Abstract

Polycrystalline ZnSe is an exciting source of broadband supercontinuum and high-harmonic generation via random quasi phase matching, exhibiting broad transparency in the mid-infrared (0.520 μm). In this work, the effects of wavelength, pulse power, intensity, propagation length, and crystallinity on supercontinuum and high harmonic generation are investigated experimentally using ultrafast mid-infrared pulses. Observed harmonic conversion efficiency scales linearly in propagation length, reaching as high as 36%. For the first time to our knowledge, n2 is measured for mid-infrared wavelengths in ZnSe: n2(λ=3.9 μm)=(1.2±0.3)×1014 cm2/W. Measured n2 is applied to simulations modeling high-harmonic generation in polycrystalline ZnSe as an effective medium.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Even and odd harmonics-enhanced supercontinuum generation in zinc-blende semiconductors

Rosvaldas Šuminas, Agnė Marcinkevičiūtė, Gintaras Tamošauskas, and Audrius Dubietis
J. Opt. Soc. Am. B 36(2) A22-A27 (2019)

Eye safety implications of high harmonic generation in zinc selenide

Christopher. B. Marble, Sean. P. O’Connor, Dawson. T. Nodurft, Andrew. W. Wharmby, and Vladislav V. Yakovlev
Opt. Express 27(3) 2828-2836 (2019)

Generation and characterization of mid-infrared supercontinuum in polarization maintained ZBLAN fibers

Seyed Ali Rezvani, Yutaka Nomura, Kazuhiko Ogawa, and Takao Fuji
Opt. Express 27(17) 24499-24511 (2019)

References

  • View by:
  • |
  • |
  • |

  1. R. R. Alfano, Q. Z. Wang, T. Jimbo, P. P. Ho, R. N. Bhargava, and B. J. Fitzpatrick, “Induced spectral broadening about a second harmonic generated by an intense primary ultrashort laser pulse in ZnSe crystals,” Phys. Rev. A Gen. Phys. 35(1), 459–462 (1987).
    [Crossref] [PubMed]
  2. C. F. Dewey and L. O. Hocker, “Enhanced nonlinear optical effects in rotationally twinned crystals,” Appl. Phys. Lett. 26(8), 442–444 (1975).
    [Crossref]
  3. L. O. Hocker and C. F. Dewey, “Enhancement of second‐harmonic generation in zinc selenide by crystal defects,” Appl. Phys. Lett. 28(5), 267–270 (1976).
    [Crossref]
  4. C. K. N. Patel, “Optical harmonic generation in infrared using a Co2 laser,” Phys. Rev. Lett. 16(14), 613–616 (1966).
    [Crossref]
  5. P. B. Corkum, P. P. Ho, R. R. Alfano, and J. T. Manassah, “Generation of infrared supercontinuum covering 3-14 µm in dielectrics and semiconductors,” Opt. Lett. 10(12), 624–626 (1985).
    [Crossref] [PubMed]
  6. A. H. Chin, O. G. Calderón, and J. Kono, “Extreme midinfrared nonlinear optics in semiconductors,” Phys. Rev. Lett. 86(15), 3292–3295 (2001).
    [Crossref] [PubMed]
  7. E. Y. Morozov, A. A. Kaminskii, A. S. Chirkin, and D. B. Yusupov, “Second optical harmonic generation in nonlinear crystals with a disordered domain structure,” JETP Lett. 73(12), 647–650 (2001).
    [Crossref]
  8. T. D. Chinh, W. Seibt, and K. Siegbahn, “Dot patterns from second-harmonic and sum-frequency generation in polycrystalline ZnSe,” J. Appl. Phys. 90(5), 2612–2614 (2001).
    [Crossref]
  9. M. Baudrier-Raybaut, R. Haïdar, P. Kupecek, P. Lemasson, and E. Rosencher, “Random quasi-phase-matching in bulk polycrystalline isotropic nonlinear materials,” Nature 432(7015), 374–376 (2004).
    [Crossref] [PubMed]
  10. S. E. Skipetrov, “Disorder is the new order,” Nature 432(7015), 285–286 (2004).
    [Crossref] [PubMed]
  11. O. Mouawad, P. Bejot, F. Billard, P. Mathey, B. Kibler, F. Desevedavy, G. Gadret, J. C. Jules, O. Faucher, and E. Smektala, “Filament-induced visible-to-mid-IR supercontinuum in a ZnSe crystal: towards multi-octave supercontinuum absorption spectroscopy,” Opt. Mater. 60, 355–358 (2016).
    [Crossref]
  12. R. Šuminas, G. Tamosauskas, G. Valiulis, V. Jukna, A. Couairon, and A. Dubietis, “Multi-octave spanning nonlinear interactions induced by femtosecond filamentation in polycrystalline ZnSe,” Appl. Phys. Lett. 110(24), 241106 (2017).
    [Crossref]
  13. M. Durand, A. Houard, K. Lim, A. Durécu, O. Vasseur, and M. Richardson, “Study of filamentation threshold in zinc selenide,” Opt. Express 22(5), 5852–5858 (2014).
    [Crossref] [PubMed]
  14. C. B. Marble, S. P. O’Connor, D. T. Nodurft, V. V. Yakovlev, and A. W. Wharmby, “Zinc selenide: an extraordinarily nonlinear material,” Proc. SPIE 10528, 1–7 (2018).
  15. A. A. Lanin, E. A. Stepanov, A. B. Fedotov, and A. M. Zheltikov, “Mapping the electron band structure by intraband high-harmonic generation in solids,” Optica 4(5), 516–519 (2017).
    [Crossref]
  16. G. M. Archipovaite, S. Petit, J. C. Delagnes, and E. Cormier, “100 kHz Yb-fiber laser pumped 3µm optical parametric amplifier for probing solid-state systems in the strong field regime,” Opt. Lett. 42(5), 891–894 (2017).
    [Crossref] [PubMed]
  17. A. Dubietis, G. Tamosauskas, R. Suminas, V. Jukna, and A. Couairon, “Ultrafast supercontinuum generation in bulk condensed media,” Lith. J. Phys. 57(3), 113–157 (2017).
    [Crossref]
  18. H. Pires, M. Baudisch, D. Sanchez, M. Hemmer, and J. Biegert, “Ultrashort pulse generation in the mid-IR,” Prog. Quantum Electron. 43, 1–30 (2015).
    [Crossref]
  19. T. W. Neely, L. Nugent-Glandorf, and S. Diddams, “Broadband mid-IR standoff spectroscopy of explosives with a femtosecond optical parametric oscillator,” in Lasers, Sources, and Related Photonic Devices Conference, 2012 OSA Technical Digest (Optical Society of America, 2012), paper LT2B. 3.
    [Crossref]
  20. S. B. Mirov, V. V. Fedorov, D. Martyshkin, I. S. Moskalev, M. Mirov, and S. Vasilyev, “Progress in mid-IR lasers based on Cr and Fe-doped II-VI chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 21(1), 292 (2015).
    [Crossref]
  21. M. R. Shcherbakov, K. Werner, Z. Fan, N. Talisa, E. Chowdhury, and G. Shvets, “Non-integer harmonics generation by photon acceleration in rapidly evolving nonlinear semiconductor metasurfaces,” arXiv:171006966S.
  22. H. Park, A. Camper, K. Kafka, B. Ma, Y. H. Lai, C. Blaga, P. Agostini, L. F. DiMauro, and E. Chowdhury, “High-order harmonic generations in intense MIR fields by cascade three-wave mixing in a fractal-poled LiNbO3 photonic crystal,” Opt. Lett. 42(19), 4020–4023 (2017).
    [Crossref] [PubMed]
  23. K. R. P. Kafka, “Laser-induced damage with femtosecond pulses,” PhD dissertation (Department of Physics, The Ohio State University, 2017).
  24. K. R. P. Kafka, D. R. Austin, H. Li, A. Y. Yi, J. Cheng, and E. A. Chowdhury, “Time-resolved measurement of single pulse femtosecond laser-induced periodic surface structure formation induced by a pre-fabricated surface groove,” Opt. Express 23(15), 19432–19441 (2015).
    [Crossref] [PubMed]
  25. M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of Bound Electronic Nonlinear Refraction in Solids,” IEEE J. Quantum Electron. 27(6), 1296–1309 (1991).
    [Crossref]
  26. M. Kolesik and J. V. Moloney, “Nonlinear optical pulse propagation simulation: from Maxwell’s to unidirectional equations,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(3), 036604 (2004).
    [Crossref] [PubMed]
  27. O. Sergaeva, V. Gruzdev, D. Austin, and E. Chowdhury, “Ultrafast excitation of conduction-band electrons by high-intensity ultrashort laser pulses in band-gap solids: Vinogradov equation versus Drude model,” J. Opt. Soc. Am. B 35(11), 2895–2905 (2018).
    [Crossref]
  28. T. Ehmke, A. Knebl, S. Reiss, I. R. Fischinger, T. G. Seiler, O. Stachs, and A. Heisterkamp, “Spectral behavior of second harmonic signals from organic and non-organic materials in multiphoton microscopy,” AIP Adv. 5(8), 084903 (2015).
    [Crossref] [PubMed]
  29. N. Garejev, I. Grazuleviciute, D. Majus, G. Tamosauskas, V. Jukna, A. Couairon, and A. Dubietis, “Third- and fifth-harmonic generation in transparent solids with few-optical-cycle midinfrared pulses,” Phys. Rev. A 89(3), 033846 (2014).
    [Crossref]
  30. S. Ghimire, A. D. DiChiara, E. Sistrunk, P. Agostini, L. F. DiMauro, and D. A. Reis, “Observation of high-order harmonic generation in a bulk crystal,” Nat. Phys. 7(2), 138–141 (2011).
    [Crossref]
  31. J. Connolly, B. diBenedetto, and R. Donadio, “Specifications of raytran material,” Proc. SPIE 0181, (1979).
  32. M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Vanstryland, “Dispersion of bound electronic nonlinear refraction in solids,” IEEE J. Quantum Electron. 27(6), 1296–1309 (1991).
    [Crossref]
  33. T. D. Krauss and F. W. Wise, “Femtosecond Measurement of Nonlinear Absorption and Refraction in Cds, Znse, and Zns,” Appl. Phys. Lett. 65(14), 1739–1741 (1994).
    [Crossref]
  34. A. Major, J. S. Aitchison, P. W. E. Smith, E. Sorokin, and I. T. Sorokina, “Z-scan characterization of the nonlinear refractive index of single crystal ZnSe in the 1.20-1.95 µm wavelength range,” Proc. SPIE 5971, 59710H (2005).
    [Crossref]
  35. A. Major, F. Yoshino, J. S. Aitchison, P. W. E. Smith, E. Sorokin, and I. T. Sorokina, “Ultrafast nonresonant third-order optical nonlinearities in ZnSe for photonic switching at telecom wavelengths,” Appl. Phys. Lett. 85(20), 4606–4608 (2004).
    [Crossref]
  36. M. Balu, L. A. Padilha, D. J. Hagan, E. W. Van Stryland, S. Yao, K. Belfield, S. Zheng, S. Barlow, and S. Marder, “Broadband Z-scan characterization using a high-spectral-irradiance, high-quality supercontinuum,” J. Opt. Soc. Am. B 25(2), 159–165 (2008).
    [Crossref]
  37. K. Y. Tseng, K. S. Wong, and G. K. Wong, “Femtosecond time-resolved Z-scan investigations of optical nonlinearities in ZnSe,” Opt. Lett. 21(3), 180–182 (1996).
    [Crossref] [PubMed]
  38. M. S. Piltch, R. Eckhardt, and R. Hinsley, “Determination of the nonlinear optical coefficient and SHG coherence length for crystal single zinc selenide,” OPTICS Optics Communications 22(2), 239–242 (1977).
    [Crossref]
  39. M. J. Weber, CRC handbook of laser science and technology (CRC, 1986).
  40. D. R. Austin, “Semiconductor surface modification using mid-infrared, femtosecond laser pulses,” PhD dissertation (Department of Physics, The Ohio State University, 2017).
  41. D. R. Austin, K. R. P. Kafka, Y. H. Lai, Z. Wang, C. I. Blaga, and E. A. Chowdhury, “Femtosecond laser damage of germanium from near- to mid-infrared wavelengths,” Opt. Lett. 43(15), 3702–3705 (2018).
    [Crossref] [PubMed]

