Abstract

A novel optical antenna for optical phased arrays is proposed and simulated. A high-contrast grating structure is used to achieve extremely efficient emission. The emission efficiency is as high as 93.94% at 1.55 μm, which exceeds 50% in a range of wavelength from 1.48 μm to 1.62 μm. The antenna can achieve a perfect grating lobe suppression with background suppression of 28.4 dB when the phase difference between adjacent waveguides is 0. A 16-wire optical phased array can easily achieve a scan range of ± 22.8° × 20.2° with a beam width of 2.4° × 2.5°, by employing the optical antenna proposed.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High-contrast gratings for integrated optoelectronics

Connie J. Chang-Hasnain and Weijian Yang
Adv. Opt. Photon. 4(3) 379-440 (2012)

Sparse aperiodic arrays for optical beam forming and LIDAR

Tin Komljenovic, Roger Helkey, Larry Coldren, and John E. Bowers
Opt. Express 25(3) 2511-2528 (2017)

Aliasing-free optical phased array beam-steering with a plateau envelope

Weihan Xu, Linjie Zhou, Liangjun Lu, and Jianping Chen
Opt. Express 27(3) 3354-3368 (2019)

References

  • View by:
  • |
  • |
  • |

  1. K. Van Acoleyen, W. Bogaerts, J. Jágerská, N. Le Thomas, R. Houdré, and R. Baets, “Off-chip beam steering with a one-dimensional optical phased array on silicon-on-insulator,” Opt. Lett. 34(9), 1477–1479 (2009).
    [Crossref] [PubMed]
  2. J. K. Doylend, M. J. Heck, J. T. Bovington, J. D. Peters, L. A. Coldren, and J. E. Bowers, “Two-dimensional free-space beam steering with an optical phased array on silicon-on-insulator,” Opt. Express 19(22), 21595–21604 (2011).
    [Crossref] [PubMed]
  3. K. Van Acoleyen, K. Komorowska, W. Bogaerts, and R. Baets, “One-Dimensional Off-Chip Beam Steering and Shaping Using Optical Phased Arrays on Silicon-on-Insulator,” J. Lightwave Technol. 29(23), 3500–3505 (2011).
    [Crossref]
  4. K. Van Acoleyen, W. Bogaerts, and R. Baets, “Two-Dimensional Dispersive Off-Chip Beam Scanner Fabricated on Silicon-On-Insulator,” IEEE Photonic Tech. L. 23, 1270–1272 (2011).
  5. A. Yaacobi, J. Sun, M. Moresco, G. Leake, D. Coolbaugh, and M. R. Watts, “Integrated phased array for wide-angle beam steering,” Opt. Lett. 39(15), 4575–4578 (2014).
    [Crossref] [PubMed]
  6. S. W. Chung, H. Abediasl, and H. Hashemi, “A Monolithically Integrated Large-Scale Optical Phased Array in Silicon-on-Insulator CMOS,” IEEE J. Solid-State Circuits 53(1), 275–296 (2018).
    [Crossref]
  7. D. N. Kwong, Y. Zhang, A. Hosseini, and R. T. Chen, “Integrated optical phased array based large angle beam steering system fabricated on silicon-on-insulator,” in Proc. SPIE (2011), 7943, 79 430Y–1-79 430Y–6.
  8. J. C. Hulme, J. K. Doylend, M. J. Heck, J. D. Peters, M. L. Davenport, J. T. Bovington, L. A. Coldren, and J. E. Bowers, “Fully integrated hybrid silicon two dimensional beam scanner,” Opt. Express 23(5), 5861–5874 (2015).
    [Crossref] [PubMed]
  9. A. Hosseini, D. Kwong, Y. Zhao, Y. S. Chen, F. Crnogorac, R. F. W. Pease, and R. T. Chen, “Unequally Spaced Waveguide Arrays for Silicon Nanomembrane-Based Efficient Large Angle Optical Beam Steering,” IEEE J. Sel. Top. Quant. 15(5), 1439–1446 (2009).
    [Crossref]
  10. J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
    [Crossref] [PubMed]
  11. D. N. Hutchison, J. Sun, J. K. Doylend, R. Kumar, J. Heck, W. Kim, C. T. Phare, A. Feshali, and H. Rong, “High-resolution aliasing-free optical beam steering,” Optica 3(8), 887 (2016).
    [Crossref]
  12. C. García-Meca, S. Lechago, A. Brimont, A. Griol, S. Mas, L. Sánchez, L. Bellieres, N. S. Losilla, and J. Martí, “On-chip wireless silicon photonics: from reconfigurable interconnects to lab-on-chip devices,” Light Sci. Appl. 6(9), e17053 (2017).
    [Crossref] [PubMed]
  13. G. Bellanca, G. Calò, A. E. Kaplan, P. Bassi, and V. Petruzzelli, “Integrated Vivaldi plasmonic antenna for wireless on-chip optical communications,” Opt. Express 25(14), 16214–16227 (2017).
    [Crossref] [PubMed]
  14. G. Calò, G. Bellanca, B. Alam, A. E. Kaplan, P. Bassi, and V. Petruzzelli, “Array of plasmonic Vivaldi antennas coupled to silicon waveguides for wireless networks through on-chip optical technology - WiNOT,” Opt. Express 26(23), 30267–30277 (2018).
    [Crossref] [PubMed]
  15. Y. Yang, Q. Li, and M. Qiu, “Broadband nanophotonic wireless links and networks using on-chip integrated plasmonic antennas,” Sci. Rep. 6(1), 19490 (2016).
    [Crossref] [PubMed]
  16. J. M. Merlo, N. T. Nesbitt, Y. M. Calm, A. H. Rose, L. D’Imperio, C. Yang, J. R. Naughton, M. J. Burns, K. Kempa, and M. J. Naughton, “Wireless communication system via nanoscale plasmonic antennas,” Sci. Rep. 6(1), 31710 (2016).
    [Crossref] [PubMed]
  17. S. Lechago, C. García-Meca, N. Sánchez-Losilla, A. Griol, and J. Martí, “High signal-to-noise ratio ultra-compact lab-on-a-chip microflow cytometer enabled by silicon optical antennas,” Opt. Express 26(20), 25645–25656 (2018).
    [Crossref] [PubMed]
  18. M. Raval, C. V. Poulton, and M. R. Watts, “Unidirectional waveguide grating antennas with uniform emission for optical phased arrays,” Opt. Lett. 42(13), 2563–2566 (2017).
    [Crossref] [PubMed]
  19. V. Karagodsky, F. G. Sedgwick, and C. J. Chang-Hasnain, “Theoretical analysis of subwavelength high contrast grating reflectors,” Opt. Express 18(16), 16973–16988 (2010).
    [Crossref] [PubMed]
  20. V. Karagodsky, C. Chase, and C. J. Chang-Hasnain, “Matrix Fabry-Perot resonance mechanism in high-contrast gratings,” Opt. Lett. 36(9), 1704–1706 (2011).
    [Crossref] [PubMed]
  21. C. J. Chang-Hasnain and W. Yang, “High contrast gratings for integrated optoelectronics,” Adv. Opt. Photonics 4(3), 379 (2012).
    [Crossref]
  22. M. C. Y. Huang, Y. Zhou, and C. J. Changhasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics 1(297), 119–122 (2007).
    [Crossref]
  23. Y. Zhou, M. Moewe, J. Kern, M. C. Huang, and C. J. Chang-Hasnain, “Surface-normal emission of a high-Q resonator using a subwavelength high-contrast grating,” Opt. Express 16(22), 17282–17287 (2008).
    [Crossref] [PubMed]
  24. L. Zhu, J. Kapraun, J. Ferrara, and C. J. Chang-Hasnain, “Flexible photonic metastructures for tunable coloration,” Optica 2(3), 255 (2015).
    [Crossref]
  25. G. Roelkens, D. Vermeulen, F. Van Laere, S. Selvaraja, S. Scheerlinck, D. Taillaert, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Bridging the gap between nanophotonic waveguide circuits and single mode optical fibers using diffractive grating structures,” J. Nanosci. Nanotechnol. 10(3), 1551–1562 (2010).
    [Crossref] [PubMed]
  26. L. Zhu, W. Yang, and C. Chang-Hasnain, “Very high efficiency optical coupler for silicon nanophotonic waveguide and single mode optical fiber,” Opt. Express 25(15), 18462–18473 (2017).
    [Crossref] [PubMed]
  27. D. Kwong, A. Hosseini, J. Covey, Y. Zhang, X. Xu, H. Subbaraman, and R. T. Chen, “On-chip silicon optical phased array for two-dimensional beam steering,” Opt. Lett. 39(4), 941–944 (2014).
    [Crossref] [PubMed]
  28. C. T. Phare, M. C. Shin, J. Sharma, S. Ahasan, H. Krishnaswamy, and M. Lipson, “Silicon Optical Phased Array with Grating Lobe-Free Beam Formation Over 180 Degree Field of View,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online)Optical Society of America, 2018), paperSM3I.2
    [Crossref]
  29. V. Karagodsky and C. J. Chang-Hasnain, “Physics of near-wavelength high contrast gratings,” Opt. Express 20(10), 10888–10895 (2012).
    [Crossref] [PubMed]
  30. Lumerical Solutions, Inc., http://www.lumerical.com/tcad-products/fdtd/ .

