Abstract

This paper proposes and demonstrates a method to reduce the repetition rate of all- polarization-maintaining (PM) linear-cavity picosecond dissipative soliton passively mode-locked fiber lasers. An optical coupler (OC) is inserted into the cavity to extract pulse energy, and the cavity length is increased using a low-nonlinear coefficient large-mode field fiber at the rear end of the OC, where the propagated pulse has lower energy. This enables the nonlinear phase shift to be within the tolerated value of the single pulse mode-locking even with a considerably increased cavity length; this allows reducing the laser repetition rate considerably without substantially changing the pulse characteristics. Using the proposed method, for a 0.3-nm filter bandwidth, the laser repetition rate is successfully reduced to 1.77 MHz with a nearly Fourier-transform limited pulse duration of 10 ps; it can be further reduced by optimizing the OC split ratio. The proposed method can be applied to reduce the repetition rate for a picosecond dissipative soliton passively mode-locked fiber laser with an arbitrary bandwidth filter.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Generation of sub-100-fs pulses at up to 200 MHz repetition rate from a passively mode-locked Yb-doped fiber laser

F. Ö Ilday, J. Chen, and F. X. Kärtner
Opt. Express 13(7) 2716-2721 (2005)

Dynamics of an ultrahigh-repetition-rate passively mode-locked Raman fiber laser

Jochen Schröder, Dario Alasia, Thibaut Sylvestre, and Stéphane Coen
J. Opt. Soc. Am. B 25(7) 1178-1186 (2008)

Pulse-shaping mechanisms in passively mode-locked thulium-doped fiber lasers

Huihui Li, Jiang Liu, Zhaochen Cheng, Jia Xu, Fangzhou Tan, and Pu Wang
Opt. Express 23(5) 6292-6303 (2015)