2018 (3)

2017 (5)

2016 (1)

O. Mouawad, P. Bejot, F. Billard, P. Mathey, B. Kibler, F. Desevedavy, G. Gadret, J. C. Jules, O. Faucher, and E. Smektala, “Filament-induced visible-to-mid-IR supercontinuum in a ZnSe crystal: towards multi-octave supercontinuum absorption spectroscopy,” Opt. Mater. 60, 355–358 (2016).
[Crossref]

2015 (4)

H. Pires, M. Baudisch, D. Sanchez, M. Hemmer, and J. Biegert, “Ultrashort pulse generation in the mid-IR,” Prog. Quantum Electron. 43, 1–30 (2015).
[Crossref]

S. B. Mirov, V. V. Fedorov, D. Martyshkin, I. S. Moskalev, M. Mirov, and S. Vasilyev, “Progress in mid-IR lasers based on Cr and Fe-doped II-VI chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 21(1), 292 (2015).
[Crossref]

K. R. P. Kafka, D. R. Austin, H. Li, A. Y. Yi, J. Cheng, and E. A. Chowdhury, “Time-resolved measurement of single pulse femtosecond laser-induced periodic surface structure formation induced by a pre-fabricated surface groove,” Opt. Express 23(15), 19432–19441 (2015).
[Crossref] [PubMed]

T. Ehmke, A. Knebl, S. Reiss, I. R. Fischinger, T. G. Seiler, O. Stachs, and A. Heisterkamp, “Spectral behavior of second harmonic signals from organic and non-organic materials in multiphoton microscopy,” AIP Adv. 5(8), 084903 (2015).
[Crossref] [PubMed]

2014 (2)

N. Garejev, I. Grazuleviciute, D. Majus, G. Tamosauskas, V. Jukna, A. Couairon, and A. Dubietis, “Third- and fifth-harmonic generation in transparent solids with few-optical-cycle midinfrared pulses,” Phys. Rev. A 89(3), 033846 (2014).
[Crossref]

M. Durand, A. Houard, K. Lim, A. Durécu, O. Vasseur, and M. Richardson, “Study of filamentation threshold in zinc selenide,” Opt. Express 22(5), 5852–5858 (2014).
[Crossref] [PubMed]

2011 (1)

S. Ghimire, A. D. DiChiara, E. Sistrunk, P. Agostini, L. F. DiMauro, and D. A. Reis, “Observation of high-order harmonic generation in a bulk crystal,” Nat. Phys. 7(2), 138–141 (2011).
[Crossref]

2008 (1)

2005 (1)

A. Major, J. S. Aitchison, P. W. E. Smith, E. Sorokin, and I. T. Sorokina, “Z-scan characterization of the nonlinear refractive index of single crystal ZnSe in the 1.20-1.95 µm wavelength range,” Proc. SPIE 5971, 59710H (2005).
[Crossref]

2004 (4)

A. Major, F. Yoshino, J. S. Aitchison, P. W. E. Smith, E. Sorokin, and I. T. Sorokina, “Ultrafast nonresonant third-order optical nonlinearities in ZnSe for photonic switching at telecom wavelengths,” Appl. Phys. Lett. 85(20), 4606–4608 (2004).
[Crossref]

M. Kolesik and J. V. Moloney, “Nonlinear optical pulse propagation simulation: from Maxwell’s to unidirectional equations,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(3), 036604 (2004).
[Crossref] [PubMed]

M. Baudrier-Raybaut, R. Haïdar, P. Kupecek, P. Lemasson, and E. Rosencher, “Random quasi-phase-matching in bulk polycrystalline isotropic nonlinear materials,” Nature 432(7015), 374–376 (2004).
[Crossref] [PubMed]

S. E. Skipetrov, “Disorder is the new order,” Nature 432(7015), 285–286 (2004).
[Crossref] [PubMed]

2001 (3)

A. H. Chin, O. G. Calderón, and J. Kono, “Extreme midinfrared nonlinear optics in semiconductors,” Phys. Rev. Lett. 86(15), 3292–3295 (2001).
[Crossref] [PubMed]

E. Y. Morozov, A. A. Kaminskii, A. S. Chirkin, and D. B. Yusupov, “Second optical harmonic generation in nonlinear crystals with a disordered domain structure,” JETP Lett. 73(12), 647–650 (2001).
[Crossref]

T. D. Chinh, W. Seibt, and K. Siegbahn, “Dot patterns from second-harmonic and sum-frequency generation in polycrystalline ZnSe,” J. Appl. Phys. 90(5), 2612–2614 (2001).
[Crossref]

1996 (1)

1994 (1)

T. D. Krauss and F. W. Wise, “Femtosecond Measurement of Nonlinear Absorption and Refraction in Cds, Znse, and Zns,” Appl. Phys. Lett. 65(14), 1739–1741 (1994).
[Crossref]

1991 (2)