2018 (3)

2017 (4)

2016 (3)

Y. Yang, Q. Li, and M. Qiu, “Broadband nanophotonic wireless links and networks using on-chip integrated plasmonic antennas,” Sci. Rep. 6(1), 19490 (2016).
[Crossref] [PubMed]

J. M. Merlo, N. T. Nesbitt, Y. M. Calm, A. H. Rose, L. D’Imperio, C. Yang, J. R. Naughton, M. J. Burns, K. Kempa, and M. J. Naughton, “Wireless communication system via nanoscale plasmonic antennas,” Sci. Rep. 6(1), 31710 (2016).
[Crossref] [PubMed]

D. N. Hutchison, J. Sun, J. K. Doylend, R. Kumar, J. Heck, W. Kim, C. T. Phare, A. Feshali, and H. Rong, “High-resolution aliasing-free optical beam steering,” Optica 3(8), 887 (2016).
[Crossref]

2015 (2)

2014 (2)

2013 (1)

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[Crossref] [PubMed]

2012 (2)

C. J. Chang-Hasnain and W. Yang, “High contrast gratings for integrated optoelectronics,” Adv. Opt. Photonics 4(3), 379 (2012).
[Crossref]

V. Karagodsky and C. J. Chang-Hasnain, “Physics of near-wavelength high contrast gratings,” Opt. Express 20(10), 10888–10895 (2012).
[Crossref] [PubMed]

2011 (4)

2010 (2)

G. Roelkens, D. Vermeulen, F. Van Laere, S. Selvaraja, S. Scheerlinck, D. Taillaert, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Bridging the gap between nanophotonic waveguide circuits and single mode optical fibers using diffractive grating structures,” J. Nanosci. Nanotechnol. 10(3), 1551–1562 (2010).
[Crossref] [PubMed]

V. Karagodsky, F. G. Sedgwick, and C. J. Chang-Hasnain, “Theoretical analysis of subwavelength high contrast grating reflectors,” Opt. Express 18(16), 16973–16988 (2010).
[Crossref] [PubMed]

2009 (2)