References

  • View by:
  • |
  • |
  • |

  1. K. H. Hong, C. J. Lai, A. Siddiqui, and F. X. Kärtner, “130-W picosecond green laser based on a frequency-doubled hybrid cryogenic Yb:YAG amplifier,” Opt. Express 17(19), 16911–16919 (2009).
    [Crossref] [PubMed]
  2. K. Yang, S. Zheng, Y. Wu, P. Ye, K. Huang, Q. Hao, and H. Zeng, “Low-repetition-rate all-fiber integrated optical parametric oscillator for coherent anti-Stokes Raman spectroscopy,” Opt. Express 26(13), 17519–17528 (2018).
    [Crossref] [PubMed]
  3. K. C. Phillips, H. H. Gandhi, E. Mazur, and S. K. Sundaram, “Ultrafast laser processing of materials: a review,” Adv. Opt. Photonics 7(4), 684–712 (2015).
    [Crossref]
  4. U. Wegner, J. Meier, and M. J. Lederer, “Compact picosecond mode-locked and cavity-dumped Nd:YVO4 laser,” Opt. Express 17(25), 23098–23103 (2009).
    [Crossref] [PubMed]
  5. S. Kanzelmeyer, H. Sayinc, T. Theeg, M. Frede, J. Neumann, and D. Kracht, “All-fiber based amplification of 40 ps pulses from a gain-switched laser diode,” Opt. Express 19(3), 1854–1859 (2011).
    [Crossref] [PubMed]
  6. A. Chong, J. Buckley, W. Renninger, and F. Wise, “All-normal-dispersion femtosecond fiber laser,” Opt. Express 14(21), 10095–10100 (2006).
    [Crossref] [PubMed]
  7. M. Baumgartl, J. Abreu-Afonso, A. Díez, M. Rothhardt, J. Limpert, and A. Tünnermann, “Environmentally stable picosecond Yb fiber laser with low repetition rate,” Appl. Phys. B 111(1), 39–43 (2013).
    [Crossref]
  8. J. Liu, J. Xu, and P. Wang, “High Repetition-Rate Narrow Bandwidth SESAM Mode-Locked Yb-Doped Fiber Lasers,” IEEE Photonics Technol. Lett. 24(7), 539–541 (2012).
    [Crossref]
  9. D. Turchinovich, X. Liu, and J. Laegsgaard, “Monolithic all-PM femtosecond Yb-fiber laser stabilized with a narrow-band fiber Bragg grating and pulse-compressed in a hollow-core photonic crystal fiber,” Opt. Express 16(18), 14004–14014 (2008).
    [Crossref] [PubMed]
  10. Y. Wang, B. Lu, X. Qi, L. Hou, J. Kang, K. Huang, X. Feng, D. Zhang, H. Chen, and J. Bai, “Environmentally Stable Pulse Energy-Tunable Picosecond Fiber Laser,” IEEE Photonics Technol. Lett. 29(1), 150–153 (2017).
    [Crossref]
  11. P. Deslandes, M. Perrin, J. Saby, D. Sangla, F. Salin, and E. Freysz, “Picosecond to femtosecond pulses from high power self mode-locked ytterbium rod-type fiber laser,” Opt. Express 21(9), 10731–10738 (2013).
    [Crossref] [PubMed]
  12. A. Agnesi, L. Carra, C. Di Marco, R. Piccoli, and G. Reali, “Fourier-Limited 19-ps Yb-Fiber Seeder Stabilized by Spectral Filtering and Tunable Between 1015 and 1085 nm,” IEEE Photonics Technol. Lett. 24(11), 927–929 (2012).
    [Crossref]
  13. S. Boivinet, J. B. Lecourt, Y. Hernandez, A. A. Fotiadi, M. Wuilpart, and P. Mégret, “All-Fiber 1μm PM Mode-Lock Laser Delivering Picosecond Pulses at Sub-MHz Repetition Rate,” IEEE Photonics Technol. Lett. 26(22), 2256–2259 (2014).
    [Crossref]
  14. G. P. Agrawal, Nonlinear Fiber Optics, 5th edition. (Academic, 2013).
  15. A. Agnesi, L. Carrá, F. Pirzio, R. Piccoli, and G. Reali, “Low repetition rate, hybrid fiber/solid-state, 1064nm picosecond master oscillator power amplifier laser system,” J. Opt. Soc. Am. B 30(11), 2960–2965 (2013).
    [Crossref]
  16. W. H. Renninger, A. Chong, and F. W. Wise, “Pulse shaping and evolution in normal-dispersion mode-locked fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 18(1), 389–398 (2012).
    [Crossref] [PubMed]
  17. A. Haboucha, A. Komarov, H. Leblond, F. Sanchez, and G. Martel, “Mechanism of multiple pulse formation in the normal dispersion regime of passively mode-locked fiber ring lasers,” Opt. Fiber Technol. 14(4), 262–267 (2008).
    [Crossref]
  18. C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, “Q-switching stability limits of continuous-wave passive mode locking,” J. Opt. Soc. Am. B 16(1), 46–56 (1999).
    [Crossref]
  19. F. X. Kaertner, L. R. Brovelli, D. Kopf, M. Kamp, I. G. Calasso, and U. Keller, “Control of solid state laser dynamics by semiconductor devices,” Opt. Eng. 34(7), 2024–2036 (1995).
    [Crossref]
  20. J. Lægsgaard, “Control of fibre laser mode-locking by narrow-band Bragg gratings,” J. Phys. B 41(9), 095401 (2008).
    [Crossref]
  21. X. Liu, J. Lagsgaard, and D. Turchinovich, “Monolithic highly stable Yb-doped femtosecond fiber lasers for applications in practical biophotonics,” IEEE J. Sel. Top. Quantum Electron. 18(4), 1439–1450 (2012).
    [Crossref]
  22. W. Chen, Y. Song, K. Jung, M. Hu, C. Wang, and J. Kim, “Few-femtosecond timing jitter from a picosecond all-polarization-maintaining Yb-fiber laser,” Opt. Express 24(2), 1347–1357 (2016).
    [Crossref] [PubMed]
  23. A. Chong, W. H. Renninger, and F. W. Wise, “Properties of normal-dispersion femtosecond fiber lasers,” J. Opt. Soc. Am. B 25(2), 140–148 (2008).
    [Crossref]
  24. D. Anderson, M. Desaix, M. Lisak, and M. L. Quiroga-Teixeiro, “Wave breaking in nonlinear-optical fibers,” J. Opt. Soc. Am. B 9(8), 1358–1361 (1992).
    [Crossref]
  25. A. Chong, W. H. Renninger, and F. W. Wise, “All-normal-dispersion femtosecond fiber laser with pulse energy above 20 nJ,” Opt. Lett. 32(16), 2408–2410 (2007).
    [Crossref] [PubMed]
  26. W. H. Renninger, A. Chong, and F. W. Wise, “Giant-chirp oscillators for short-pulse fiber amplifiers,” Opt. Lett. 33(24), 3025–3027 (2008).
    [Crossref] [PubMed]
  27. M. Erkintalo, C. Aguergaray, A. Runge, and N. G. R. Broderick, “Environmentally stable all-PM all-fiber giant chirp oscillator,” Opt. Express 20(20), 22669–22674 (2012).
    [Crossref] [PubMed]
  28. X. Zhou, Z. Chen, H. Chen, J. Li, and J. Hou, “Mode field adaptation between single-mode fiber and large mode area fiber by thermally expanded core technique,” Opt. Laser Technol. 47(7), 72–75 (2013).
    [Crossref]

2018 (1)

2017 (1)

Y. Wang, B. Lu, X. Qi, L. Hou, J. Kang, K. Huang, X. Feng, D. Zhang, H. Chen, and J. Bai, “Environmentally Stable Pulse Energy-Tunable Picosecond Fiber Laser,” IEEE Photonics Technol. Lett. 29(1), 150–153 (2017).
[Crossref]

2016 (1)

2015 (1)

K. C. Phillips, H. H. Gandhi, E. Mazur, and S. K. Sundaram, “Ultrafast laser processing of materials: a review,” Adv. Opt. Photonics 7(4), 684–712 (2015).
[Crossref]

2014 (1)

S. Boivinet, J. B. Lecourt, Y. Hernandez, A. A. Fotiadi, M. Wuilpart, and P. Mégret, “All-Fiber 1μm PM Mode-Lock Laser Delivering Picosecond Pulses at Sub-MHz Repetition Rate,” IEEE Photonics Technol. Lett. 26(22), 2256–2259 (2014).
[Crossref]

