wang, Y. Yang, B. Wang, B. Zhang, L. Li, and Y. Wang, “Generation of wideband chaos with suppressed time-delay signature by delayed self-interference,” Opt. Express 21(7), 8701–8710 (2013).
[Crossref] [PubMed]

Li, N.

N. Li, W. Pan, S. Xiang, L. Yan, B. Luo, and X. Zou, “Loss of time delay signature in broadband cascade-coupled semiconductor lasers,” IEEE Photonics Technol. Lett. 24(23), 2187–2190 (2012).
[Crossref]

Li, S. S.

S. S. Li, Q. Liu, and S. C. Chan, “Distributed feedbacks for time-delay signature suppression of chaos generated from a semiconductor laser,” IEEE Photonics J. 4(5), 1930–1935 (2012).
[Crossref]

Lin, S.

Lin, X. D.

J. G. Wu, Z. M. Wu, X. Tang, X. D. Lin, T. Deng, G. Q. Xia, and G. Y. Feng, “Simultaneous generation of two sets of time delay signature eliminated chaotic signals by using mutually coupled semiconductor lasers,” IEEE Photonics Technol. Lett. 23(12), 759–761 (2011).
[Crossref]

Liu, D.

M. Cheng, X. Gao, L. Deng, L. Liu, Y. Deng, S. Fu, M. Zhang, and D. Liu, “Time-delay concealment in a three-dimensional electro-optic chaos system,” IEEE Photonics Technol. Lett. 27(9), 1030–1033 (2015).
[Crossref]

Liu, L.

M. Cheng, X. Gao, L. Deng, L. Liu, Y. Deng, S. Fu, M. Zhang, and D. Liu, “Time-delay concealment in a three-dimensional electro-optic chaos system,” IEEE Photonics Technol. Lett. 27(9), 1030–1033 (2015).
[Crossref]

Liu, Q.

S. S. Li, Q. Liu, and S. C. Chan, “Distributed feedbacks for time-delay signature suppression of chaos generated from a semiconductor laser,” IEEE Photonics J. 4(5), 1930–1935 (2012).
[Crossref]

Liu, Y.

J. Zhang, C. Feng, M. Zhang, Y. Liu, and Y. Zhang, “Suppression of time delay signature based on Brillouin backscattering of chaotic laser,” IEEE Photonics J. 9(2), 1502408 (2017).
[Crossref]

Locquet, A.

D. Rontani, A. Locquet, M. Sciamanna, D. S. Citrin, and S. Ortin, “Time-delay identification in a chaotic semiconductor laser with optical feedback: a dynamical point of view,” IEEE J. Quantum Electron. 45(7), 879–891 (2009).
[Crossref]

Lu, P.

Luo, B.

N. Li, W. Pan, S. Xiang, L. Yan, B. Luo, and X. Zou, “Loss of time delay signature in broadband cascade-coupled semiconductor lasers,” IEEE Photonics Technol. Lett. 24(23), 2187–2190 (2012).
[Crossref]

Mihailov, S.

Mirasso, C. R.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Oliver, N.

Ortin, S.

D. Rontani, A. Locquet, M. Sciamanna, D. S. Citrin, and S. Ortin, “Time-delay identification in a chaotic semiconductor laser with optical feedback: a dynamical point of view,” IEEE J. Quantum Electron. 45(7), 879–891 (2009).
[Crossref]

Pan, W.

N. Li, W. Pan, S. Xiang, L. Yan, B. Luo, and X. Zou, “Loss of time delay signature in broadband cascade-coupled semiconductor lasers,” IEEE Photonics Technol. Lett. 24(23), 2187–2190 (2012).
[Crossref]

Pesquera, L.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Qiu, K.

Rontani, D.

D. Rontani, A. Locquet, M. Sciamanna, D. S. Citrin, and S. Ortin, “Time-delay identification in a chaotic semiconductor laser with optical feedback: a dynamical point of view,” IEEE J. Quantum Electron. 45(7), 879–891 (2009).
[Crossref]

Rosenbluh, M.