K. Van Acoleyen, W. Bogaerts, J. Jágerská, N. Le Thomas, R. Houdré, and R. Baets, “Off-chip beam steering with a one-dimensional optical phased array on silicon-on-insulator,” Opt. Lett. 34(9), 1477–1479 (2009).
[Crossref] [PubMed]

A. Hosseini, D. Kwong, Y. Zhao, Y. S. Chen, F. Crnogorac, R. F. W. Pease, and R. T. Chen, “Unequally Spaced Waveguide Arrays for Silicon Nanomembrane-Based Efficient Large Angle Optical Beam Steering,” IEEE J. Sel. Top. Quant. 15(5), 1439–1446 (2009).
[Crossref]

2008 (1)

2007 (1)

M. C. Y. Huang, Y. Zhou, and C. J. Changhasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics 1(297), 119–122 (2007).
[Crossref]

Abediasl, H.

S. W. Chung, H. Abediasl, and H. Hashemi, “A Monolithically Integrated Large-Scale Optical Phased Array in Silicon-on-Insulator CMOS,” IEEE J. Solid-State Circuits 53(1), 275–296 (2018).
[Crossref]

Ahasan, S.

C. T. Phare, M. C. Shin, J. Sharma, S. Ahasan, H. Krishnaswamy, and M. Lipson, “Silicon Optical Phased Array with Grating Lobe-Free Beam Formation Over 180 Degree Field of View,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online)Optical Society of America, 2018), paperSM3I.2
[Crossref]

Alam, B.

Baets, R.

K. Van Acoleyen, W. Bogaerts, and R. Baets, “Two-Dimensional Dispersive Off-Chip Beam Scanner Fabricated on Silicon-On-Insulator,” IEEE Photonic Tech. L. 23, 1270–1272 (2011).

K. Van Acoleyen, K. Komorowska, W. Bogaerts, and R. Baets, “One-Dimensional Off-Chip Beam Steering and Shaping Using Optical Phased Arrays on Silicon-on-Insulator,” J. Lightwave Technol. 29(23), 3500–3505 (2011).
[Crossref]

G. Roelkens, D. Vermeulen, F. Van Laere, S. Selvaraja, S. Scheerlinck, D. Taillaert, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Bridging the gap between nanophotonic waveguide circuits and single mode optical fibers using diffractive grating structures,” J. Nanosci. Nanotechnol. 10(3), 1551–1562 (2010).
[Crossref] [PubMed]

K. Van Acoleyen, W. Bogaerts, J. Jágerská, N. Le Thomas, R. Houdré, and R. Baets, “Off-chip beam steering with a one-dimensional optical phased array on silicon-on-insulator,” Opt. Lett. 34(9), 1477–1479 (2009).
[Crossref] [PubMed]

Bassi, P.

Bellanca, G.

Bellieres, L.

C. García-Meca, S. Lechago, A. Brimont, A. Griol, S. Mas, L. Sánchez, L. Bellieres, N. S. Losilla, and J. Martí, “On-chip wireless silicon photonics: from reconfigurable interconnects to lab-on-chip devices,” Light Sci. Appl. 6(9), e17053 (2017).
[Crossref] [PubMed]

Bogaerts, W.

K. Van Acoleyen, K. Komorowska, W. Bogaerts, and R. Baets, “One-Dimensional Off-Chip Beam Steering and Shaping Using Optical Phased Arrays on Silicon-on-Insulator,” J. Lightwave Technol. 29(23), 3500–3505 (2011).
[Crossref]

K. Van Acoleyen, W. Bogaerts, and R. Baets, “Two-Dimensional Dispersive Off-Chip Beam Scanner Fabricated on Silicon-On-Insulator,” IEEE Photonic Tech. L. 23, 1270–1272 (2011).

G. Roelkens, D. Vermeulen, F. Van Laere, S. Selvaraja, S. Scheerlinck, D. Taillaert, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Bridging the gap between nanophotonic waveguide circuits and single mode optical fibers using diffractive grating structures,” J. Nanosci. Nanotechnol. 10(3), 1551–1562 (2010).
[Crossref] [PubMed]

K. Van Acoleyen, W. Bogaerts, J. Jágerská, N. Le Thomas, R. Houdré, and R. Baets, “Off-chip beam steering with a one-dimensional optical phased array on silicon-on-insulator,” Opt. Lett. 34(9), 1477–1479 (2009).
[Crossref] [PubMed]

Bovington, J. T.

Bowers, J. E.

Brimont, A.

C. García-Meca, S. Lechago, A. Brimont, A. Griol, S. Mas, L. Sánchez, L. Bellieres, N. S. Losilla, and J. Martí, “On-chip wireless silicon photonics: from reconfigurable interconnects to lab-on-chip devices,” Light Sci. Appl. 6(9), e17053 (2017).
[Crossref] [PubMed]

Burns, M. J.

J. M. Merlo, N. T. Nesbitt, Y. M. Calm, A. H. Rose, L. D’Imperio, C. Yang, J. R. Naughton, M. J. Burns, K. Kempa, and M. J. Naughton, “Wireless communication system via nanoscale plasmonic antennas,” Sci. Rep. 6(1), 31710 (2016).
[Crossref] [PubMed]

Calm, Y. M.

J. M. Merlo, N. T. Nesbitt, Y. M. Calm, A. H. Rose, L. D’Imperio, C. Yang, J. R. Naughton, M. J. Burns, K. Kempa, and M. J. Naughton, “Wireless communication system via nanoscale plasmonic antennas,” Sci. Rep. 6(1), 31710 (2016).
[Crossref] [PubMed]

Calò, G.

Changhasnain, C. J.