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of Bound Electronic Nonlinear Refraction in Solids,” IEEE J. Quantum Electron. 27(6), 1296–1309 (1991).
[Crossref]

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Vanstryland, “Dispersion of bound electronic nonlinear refraction in solids,” IEEE J. Quantum Electron. 27(6), 1296–1309 (1991).
[Crossref]

1987 (1)

R. R. Alfano, Q. Z. Wang, T. Jimbo, P. P. Ho, R. N. Bhargava, and B. J. Fitzpatrick, “Induced spectral broadening about a second harmonic generated by an intense primary ultrashort laser pulse in ZnSe crystals,” Phys. Rev. A Gen. Phys. 35(1), 459–462 (1987).
[Crossref] [PubMed]

1985 (1)

1977 (1)

M. S. Piltch, R. Eckhardt, and R. Hinsley, “Determination of the nonlinear optical coefficient and SHG coherence length for crystal single zinc selenide,” OPTICS Optics Communications 22(2), 239–242 (1977).
[Crossref]

1976 (1)

L. O. Hocker and C. F. Dewey, “Enhancement of second‐harmonic generation in zinc selenide by crystal defects,” Appl. Phys. Lett. 28(5), 267–270 (1976).
[Crossref]

1975 (1)

C. F. Dewey and L. O. Hocker, “Enhanced nonlinear optical effects in rotationally twinned crystals,” Appl. Phys. Lett. 26(8), 442–444 (1975).
[Crossref]

1966 (1)

C. K. N. Patel, “Optical harmonic generation in infrared using a Co2 laser,” Phys. Rev. Lett. 16(14), 613–616 (1966).
[Crossref]

Agostini, P.

Aitchison, J. S.

A. Major, J. S. Aitchison, P. W. E. Smith, E. Sorokin, and I. T. Sorokina, “Z-scan characterization of the nonlinear refractive index of single crystal ZnSe in the 1.20-1.95 µm wavelength range,” Proc. SPIE 5971, 59710H (2005).
[Crossref]

A. Major, F. Yoshino, J. S. Aitchison, P. W. E. Smith, E. Sorokin, and I. T. Sorokina, “Ultrafast nonresonant third-order optical nonlinearities in ZnSe for photonic switching at telecom wavelengths,” Appl. Phys. Lett. 85(20), 4606–4608 (2004).
[Crossref]

Alfano, R. R.

R. R. Alfano, Q. Z. Wang, T. Jimbo, P. P. Ho, R. N. Bhargava, and B. J. Fitzpatrick, “Induced spectral broadening about a second harmonic generated by an intense primary ultrashort laser pulse in ZnSe crystals,” Phys. Rev. A Gen. Phys. 35(1), 459–462 (1987).
[Crossref] [PubMed]

P. B. Corkum, P. P. Ho, R. R. Alfano, and J. T. Manassah, “Generation of infrared supercontinuum covering 3-14 µm in dielectrics and semiconductors,” Opt. Lett. 10(12), 624–626 (1985).
[Crossref] [PubMed]

Archipovaite, G. M.

Austin, D.

Austin, D. R.

Balu, M.

Barlow, S.

Baudisch, M.

H. Pires, M. Baudisch, D. Sanchez, M. Hemmer, and J. Biegert, “Ultrashort pulse generation in the mid-IR,” Prog. Quantum Electron. 43, 1–30 (2015).
[Crossref]

Baudrier-Raybaut, M.

M. Baudrier-Raybaut, R. Haïdar, P. Kupecek, P. Lemasson, and E. Rosencher, “Random quasi-phase-matching in bulk polycrystalline isotropic nonlinear materials,” Nature 432(7015), 374–376 (2004).
[Crossref] [PubMed]

Bejot, P.

O. Mouawad, P. Bejot, F. Billard, P. Mathey, B. Kibler, F. Desevedavy, G. Gadret, J. C. Jules, O. Faucher, and E. Smektala, “Filament-induced visible-to-mid-IR supercontinuum in a ZnSe crystal: towards multi-octave supercontinuum absorption spectroscopy,” Opt. Mater. 60, 355–358 (2016).
[Crossref]

Belfield, K.

Bhargava, R. N.

R. R. Alfano, Q. Z. Wang, T. Jimbo, P. P. Ho, R. N. Bhargava, and B. J. Fitzpatrick, “Induced spectral broadening about a second harmonic generated by an intense primary ultrashort laser pulse in ZnSe crystals,” Phys. Rev. A Gen. Phys. 35(1), 459–462 (1987).
[Crossref] [PubMed]

Biegert, J.

H. Pires, M. Baudisch, D. Sanchez, M. Hemmer, and J. Biegert, “Ultrashort pulse generation in the mid-IR,” Prog. Quantum Electron. 43, 1–30 (2015).
[Crossref]

Billard, F.

O. Mouawad, P. Bejot, F. Billard, P. Mathey, B. Kibler, F. Desevedavy, G. Gadret, J. C. Jules, O. Faucher, and E. Smektala, “Filament-induced visible-to-mid-IR supercontinuum in a ZnSe crystal: towards multi-octave supercontinuum absorption spectroscopy,” Opt. Mater. 60, 355–358 (2016).
[Crossref]

Blaga, C.

Blaga, C. I.

Calderón, O. G.

A. H. Chin, O. G. Calderón, and J. Kono, “Extreme midinfrared nonlinear optics in semiconductors,” Phys. Rev. Lett. 86(15), 3292–3295 (2001).
[Crossref] [PubMed]

Camper, A.

Cheng, J.

Chin, A. H.

A. H. Chin, O. G. Calderón, and J. Kono, “Extreme midinfrared nonlinear optics in semiconductors,” Phys. Rev. Lett. 86(15), 3292–3295 (2001).
[Crossref] [PubMed]

Chinh, T. D.

T. D. Chinh, W. Seibt, and K. Siegbahn, “Dot patterns from second-harmonic and sum-frequency generation in polycrystalline ZnSe,” J. Appl. Phys. 90(5), 2612–2614 (2001).
[Crossref]

Chirkin, A. S.

E. Y. Morozov, A. A. Kaminskii, A. S. Chirkin, and D. B. Yusupov, “Second optical harmonic generation in nonlinear crystals with a disordered domain structure,” JETP Lett. 73(12), 647–650 (2001).
[Crossref]

Chowdhury, E.

Chowdhury, E. A.

Connolly, J.

J. Connolly, B. diBenedetto, and R. Donadio, “Specifications of raytran material,” Proc. SPIE 0181, (1979).

Corkum, P. B.

Cormier, E.

Couairon, A.

R. Šuminas, G. Tamosauskas, G. Valiulis, V. Jukna, A. Couairon, and A. Dubietis, “Multi-octave spanning nonlinear interactions induced by femtosecond filamentation in polycrystalline ZnSe,” Appl. Phys. Lett. 110(24), 241106 (2017).
[Crossref]

A. Dubietis, G. Tamosauskas, R. Suminas, V. Jukna, and A. Couairon, “Ultrafast supercontinuum generation in bulk condensed media,” Lith. J. Phys. 57(3), 113–157 (2017).
[Crossref]

N. Garejev, I. Grazuleviciute, D. Majus, G. Tamosauskas, V. Jukna, A. Couairon, and A. Dubietis, “Third- and fifth-harmonic generation in transparent solids with few-optical-cycle midinfrared pulses,” Phys. Rev. A 89(3), 033846 (2014).
[Crossref]

Delagnes, J. C.

Desevedavy, F.

O. Mouawad, P. Bejot, F. Billard, P. Mathey, B. Kibler, F. Desevedavy, G. Gadret, J. C. Jules, O. Faucher, and E. Smektala, “Filament-induced visible-to-mid-IR supercontinuum in a ZnSe crystal: towards multi-octave supercontinuum absorption spectroscopy,” Opt. Mater. 60, 355–358 (2016).
[Crossref]

Dewey, C. F.

L. O. Hocker and C. F. Dewey, “Enhancement of second‐harmonic generation in zinc selenide by crystal defects,” Appl. Phys. Lett. 28(5), 267–270 (1976).
[Crossref]

C. F. Dewey and L. O. Hocker, “Enhanced nonlinear optical effects in rotationally twinned crystals,” Appl. Phys. Lett. 26(8), 442–444 (1975).
[Crossref]

diBenedetto, B.

J. Connolly, B. diBenedetto, and R. Donadio, “Specifications of raytran material,” Proc. SPIE 0181, (1979).

DiChiara, A. D.

S. Ghimire, A. D. DiChiara, E. Sistrunk, P. Agostini, L. F. DiMauro, and D. A. Reis, “Observation of high-order harmonic generation in a bulk crystal,” Nat. Phys. 7(2), 138–141 (2011).
[Crossref]

DiMauro, L. F.