2013 (4)

A. Agnesi, L. Carrá, F. Pirzio, R. Piccoli, and G. Reali, “Low repetition rate, hybrid fiber/solid-state, 1064nm picosecond master oscillator power amplifier laser system,” J. Opt. Soc. Am. B 30(11), 2960–2965 (2013).
[Crossref]

P. Deslandes, M. Perrin, J. Saby, D. Sangla, F. Salin, and E. Freysz, “Picosecond to femtosecond pulses from high power self mode-locked ytterbium rod-type fiber laser,” Opt. Express 21(9), 10731–10738 (2013).
[Crossref] [PubMed]

M. Baumgartl, J. Abreu-Afonso, A. Díez, M. Rothhardt, J. Limpert, and A. Tünnermann, “Environmentally stable picosecond Yb fiber laser with low repetition rate,” Appl. Phys. B 111(1), 39–43 (2013).
[Crossref]

X. Zhou, Z. Chen, H. Chen, J. Li, and J. Hou, “Mode field adaptation between single-mode fiber and large mode area fiber by thermally expanded core technique,” Opt. Laser Technol. 47(7), 72–75 (2013).
[Crossref]

2012 (5)

X. Liu, J. Lagsgaard, and D. Turchinovich, “Monolithic highly stable Yb-doped femtosecond fiber lasers for applications in practical biophotonics,” IEEE J. Sel. Top. Quantum Electron. 18(4), 1439–1450 (2012).
[Crossref]

M. Erkintalo, C. Aguergaray, A. Runge, and N. G. R. Broderick, “Environmentally stable all-PM all-fiber giant chirp oscillator,” Opt. Express 20(20), 22669–22674 (2012).
[Crossref] [PubMed]

J. Liu, J. Xu, and P. Wang, “High Repetition-Rate Narrow Bandwidth SESAM Mode-Locked Yb-Doped Fiber Lasers,” IEEE Photonics Technol. Lett. 24(7), 539–541 (2012).
[Crossref]

A. Agnesi, L. Carra, C. Di Marco, R. Piccoli, and G. Reali, “Fourier-Limited 19-ps Yb-Fiber Seeder Stabilized by Spectral Filtering and Tunable Between 1015 and 1085 nm,” IEEE Photonics Technol. Lett. 24(11), 927–929 (2012).
[Crossref]

W. H. Renninger, A. Chong, and F. W. Wise, “Pulse shaping and evolution in normal-dispersion mode-locked fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 18(1), 389–398 (2012).
[Crossref] [PubMed]

2011 (1)

2009 (2)

2008 (5)

2007 (1)

2006 (1)

1999 (1)

1995 (1)

F. X. Kaertner, L. R. Brovelli, D. Kopf, M. Kamp, I. G. Calasso, and U. Keller, “Control of solid state laser dynamics by semiconductor devices,” Opt. Eng. 34(7), 2024–2036 (1995).
[Crossref]

1992 (1)

Abreu-Afonso, J.

M. Baumgartl, J. Abreu-Afonso, A. Díez, M. Rothhardt, J. Limpert, and A. Tünnermann, “Environmentally stable picosecond Yb fiber laser with low repetition rate,” Appl. Phys. B 111(1), 39–43 (2013).
[Crossref]

Agnesi, A.

A. Agnesi, L. Carrá, F. Pirzio, R. Piccoli, and G. Reali, “Low repetition rate, hybrid fiber/solid-state, 1064nm picosecond master oscillator power amplifier laser system,” J. Opt. Soc. Am. B 30(11), 2960–2965 (2013).
[Crossref]

A. Agnesi, L. Carra, C. Di Marco, R. Piccoli, and G. Reali, “Fourier-Limited 19-ps Yb-Fiber Seeder Stabilized by Spectral Filtering and Tunable Between 1015 and 1085 nm,” IEEE Photonics Technol. Lett. 24(11), 927–929 (2012).
[Crossref]

Aguergaray, C.

Anderson, D.

Bai, J.

Y. Wang, B. Lu, X. Qi, L. Hou, J. Kang, K. Huang, X. Feng, D. Zhang, H. Chen, and J. Bai, “Environmentally Stable Pulse Energy-Tunable Picosecond Fiber Laser,” IEEE Photonics Technol. Lett. 29(1), 150–153 (2017).
[Crossref]

Baumgartl, M.

M. Baumgartl, J. Abreu-Afonso, A. Díez, M. Rothhardt, J. Limpert, and A. Tünnermann, “Environmentally stable picosecond Yb fiber laser with low repetition rate,” Appl. Phys. B 111(1), 39–43 (2013).
[Crossref]

Boivinet, S.

S. Boivinet, J. B. Lecourt, Y. Hernandez, A. A. Fotiadi, M. Wuilpart, and P. Mégret, “All-Fiber 1μm PM Mode-Lock Laser Delivering Picosecond Pulses at Sub-MHz Repetition Rate,” IEEE Photonics Technol. Lett. 26(22), 2256–2259 (2014).
[Crossref]

Broderick, N. G. R.

Brovelli, L. R.