E. Klein, N. Gross, E. Kopelowitz, M. Rosenbluh, L. Khaykovich, W. Kinzel, and I. Kanter, “Public-channel cryptography based on mutual chaos pass filters,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(4 Pt 2), 046201 (2006).
[Crossref] [PubMed]

Roy, R.

G. D. VanWiggeren and R. Roy, “Communication with chaotic lasers,” Science 279(5354), 1198–1200 (1998).
[Crossref] [PubMed]

Sciamanna, M.

D. Rontani, A. Locquet, M. Sciamanna, D. S. Citrin, and S. Ortin, “Time-delay identification in a chaotic semiconductor laser with optical feedback: a dynamical point of view,” IEEE J. Quantum Electron. 45(7), 879–891 (2009).
[Crossref]

Shore, K. A.

A. Wang, B. Wang, L. Li, Y. Wang, and K. A. Shore, “Optical heterodyne generation of high-dimensional and broadband white chaos,” IEEE J. Sel. Top. Quantum Electron. 21(6), 531–540 (2015).
[Crossref]

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Soriano, M. C.

Sukow, D. W.

Sun, W.

T. Wu, W. Sun, X. Zhang, and S. Zhang, “Concealment of time delay signature of chaotic output in a slave semiconductor laser with chaos laser injection,” Opt. Commun. 381, 174–179 (2016).
[Crossref]

Syvridis, D.

A. Argyris, E. Grivas, A. Bogris, and D. Syvridis, “Transmission effects in wavelength division multiplexed chaotic optical communication systems,” J. Lightwave Technol. 28(21), 3107–3114 (2010).
[Crossref]

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Tang, X.

J. G. Wu, Z. M. Wu, X. Tang, X. D. Lin, T. Deng, G. Q. Xia, and G. Y. Feng, “Simultaneous generation of two sets of time delay signature eliminated chaotic signals by using mutually coupled semiconductor lasers,” IEEE Photonics Technol. Lett. 23(12), 759–761 (2011).
[Crossref]

VanWiggeren, G. D.

G. D. VanWiggeren and R. Roy, “Communication with chaotic lasers,” Science 279(5354), 1198–1200 (1998).
[Crossref] [PubMed]

Wang, A.

D. Wang, L. Wang, T. Zhao, H. Gao, Y. Wang, X. Chen, and A. Wang, “Time delay signature elimination of chaos in a semiconductor laser by dispersive feedback from a chirped FBG,” Opt. Express 25(10), 10911–10924 (2017).
[Crossref] [PubMed]

A. Wang, B. Wang, L. Li, Y. Wang, and K. A. Shore, “Optical heterodyne generation of high-dimensional and broadband white chaos,” IEEE J. Sel. Top. Quantum Electron. 21(6), 531–540 (2015).
[Crossref]

A. Wang, Y. Yang, B. Wang, B. Zhang, L. Li, and Y. Wang, “Generation of wideband chaos with suppressed time-delay signature by delayed self-interference,” Opt. Express 21(7), 8701–8710 (2013).
[Crossref] [PubMed]

Y. Wang, A. Wang, and T. Zhao, “Generation of the non-periodic and delay-signature-free chaotic light,” in Proceedings of International Symposium on Nonlinear Theory and its Applications (Academic, 2012), p. 126.

Wang, B.

A. Wang, B. Wang, L. Li, Y. Wang, and K. A. Shore, “Optical heterodyne generation of high-dimensional and broadband white chaos,” IEEE J. Sel. Top. Quantum Electron. 21(6), 531–540 (2015).
[Crossref]

A. Wang, Y. Yang, B. Wang, B. Zhang, L. Li, and Y. Wang, “Generation of wideband chaos with suppressed time-delay signature by delayed self-interference,” Opt. Express 21(7), 8701–8710 (2013).
[Crossref] [PubMed]

Wang, C.

Wang, D.

Wang, L.

Wang, Y.