M. C. Y. Huang, Y. Zhou, and C. J. Changhasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics 1(297), 119–122 (2007).
[Crossref]

Chang-Hasnain, C.

Chang-Hasnain, C. J.

Chase, C.

Chen, R. T.

D. Kwong, A. Hosseini, J. Covey, Y. Zhang, X. Xu, H. Subbaraman, and R. T. Chen, “On-chip silicon optical phased array for two-dimensional beam steering,” Opt. Lett. 39(4), 941–944 (2014).
[Crossref] [PubMed]

A. Hosseini, D. Kwong, Y. Zhao, Y. S. Chen, F. Crnogorac, R. F. W. Pease, and R. T. Chen, “Unequally Spaced Waveguide Arrays for Silicon Nanomembrane-Based Efficient Large Angle Optical Beam Steering,” IEEE J. Sel. Top. Quant. 15(5), 1439–1446 (2009).
[Crossref]

D. N. Kwong, Y. Zhang, A. Hosseini, and R. T. Chen, “Integrated optical phased array based large angle beam steering system fabricated on silicon-on-insulator,” in Proc. SPIE (2011), 7943, 79 430Y–1-79 430Y–6.

Chen, Y. S.

A. Hosseini, D. Kwong, Y. Zhao, Y. S. Chen, F. Crnogorac, R. F. W. Pease, and R. T. Chen, “Unequally Spaced Waveguide Arrays for Silicon Nanomembrane-Based Efficient Large Angle Optical Beam Steering,” IEEE J. Sel. Top. Quant. 15(5), 1439–1446 (2009).
[Crossref]

Chung, S. W.

S. W. Chung, H. Abediasl, and H. Hashemi, “A Monolithically Integrated Large-Scale Optical Phased Array in Silicon-on-Insulator CMOS,” IEEE J. Solid-State Circuits 53(1), 275–296 (2018).
[Crossref]

Coldren, L. A.

Coolbaugh, D.

Covey, J.

Crnogorac, F.

A. Hosseini, D. Kwong, Y. Zhao, Y. S. Chen, F. Crnogorac, R. F. W. Pease, and R. T. Chen, “Unequally Spaced Waveguide Arrays for Silicon Nanomembrane-Based Efficient Large Angle Optical Beam Steering,” IEEE J. Sel. Top. Quant. 15(5), 1439–1446 (2009).
[Crossref]

D’Imperio, L.

J. M. Merlo, N. T. Nesbitt, Y. M. Calm, A. H. Rose, L. D’Imperio, C. Yang, J. R. Naughton, M. J. Burns, K. Kempa, and M. J. Naughton, “Wireless communication system via nanoscale plasmonic antennas,” Sci. Rep. 6(1), 31710 (2016).
[Crossref] [PubMed]

Davenport, M. L.

Doylend, J. K.

Dumon, P.

G. Roelkens, D. Vermeulen, F. Van Laere, S. Selvaraja, S. Scheerlinck, D. Taillaert, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Bridging the gap between nanophotonic waveguide circuits and single mode optical fibers using diffractive grating structures,” J. Nanosci. Nanotechnol. 10(3), 1551–1562 (2010).
[Crossref] [PubMed]

Ferrara, J.

Feshali, A.

García-Meca, C.

S. Lechago, C. García-Meca, N. Sánchez-Losilla, A. Griol, and J. Martí, “High signal-to-noise ratio ultra-compact lab-on-a-chip microflow cytometer enabled by silicon optical antennas,” Opt. Express 26(20), 25645–25656 (2018).
[Crossref] [PubMed]

C. García-Meca, S. Lechago, A. Brimont, A. Griol, S. Mas, L. Sánchez, L. Bellieres, N. S. Losilla, and J. Martí, “On-chip wireless silicon photonics: from reconfigurable interconnects to lab-on-chip devices,” Light Sci. Appl. 6(9), e17053 (2017).
[Crossref] [PubMed]

Griol, A.

S. Lechago, C. García-Meca, N. Sánchez-Losilla, A. Griol, and J. Martí, “High signal-to-noise ratio ultra-compact lab-on-a-chip microflow cytometer enabled by silicon optical antennas,” Opt. Express 26(20), 25645–25656 (2018).
[Crossref] [PubMed]

C. García-Meca, S. Lechago, A. Brimont, A. Griol, S. Mas, L. Sánchez, L. Bellieres, N. S. Losilla, and J. Martí, “On-chip wireless silicon photonics: from reconfigurable interconnects to lab-on-chip devices,” Light Sci. Appl. 6(9), e17053 (2017).
[Crossref] [PubMed]

Hashemi, H.

S. W. Chung, H. Abediasl, and H. Hashemi, “A Monolithically Integrated Large-Scale Optical Phased Array in Silicon-on-Insulator CMOS,” IEEE J. Solid-State Circuits 53(1), 275–296 (2018).
[Crossref]

Heck, J.

Heck, M. J.

Hosseini, A.

D. Kwong, A. Hosseini, J. Covey, Y. Zhang, X. Xu, H. Subbaraman, and R. T. Chen, “On-chip silicon optical phased array for two-dimensional beam steering,” Opt. Lett. 39(4), 941–944 (2014).
[Crossref] [PubMed]

A. Hosseini, D. Kwong, Y. Zhao, Y. S. Chen, F. Crnogorac, R. F. W. Pease, and R. T. Chen, “Unequally Spaced Waveguide Arrays for Silicon Nanomembrane-Based Efficient Large Angle Optical Beam Steering,” IEEE J. Sel. Top. Quant. 15(5), 1439–1446 (2009).
[Crossref]

D. N. Kwong, Y. Zhang, A. Hosseini, and R. T. Chen, “Integrated optical phased array based large angle beam steering system fabricated on silicon-on-insulator,” in Proc. SPIE (2011), 7943, 79 430Y–1-79 430Y–6.