F. X. Kaertner, L. R. Brovelli, D. Kopf, M. Kamp, I. G. Calasso, and U. Keller, “Control of solid state laser dynamics by semiconductor devices,” Opt. Eng. 34(7), 2024–2036 (1995).
[Crossref]

Buckley, J.

Calasso, I. G.

F. X. Kaertner, L. R. Brovelli, D. Kopf, M. Kamp, I. G. Calasso, and U. Keller, “Control of solid state laser dynamics by semiconductor devices,” Opt. Eng. 34(7), 2024–2036 (1995).
[Crossref]

Carra, L.

A. Agnesi, L. Carra, C. Di Marco, R. Piccoli, and G. Reali, “Fourier-Limited 19-ps Yb-Fiber Seeder Stabilized by Spectral Filtering and Tunable Between 1015 and 1085 nm,” IEEE Photonics Technol. Lett. 24(11), 927–929 (2012).
[Crossref]

Carrá, L.

Chen, H.

Y. Wang, B. Lu, X. Qi, L. Hou, J. Kang, K. Huang, X. Feng, D. Zhang, H. Chen, and J. Bai, “Environmentally Stable Pulse Energy-Tunable Picosecond Fiber Laser,” IEEE Photonics Technol. Lett. 29(1), 150–153 (2017).
[Crossref]

X. Zhou, Z. Chen, H. Chen, J. Li, and J. Hou, “Mode field adaptation between single-mode fiber and large mode area fiber by thermally expanded core technique,” Opt. Laser Technol. 47(7), 72–75 (2013).
[Crossref]

Chen, W.

Chen, Z.

X. Zhou, Z. Chen, H. Chen, J. Li, and J. Hou, “Mode field adaptation between single-mode fiber and large mode area fiber by thermally expanded core technique,” Opt. Laser Technol. 47(7), 72–75 (2013).
[Crossref]

Chong, A.

Desaix, M.

Deslandes, P.

Di Marco, C.

A. Agnesi, L. Carra, C. Di Marco, R. Piccoli, and G. Reali, “Fourier-Limited 19-ps Yb-Fiber Seeder Stabilized by Spectral Filtering and Tunable Between 1015 and 1085 nm,” IEEE Photonics Technol. Lett. 24(11), 927–929 (2012).
[Crossref]

Díez, A.

M. Baumgartl, J. Abreu-Afonso, A. Díez, M. Rothhardt, J. Limpert, and A. Tünnermann, “Environmentally stable picosecond Yb fiber laser with low repetition rate,” Appl. Phys. B 111(1), 39–43 (2013).
[Crossref]

Erkintalo, M.

Feng, X.

Y. Wang, B. Lu, X. Qi, L. Hou, J. Kang, K. Huang, X. Feng, D. Zhang, H. Chen, and J. Bai, “Environmentally Stable Pulse Energy-Tunable Picosecond Fiber Laser,” IEEE Photonics Technol. Lett. 29(1), 150–153 (2017).
[Crossref]

Fotiadi, A. A.

S. Boivinet, J. B. Lecourt, Y. Hernandez, A. A. Fotiadi, M. Wuilpart, and P. Mégret, “All-Fiber 1μm PM Mode-Lock Laser Delivering Picosecond Pulses at Sub-MHz Repetition Rate,” IEEE Photonics Technol. Lett. 26(22), 2256–2259 (2014).
[Crossref]

Frede, M.

Freysz, E.

Gandhi, H. H.

K. C. Phillips, H. H. Gandhi, E. Mazur, and S. K. Sundaram, “Ultrafast laser processing of materials: a review,” Adv. Opt. Photonics 7(4), 684–712 (2015).
[Crossref]

Haboucha, A.

A. Haboucha, A. Komarov, H. Leblond, F. Sanchez, and G. Martel, “Mechanism of multiple pulse formation in the normal dispersion regime of passively mode-locked fiber ring lasers,” Opt. Fiber Technol. 14(4), 262–267 (2008).
[Crossref]

Hao, Q.

Hernandez, Y.

S. Boivinet, J. B. Lecourt, Y. Hernandez, A. A. Fotiadi, M. Wuilpart, and P. Mégret, “All-Fiber 1μm PM Mode-Lock Laser Delivering Picosecond Pulses at Sub-MHz Repetition Rate,” IEEE Photonics Technol. Lett. 26(22), 2256–2259 (2014).
[Crossref]

Hong, K. H.

Hönninger, C.

Hou, J.

X. Zhou, Z. Chen, H. Chen, J. Li, and J. Hou, “Mode field adaptation between single-mode fiber and large mode area fiber by thermally expanded core technique,” Opt. Laser Technol. 47(7), 72–75 (2013).
[Crossref]

Hou, L.

Y. Wang, B. Lu, X. Qi, L. Hou, J. Kang, K. Huang, X. Feng, D. Zhang, H. Chen, and J. Bai, “Environmentally Stable Pulse Energy-Tunable Picosecond Fiber Laser,” IEEE Photonics Technol. Lett. 29(1), 150–153 (2017).
[Crossref]

Hu, M.

Huang, K.

