Abstract

Threshold carrier densities of GeSn quantum well (QW) lasers and the physical reason of low-temperature lasing of current GeSn laser are investigated through the comparison of threshold carrier densities of conventional III-V QW lasers. Electrons distributed over L-band is the main cause of decreased gain for GeSn QWs. To increase the gain (and improve the laser characteristics), a modulation-doped GeSn QW is proposed and the material gain is analyzed based on many-body theory for both qualitative and quantitative simulation. Significant gain increase can be expected for n-type modulation doping QWs. The doping condition for elevated temperature lasing is discussed and it was found that material gain curve similar to III-V QW is obtained for GeSn QW with n-type modulation doping of 6 × 1018 cm−3. It was also found that unlike III-V QW lasers, n-type modulation doping is more effective for high-speed operation in terms of differential gain than p-type modulation doping.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Theoretical analysis of optical gain in uniaxial tensile strained and n+-doped Ge/GeSi quantum well

Jialin Jiang and Junqiang Sun
Opt. Express 24(13) 14525-14537 (2016)

Design of a Si-based lattice-matched room-temperature GeSn/GeSiSn multi-quantum-well mid-infrared laser diode

G. Sun, R. A. Soref, and H. H. Cheng
Opt. Express 18(19) 19957-19965 (2010)

Study of a SiGeSn/GeSn/SiGeSn structure toward direct bandgap type-I quantum well for all group-IV optoelectronics

Seyed Amir Ghetmiri, Yiyin Zhou, Joe Margetis, Sattar Al-Kabi, Wei Dou, Aboozar Mosleh, Wei Du, Andrian Kuchuk, Jifeng Liu, Greg Sun, Richard A. Soref, John Tolle, Hameed A. Naseem, Baohua Li, Mansour Mortazavi, and Shui-Qing Yu
Opt. Lett. 42(3) 387-390 (2017)