D. Wang, L. Wang, T. Zhao, H. Gao, Y. Wang, X. Chen, and A. Wang, “Time delay signature elimination of chaos in a semiconductor laser by dispersive feedback from a chirped FBG,” Opt. Express 25(10), 10911–10924 (2017).
[Crossref] [PubMed]

A. Wang, B. Wang, L. Li, Y. Wang, and K. A. Shore, “Optical heterodyne generation of high-dimensional and broadband white chaos,” IEEE J. Sel. Top. Quantum Electron. 21(6), 531–540 (2015).
[Crossref]

A. Wang, Y. Yang, B. Wang, B. Zhang, L. Li, and Y. Wang, “Generation of wideband chaos with suppressed time-delay signature by delayed self-interference,” Opt. Express 21(7), 8701–8710 (2013).
[Crossref] [PubMed]

Y. Wang, A. Wang, and T. Zhao, “Generation of the non-periodic and delay-signature-free chaotic light,” in Proceedings of International Symposium on Nonlinear Theory and its Applications (Academic, 2012), p. 126.

Wu, J. G.

J. G. Wu, Z. M. Wu, X. Tang, X. D. Lin, T. Deng, G. Q. Xia, and G. Y. Feng, “Simultaneous generation of two sets of time delay signature eliminated chaotic signals by using mutually coupled semiconductor lasers,” IEEE Photonics Technol. Lett. 23(12), 759–761 (2011).
[Crossref]

J. G. Wu, G. Q. Xia, and Z. M. Wu, “Suppression of time delay signatures of chaotic output in a semiconductor laser with double optical feedback,” Opt. Express 17(22), 20124–20133 (2009).
[Crossref] [PubMed]

Wu, T.

T. Wu, W. Sun, X. Zhang, and S. Zhang, “Concealment of time delay signature of chaotic output in a slave semiconductor laser with chaos laser injection,” Opt. Commun. 381, 174–179 (2016).
[Crossref]

Wu, Z. M.

Xia, G.

Xia, G. Q.

Xiang, S.

N. Li, W. Pan, S. Xiang, L. Yan, B. Luo, and X. Zou, “Loss of time delay signature in broadband cascade-coupled semiconductor lasers,” IEEE Photonics Technol. Lett. 24(23), 2187–2190 (2012).
[Crossref]

Xu, Y.

Xue, C.

Yan, L.

N. Li, W. Pan, S. Xiang, L. Yan, B. Luo, and X. Zou, “Loss of time delay signature in broadband cascade-coupled semiconductor lasers,” IEEE Photonics Technol. Lett. 24(23), 2187–2190 (2012).
[Crossref]

Yang, Q.

Yang, X. L.

Yang, Y.

Yi, L.

Yi, L. L.

Zhang, B.

Zhang, J.

J. Zhang, C. Feng, M. Zhang, Y. Liu, and Y. Zhang, “Suppression of time delay signature based on Brillouin backscattering of chaotic laser,” IEEE Photonics J. 9(2), 1502408 (2017).
[Crossref]

Zhang, L.

Zhang, M.

Y. Xu, M. Zhang, L. Zhang, P. Lu, S. Mihailov, and X. Bao, “Time-delay signature suppression in a chaotic semiconductor laser by fiber random grating induced random distributed feedback,” Opt. Lett. 42(20), 4107–4110 (2017).
[Crossref] [PubMed]

J. Zhang, C. Feng, M. Zhang, Y. Liu, and Y. Zhang, “Suppression of time delay signature based on Brillouin backscattering of chaotic laser,” IEEE Photonics J. 9(2), 1502408 (2017).
[Crossref]

M. Cheng, X. Gao, L. Deng, L. Liu, Y. Deng, S. Fu, M. Zhang, and D. Liu, “Time-delay concealment in a three-dimensional electro-optic chaos system,” IEEE Photonics Technol. Lett. 27(9), 1030–1033 (2015).
[Crossref]

Zhang, S.

T. Wu, W. Sun, X. Zhang, and S. Zhang, “Concealment of time delay signature of chaotic output in a slave semiconductor laser with chaos laser injection,” Opt. Commun. 381, 174–179 (2016).
[Crossref]

Zhang, X.