K. Yang, S. Zheng, Y. Wu, P. Ye, K. Huang, Q. Hao, and H. Zeng, “Low-repetition-rate all-fiber integrated optical parametric oscillator for coherent anti-Stokes Raman spectroscopy,” Opt. Express 26(13), 17519–17528 (2018).
[Crossref] [PubMed]

Y. Wang, B. Lu, X. Qi, L. Hou, J. Kang, K. Huang, X. Feng, D. Zhang, H. Chen, and J. Bai, “Environmentally Stable Pulse Energy-Tunable Picosecond Fiber Laser,” IEEE Photonics Technol. Lett. 29(1), 150–153 (2017).
[Crossref]

Jung, K.

Kaertner, F. X.

F. X. Kaertner, L. R. Brovelli, D. Kopf, M. Kamp, I. G. Calasso, and U. Keller, “Control of solid state laser dynamics by semiconductor devices,” Opt. Eng. 34(7), 2024–2036 (1995).
[Crossref]

Kamp, M.

F. X. Kaertner, L. R. Brovelli, D. Kopf, M. Kamp, I. G. Calasso, and U. Keller, “Control of solid state laser dynamics by semiconductor devices,” Opt. Eng. 34(7), 2024–2036 (1995).
[Crossref]

Kang, J.

Y. Wang, B. Lu, X. Qi, L. Hou, J. Kang, K. Huang, X. Feng, D. Zhang, H. Chen, and J. Bai, “Environmentally Stable Pulse Energy-Tunable Picosecond Fiber Laser,” IEEE Photonics Technol. Lett. 29(1), 150–153 (2017).
[Crossref]

Kanzelmeyer, S.

Kärtner, F. X.

Keller, U.

C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, “Q-switching stability limits of continuous-wave passive mode locking,” J. Opt. Soc. Am. B 16(1), 46–56 (1999).
[Crossref]

F. X. Kaertner, L. R. Brovelli, D. Kopf, M. Kamp, I. G. Calasso, and U. Keller, “Control of solid state laser dynamics by semiconductor devices,” Opt. Eng. 34(7), 2024–2036 (1995).
[Crossref]

Kim, J.

Komarov, A.

A. Haboucha, A. Komarov, H. Leblond, F. Sanchez, and G. Martel, “Mechanism of multiple pulse formation in the normal dispersion regime of passively mode-locked fiber ring lasers,” Opt. Fiber Technol. 14(4), 262–267 (2008).
[Crossref]

Kopf, D.

F. X. Kaertner, L. R. Brovelli, D. Kopf, M. Kamp, I. G. Calasso, and U. Keller, “Control of solid state laser dynamics by semiconductor devices,” Opt. Eng. 34(7), 2024–2036 (1995).
[Crossref]

Kracht, D.

Laegsgaard, J.

Lægsgaard, J.

J. Lægsgaard, “Control of fibre laser mode-locking by narrow-band Bragg gratings,” J. Phys. B 41(9), 095401 (2008).
[Crossref]

Lagsgaard, J.

X. Liu, J. Lagsgaard, and D. Turchinovich, “Monolithic highly stable Yb-doped femtosecond fiber lasers for applications in practical biophotonics,” IEEE J. Sel. Top. Quantum Electron. 18(4), 1439–1450 (2012).
[Crossref]

Lai, C. J.

Leblond, H.

A. Haboucha, A. Komarov, H. Leblond, F. Sanchez, and G. Martel, “Mechanism of multiple pulse formation in the normal dispersion regime of passively mode-locked fiber ring lasers,” Opt. Fiber Technol. 14(4), 262–267 (2008).
[Crossref]

Lecourt, J. B.

S. Boivinet, J. B. Lecourt, Y. Hernandez, A. A. Fotiadi, M. Wuilpart, and P. Mégret, “All-Fiber 1μm PM Mode-Lock Laser Delivering Picosecond Pulses at Sub-MHz Repetition Rate,” IEEE Photonics Technol. Lett. 26(22), 2256–2259 (2014).
[Crossref]

Lederer, M. J.

Li, J.

X. Zhou, Z. Chen, H. Chen, J. Li, and J. Hou, “Mode field adaptation between single-mode fiber and large mode area fiber by thermally expanded core technique,” Opt. Laser Technol. 47(7), 72–75 (2013).
[Crossref]

Limpert, J.

M. Baumgartl, J. Abreu-Afonso, A. Díez, M. Rothhardt, J. Limpert, and A. Tünnermann, “Environmentally stable picosecond Yb fiber laser with low repetition rate,” Appl. Phys. B 111(1), 39–43 (2013).
[Crossref]

Lisak, M.

Liu, J.

J. Liu, J. Xu, and P. Wang, “High Repetition-Rate Narrow Bandwidth SESAM Mode-Locked Yb-Doped Fiber Lasers,” IEEE Photonics Technol. Lett. 24(7), 539–541 (2012).
[Crossref]

Liu, X.

X. Liu, J. Lagsgaard, and D. Turchinovich, “Monolithic highly stable Yb-doped femtosecond fiber lasers for applications in practical biophotonics,” IEEE J. Sel. Top. Quantum Electron. 18(4), 1439–1450 (2012).
[Crossref]

D. Turchinovich, X. Liu, and J. Laegsgaard, “Monolithic all-PM femtosecond Yb-fiber laser stabilized with a narrow-band fiber Bragg grating and pulse-compressed in a hollow-core photonic crystal fiber,” Opt. Express 16(18), 14004–14014 (2008).
[Crossref] [PubMed]

Lu, B.