Donadio, R.

J. Connolly, B. diBenedetto, and R. Donadio, “Specifications of raytran material,” Proc. SPIE 0181, (1979).

Dubietis, A.

R. Šuminas, G. Tamosauskas, G. Valiulis, V. Jukna, A. Couairon, and A. Dubietis, “Multi-octave spanning nonlinear interactions induced by femtosecond filamentation in polycrystalline ZnSe,” Appl. Phys. Lett. 110(24), 241106 (2017).
[Crossref]

A. Dubietis, G. Tamosauskas, R. Suminas, V. Jukna, and A. Couairon, “Ultrafast supercontinuum generation in bulk condensed media,” Lith. J. Phys. 57(3), 113–157 (2017).
[Crossref]

N. Garejev, I. Grazuleviciute, D. Majus, G. Tamosauskas, V. Jukna, A. Couairon, and A. Dubietis, “Third- and fifth-harmonic generation in transparent solids with few-optical-cycle midinfrared pulses,” Phys. Rev. A 89(3), 033846 (2014).
[Crossref]

Durand, M.

Durécu, A.

Eckhardt, R.

M. S. Piltch, R. Eckhardt, and R. Hinsley, “Determination of the nonlinear optical coefficient and SHG coherence length for crystal single zinc selenide,” OPTICS Optics Communications 22(2), 239–242 (1977).
[Crossref]

Ehmke, T.

T. Ehmke, A. Knebl, S. Reiss, I. R. Fischinger, T. G. Seiler, O. Stachs, and A. Heisterkamp, “Spectral behavior of second harmonic signals from organic and non-organic materials in multiphoton microscopy,” AIP Adv. 5(8), 084903 (2015).
[Crossref] [PubMed]

Faucher, O.

O. Mouawad, P. Bejot, F. Billard, P. Mathey, B. Kibler, F. Desevedavy, G. Gadret, J. C. Jules, O. Faucher, and E. Smektala, “Filament-induced visible-to-mid-IR supercontinuum in a ZnSe crystal: towards multi-octave supercontinuum absorption spectroscopy,” Opt. Mater. 60, 355–358 (2016).
[Crossref]

Fedorov, V. V.

S. B. Mirov, V. V. Fedorov, D. Martyshkin, I. S. Moskalev, M. Mirov, and S. Vasilyev, “Progress in mid-IR lasers based on Cr and Fe-doped II-VI chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 21(1), 292 (2015).
[Crossref]

Fedotov, A. B.

Fischinger, I. R.

T. Ehmke, A. Knebl, S. Reiss, I. R. Fischinger, T. G. Seiler, O. Stachs, and A. Heisterkamp, “Spectral behavior of second harmonic signals from organic and non-organic materials in multiphoton microscopy,” AIP Adv. 5(8), 084903 (2015).
[Crossref] [PubMed]

Fitzpatrick, B. J.

R. R. Alfano, Q. Z. Wang, T. Jimbo, P. P. Ho, R. N. Bhargava, and B. J. Fitzpatrick, “Induced spectral broadening about a second harmonic generated by an intense primary ultrashort laser pulse in ZnSe crystals,” Phys. Rev. A Gen. Phys. 35(1), 459–462 (1987).
[Crossref] [PubMed]

Gadret, G.

O. Mouawad, P. Bejot, F. Billard, P. Mathey, B. Kibler, F. Desevedavy, G. Gadret, J. C. Jules, O. Faucher, and E. Smektala, “Filament-induced visible-to-mid-IR supercontinuum in a ZnSe crystal: towards multi-octave supercontinuum absorption spectroscopy,” Opt. Mater. 60, 355–358 (2016).
[Crossref]

Garejev, N.

N. Garejev, I. Grazuleviciute, D. Majus, G. Tamosauskas, V. Jukna, A. Couairon, and A. Dubietis, “Third- and fifth-harmonic generation in transparent solids with few-optical-cycle midinfrared pulses,” Phys. Rev. A 89(3), 033846 (2014).
[Crossref]

Ghimire, S.

S. Ghimire, A. D. DiChiara, E. Sistrunk, P. Agostini, L. F. DiMauro, and D. A. Reis, “Observation of high-order harmonic generation in a bulk crystal,” Nat. Phys. 7(2), 138–141 (2011).
[Crossref]

Grazuleviciute, I.

N. Garejev, I. Grazuleviciute, D. Majus, G. Tamosauskas, V. Jukna, A. Couairon, and A. Dubietis, “Third- and fifth-harmonic generation in transparent solids with few-optical-cycle midinfrared pulses,” Phys. Rev. A 89(3), 033846 (2014).
[Crossref]

Gruzdev, V.

Hagan, D. J.

M. Balu, L. A. Padilha, D. J. Hagan, E. W. Van Stryland, S. Yao, K. Belfield, S. Zheng, S. Barlow, and S. Marder, “Broadband Z-scan characterization using a high-spectral-irradiance, high-quality supercontinuum,” J. Opt. Soc. Am. B 25(2), 159–165 (2008).
[Crossref]

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Vanstryland, “Dispersion of bound electronic nonlinear refraction in solids,” IEEE J. Quantum Electron. 27(6), 1296–1309 (1991).
[Crossref]

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of Bound Electronic Nonlinear Refraction in Solids,” IEEE J. Quantum Electron. 27(6), 1296–1309 (1991).
[Crossref]

Haïdar, R.

M. Baudrier-Raybaut, R. Haïdar, P. Kupecek, P. Lemasson, and E. Rosencher, “Random quasi-phase-matching in bulk polycrystalline isotropic nonlinear materials,” Nature 432(7015), 374–376 (2004).
[Crossref] [PubMed]

Heisterkamp, A.

T. Ehmke, A. Knebl, S. Reiss, I. R. Fischinger, T. G. Seiler, O. Stachs, and A. Heisterkamp, “Spectral behavior of second harmonic signals from organic and non-organic materials in multiphoton microscopy,” AIP Adv. 5(8), 084903 (2015).
[Crossref] [PubMed]

Hemmer, M.

H. Pires, M. Baudisch, D. Sanchez, M. Hemmer, and J. Biegert, “Ultrashort pulse generation in the mid-IR,” Prog. Quantum Electron. 43, 1–30 (2015).
[Crossref]

Hinsley, R.

M. S. Piltch, R. Eckhardt, and R. Hinsley, “Determination of the nonlinear optical coefficient and SHG coherence length for crystal single zinc selenide,” OPTICS Optics Communications 22(2), 239–242 (1977).
[Crossref]

Ho, P. P.

R. R. Alfano, Q. Z. Wang, T. Jimbo, P. P. Ho, R. N. Bhargava, and B. J. Fitzpatrick, “Induced spectral broadening about a second harmonic generated by an intense primary ultrashort laser pulse in ZnSe crystals,” Phys. Rev. A Gen. Phys. 35(1), 459–462 (1987).
[Crossref] [PubMed]

P. B. Corkum, P. P. Ho, R. R. Alfano, and J. T. Manassah, “Generation of infrared supercontinuum covering 3-14 µm in dielectrics and semiconductors,” Opt. Lett. 10(12), 624–626 (1985).
[Crossref] [PubMed]

Hocker, L. O.

L. O. Hocker and C. F. Dewey, “Enhancement of second‐harmonic generation in zinc selenide by crystal defects,” Appl. Phys. Lett. 28(5), 267–270 (1976).
[Crossref]

C. F. Dewey and L. O. Hocker, “Enhanced nonlinear optical effects in rotationally twinned crystals,” Appl. Phys. Lett. 26(8), 442–444 (1975).
[Crossref]

Houard, A.

Hutchings, D. C.

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of Bound Electronic Nonlinear Refraction in Solids,” IEEE J. Quantum Electron. 27(6), 1296–1309 (1991).
[Crossref]

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Vanstryland, “Dispersion of bound electronic nonlinear refraction in solids,” IEEE J. Quantum Electron. 27(6), 1296–1309 (1991).
[Crossref]

Jimbo, T.

R. R. Alfano, Q. Z. Wang, T. Jimbo, P. P. Ho, R. N. Bhargava, and B. J. Fitzpatrick, “Induced spectral broadening about a second harmonic generated by an intense primary ultrashort laser pulse in ZnSe crystals,” Phys. Rev. A Gen. Phys. 35(1), 459–462 (1987).
[Crossref] [PubMed]

Jukna, V.