References

  • View by:
  • |
  • |
  • |

  1. R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4(8), 495–497 (2010).
    [Crossref]
  2. G. Roelkens, U. D. U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. V. Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, C. A. C. Peacock, X. Liu, R. Osgood, W. M. J. W. Green, J. V. Campenhout, and E. Tournié, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8201511 (2014).
  3. M. Akie, T. Fujisawa, T. Sato, M. Arai, and K. Saitoh, “GeSn/SiGeSn multiple-quantum-well electroabsorption modulator with taper coupler for mid-infrared Ge-on-Si platform,” IEEE J. Sel. Top. Quantum Electron. 24(6), 3400208 (2018).
    [Crossref]
  4. S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
    [Crossref]
  5. V. Reboud, A. Gassenq, N. Pauc, J. Aubin, L. Milord, Q. M. Thai, M. Bertrand, K. Guilloy, D. Rouchon, J. Rothman, T. Zabel, F. A. Pilon, H. Sigg, A. Chelnokov, J. M. Hartmann, and V. Calvo, “Optically pumped GeSn micro-disks with 16% Sn lasing at 3.1 μm up to 180 K,” Appl. Phys. Lett. 111(9), 092101 (2017).
    [Crossref]
  6. J. Margetis, S. Al-Kabi, W. Du, W. Dou, Y. Zhou, T. Pham, P. Grant, S. A. Ghetmiri, A. Mosleh, B. Li, J. Liu, G. Sun, R. A. Soref, J. Tolle, M. Mortazavi, and S.-Q. Yu, “Si-based GeSn lasers with wavelength coverage of 2-3 μm and operating temperature up to 180 K,” ACS Photonics 5(3), 827–833 (2018).
    [Crossref]
  7. N. von den Driesch, D. Stange, D. Rainko, I. Povstugar, P. Zaumseil, G. Capellini, T. Schröder, T. Denneulin, Z. Ikonic, J.-M. Hartmann, H. Sigg, S. Mantl, D. Grützmacher, and D. Buca, “Advanced GeSn/SiGeSn Group IV Heterostructure Lasers,” Adv. Sci. (Weinh.) 5(6), 1700955 (2018).
    [Crossref] [PubMed]
  8. T. Fujisawa and K. Saitoh, “Material gain analysis of GeSn/SiGeSn quantum wells for mid-infrared Si-based light sources based on many-body theory,” IEEE J. Quantum Electron. 51(5), 7100108 (2015).
    [Crossref]
  9. T. Fujisawa and K. Saitoh, “Quantum-confined Stark effect analysis of GeSn/SiGeSn quantum wells for mid-infrared Si-based electroabsorption devices based on many-body theory,” IEEE J. Quantum Electron. 51(11), 8400207 (2015).
    [Crossref]
  10. W. Kobayashi, T. Fujisawa, K. Tsuzuki, Y. Ohiso, T. Ito, S. Kanazawa, T. Yamanaka, and H. Sanjoh, “Design and fabrication of wide wavelength range 25.8-Gb/s, 1.3-μm, push-pull-driven DMLs,” J. Lightwave Technol. 32(1), 3–9 (2014).
    [Crossref]
  11. K. Uomi, “Modulation-doped multi-quantum well (MD-MQW) lasers. I Theory,” Jpn. J. Appl. Phys. 29(1), 81–87 (1990).
    [Crossref]
  12. K. Uomi, T. Mishima, and N. Chinone, “Modulation-doped multi-quantum well (MD-MQW) lasers. II Experiment,” Jpn. J. Appl. Phys. 29(1), 88–94 (1990).
    [Crossref]
  13. G.-E. Chang, S.-W. Chang, and S. L. Chuang, “Theory for n-type doped, tensile-strained Ge-Si(x)Ge(y)Sn1-x-y quantum-well lasers at telecom wavelength,” Opt. Express 17(14), 11246–11258 (2009).
    [Crossref] [PubMed]
  14. G.-E. Chang, S.-W. Chang, and S. L. Chuang, “Strain-balanced GezSn1-z-SixGeySn1-x-y multiple-quantum-well lasers,” IEEE J. Quantum Electron. 46(12), 1813–1820 (2010).
    [Crossref]
  15. M. Nedeljkovic, R. Soref, and G. Z. Mashanovich, “Predictions of free-carrier electroabsorption and electrorefraction in Germanium,” IEEE Photonics J. 7(3), 2600214 (2015).
    [Crossref]
  16. T. Fujisawa and M. Koshiba, “Finite element characterization of chromatic dispersion in nonlinear holey fibers,” Opt. Express 11(13), 1481–1489 (2003).
    [Crossref] [PubMed]
  17. T. Tadokoro, W. Kobayashi, T. Fujisawa, T. Yamanaka, and F. Kano, “43-Gb/s 1.3-μm DFB laser for 40-km transmission,” J. Lightwave Technol. 30(15), 2520–2524 (2012).
    [Crossref]
  18. T. Fujisawa, T. Sato, M. Mitsuhara, T. Kakitsuka, T. Yamanaka, Y. Kondo, and F. Kano, “Successful application of the 8-band k∙p theory to optical properties of highly strained In(Ga)As/InGaAs quantum wells with strong conduction-valence band coupling,” IEEE J. Quantum Electron. 45(9), 1183–1191 (2009).
    [Crossref]

2018 (3)

M. Akie, T. Fujisawa, T. Sato, M. Arai, and K. Saitoh, “GeSn/SiGeSn multiple-quantum-well electroabsorption modulator with taper coupler for mid-infrared Ge-on-Si platform,” IEEE J. Sel. Top. Quantum Electron. 24(6), 3400208 (2018).
[Crossref]

J. Margetis, S. Al-Kabi, W. Du, W. Dou, Y. Zhou, T. Pham, P. Grant, S. A. Ghetmiri, A. Mosleh, B. Li, J. Liu, G. Sun, R. A. Soref, J. Tolle, M. Mortazavi, and S.-Q. Yu, “Si-based GeSn lasers with wavelength coverage of 2-3 μm and operating temperature up to 180 K,” ACS Photonics 5(3), 827–833 (2018).
[Crossref]