Y. Wang, B. Lu, X. Qi, L. Hou, J. Kang, K. Huang, X. Feng, D. Zhang, H. Chen, and J. Bai, “Environmentally Stable Pulse Energy-Tunable Picosecond Fiber Laser,” IEEE Photonics Technol. Lett. 29(1), 150–153 (2017).
[Crossref]

Martel, G.

A. Haboucha, A. Komarov, H. Leblond, F. Sanchez, and G. Martel, “Mechanism of multiple pulse formation in the normal dispersion regime of passively mode-locked fiber ring lasers,” Opt. Fiber Technol. 14(4), 262–267 (2008).
[Crossref]

Mazur, E.

K. C. Phillips, H. H. Gandhi, E. Mazur, and S. K. Sundaram, “Ultrafast laser processing of materials: a review,” Adv. Opt. Photonics 7(4), 684–712 (2015).
[Crossref]

Mégret, P.

S. Boivinet, J. B. Lecourt, Y. Hernandez, A. A. Fotiadi, M. Wuilpart, and P. Mégret, “All-Fiber 1μm PM Mode-Lock Laser Delivering Picosecond Pulses at Sub-MHz Repetition Rate,” IEEE Photonics Technol. Lett. 26(22), 2256–2259 (2014).
[Crossref]

Meier, J.

Morier-Genoud, F.

Moser, M.

Neumann, J.

Paschotta, R.

Perrin, M.

Phillips, K. C.

K. C. Phillips, H. H. Gandhi, E. Mazur, and S. K. Sundaram, “Ultrafast laser processing of materials: a review,” Adv. Opt. Photonics 7(4), 684–712 (2015).
[Crossref]

Piccoli, R.

A. Agnesi, L. Carrá, F. Pirzio, R. Piccoli, and G. Reali, “Low repetition rate, hybrid fiber/solid-state, 1064nm picosecond master oscillator power amplifier laser system,” J. Opt. Soc. Am. B 30(11), 2960–2965 (2013).
[Crossref]

A. Agnesi, L. Carra, C. Di Marco, R. Piccoli, and G. Reali, “Fourier-Limited 19-ps Yb-Fiber Seeder Stabilized by Spectral Filtering and Tunable Between 1015 and 1085 nm,” IEEE Photonics Technol. Lett. 24(11), 927–929 (2012).
[Crossref]

Pirzio, F.

Qi, X.

Y. Wang, B. Lu, X. Qi, L. Hou, J. Kang, K. Huang, X. Feng, D. Zhang, H. Chen, and J. Bai, “Environmentally Stable Pulse Energy-Tunable Picosecond Fiber Laser,” IEEE Photonics Technol. Lett. 29(1), 150–153 (2017).
[Crossref]

Quiroga-Teixeiro, M. L.

Reali, G.

A. Agnesi, L. Carrá, F. Pirzio, R. Piccoli, and G. Reali, “Low repetition rate, hybrid fiber/solid-state, 1064nm picosecond master oscillator power amplifier laser system,” J. Opt. Soc. Am. B 30(11), 2960–2965 (2013).
[Crossref]

A. Agnesi, L. Carra, C. Di Marco, R. Piccoli, and G. Reali, “Fourier-Limited 19-ps Yb-Fiber Seeder Stabilized by Spectral Filtering and Tunable Between 1015 and 1085 nm,” IEEE Photonics Technol. Lett. 24(11), 927–929 (2012).
[Crossref]

Renninger, W.

Renninger, W. H.

Rothhardt, M.

M. Baumgartl, J. Abreu-Afonso, A. Díez, M. Rothhardt, J. Limpert, and A. Tünnermann, “Environmentally stable picosecond Yb fiber laser with low repetition rate,” Appl. Phys. B 111(1), 39–43 (2013).
[Crossref]

Runge, A.

Saby, J.

Salin, F.

Sanchez, F.

A. Haboucha, A. Komarov, H. Leblond, F. Sanchez, and G. Martel, “Mechanism of multiple pulse formation in the normal dispersion regime of passively mode-locked fiber ring lasers,” Opt. Fiber Technol. 14(4), 262–267 (2008).
[Crossref]

Sangla, D.

Sayinc, H.

Siddiqui, A.

Song, Y.

Sundaram, S. K.

K. C. Phillips, H. H. Gandhi, E. Mazur, and S. K. Sundaram, “Ultrafast laser processing of materials: a review,” Adv. Opt. Photonics 7(4), 684–712 (2015).
[Crossref]

Theeg, T.

Tünnermann, A.

M. Baumgartl, J. Abreu-Afonso, A. Díez, M. Rothhardt, J. Limpert, and A. Tünnermann, “Environmentally stable picosecond Yb fiber laser with low repetition rate,” Appl. Phys. B 111(1), 39–43 (2013).
[Crossref]

Turchinovich, D.