R. Šuminas, G. Tamosauskas, G. Valiulis, V. Jukna, A. Couairon, and A. Dubietis, “Multi-octave spanning nonlinear interactions induced by femtosecond filamentation in polycrystalline ZnSe,” Appl. Phys. Lett. 110(24), 241106 (2017).
[Crossref]

A. Dubietis, G. Tamosauskas, R. Suminas, V. Jukna, and A. Couairon, “Ultrafast supercontinuum generation in bulk condensed media,” Lith. J. Phys. 57(3), 113–157 (2017).
[Crossref]

N. Garejev, I. Grazuleviciute, D. Majus, G. Tamosauskas, V. Jukna, A. Couairon, and A. Dubietis, “Third- and fifth-harmonic generation in transparent solids with few-optical-cycle midinfrared pulses,” Phys. Rev. A 89(3), 033846 (2014).
[Crossref]

Jules, J. C.

O. Mouawad, P. Bejot, F. Billard, P. Mathey, B. Kibler, F. Desevedavy, G. Gadret, J. C. Jules, O. Faucher, and E. Smektala, “Filament-induced visible-to-mid-IR supercontinuum in a ZnSe crystal: towards multi-octave supercontinuum absorption spectroscopy,” Opt. Mater. 60, 355–358 (2016).
[Crossref]

Kafka, K.

Kafka, K. R. P.

Kaminskii, A. A.

E. Y. Morozov, A. A. Kaminskii, A. S. Chirkin, and D. B. Yusupov, “Second optical harmonic generation in nonlinear crystals with a disordered domain structure,” JETP Lett. 73(12), 647–650 (2001).
[Crossref]

Kibler, B.

O. Mouawad, P. Bejot, F. Billard, P. Mathey, B. Kibler, F. Desevedavy, G. Gadret, J. C. Jules, O. Faucher, and E. Smektala, “Filament-induced visible-to-mid-IR supercontinuum in a ZnSe crystal: towards multi-octave supercontinuum absorption spectroscopy,” Opt. Mater. 60, 355–358 (2016).
[Crossref]

Knebl, A.

T. Ehmke, A. Knebl, S. Reiss, I. R. Fischinger, T. G. Seiler, O. Stachs, and A. Heisterkamp, “Spectral behavior of second harmonic signals from organic and non-organic materials in multiphoton microscopy,” AIP Adv. 5(8), 084903 (2015).
[Crossref] [PubMed]

Kolesik, M.

M. Kolesik and J. V. Moloney, “Nonlinear optical pulse propagation simulation: from Maxwell’s to unidirectional equations,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(3), 036604 (2004).
[Crossref] [PubMed]

Kono, J.

A. H. Chin, O. G. Calderón, and J. Kono, “Extreme midinfrared nonlinear optics in semiconductors,” Phys. Rev. Lett. 86(15), 3292–3295 (2001).
[Crossref] [PubMed]

Krauss, T. D.

T. D. Krauss and F. W. Wise, “Femtosecond Measurement of Nonlinear Absorption and Refraction in Cds, Znse, and Zns,” Appl. Phys. Lett. 65(14), 1739–1741 (1994).
[Crossref]

Kupecek, P.

M. Baudrier-Raybaut, R. Haïdar, P. Kupecek, P. Lemasson, and E. Rosencher, “Random quasi-phase-matching in bulk polycrystalline isotropic nonlinear materials,” Nature 432(7015), 374–376 (2004).
[Crossref] [PubMed]

Lai, Y. H.

Lanin, A. A.

Lemasson, P.

M. Baudrier-Raybaut, R. Haïdar, P. Kupecek, P. Lemasson, and E. Rosencher, “Random quasi-phase-matching in bulk polycrystalline isotropic nonlinear materials,” Nature 432(7015), 374–376 (2004).
[Crossref] [PubMed]

Li, H.

Lim, K.

Ma, B.

Major, A.

A. Major, J. S. Aitchison, P. W. E. Smith, E. Sorokin, and I. T. Sorokina, “Z-scan characterization of the nonlinear refractive index of single crystal ZnSe in the 1.20-1.95 µm wavelength range,” Proc. SPIE 5971, 59710H (2005).
[Crossref]

A. Major, F. Yoshino, J. S. Aitchison, P. W. E. Smith, E. Sorokin, and I. T. Sorokina, “Ultrafast nonresonant third-order optical nonlinearities in ZnSe for photonic switching at telecom wavelengths,” Appl. Phys. Lett. 85(20), 4606–4608 (2004).
[Crossref]

Majus, D.

N. Garejev, I. Grazuleviciute, D. Majus, G. Tamosauskas, V. Jukna, A. Couairon, and A. Dubietis, “Third- and fifth-harmonic generation in transparent solids with few-optical-cycle midinfrared pulses,” Phys. Rev. A 89(3), 033846 (2014).
[Crossref]

Manassah, J. T.

Marble, C. B.

C. B. Marble, S. P. O’Connor, D. T. Nodurft, V. V. Yakovlev, and A. W. Wharmby, “Zinc selenide: an extraordinarily nonlinear material,” Proc. SPIE 10528, 1–7 (2018).

Marder, S.

Martyshkin, D.

S. B. Mirov, V. V. Fedorov, D. Martyshkin, I. S. Moskalev, M. Mirov, and S. Vasilyev, “Progress in mid-IR lasers based on Cr and Fe-doped II-VI chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 21(1), 292 (2015).
[Crossref]

Mathey, P.

O. Mouawad, P. Bejot, F. Billard, P. Mathey, B. Kibler, F. Desevedavy, G. Gadret, J. C. Jules, O. Faucher, and E. Smektala, “Filament-induced visible-to-mid-IR supercontinuum in a ZnSe crystal: towards multi-octave supercontinuum absorption spectroscopy,” Opt. Mater. 60, 355–358 (2016).
[Crossref]

Mirov, M.

S. B. Mirov, V. V. Fedorov, D. Martyshkin, I. S. Moskalev, M. Mirov, and S. Vasilyev, “Progress in mid-IR lasers based on Cr and Fe-doped II-VI chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 21(1), 292 (2015).
[Crossref]

Mirov, S. B.

S. B. Mirov, V. V. Fedorov, D. Martyshkin, I. S. Moskalev, M. Mirov, and S. Vasilyev, “Progress in mid-IR lasers based on Cr and Fe-doped II-VI chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 21(1), 292 (2015).
[Crossref]

Moloney, J. V.

M. Kolesik and J. V. Moloney, “Nonlinear optical pulse propagation simulation: from Maxwell’s to unidirectional equations,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(3), 036604 (2004).
[Crossref] [PubMed]

Morozov, E. Y.

E. Y. Morozov, A. A. Kaminskii, A. S. Chirkin, and D. B. Yusupov, “Second optical harmonic generation in nonlinear crystals with a disordered domain structure,” JETP Lett. 73(12), 647–650 (2001).
[Crossref]

Moskalev, I. S.

S. B. Mirov, V. V. Fedorov, D. Martyshkin, I. S. Moskalev, M. Mirov, and S. Vasilyev, “Progress in mid-IR lasers based on Cr and Fe-doped II-VI chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 21(1), 292 (2015).
[Crossref]

Mouawad, O.

O. Mouawad, P. Bejot, F. Billard, P. Mathey, B. Kibler, F. Desevedavy, G. Gadret, J. C. Jules, O. Faucher, and E. Smektala, “Filament-induced visible-to-mid-IR supercontinuum in a ZnSe crystal: towards multi-octave supercontinuum absorption spectroscopy,” Opt. Mater. 60, 355–358 (2016).
[Crossref]

Nodurft, D. T.

C. B. Marble, S. P. O’Connor, D. T. Nodurft, V. V. Yakovlev, and A. W. Wharmby, “Zinc selenide: an extraordinarily nonlinear material,” Proc. SPIE 10528, 1–7 (2018).

O’Connor, S. P.

C. B. Marble, S. P. O’Connor, D. T. Nodurft, V. V. Yakovlev, and A. W. Wharmby, “Zinc selenide: an extraordinarily nonlinear material,” Proc. SPIE 10528, 1–7 (2018).

Padilha, L. A.

Park, H.

Patel, C. K. N.

C. K. N. Patel, “Optical harmonic generation in infrared using a Co2 laser,” Phys. Rev. Lett. 16(14), 613–616 (1966).
[Crossref]

Petit, S.

Piltch, M. S.

M. S. Piltch, R. Eckhardt, and R. Hinsley, “Determination of the nonlinear optical coefficient and SHG coherence length for crystal single zinc selenide,” OPTICS Optics Communications 22(2), 239–242 (1977).
[Crossref]

Pires, H.