N. von den Driesch, D. Stange, D. Rainko, I. Povstugar, P. Zaumseil, G. Capellini, T. Schröder, T. Denneulin, Z. Ikonic, J.-M. Hartmann, H. Sigg, S. Mantl, D. Grützmacher, and D. Buca, “Advanced GeSn/SiGeSn Group IV Heterostructure Lasers,” Adv. Sci. (Weinh.) 5(6), 1700955 (2018).
[Crossref] [PubMed]

2017 (1)

V. Reboud, A. Gassenq, N. Pauc, J. Aubin, L. Milord, Q. M. Thai, M. Bertrand, K. Guilloy, D. Rouchon, J. Rothman, T. Zabel, F. A. Pilon, H. Sigg, A. Chelnokov, J. M. Hartmann, and V. Calvo, “Optically pumped GeSn micro-disks with 16% Sn lasing at 3.1 μm up to 180 K,” Appl. Phys. Lett. 111(9), 092101 (2017).
[Crossref]

2015 (4)

M. Nedeljkovic, R. Soref, and G. Z. Mashanovich, “Predictions of free-carrier electroabsorption and electrorefraction in Germanium,” IEEE Photonics J. 7(3), 2600214 (2015).
[Crossref]

T. Fujisawa and K. Saitoh, “Material gain analysis of GeSn/SiGeSn quantum wells for mid-infrared Si-based light sources based on many-body theory,” IEEE J. Quantum Electron. 51(5), 7100108 (2015).
[Crossref]

T. Fujisawa and K. Saitoh, “Quantum-confined Stark effect analysis of GeSn/SiGeSn quantum wells for mid-infrared Si-based electroabsorption devices based on many-body theory,” IEEE J. Quantum Electron. 51(11), 8400207 (2015).
[Crossref]

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

2014 (2)

G. Roelkens, U. D. U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. V. Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, C. A. C. Peacock, X. Liu, R. Osgood, W. M. J. W. Green, J. V. Campenhout, and E. Tournié, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8201511 (2014).

W. Kobayashi, T. Fujisawa, K. Tsuzuki, Y. Ohiso, T. Ito, S. Kanazawa, T. Yamanaka, and H. Sanjoh, “Design and fabrication of wide wavelength range 25.8-Gb/s, 1.3-μm, push-pull-driven DMLs,” J. Lightwave Technol. 32(1), 3–9 (2014).
[Crossref]

2012 (1)

2010 (2)

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4(8), 495–497 (2010).
[Crossref]

G.-E. Chang, S.-W. Chang, and S. L. Chuang, “Strain-balanced GezSn1-z-SixGeySn1-x-y multiple-quantum-well lasers,” IEEE J. Quantum Electron. 46(12), 1813–1820 (2010).
[Crossref]

2009 (2)

G.-E. Chang, S.-W. Chang, and S. L. Chuang, “Theory for n-type doped, tensile-strained Ge-Si(x)Ge(y)Sn1-x-y quantum-well lasers at telecom wavelength,” Opt. Express 17(14), 11246–11258 (2009).
[Crossref] [PubMed]

T. Fujisawa, T. Sato, M. Mitsuhara, T. Kakitsuka, T. Yamanaka, Y. Kondo, and F. Kano, “Successful application of the 8-band k∙p theory to optical properties of highly strained In(Ga)As/InGaAs quantum wells with strong conduction-valence band coupling,” IEEE J. Quantum Electron. 45(9), 1183–1191 (2009).
[Crossref]

2003 (1)

1990 (2)

K. Uomi, “Modulation-doped multi-quantum well (MD-MQW) lasers. I Theory,” Jpn. J. Appl. Phys. 29(1), 81–87 (1990).
[Crossref]

K. Uomi, T. Mishima, and N. Chinone, “Modulation-doped multi-quantum well (MD-MQW) lasers. II Experiment,” Jpn. J. Appl. Phys. 29(1), 88–94 (1990).
[Crossref]

Akie, M.