X. Liu, J. Lagsgaard, and D. Turchinovich, “Monolithic highly stable Yb-doped femtosecond fiber lasers for applications in practical biophotonics,” IEEE J. Sel. Top. Quantum Electron. 18(4), 1439–1450 (2012).
[Crossref]

D. Turchinovich, X. Liu, and J. Laegsgaard, “Monolithic all-PM femtosecond Yb-fiber laser stabilized with a narrow-band fiber Bragg grating and pulse-compressed in a hollow-core photonic crystal fiber,” Opt. Express 16(18), 14004–14014 (2008).
[Crossref] [PubMed]

Wang, C.

Wang, P.

J. Liu, J. Xu, and P. Wang, “High Repetition-Rate Narrow Bandwidth SESAM Mode-Locked Yb-Doped Fiber Lasers,” IEEE Photonics Technol. Lett. 24(7), 539–541 (2012).
[Crossref]

Wang, Y.

Y. Wang, B. Lu, X. Qi, L. Hou, J. Kang, K. Huang, X. Feng, D. Zhang, H. Chen, and J. Bai, “Environmentally Stable Pulse Energy-Tunable Picosecond Fiber Laser,” IEEE Photonics Technol. Lett. 29(1), 150–153 (2017).
[Crossref]

Wegner, U.

Wise, F.

Wise, F. W.

Wu, Y.

Wuilpart, M.

S. Boivinet, J. B. Lecourt, Y. Hernandez, A. A. Fotiadi, M. Wuilpart, and P. Mégret, “All-Fiber 1μm PM Mode-Lock Laser Delivering Picosecond Pulses at Sub-MHz Repetition Rate,” IEEE Photonics Technol. Lett. 26(22), 2256–2259 (2014).
[Crossref]

Xu, J.

J. Liu, J. Xu, and P. Wang, “High Repetition-Rate Narrow Bandwidth SESAM Mode-Locked Yb-Doped Fiber Lasers,” IEEE Photonics Technol. Lett. 24(7), 539–541 (2012).
[Crossref]

Yang, K.

Ye, P.

Zeng, H.

Zhang, D.

Y. Wang, B. Lu, X. Qi, L. Hou, J. Kang, K. Huang, X. Feng, D. Zhang, H. Chen, and J. Bai, “Environmentally Stable Pulse Energy-Tunable Picosecond Fiber Laser,” IEEE Photonics Technol. Lett. 29(1), 150–153 (2017).
[Crossref]

Zheng, S.

Zhou, X.

X. Zhou, Z. Chen, H. Chen, J. Li, and J. Hou, “Mode field adaptation between single-mode fiber and large mode area fiber by thermally expanded core technique,” Opt. Laser Technol. 47(7), 72–75 (2013).
[Crossref]

Adv. Opt. Photonics (1)

K. C. Phillips, H. H. Gandhi, E. Mazur, and S. K. Sundaram, “Ultrafast laser processing of materials: a review,” Adv. Opt. Photonics 7(4), 684–712 (2015).
[Crossref]

Appl. Phys. B (1)

M. Baumgartl, J. Abreu-Afonso, A. Díez, M. Rothhardt, J. Limpert, and A. Tünnermann, “Environmentally stable picosecond Yb fiber laser with low repetition rate,” Appl. Phys. B 111(1), 39–43 (2013).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

W. H. Renninger, A. Chong, and F. W. Wise, “Pulse shaping and evolution in normal-dispersion mode-locked fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 18(1), 389–398 (2012).
[Crossref] [PubMed]

X. Liu, J. Lagsgaard, and D. Turchinovich, “Monolithic highly stable Yb-doped femtosecond fiber lasers for applications in practical biophotonics,” IEEE J. Sel. Top. Quantum Electron. 18(4), 1439–1450 (2012).
[Crossref]

IEEE Photonics Technol. Lett. (4)

Y. Wang, B. Lu, X. Qi, L. Hou, J. Kang, K. Huang, X. Feng, D. Zhang, H. Chen, and J. Bai, “Environmentally Stable Pulse Energy-Tunable Picosecond Fiber Laser,” IEEE Photonics Technol. Lett. 29(1), 150–153 (2017).
[Crossref]

A. Agnesi, L. Carra, C. Di Marco, R. Piccoli, and G. Reali, “Fourier-Limited 19-ps Yb-Fiber Seeder Stabilized by Spectral Filtering and Tunable Between 1015 and 1085 nm,” IEEE Photonics Technol. Lett. 24(11), 927–929 (2012).
[Crossref]

S. Boivinet, J. B. Lecourt, Y. Hernandez, A. A. Fotiadi, M. Wuilpart, and P. Mégret, “All-Fiber 1μm PM Mode-Lock Laser Delivering Picosecond Pulses at Sub-MHz Repetition Rate,” IEEE Photonics Technol. Lett. 26(22), 2256–2259 (2014).
[Crossref]

J. Liu, J. Xu, and P. Wang, “High Repetition-Rate Narrow Bandwidth SESAM Mode-Locked Yb-Doped Fiber Lasers,” IEEE Photonics Technol. Lett. 24(7), 539–541 (2012).
[Crossref]