H. Pires, M. Baudisch, D. Sanchez, M. Hemmer, and J. Biegert, “Ultrashort pulse generation in the mid-IR,” Prog. Quantum Electron. 43, 1–30 (2015).
[Crossref]

Reis, D. A.

S. Ghimire, A. D. DiChiara, E. Sistrunk, P. Agostini, L. F. DiMauro, and D. A. Reis, “Observation of high-order harmonic generation in a bulk crystal,” Nat. Phys. 7(2), 138–141 (2011).
[Crossref]

Reiss, S.

T. Ehmke, A. Knebl, S. Reiss, I. R. Fischinger, T. G. Seiler, O. Stachs, and A. Heisterkamp, “Spectral behavior of second harmonic signals from organic and non-organic materials in multiphoton microscopy,” AIP Adv. 5(8), 084903 (2015).
[Crossref] [PubMed]

Richardson, M.

Rosencher, E.

M. Baudrier-Raybaut, R. Haïdar, P. Kupecek, P. Lemasson, and E. Rosencher, “Random quasi-phase-matching in bulk polycrystalline isotropic nonlinear materials,” Nature 432(7015), 374–376 (2004).
[Crossref] [PubMed]

Sanchez, D.

H. Pires, M. Baudisch, D. Sanchez, M. Hemmer, and J. Biegert, “Ultrashort pulse generation in the mid-IR,” Prog. Quantum Electron. 43, 1–30 (2015).
[Crossref]

Seibt, W.

T. D. Chinh, W. Seibt, and K. Siegbahn, “Dot patterns from second-harmonic and sum-frequency generation in polycrystalline ZnSe,” J. Appl. Phys. 90(5), 2612–2614 (2001).
[Crossref]

Seiler, T. G.

T. Ehmke, A. Knebl, S. Reiss, I. R. Fischinger, T. G. Seiler, O. Stachs, and A. Heisterkamp, “Spectral behavior of second harmonic signals from organic and non-organic materials in multiphoton microscopy,” AIP Adv. 5(8), 084903 (2015).
[Crossref] [PubMed]

Sergaeva, O.

Sheik-Bahae, M.

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Vanstryland, “Dispersion of bound electronic nonlinear refraction in solids,” IEEE J. Quantum Electron. 27(6), 1296–1309 (1991).
[Crossref]

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of Bound Electronic Nonlinear Refraction in Solids,” IEEE J. Quantum Electron. 27(6), 1296–1309 (1991).
[Crossref]

Siegbahn, K.

T. D. Chinh, W. Seibt, and K. Siegbahn, “Dot patterns from second-harmonic and sum-frequency generation in polycrystalline ZnSe,” J. Appl. Phys. 90(5), 2612–2614 (2001).
[Crossref]

Sistrunk, E.

S. Ghimire, A. D. DiChiara, E. Sistrunk, P. Agostini, L. F. DiMauro, and D. A. Reis, “Observation of high-order harmonic generation in a bulk crystal,” Nat. Phys. 7(2), 138–141 (2011).
[Crossref]

Skipetrov, S. E.

S. E. Skipetrov, “Disorder is the new order,” Nature 432(7015), 285–286 (2004).
[Crossref] [PubMed]

Smektala, E.

O. Mouawad, P. Bejot, F. Billard, P. Mathey, B. Kibler, F. Desevedavy, G. Gadret, J. C. Jules, O. Faucher, and E. Smektala, “Filament-induced visible-to-mid-IR supercontinuum in a ZnSe crystal: towards multi-octave supercontinuum absorption spectroscopy,” Opt. Mater. 60, 355–358 (2016).
[Crossref]

Smith, P. W. E.

A. Major, J. S. Aitchison, P. W. E. Smith, E. Sorokin, and I. T. Sorokina, “Z-scan characterization of the nonlinear refractive index of single crystal ZnSe in the 1.20-1.95 µm wavelength range,” Proc. SPIE 5971, 59710H (2005).
[Crossref]

A. Major, F. Yoshino, J. S. Aitchison, P. W. E. Smith, E. Sorokin, and I. T. Sorokina, “Ultrafast nonresonant third-order optical nonlinearities in ZnSe for photonic switching at telecom wavelengths,” Appl. Phys. Lett. 85(20), 4606–4608 (2004).
[Crossref]

Sorokin, E.

A. Major, J. S. Aitchison, P. W. E. Smith, E. Sorokin, and I. T. Sorokina, “Z-scan characterization of the nonlinear refractive index of single crystal ZnSe in the 1.20-1.95 µm wavelength range,” Proc. SPIE 5971, 59710H (2005).
[Crossref]

A. Major, F. Yoshino, J. S. Aitchison, P. W. E. Smith, E. Sorokin, and I. T. Sorokina, “Ultrafast nonresonant third-order optical nonlinearities in ZnSe for photonic switching at telecom wavelengths,” Appl. Phys. Lett. 85(20), 4606–4608 (2004).
[Crossref]

Sorokina, I. T.

A. Major, J. S. Aitchison, P. W. E. Smith, E. Sorokin, and I. T. Sorokina, “Z-scan characterization of the nonlinear refractive index of single crystal ZnSe in the 1.20-1.95 µm wavelength range,” Proc. SPIE 5971, 59710H (2005).
[Crossref]

A. Major, F. Yoshino, J. S. Aitchison, P. W. E. Smith, E. Sorokin, and I. T. Sorokina, “Ultrafast nonresonant third-order optical nonlinearities in ZnSe for photonic switching at telecom wavelengths,” Appl. Phys. Lett. 85(20), 4606–4608 (2004).
[Crossref]

Stachs, O.

T. Ehmke, A. Knebl, S. Reiss, I. R. Fischinger, T. G. Seiler, O. Stachs, and A. Heisterkamp, “Spectral behavior of second harmonic signals from organic and non-organic materials in multiphoton microscopy,” AIP Adv. 5(8), 084903 (2015).
[Crossref] [PubMed]

Stepanov, E. A.

Suminas, R.

A. Dubietis, G. Tamosauskas, R. Suminas, V. Jukna, and A. Couairon, “Ultrafast supercontinuum generation in bulk condensed media,” Lith. J. Phys. 57(3), 113–157 (2017).
[Crossref]

Šuminas, R.

R. Šuminas, G. Tamosauskas, G. Valiulis, V. Jukna, A. Couairon, and A. Dubietis, “Multi-octave spanning nonlinear interactions induced by femtosecond filamentation in polycrystalline ZnSe,” Appl. Phys. Lett. 110(24), 241106 (2017).
[Crossref]

Tamosauskas, G.

R. Šuminas, G. Tamosauskas, G. Valiulis, V. Jukna, A. Couairon, and A. Dubietis, “Multi-octave spanning nonlinear interactions induced by femtosecond filamentation in polycrystalline ZnSe,” Appl. Phys. Lett. 110(24), 241106 (2017).
[Crossref]

A. Dubietis, G. Tamosauskas, R. Suminas, V. Jukna, and A. Couairon, “Ultrafast supercontinuum generation in bulk condensed media,” Lith. J. Phys. 57(3), 113–157 (2017).
[Crossref]

N. Garejev, I. Grazuleviciute, D. Majus, G. Tamosauskas, V. Jukna, A. Couairon, and A. Dubietis, “Third- and fifth-harmonic generation in transparent solids with few-optical-cycle midinfrared pulses,” Phys. Rev. A 89(3), 033846 (2014).
[Crossref]

Tseng, K. Y.

Valiulis, G.

R. Šuminas, G. Tamosauskas, G. Valiulis, V. Jukna, A. Couairon, and A. Dubietis, “Multi-octave spanning nonlinear interactions induced by femtosecond filamentation in polycrystalline ZnSe,” Appl. Phys. Lett. 110(24), 241106 (2017).
[Crossref]

Van Stryland, E. W.

M. Balu, L. A. Padilha, D. J. Hagan, E. W. Van Stryland, S. Yao, K. Belfield, S. Zheng, S. Barlow, and S. Marder, “Broadband Z-scan characterization using a high-spectral-irradiance, high-quality supercontinuum,” J. Opt. Soc. Am. B 25(2), 159–165 (2008).
[Crossref]

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of Bound Electronic Nonlinear Refraction in Solids,” IEEE J. Quantum Electron. 27(6), 1296–1309 (1991).
[Crossref]

Vanstryland, E. W.

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Vanstryland, “Dispersion of bound electronic nonlinear refraction in solids,” IEEE J. Quantum Electron. 27(6), 1296–1309 (1991).
[Crossref]

Vasilyev, S.

S. B. Mirov, V. V. Fedorov, D. Martyshkin, I. S. Moskalev, M. Mirov, and S. Vasilyev, “Progress in mid-IR lasers based on Cr and Fe-doped II-VI chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 21(1), 292 (2015).
[Crossref]

Vasseur, O.