M. Akie, T. Fujisawa, T. Sato, M. Arai, and K. Saitoh, “GeSn/SiGeSn multiple-quantum-well electroabsorption modulator with taper coupler for mid-infrared Ge-on-Si platform,” IEEE J. Sel. Top. Quantum Electron. 24(6), 3400208 (2018).
[Crossref]

Al-Kabi, S.

J. Margetis, S. Al-Kabi, W. Du, W. Dou, Y. Zhou, T. Pham, P. Grant, S. A. Ghetmiri, A. Mosleh, B. Li, J. Liu, G. Sun, R. A. Soref, J. Tolle, M. Mortazavi, and S.-Q. Yu, “Si-based GeSn lasers with wavelength coverage of 2-3 μm and operating temperature up to 180 K,” ACS Photonics 5(3), 827–833 (2018).
[Crossref]

Arai, M.

M. Akie, T. Fujisawa, T. Sato, M. Arai, and K. Saitoh, “GeSn/SiGeSn multiple-quantum-well electroabsorption modulator with taper coupler for mid-infrared Ge-on-Si platform,” IEEE J. Sel. Top. Quantum Electron. 24(6), 3400208 (2018).
[Crossref]

Aubin, J.

V. Reboud, A. Gassenq, N. Pauc, J. Aubin, L. Milord, Q. M. Thai, M. Bertrand, K. Guilloy, D. Rouchon, J. Rothman, T. Zabel, F. A. Pilon, H. Sigg, A. Chelnokov, J. M. Hartmann, and V. Calvo, “Optically pumped GeSn micro-disks with 16% Sn lasing at 3.1 μm up to 180 K,” Appl. Phys. Lett. 111(9), 092101 (2017).
[Crossref]

Baets, R.

G. Roelkens, U. D. U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. V. Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, C. A. C. Peacock, X. Liu, R. Osgood, W. M. J. W. Green, J. V. Campenhout, and E. Tournié, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8201511 (2014).

Bertrand, M.

V. Reboud, A. Gassenq, N. Pauc, J. Aubin, L. Milord, Q. M. Thai, M. Bertrand, K. Guilloy, D. Rouchon, J. Rothman, T. Zabel, F. A. Pilon, H. Sigg, A. Chelnokov, J. M. Hartmann, and V. Calvo, “Optically pumped GeSn micro-disks with 16% Sn lasing at 3.1 μm up to 180 K,” Appl. Phys. Lett. 111(9), 092101 (2017).
[Crossref]

Buca, D.

N. von den Driesch, D. Stange, D. Rainko, I. Povstugar, P. Zaumseil, G. Capellini, T. Schröder, T. Denneulin, Z. Ikonic, J.-M. Hartmann, H. Sigg, S. Mantl, D. Grützmacher, and D. Buca, “Advanced GeSn/SiGeSn Group IV Heterostructure Lasers,” Adv. Sci. (Weinh.) 5(6), 1700955 (2018).
[Crossref] [PubMed]

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Calvo, V.

V. Reboud, A. Gassenq, N. Pauc, J. Aubin, L. Milord, Q. M. Thai, M. Bertrand, K. Guilloy, D. Rouchon, J. Rothman, T. Zabel, F. A. Pilon, H. Sigg, A. Chelnokov, J. M. Hartmann, and V. Calvo, “Optically pumped GeSn micro-disks with 16% Sn lasing at 3.1 μm up to 180 K,” Appl. Phys. Lett. 111(9), 092101 (2017).
[Crossref]

Campenhout, J. V.

G. Roelkens, U. D. U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. V. Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, C. A. C. Peacock, X. Liu, R. Osgood, W. M. J. W. Green, J. V. Campenhout, and E. Tournié, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8201511 (2014).

G. Roelkens, U. D. U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. V. Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, C. A. C. Peacock, X. Liu, R. Osgood, W. M. J. W. Green, J. V. Campenhout, and E. Tournié, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8201511 (2014).

Capellini, G.