T. Wu, W. Sun, X. Zhang, and S. Zhang, “Concealment of time delay signature of chaotic output in a slave semiconductor laser with chaos laser injection,” Opt. Commun. 381, 174–179 (2016).
[Crossref]

Zhang, Y.

J. Zhang, C. Feng, M. Zhang, Y. Liu, and Y. Zhang, “Suppression of time delay signature based on Brillouin backscattering of chaotic laser,” IEEE Photonics J. 9(2), 1502408 (2017).
[Crossref]

Zhao, T.

D. Wang, L. Wang, T. Zhao, H. Gao, Y. Wang, X. Chen, and A. Wang, “Time delay signature elimination of chaos in a semiconductor laser by dispersive feedback from a chirped FBG,” Opt. Express 25(10), 10911–10924 (2017).
[Crossref] [PubMed]

Y. Wang, A. Wang, and T. Zhao, “Generation of the non-periodic and delay-signature-free chaotic light,” in Proceedings of International Symposium on Nonlinear Theory and its Applications (Academic, 2012), p. 126.

Zhong, Z. Q.

Zhou, P.

Zou, X.

N. Li, W. Pan, S. Xiang, L. Yan, B. Luo, and X. Zou, “Loss of time delay signature in broadband cascade-coupled semiconductor lasers,” IEEE Photonics Technol. Lett. 24(23), 2187–2190 (2012).
[Crossref]

IEEE J. Quantum Electron. (3)

R. Lavrov, M. Jacquot, and L. Larger, “Nonlocal nonlinear electro-optic phase dynamics demonstrating 10 Gb/s chaos communications,” IEEE J. Quantum Electron. 46(10), 1430–1435 (2010).
[Crossref]

D. Rontani, A. Locquet, M. Sciamanna, D. S. Citrin, and S. Ortin, “Time-delay identification in a chaotic semiconductor laser with optical feedback: a dynamical point of view,” IEEE J. Quantum Electron. 45(7), 879–891 (2009).
[Crossref]

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16(3), 347–355 (1980).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Wang, B. Wang, L. Li, Y. Wang, and K. A. Shore, “Optical heterodyne generation of high-dimensional and broadband white chaos,” IEEE J. Sel. Top. Quantum Electron. 21(6), 531–540 (2015).
[Crossref]

IEEE Photonics J. (2)

J. Zhang, C. Feng, M. Zhang, Y. Liu, and Y. Zhang, “Suppression of time delay signature based on Brillouin backscattering of chaotic laser,” IEEE Photonics J. 9(2), 1502408 (2017).
[Crossref]

S. S. Li, Q. Liu, and S. C. Chan, “Distributed feedbacks for time-delay signature suppression of chaos generated from a semiconductor laser,” IEEE Photonics J. 4(5), 1930–1935 (2012).
[Crossref]

IEEE Photonics Technol. Lett. (3)

J. G. Wu, Z. M. Wu, X. Tang, X. D. Lin, T. Deng, G. Q. Xia, and G. Y. Feng, “Simultaneous generation of two sets of time delay signature eliminated chaotic signals by using mutually coupled semiconductor lasers,” IEEE Photonics Technol. Lett. 23(12), 759–761 (2011).
[Crossref]

N. Li, W. Pan, S. Xiang, L. Yan, B. Luo, and X. Zou, “Loss of time delay signature in broadband cascade-coupled semiconductor lasers,” IEEE Photonics Technol. Lett. 24(23), 2187–2190 (2012).
[Crossref]

M. Cheng, X. Gao, L. Deng, L. Liu, Y. Deng, S. Fu, M. Zhang, and D. Liu, “Time-delay concealment in a three-dimensional electro-optic chaos system,” IEEE Photonics Technol. Lett. 27(9), 1030–1033 (2015).
[Crossref]

J. Lightwave Technol. (2)

Nature (1)

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Opt. Commun. (1)

T. Wu, W. Sun, X. Zhang, and S. Zhang, “Concealment of time delay signature of chaotic output in a slave semiconductor laser with chaos laser injection,” Opt. Commun. 381, 174–179 (2016).
[Crossref]

Opt. Express (5)

Opt. Lett. (3)