Wang, Q. Z.

R. R. Alfano, Q. Z. Wang, T. Jimbo, P. P. Ho, R. N. Bhargava, and B. J. Fitzpatrick, “Induced spectral broadening about a second harmonic generated by an intense primary ultrashort laser pulse in ZnSe crystals,” Phys. Rev. A Gen. Phys. 35(1), 459–462 (1987).
[Crossref] [PubMed]

Wang, Z.

Wharmby, A. W.

C. B. Marble, S. P. O’Connor, D. T. Nodurft, V. V. Yakovlev, and A. W. Wharmby, “Zinc selenide: an extraordinarily nonlinear material,” Proc. SPIE 10528, 1–7 (2018).

Wise, F. W.

T. D. Krauss and F. W. Wise, “Femtosecond Measurement of Nonlinear Absorption and Refraction in Cds, Znse, and Zns,” Appl. Phys. Lett. 65(14), 1739–1741 (1994).
[Crossref]

Wong, G. K.

Wong, K. S.

Yakovlev, V. V.

C. B. Marble, S. P. O’Connor, D. T. Nodurft, V. V. Yakovlev, and A. W. Wharmby, “Zinc selenide: an extraordinarily nonlinear material,” Proc. SPIE 10528, 1–7 (2018).

Yao, S.

Yi, A. Y.

Yoshino, F.

A. Major, F. Yoshino, J. S. Aitchison, P. W. E. Smith, E. Sorokin, and I. T. Sorokina, “Ultrafast nonresonant third-order optical nonlinearities in ZnSe for photonic switching at telecom wavelengths,” Appl. Phys. Lett. 85(20), 4606–4608 (2004).
[Crossref]

Yusupov, D. B.

E. Y. Morozov, A. A. Kaminskii, A. S. Chirkin, and D. B. Yusupov, “Second optical harmonic generation in nonlinear crystals with a disordered domain structure,” JETP Lett. 73(12), 647–650 (2001).
[Crossref]

Zheltikov, A. M.

Zheng, S.

AIP Adv. (1)

T. Ehmke, A. Knebl, S. Reiss, I. R. Fischinger, T. G. Seiler, O. Stachs, and A. Heisterkamp, “Spectral behavior of second harmonic signals from organic and non-organic materials in multiphoton microscopy,” AIP Adv. 5(8), 084903 (2015).
[Crossref] [PubMed]

Appl. Phys. Lett. (5)

C. F. Dewey and L. O. Hocker, “Enhanced nonlinear optical effects in rotationally twinned crystals,” Appl. Phys. Lett. 26(8), 442–444 (1975).
[Crossref]

L. O. Hocker and C. F. Dewey, “Enhancement of second‐harmonic generation in zinc selenide by crystal defects,” Appl. Phys. Lett. 28(5), 267–270 (1976).
[Crossref]

R. Šuminas, G. Tamosauskas, G. Valiulis, V. Jukna, A. Couairon, and A. Dubietis, “Multi-octave spanning nonlinear interactions induced by femtosecond filamentation in polycrystalline ZnSe,” Appl. Phys. Lett. 110(24), 241106 (2017).
[Crossref]

T. D. Krauss and F. W. Wise, “Femtosecond Measurement of Nonlinear Absorption and Refraction in Cds, Znse, and Zns,” Appl. Phys. Lett. 65(14), 1739–1741 (1994).
[Crossref]

A. Major, F. Yoshino, J. S. Aitchison, P. W. E. Smith, E. Sorokin, and I. T. Sorokina, “Ultrafast nonresonant third-order optical nonlinearities in ZnSe for photonic switching at telecom wavelengths,” Appl. Phys. Lett. 85(20), 4606–4608 (2004).
[Crossref]

IEEE J. Quantum Electron. (2)

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of Bound Electronic Nonlinear Refraction in Solids,” IEEE J. Quantum Electron. 27(6), 1296–1309 (1991).
[Crossref]

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Vanstryland, “Dispersion of bound electronic nonlinear refraction in solids,” IEEE J. Quantum Electron. 27(6), 1296–1309 (1991).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

S. B. Mirov, V. V. Fedorov, D. Martyshkin, I. S. Moskalev, M. Mirov, and S. Vasilyev, “Progress in mid-IR lasers based on Cr and Fe-doped II-VI chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 21(1), 292 (2015).
[Crossref]

J. Appl. Phys. (1)

T. D. Chinh, W. Seibt, and K. Siegbahn, “Dot patterns from second-harmonic and sum-frequency generation in polycrystalline ZnSe,” J. Appl. Phys. 90(5), 2612–2614 (2001).
[Crossref]

J. Opt. Soc. Am. B (2)

JETP Lett. (1)

E. Y. Morozov, A. A. Kaminskii, A. S. Chirkin, and D. B. Yusupov, “Second optical harmonic generation in nonlinear crystals with a disordered domain structure,” JETP Lett. 73(12), 647–650 (2001).
[Crossref]

Lith. J. Phys. (1)

A. Dubietis, G. Tamosauskas, R. Suminas, V. Jukna, and A. Couairon, “Ultrafast supercontinuum generation in bulk condensed media,” Lith. J. Phys. 57(3), 113–157 (2017).
[Crossref]

Nat. Phys. (1)

S. Ghimire, A. D. DiChiara, E. Sistrunk, P. Agostini, L. F. DiMauro, and D. A. Reis, “Observation of high-order harmonic generation in a bulk crystal,” Nat. Phys. 7(2), 138–141 (2011).
[Crossref]

Nature (2)

M. Baudrier-Raybaut, R. Haïdar, P. Kupecek, P. Lemasson, and E. Rosencher, “Random quasi-phase-matching in bulk polycrystalline isotropic nonlinear materials,” Nature 432(7015), 374–376 (2004).
[Crossref] [PubMed]

S. E. Skipetrov, “Disorder is the new order,” Nature 432(7015), 285–286 (2004).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (5)

Opt. Mater. (1)

O. Mouawad, P. Bejot, F. Billard, P. Mathey, B. Kibler, F. Desevedavy, G. Gadret, J. C. Jules, O. Faucher, and E. Smektala, “Filament-induced visible-to-mid-IR supercontinuum in a ZnSe crystal: towards multi-octave supercontinuum absorption spectroscopy,” Opt. Mater. 60, 355–358 (2016).
[Crossref]

Optica (1)

OPTICS Optics Communications (1)

M. S. Piltch, R. Eckhardt, and R. Hinsley, “Determination of the nonlinear optical coefficient and SHG coherence length for crystal single zinc selenide,” OPTICS Optics Communications 22(2), 239–242 (1977).
[Crossref]

Phys. Rev. A (1)

N. Garejev, I. Grazuleviciute, D. Majus, G. Tamosauskas, V. Jukna, A. Couairon, and A. Dubietis, “Third- and fifth-harmonic generation in transparent solids with few-optical-cycle midinfrared pulses,” Phys. Rev. A 89(3), 033846 (2014).
[Crossref]

Phys. Rev. A Gen. Phys. (1)

R. R. Alfano, Q. Z. Wang, T. Jimbo, P. P. Ho, R. N. Bhargava, and B. J. Fitzpatrick, “Induced spectral broadening about a second harmonic generated by an intense primary ultrashort laser pulse in ZnSe crystals,” Phys. Rev. A Gen. Phys. 35(1), 459–462 (1987).
[Crossref] [PubMed]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

M. Kolesik and J. V. Moloney, “Nonlinear optical pulse propagation simulation: from Maxwell’s to unidirectional equations,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(3), 036604 (2004).
[Crossref] [PubMed]

Phys. Rev. Lett. (2)

A. H. Chin, O. G. Calderón, and J. Kono, “Extreme midinfrared nonlinear optics in semiconductors,” Phys. Rev. Lett. 86(15), 3292–3295 (2001).
[Crossref] [PubMed]

C. K. N. Patel, “Optical harmonic generation in infrared using a Co2 laser,” Phys. Rev. Lett. 16(14), 613–616 (1966).
[Crossref]

Proc. SPIE (2)

C. B. Marble, S. P. O’Connor, D. T. Nodurft, V. V. Yakovlev, and A. W. Wharmby, “Zinc selenide: an extraordinarily nonlinear material,” Proc. SPIE 10528, 1–7 (2018).