Hosseini, E. S.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[Crossref] [PubMed]

Houdré, R.

Huang, M. C.

Huang, M. C. Y.

M. C. Y. Huang, Y. Zhou, and C. J. Changhasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics 1(297), 119–122 (2007).
[Crossref]

Hulme, J. C.

Hutchison, D. N.

Jágerská, J.

Kaplan, A. E.

Kapraun, J.

Karagodsky, V.

Kempa, K.

J. M. Merlo, N. T. Nesbitt, Y. M. Calm, A. H. Rose, L. D’Imperio, C. Yang, J. R. Naughton, M. J. Burns, K. Kempa, and M. J. Naughton, “Wireless communication system via nanoscale plasmonic antennas,” Sci. Rep. 6(1), 31710 (2016).
[Crossref] [PubMed]

Kern, J.

Kim, W.

Komorowska, K.

Krishnaswamy, H.

C. T. Phare, M. C. Shin, J. Sharma, S. Ahasan, H. Krishnaswamy, and M. Lipson, “Silicon Optical Phased Array with Grating Lobe-Free Beam Formation Over 180 Degree Field of View,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online)Optical Society of America, 2018), paperSM3I.2
[Crossref]

Kumar, R.

Kwong, D.

D. Kwong, A. Hosseini, J. Covey, Y. Zhang, X. Xu, H. Subbaraman, and R. T. Chen, “On-chip silicon optical phased array for two-dimensional beam steering,” Opt. Lett. 39(4), 941–944 (2014).
[Crossref] [PubMed]

A. Hosseini, D. Kwong, Y. Zhao, Y. S. Chen, F. Crnogorac, R. F. W. Pease, and R. T. Chen, “Unequally Spaced Waveguide Arrays for Silicon Nanomembrane-Based Efficient Large Angle Optical Beam Steering,” IEEE J. Sel. Top. Quant. 15(5), 1439–1446 (2009).
[Crossref]

Kwong, D. N.

D. N. Kwong, Y. Zhang, A. Hosseini, and R. T. Chen, “Integrated optical phased array based large angle beam steering system fabricated on silicon-on-insulator,” in Proc. SPIE (2011), 7943, 79 430Y–1-79 430Y–6.

Le Thomas, N.

Leake, G.

Lechago, S.

S. Lechago, C. García-Meca, N. Sánchez-Losilla, A. Griol, and J. Martí, “High signal-to-noise ratio ultra-compact lab-on-a-chip microflow cytometer enabled by silicon optical antennas,” Opt. Express 26(20), 25645–25656 (2018).
[Crossref] [PubMed]

C. García-Meca, S. Lechago, A. Brimont, A. Griol, S. Mas, L. Sánchez, L. Bellieres, N. S. Losilla, and J. Martí, “On-chip wireless silicon photonics: from reconfigurable interconnects to lab-on-chip devices,” Light Sci. Appl. 6(9), e17053 (2017).
[Crossref] [PubMed]

Li, Q.

Y. Yang, Q. Li, and M. Qiu, “Broadband nanophotonic wireless links and networks using on-chip integrated plasmonic antennas,” Sci. Rep. 6(1), 19490 (2016).
[Crossref] [PubMed]

Lipson, M.

C. T. Phare, M. C. Shin, J. Sharma, S. Ahasan, H. Krishnaswamy, and M. Lipson, “Silicon Optical Phased Array with Grating Lobe-Free Beam Formation Over 180 Degree Field of View,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online)Optical Society of America, 2018), paperSM3I.2
[Crossref]

Losilla, N. S.

C. García-Meca, S. Lechago, A. Brimont, A. Griol, S. Mas, L. Sánchez, L. Bellieres, N. S. Losilla, and J. Martí, “On-chip wireless silicon photonics: from reconfigurable interconnects to lab-on-chip devices,” Light Sci. Appl. 6(9), e17053 (2017).
[Crossref] [PubMed]

Martí, J.

S. Lechago, C. García-Meca, N. Sánchez-Losilla, A. Griol, and J. Martí, “High signal-to-noise ratio ultra-compact lab-on-a-chip microflow cytometer enabled by silicon optical antennas,” Opt. Express 26(20), 25645–25656 (2018).
[Crossref] [PubMed]

C. García-Meca, S. Lechago, A. Brimont, A. Griol, S. Mas, L. Sánchez, L. Bellieres, N. S. Losilla, and J. Martí, “On-chip wireless silicon photonics: from reconfigurable interconnects to lab-on-chip devices,” Light Sci. Appl. 6(9), e17053 (2017).
[Crossref] [PubMed]

Mas, S.

C. García-Meca, S. Lechago, A. Brimont, A. Griol, S. Mas, L. Sánchez, L. Bellieres, N. S. Losilla, and J. Martí, “On-chip wireless silicon photonics: from reconfigurable interconnects to lab-on-chip devices,” Light Sci. Appl. 6(9), e17053 (2017).
[Crossref] [PubMed]

Merlo, J. M.

J. M. Merlo, N. T. Nesbitt, Y. M. Calm, A. H. Rose, L. D’Imperio, C. Yang, J. R. Naughton, M. J. Burns, K. Kempa, and M. J. Naughton, “Wireless communication system via nanoscale plasmonic antennas,” Sci. Rep. 6(1), 31710 (2016).
[Crossref] [PubMed]

Moewe, M.

Moresco, M.

Naughton, J. R.

J. M. Merlo, N. T. Nesbitt, Y. M. Calm, A. H. Rose, L. D’Imperio, C. Yang, J. R. Naughton, M. J. Burns, K. Kempa, and M. J. Naughton, “Wireless communication system via nanoscale plasmonic antennas,” Sci. Rep. 6(1), 31710 (2016).
[Crossref] [PubMed]

Naughton, M. J.