J. Opt. Soc. Am. B (4)

J. Phys. B (1)

J. Lægsgaard, “Control of fibre laser mode-locking by narrow-band Bragg gratings,” J. Phys. B 41(9), 095401 (2008).
[Crossref]

Opt. Eng. (1)

F. X. Kaertner, L. R. Brovelli, D. Kopf, M. Kamp, I. G. Calasso, and U. Keller, “Control of solid state laser dynamics by semiconductor devices,” Opt. Eng. 34(7), 2024–2036 (1995).
[Crossref]

Opt. Express (9)

P. Deslandes, M. Perrin, J. Saby, D. Sangla, F. Salin, and E. Freysz, “Picosecond to femtosecond pulses from high power self mode-locked ytterbium rod-type fiber laser,” Opt. Express 21(9), 10731–10738 (2013).
[Crossref] [PubMed]

D. Turchinovich, X. Liu, and J. Laegsgaard, “Monolithic all-PM femtosecond Yb-fiber laser stabilized with a narrow-band fiber Bragg grating and pulse-compressed in a hollow-core photonic crystal fiber,” Opt. Express 16(18), 14004–14014 (2008).
[Crossref] [PubMed]

K. H. Hong, C. J. Lai, A. Siddiqui, and F. X. Kärtner, “130-W picosecond green laser based on a frequency-doubled hybrid cryogenic Yb:YAG amplifier,” Opt. Express 17(19), 16911–16919 (2009).
[Crossref] [PubMed]

K. Yang, S. Zheng, Y. Wu, P. Ye, K. Huang, Q. Hao, and H. Zeng, “Low-repetition-rate all-fiber integrated optical parametric oscillator for coherent anti-Stokes Raman spectroscopy,” Opt. Express 26(13), 17519–17528 (2018).
[Crossref] [PubMed]

U. Wegner, J. Meier, and M. J. Lederer, “Compact picosecond mode-locked and cavity-dumped Nd:YVO4 laser,” Opt. Express 17(25), 23098–23103 (2009).
[Crossref] [PubMed]

S. Kanzelmeyer, H. Sayinc, T. Theeg, M. Frede, J. Neumann, and D. Kracht, “All-fiber based amplification of 40 ps pulses from a gain-switched laser diode,” Opt. Express 19(3), 1854–1859 (2011).
[Crossref] [PubMed]

A. Chong, J. Buckley, W. Renninger, and F. Wise, “All-normal-dispersion femtosecond fiber laser,” Opt. Express 14(21), 10095–10100 (2006).
[Crossref] [PubMed]

W. Chen, Y. Song, K. Jung, M. Hu, C. Wang, and J. Kim, “Few-femtosecond timing jitter from a picosecond all-polarization-maintaining Yb-fiber laser,” Opt. Express 24(2), 1347–1357 (2016).
[Crossref] [PubMed]

M. Erkintalo, C. Aguergaray, A. Runge, and N. G. R. Broderick, “Environmentally stable all-PM all-fiber giant chirp oscillator,” Opt. Express 20(20), 22669–22674 (2012).
[Crossref] [PubMed]

Opt. Fiber Technol. (1)

A. Haboucha, A. Komarov, H. Leblond, F. Sanchez, and G. Martel, “Mechanism of multiple pulse formation in the normal dispersion regime of passively mode-locked fiber ring lasers,” Opt. Fiber Technol. 14(4), 262–267 (2008).
[Crossref]

Opt. Laser Technol. (1)

X. Zhou, Z. Chen, H. Chen, J. Li, and J. Hou, “Mode field adaptation between single-mode fiber and large mode area fiber by thermally expanded core technique,” Opt. Laser Technol. 47(7), 72–75 (2013).
[Crossref]

Opt. Lett. (2)

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics, 5th edition. (Academic, 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Schematic of the all-PM ANDi passively mode-locked fiber laser based on FBG and SESAM. (FBG: fiber Bragg grating; OC: optical coupler; YDF: Yb-doped fiber; WDM: wavelength division multiplexer; SESAM: semiconductor saturable absorber mirror; ISO: fiber isolator).
Fig. 2
Fig. 2 Measured autocorrelation traces (color) and fitting curves (black) of output pulses from the 35.2 MHz repetition rate oscillators at pump power of 98 mW (a), 116 mW (b) and 130 mW (c), corresponding optical spectra (d) - (f), and pulse trains measured by a 2-GHz photodetector (Eot, ET3000A) and a 600-MHz oscilloscope (Agilent, MSO8064A) (g) - (i).
Fig. 3
Fig. 3 Measured autocorrelation traces (red) and fitting curves (black) of output pulses at repetition rates of 13.1MHz (a) and 7.7MHz (b), the insets show the corresponding optical spectra; measured pulse trains at repetition rates of 13.1MHz (c) and 7.7MHz (d).
Fig. 4
Fig. 4 Output pulse characteristics of the laser after inserting 50 m LMA fiber in position A: (a) measured pulse profile, the inset shows the pulse train; (b) measured RF spectrum of pulse train with resolution of 300 Hz, the inset shows the higher harmonics; (c) optical spectrum; (d) measured autocorrelation traces (blue) and fitting traces (red) of output pulses.

Metrics