A. Major, J. S. Aitchison, P. W. E. Smith, E. Sorokin, and I. T. Sorokina, “Z-scan characterization of the nonlinear refractive index of single crystal ZnSe in the 1.20-1.95 µm wavelength range,” Proc. SPIE 5971, 59710H (2005).
[Crossref]

Prog. Quantum Electron. (1)

H. Pires, M. Baudisch, D. Sanchez, M. Hemmer, and J. Biegert, “Ultrashort pulse generation in the mid-IR,” Prog. Quantum Electron. 43, 1–30 (2015).
[Crossref]

Other (6)

T. W. Neely, L. Nugent-Glandorf, and S. Diddams, “Broadband mid-IR standoff spectroscopy of explosives with a femtosecond optical parametric oscillator,” in Lasers, Sources, and Related Photonic Devices Conference, 2012 OSA Technical Digest (Optical Society of America, 2012), paper LT2B. 3.
[Crossref]

M. R. Shcherbakov, K. Werner, Z. Fan, N. Talisa, E. Chowdhury, and G. Shvets, “Non-integer harmonics generation by photon acceleration in rapidly evolving nonlinear semiconductor metasurfaces,” arXiv:171006966S.

J. Connolly, B. diBenedetto, and R. Donadio, “Specifications of raytran material,” Proc. SPIE 0181, (1979).

K. R. P. Kafka, “Laser-induced damage with femtosecond pulses,” PhD dissertation (Department of Physics, The Ohio State University, 2017).

M. J. Weber, CRC handbook of laser science and technology (CRC, 1986).

D. R. Austin, “Semiconductor surface modification using mid-infrared, femtosecond laser pulses,” PhD dissertation (Department of Physics, The Ohio State University, 2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 Experimental Schematics. (a) Harmonic generation setup with MIR pulses from EMIR OPA. MIR pulse energy is controlled using a waveplate (WP) polarizer (P) combination. MIR light is focused by lens L1 onto a ZnSe sample. A collection optic (L2) was used to collimate the transmitted light before filtering (F) is applied within the filter plane. The light is then focused via a coupling lens (L3) onto the detector. For harmonic efficiency measurements, pulse energy was measured at points E1 and E2. (b) Setup of non-linear index, n2 measurement with MIR femtosecond pulses using z-scan technique.
Fig. 2
Fig. 2 Experimental measurements of transmitted fundamental spectral intensity (a) mapped as a function of MIR pulse (center wavelength λ=3.8 μm) energy focused onto a 5 mm thick poly-ZnSe. Linear interpolation is used for ease of reading. The dotted black line at the top boundary represents a lineout presented in (b) (black curve), for an input MIR pulse energy ( E 1 =10.6±0.1 μJ,). (b) Comparing MIR spectral broadening in 5 mm poly-ZnSe and single crystal ZnSe data (red dotted line, E 1 =10.4 μJ), along with that of the laser without any sample (green dotted line).
Fig. 3
Fig. 3 Experimental spectral measurements of transmitted generated harmonics intensity as a function of MIR pulse energy in a 5 mm thick poly-ZnSe sample. (a) Spectral mapping for harmonics resulting from λ=3.8 μm MIR driver laser. Linear interpolation is used for ease of reading. The dotted black line in (a) represents a lineout presented in (b) (black curve), for an input MIR pulse energy ( E 1 =10.6±0.1 μJ).
Fig. 4
Fig. 4 (a) Spectral intensity of harmonics generated from a MIR driver at λ=3.3 μm focused onto a 5 mm thick poly-ZnSe sample (black line, E 1 =8.17 μJ) and a 1 mm thick single crystal ZnSe sample (red dotted line, E 1 =8.04 μJ). (b) Spectral broadening in 5 mm poly-ZnSe with λ=3.4 μm driver with E 1 =7.02 μJ for the fundamental broadening at lower intensity (black line) and higher intensity (blue dash-dotted line, E 1 =7.35 μJ), with 98.5 and 24 µm FWHM focal spots, respectively. Green dotted lines represent the laser spectrum with no sample present.
Fig. 5
Fig. 5 (a) Power scaling analysis. Each row is labeled with the harmonic order, N. Each column is labeled with sample type and thickness. The plots show experimental data (dots) and lines which follow the scaling law I N I 0 N where I N is the intensity of the Nth harmonic and I 0 is the intensity of the input MIR fundamental. (b) Generated harmonic intensity for harmonics of various orders: N = 2 (red solid triangle), N = 3 (green solid square), N = 4 (blue empty circle), N = 5 (purple empty triangle), N = 6 (black solid circle). The best linear fit ( I N I 0 1 ) for each harmonic order is shown (solid lines) with colors corresponding to harmonic order matching that of the shapes. The sample used was poly-ZnSe 1 mm thickness.
Fig. 6
Fig. 6 Varying the propagation length with different thickness poly-ZnSe samples (1,5,10,20,40 mm). A λ MIR =3.8 μm fundamental with a fixed pulse power results in SC generation and harmonics generation within the sample. (a) Color map of spectral modulations to the MIR fundamental due to propagation through poly-ZnSe samples of various thicknesses. Linear interpolation is used for ease of reading. (b) Comparison of the MIR fundamental spectrum after propagating through 40 mm poly-ZnSe (solid black line) to the unperturbed MIR fundamental spectrum (green dotted line). (c) Harmonics generated from a 40 mm poly-ZnSe sample.
Fig. 7
Fig. 7 Harmonic efficiency in poly-ZnSe with a fixed fundamental wavelength λ=3.3 μm. (a) Harmonic efficiency as a function of propagation distance (sample thickness) for three different input pump energies: 14.4 μJ (black squares), 10.1 μJ (green triangles) 6.1 μJ (red circles). (b) Camera image of ultra-efficient harmonic generation in a 40 mm thick poly-ZnSe sample.
Fig. 8
Fig. 8 Near field intensity profiles imaged at the output face of the sample. Input MIR pulse parameters were fixed at E 1 9 μJ and λ 0 =3.3 μm. Notch filters are used to isolate THG, SHG, and IHC. THG is isolated with the use of a bandpass filter centered at λ=1100±5 nm (a)-(c). SHG is isolated using bandpass filter centered at λ=1650±6 nm  (d)-(f). IHC is isolated using a bandpass filter centered at λ=1250±5 nm (g)-(i). Each column represents a different propagation length (sample thickness): 10 mm (a), (d), (g); 20 mm (b), (e), (h); and 40 mm (c),(f),(i). Each image is presented with a universal transverse spatial scale and a universal logarithmic intensity scale for comparison.
Fig. 9
Fig. 9 Near field intensity profiles of a 40 mm thick poly-ZnSe samples with λ=3.3 μm. Each image was taken with a different input MIR pump pulse energy: (a) 9.4, (b) 8.9, (c) 6.0, (d) 3.1, (e) 2.5 μJ.
Fig. 10
Fig. 10 (a) Z-scan measurements for λ MIR =3.9 μm and a 2 mm thick poly-ZnSe Window. Each color/shape represents a different input MIR pump energy and fit, offset for clarity, as indicated in the legend. The solid lines of corresponding color represent the fit used to extract n 2 . (b) Theoretical curve for n 2 [32] (solid line), measured n 2 of single crystal ZnSe at 1200 nm and 1950 nm (solid green circles [34]), single crystal ZnSe at 1310 and 1550 nm (solid upside down red triangles [35]), measured n2 of poly-ZnSe [36] (solid left pointing green triangles), p-ZnSe at 1270 nm (solid blue triangles [33]), from [25] (solid orange diamonds), from [37] (solid red star) and n 2 as measured in our experiment (solid black square) at λ MIR =3.9 μm.
Fig. 11
Fig. 11 Simulation results for harmonic and supercontinuum spectrum generation in ZnSe. (a) Spectra at two different propagation distances in the sample for a pulse with the initial energy of 7.1 μJ. (b) Spectra at propagation distance z=10  mm for a range of pulse energies between 0.8 and 7.1 μJ.
Fig. 12
Fig. 12 Spectral broadening in the vicinity of the fundamental frequency. Side-bands develop with increasing pulse energy due to SPM, while the asymmetry of the spectrum is likely due to carrier-induced blue shift.
Fig. 13
Fig. 13 Temporal and spectral properties of the electric field for a single random poly-crystal realization. (a) Temporal waveform of the real electric field exhibits a strong presence of higher-harmonic components which concentrate predominantly in the long tail of the resulting composite pulse. The inset zooms on the electric field profile near the peak, revealing that harmonics and fundamental together give rise to a “random” waveform with non-sinusoidal oscillations. (b) The corresponding spectrum shows that harmonic orders (marked by labels) show increasing levels of noise.

Tables (1)

Tables Icon

Table 1 Spectral Broadening: Absolute Change in Spectral Bandwidtha

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P 2 ( t )=r( z ) ε 0 d eff E ( t ) 2

Metrics