J. M. Merlo, N. T. Nesbitt, Y. M. Calm, A. H. Rose, L. D’Imperio, C. Yang, J. R. Naughton, M. J. Burns, K. Kempa, and M. J. Naughton, “Wireless communication system via nanoscale plasmonic antennas,” Sci. Rep. 6(1), 31710 (2016).
[Crossref] [PubMed]

Nesbitt, N. T.

J. M. Merlo, N. T. Nesbitt, Y. M. Calm, A. H. Rose, L. D’Imperio, C. Yang, J. R. Naughton, M. J. Burns, K. Kempa, and M. J. Naughton, “Wireless communication system via nanoscale plasmonic antennas,” Sci. Rep. 6(1), 31710 (2016).
[Crossref] [PubMed]

Pease, R. F. W.

A. Hosseini, D. Kwong, Y. Zhao, Y. S. Chen, F. Crnogorac, R. F. W. Pease, and R. T. Chen, “Unequally Spaced Waveguide Arrays for Silicon Nanomembrane-Based Efficient Large Angle Optical Beam Steering,” IEEE J. Sel. Top. Quant. 15(5), 1439–1446 (2009).
[Crossref]

Peters, J. D.

Petruzzelli, V.

Phare, C. T.

D. N. Hutchison, J. Sun, J. K. Doylend, R. Kumar, J. Heck, W. Kim, C. T. Phare, A. Feshali, and H. Rong, “High-resolution aliasing-free optical beam steering,” Optica 3(8), 887 (2016).
[Crossref]

C. T. Phare, M. C. Shin, J. Sharma, S. Ahasan, H. Krishnaswamy, and M. Lipson, “Silicon Optical Phased Array with Grating Lobe-Free Beam Formation Over 180 Degree Field of View,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online)Optical Society of America, 2018), paperSM3I.2
[Crossref]

Poulton, C. V.

Qiu, M.

Y. Yang, Q. Li, and M. Qiu, “Broadband nanophotonic wireless links and networks using on-chip integrated plasmonic antennas,” Sci. Rep. 6(1), 19490 (2016).
[Crossref] [PubMed]

Raval, M.

Roelkens, G.

G. Roelkens, D. Vermeulen, F. Van Laere, S. Selvaraja, S. Scheerlinck, D. Taillaert, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Bridging the gap between nanophotonic waveguide circuits and single mode optical fibers using diffractive grating structures,” J. Nanosci. Nanotechnol. 10(3), 1551–1562 (2010).
[Crossref] [PubMed]

Rong, H.

Rose, A. H.

J. M. Merlo, N. T. Nesbitt, Y. M. Calm, A. H. Rose, L. D’Imperio, C. Yang, J. R. Naughton, M. J. Burns, K. Kempa, and M. J. Naughton, “Wireless communication system via nanoscale plasmonic antennas,” Sci. Rep. 6(1), 31710 (2016).
[Crossref] [PubMed]

Sánchez, L.

C. García-Meca, S. Lechago, A. Brimont, A. Griol, S. Mas, L. Sánchez, L. Bellieres, N. S. Losilla, and J. Martí, “On-chip wireless silicon photonics: from reconfigurable interconnects to lab-on-chip devices,” Light Sci. Appl. 6(9), e17053 (2017).
[Crossref] [PubMed]

Sánchez-Losilla, N.

Scheerlinck, S.

G. Roelkens, D. Vermeulen, F. Van Laere, S. Selvaraja, S. Scheerlinck, D. Taillaert, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Bridging the gap between nanophotonic waveguide circuits and single mode optical fibers using diffractive grating structures,” J. Nanosci. Nanotechnol. 10(3), 1551–1562 (2010).
[Crossref] [PubMed]

Sedgwick, F. G.

Selvaraja, S.

G. Roelkens, D. Vermeulen, F. Van Laere, S. Selvaraja, S. Scheerlinck, D. Taillaert, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Bridging the gap between nanophotonic waveguide circuits and single mode optical fibers using diffractive grating structures,” J. Nanosci. Nanotechnol. 10(3), 1551–1562 (2010).
[Crossref] [PubMed]

Sharma, J.

C. T. Phare, M. C. Shin, J. Sharma, S. Ahasan, H. Krishnaswamy, and M. Lipson, “Silicon Optical Phased Array with Grating Lobe-Free Beam Formation Over 180 Degree Field of View,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online)Optical Society of America, 2018), paperSM3I.2
[Crossref]

Shin, M. C.

C. T. Phare, M. C. Shin, J. Sharma, S. Ahasan, H. Krishnaswamy, and M. Lipson, “Silicon Optical Phased Array with Grating Lobe-Free Beam Formation Over 180 Degree Field of View,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online)Optical Society of America, 2018), paperSM3I.2
[Crossref]

Subbaraman, H.

Sun, J.

Taillaert, D.

G. Roelkens, D. Vermeulen, F. Van Laere, S. Selvaraja, S. Scheerlinck, D. Taillaert, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Bridging the gap between nanophotonic waveguide circuits and single mode optical fibers using diffractive grating structures,” J. Nanosci. Nanotechnol. 10(3), 1551–1562 (2010).
[Crossref] [PubMed]

Timurdogan, E.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[Crossref] [PubMed]

Van Acoleyen, K.

Van Laere, F.

G. Roelkens, D. Vermeulen, F. Van Laere, S. Selvaraja, S. Scheerlinck, D. Taillaert, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Bridging the gap between nanophotonic waveguide circuits and single mode optical fibers using diffractive grating structures,” J. Nanosci. Nanotechnol. 10(3), 1551–1562 (2010).
[Crossref] [PubMed]

Van Thourhout, D.