Photon. Res. (1)

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

E. Klein, N. Gross, E. Kopelowitz, M. Rosenbluh, L. Khaykovich, W. Kinzel, and I. Kanter, “Public-channel cryptography based on mutual chaos pass filters,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(4 Pt 2), 046201 (2006).
[Crossref] [PubMed]

Science (1)

G. D. VanWiggeren and R. Roy, “Communication with chaotic lasers,” Science 279(5354), 1198–1200 (1998).
[Crossref] [PubMed]

Other (2)

A. Uchida, Optical communication with chaotic lasers: applications of nonlinear dynamics and synchronization (Wiley-VCH, 2012), Chap. 3.

Y. Wang, A. Wang, and T. Zhao, “Generation of the non-periodic and delay-signature-free chaotic light,” in Proceedings of International Symposium on Nonlinear Theory and its Applications (Academic, 2012), p. 126.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic diagram of bidirectional chaos communication with mutually coupled semiconductor lasers subject to (a) mirror feedback and (b) CFBG feedback.
Fig. 2
Fig. 2 Optical spectra (left column) and autocorrelation traces (right column) of time series of semiconductor laser: (a, b) mirror feedback, and (c, d) CFBG feedback. The reflection spectrum and group delay of the CFBG are plotted in blue and red line in (c), respectively. I = 1.5Ith, k = 0.3, d = 6000 ps/nm, τ = 5 ns.
Fig. 3
Fig. 3 Bit error ratio (BER) of decoded message as a function of synchronization coefficient. Note, squares (red online) and triangles (blue online) denote the two results separately obtained by adjusting the mismatch of parameter k and τ between chaotic transmitter and receiver. Data rate is 2.5 Gb/s.
Fig. 4
Fig. 4 Mirror feedback: (a) Bifurcation diagram indicating chaos region of feedback strength, (b) synchronization coefficient versus mismatch of feedback strength. I1,2 = 1.5Ith, τ1,2 = 5ns, k1,2 = 0.3.
Fig. 5
Fig. 5 (a) Effects of parameters (k, d) on time delay signature of CFBG feedback, and (b, c) effects of parameter mismatch on synchronization coefficient: (b) feedback strength k mismatch under d = 6000ps/ns and (c) dispersion d mismatch under I1,2 = 1.5Ith, fd1,2 = 0GHz, τ1,2 = 5ns.
Fig. 6
Fig. 6 (a) Effects of grating frequency on time delay signature of CFBG feedback; (b) Effects of mismatch of grating frequency on chaos synchronization coefficient. I1,2 = 1.5Ith, k1,2 = 0.3, dCFBG1,2 = 6000 ps/nm, τ1,2 = 5 ns.
Fig. 7
Fig. 7 (a) Effects of feedback delay on time delay signature of CFBG feedback; (b) Effects of mismatch of delay on chaos synchronization coefficient. I1,2 = 1.5Ith, k1,2 = 0.3, dCFBG1,2 = 6000 ps/nm, fd1,2 = 0 GHz.
Fig. 8
Fig. 8 Effects of feedback strength mismatch on synchronization coefficient: (a) d1,2 = 6000ps/ns and (b) d1,2 = 8000ps/ns under I1,2 = 1.5Ith, fd1,2 = 0GHz, τ1,2 = 5ns, kc1,2 = 0.447.

Tables (1)

Tables Icon

Table 1 Key spaces enhanced with CFBG feedback in optical chaos communication

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

d E 1,2 dt = 1+iα 2 [ g( N 1,2 N 0 ) 1+ε | E 1,2 | 2 1 τ p ] E 1,2 + k 1,2 τ in tT t h( tt' ) E 1,2 (t' τ 1,2 )dt'+ k c τ in E 2,1 ( t τ c ) e i[ Δω( t τ c ) ] ,
d N 1,2 dt = I 1,2 qV N 1,2 τ N g( N 1,2 N 0 ) 1+ε | E 1,2 | 2 | E 1,2 | 2 ,
N key =η i=1 m N i ,
N i =floor( Δ p i / δ p i ),

Metrics