G. Roelkens, D. Vermeulen, F. Van Laere, S. Selvaraja, S. Scheerlinck, D. Taillaert, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Bridging the gap between nanophotonic waveguide circuits and single mode optical fibers using diffractive grating structures,” J. Nanosci. Nanotechnol. 10(3), 1551–1562 (2010).
[Crossref] [PubMed]

Vermeulen, D.

G. Roelkens, D. Vermeulen, F. Van Laere, S. Selvaraja, S. Scheerlinck, D. Taillaert, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Bridging the gap between nanophotonic waveguide circuits and single mode optical fibers using diffractive grating structures,” J. Nanosci. Nanotechnol. 10(3), 1551–1562 (2010).
[Crossref] [PubMed]

Watts, M. R.

Xu, X.

Yaacobi, A.

A. Yaacobi, J. Sun, M. Moresco, G. Leake, D. Coolbaugh, and M. R. Watts, “Integrated phased array for wide-angle beam steering,” Opt. Lett. 39(15), 4575–4578 (2014).
[Crossref] [PubMed]

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[Crossref] [PubMed]

Yang, C.

J. M. Merlo, N. T. Nesbitt, Y. M. Calm, A. H. Rose, L. D’Imperio, C. Yang, J. R. Naughton, M. J. Burns, K. Kempa, and M. J. Naughton, “Wireless communication system via nanoscale plasmonic antennas,” Sci. Rep. 6(1), 31710 (2016).
[Crossref] [PubMed]

Yang, W.

Yang, Y.

Y. Yang, Q. Li, and M. Qiu, “Broadband nanophotonic wireless links and networks using on-chip integrated plasmonic antennas,” Sci. Rep. 6(1), 19490 (2016).
[Crossref] [PubMed]

Zhang, Y.

D. Kwong, A. Hosseini, J. Covey, Y. Zhang, X. Xu, H. Subbaraman, and R. T. Chen, “On-chip silicon optical phased array for two-dimensional beam steering,” Opt. Lett. 39(4), 941–944 (2014).
[Crossref] [PubMed]

D. N. Kwong, Y. Zhang, A. Hosseini, and R. T. Chen, “Integrated optical phased array based large angle beam steering system fabricated on silicon-on-insulator,” in Proc. SPIE (2011), 7943, 79 430Y–1-79 430Y–6.

Zhao, Y.

A. Hosseini, D. Kwong, Y. Zhao, Y. S. Chen, F. Crnogorac, R. F. W. Pease, and R. T. Chen, “Unequally Spaced Waveguide Arrays for Silicon Nanomembrane-Based Efficient Large Angle Optical Beam Steering,” IEEE J. Sel. Top. Quant. 15(5), 1439–1446 (2009).
[Crossref]

Zhou, Y.

Y. Zhou, M. Moewe, J. Kern, M. C. Huang, and C. J. Chang-Hasnain, “Surface-normal emission of a high-Q resonator using a subwavelength high-contrast grating,” Opt. Express 16(22), 17282–17287 (2008).
[Crossref] [PubMed]

M. C. Y. Huang, Y. Zhou, and C. J. Changhasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics 1(297), 119–122 (2007).
[Crossref]

Zhu, L.

Adv. Opt. Photonics (1)

C. J. Chang-Hasnain and W. Yang, “High contrast gratings for integrated optoelectronics,” Adv. Opt. Photonics 4(3), 379 (2012).
[Crossref]

IEEE J. Sel. Top. Quant. (1)

A. Hosseini, D. Kwong, Y. Zhao, Y. S. Chen, F. Crnogorac, R. F. W. Pease, and R. T. Chen, “Unequally Spaced Waveguide Arrays for Silicon Nanomembrane-Based Efficient Large Angle Optical Beam Steering,” IEEE J. Sel. Top. Quant. 15(5), 1439–1446 (2009).
[Crossref]

IEEE J. Solid-State Circuits (1)

S. W. Chung, H. Abediasl, and H. Hashemi, “A Monolithically Integrated Large-Scale Optical Phased Array in Silicon-on-Insulator CMOS,” IEEE J. Solid-State Circuits 53(1), 275–296 (2018).
[Crossref]

IEEE Photonic Tech. L. (1)

K. Van Acoleyen, W. Bogaerts, and R. Baets, “Two-Dimensional Dispersive Off-Chip Beam Scanner Fabricated on Silicon-On-Insulator,” IEEE Photonic Tech. L. 23, 1270–1272 (2011).

J. Lightwave Technol. (1)

J. Nanosci. Nanotechnol. (1)

G. Roelkens, D. Vermeulen, F. Van Laere, S. Selvaraja, S. Scheerlinck, D. Taillaert, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Bridging the gap between nanophotonic waveguide circuits and single mode optical fibers using diffractive grating structures,” J. Nanosci. Nanotechnol. 10(3), 1551–1562 (2010).
[Crossref] [PubMed]

Light Sci. Appl. (1)

C. García-Meca, S. Lechago, A. Brimont, A. Griol, S. Mas, L. Sánchez, L. Bellieres, N. S. Losilla, and J. Martí, “On-chip wireless silicon photonics: from reconfigurable interconnects to lab-on-chip devices,” Light Sci. Appl. 6(9), e17053 (2017).
[Crossref] [PubMed]

Nat. Photonics (1)

M. C. Y. Huang, Y. Zhou, and C. J. Changhasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics 1(297), 119–122 (2007).
[Crossref]

Nature (1)

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[Crossref] [PubMed]

Opt. Express (9)

S. Lechago, C. García-Meca, N. Sánchez-Losilla, A. Griol, and J. Martí, “High signal-to-noise ratio ultra-compact lab-on-a-chip microflow cytometer enabled by silicon optical antennas,” Opt. Express 26(20), 25645–25656 (2018).
[Crossref] [PubMed]

G. Bellanca, G. Calò, A. E. Kaplan, P. Bassi, and V. Petruzzelli, “Integrated Vivaldi plasmonic antenna for wireless on-chip optical communications,” Opt. Express 25(14), 16214–16227 (2017).
[Crossref] [PubMed]

G. Calò, G. Bellanca, B. Alam, A. E. Kaplan, P. Bassi, and V. Petruzzelli, “Array of plasmonic Vivaldi antennas coupled to silicon waveguides for wireless networks through on-chip optical technology - WiNOT,” Opt. Express 26(23), 30267–30277 (2018).
[Crossref] [PubMed]

J. C. Hulme, J. K. Doylend, M. J. Heck, J. D. Peters, M. L. Davenport, J. T. Bovington, L. A. Coldren, and J. E. Bowers, “Fully integrated hybrid silicon two dimensional beam scanner,” Opt. Express 23(5), 5861–5874 (2015).
[Crossref] [PubMed]

J. K. Doylend, M. J. Heck, J. T. Bovington, J. D. Peters, L. A. Coldren, and J. E. Bowers, “Two-dimensional free-space beam steering with an optical phased array on silicon-on-insulator,” Opt. Express 19(22), 21595–21604 (2011).
[Crossref] [PubMed]

Y. Zhou, M. Moewe, J. Kern, M. C. Huang, and C. J. Chang-Hasnain, “Surface-normal emission of a high-Q resonator using a subwavelength high-contrast grating,” Opt. Express 16(22), 17282–17287 (2008).
[Crossref] [PubMed]

L. Zhu, W. Yang, and C. Chang-Hasnain, “Very high efficiency optical coupler for silicon nanophotonic waveguide and single mode optical fiber,” Opt. Express 25(15), 18462–18473 (2017).
[Crossref] [PubMed]

V. Karagodsky, F. G. Sedgwick, and C. J. Chang-Hasnain, “Theoretical analysis of subwavelength high contrast grating reflectors,” Opt. Express 18(16), 16973–16988 (2010).
[Crossref] [PubMed]

V. Karagodsky and C. J. Chang-Hasnain, “Physics of near-wavelength high contrast gratings,” Opt. Express 20(10), 10888–10895 (2012).
[Crossref] [PubMed]

Opt. Lett. (5)

Optica (2)

Sci. Rep. (2)

Y. Yang, Q. Li, and M. Qiu, “Broadband nanophotonic wireless links and networks using on-chip integrated plasmonic antennas,” Sci. Rep. 6(1), 19490 (2016).
[Crossref] [PubMed]

J. M. Merlo, N. T. Nesbitt, Y. M. Calm, A. H. Rose, L. D’Imperio, C. Yang, J. R. Naughton, M. J. Burns, K. Kempa, and M. J. Naughton, “Wireless communication system via nanoscale plasmonic antennas,” Sci. Rep. 6(1), 31710 (2016).
[Crossref] [PubMed]

Other (3)

D. N. Kwong, Y. Zhang, A. Hosseini, and R. T. Chen, “Integrated optical phased array based large angle beam steering system fabricated on silicon-on-insulator,” in Proc. SPIE (2011), 7943, 79 430Y–1-79 430Y–6.

C. T. Phare, M. C. Shin, J. Sharma, S. Ahasan, H. Krishnaswamy, and M. Lipson, “Silicon Optical Phased Array with Grating Lobe-Free Beam Formation Over 180 Degree Field of View,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online)Optical Society of America, 2018), paperSM3I.2
[Crossref]

Lumerical Solutions, Inc., http://www.lumerical.com/tcad-products/fdtd/ .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic of the HCG optical antenna for integrated LIDAR with optical phased arrays on SOI substrate.
Fig. 2
Fig. 2 Field profile for light emitting from waveguide incidence to space.
Fig. 3
Fig. 3 (a) Emisson spectrum with different Λ; (b) Emisson spectrum with different g; (c) Emission efficiency with different H_HCG and duty cycle at 1.55 μm; (d) Light transmission efficiency in different directions, the black line indicates the input efficiency, the red line indicates the upward emission efficiency, the blue line indicates the remaining efficiency through the optical antenna, and the pink line indicates the downward leakage efficiency. (The negative sign indicates that the radiation direction is downward.)
Fig. 4
Fig. 4 (a) Simulated far field radiation of the 16-wire HCG optical antenna, showing 22.8° radiation angle to the normal of the chip surface; (b) and (c) indicate the far field profile of 4 wires, 8 wires, 16 wires and 32 wires optical antenna in Ψ axis and θ axis, respectively. The maximum value of the simulation results is normalized.
Fig. 5
Fig. 5 (a) and (b) indicate beam profiles at 1.55 μm wavelength as the beam was swept in the Ψ axis by changing the phase difference between adjacent waveguides Δφ from 0° to 360°; (c) The maximum scanning angle of the optical antenna in the Ψ axis when d = 0.5 μm, 1 μm, 1.5 μm and 2 μm; (d) Antenna emission efficiency when Δφ changes from 0° to 360° when d = 1.5um.
Fig. 6
Fig. 6 Normalized optical output profile in the far field as the beam was swept in the θ axis by changing the wavelength from 1.48 μm to 1.62 μm.

Tables (1)

Tables Icon

Table 1 Optimization Results of the HCG Optical Antenna

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

n 0 sin θ i + λ Λ = n eff
W HCG=N( W Wg+d) .
Ψ=arcsin( λ 0 /(d+ W Wg)),
sinΨ= λ 0 Δϕ 2π(d+ W Wg)
sinθ= n eff Λ λ 0 Λ

Metrics