N. von den Driesch, D. Stange, D. Rainko, I. Povstugar, P. Zaumseil, G. Capellini, T. Schröder, T. Denneulin, Z. Ikonic, J.-M. Hartmann, H. Sigg, S. Mantl, D. Grützmacher, and D. Buca, “Advanced GeSn/SiGeSn Group IV Heterostructure Lasers,” Adv. Sci. (Weinh.) 5(6), 1700955 (2018).
[Crossref] [PubMed]

Cerutti, L.

G. Roelkens, U. D. U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. V. Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, C. A. C. Peacock, X. Liu, R. Osgood, W. M. J. W. Green, J. V. Campenhout, and E. Tournié, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8201511 (2014).

Chang, G.-E.

G.-E. Chang, S.-W. Chang, and S. L. Chuang, “Strain-balanced GezSn1-z-SixGeySn1-x-y multiple-quantum-well lasers,” IEEE J. Quantum Electron. 46(12), 1813–1820 (2010).
[Crossref]

G.-E. Chang, S.-W. Chang, and S. L. Chuang, “Theory for n-type doped, tensile-strained Ge-Si(x)Ge(y)Sn1-x-y quantum-well lasers at telecom wavelength,” Opt. Express 17(14), 11246–11258 (2009).
[Crossref] [PubMed]

Chang, S.-W.

G.-E. Chang, S.-W. Chang, and S. L. Chuang, “Strain-balanced GezSn1-z-SixGeySn1-x-y multiple-quantum-well lasers,” IEEE J. Quantum Electron. 46(12), 1813–1820 (2010).
[Crossref]

G.-E. Chang, S.-W. Chang, and S. L. Chuang, “Theory for n-type doped, tensile-strained Ge-Si(x)Ge(y)Sn1-x-y quantum-well lasers at telecom wavelength,” Opt. Express 17(14), 11246–11258 (2009).
[Crossref] [PubMed]

Chelnokov, A.

V. Reboud, A. Gassenq, N. Pauc, J. Aubin, L. Milord, Q. M. Thai, M. Bertrand, K. Guilloy, D. Rouchon, J. Rothman, T. Zabel, F. A. Pilon, H. Sigg, A. Chelnokov, J. M. Hartmann, and V. Calvo, “Optically pumped GeSn micro-disks with 16% Sn lasing at 3.1 μm up to 180 K,” Appl. Phys. Lett. 111(9), 092101 (2017).
[Crossref]

Chen, X.

G. Roelkens, U. D. U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. V. Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, C. A. C. Peacock, X. Liu, R. Osgood, W. M. J. W. Green, J. V. Campenhout, and E. Tournié, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8201511 (2014).

Chinone, N.

K. Uomi, T. Mishima, and N. Chinone, “Modulation-doped multi-quantum well (MD-MQW) lasers. II Experiment,” Jpn. J. Appl. Phys. 29(1), 88–94 (1990).
[Crossref]

Chiussi, S.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Chuang, S. L.

G.-E. Chang, S.-W. Chang, and S. L. Chuang, “Strain-balanced GezSn1-z-SixGeySn1-x-y multiple-quantum-well lasers,” IEEE J. Quantum Electron. 46(12), 1813–1820 (2010).
[Crossref]

G.-E. Chang, S.-W. Chang, and S. L. Chuang, “Theory for n-type doped, tensile-strained Ge-Si(x)Ge(y)Sn1-x-y quantum-well lasers at telecom wavelength,” Opt. Express 17(14), 11246–11258 (2009).
[Crossref] [PubMed]

Dave, U. D. U.

G. Roelkens, U. D. U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. V. Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, C. A. C. Peacock, X. Liu, R. Osgood, W. M. J. W. Green, J. V. Campenhout, and E. Tournié, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8201511 (2014).

Denneulin, T.

N. von den Driesch, D. Stange, D. Rainko, I. Povstugar, P. Zaumseil, G. Capellini, T. Schröder, T. Denneulin, Z. Ikonic, J.-M. Hartmann, H. Sigg, S. Mantl, D. Grützmacher, and D. Buca, “Advanced GeSn/SiGeSn Group IV Heterostructure Lasers,” Adv. Sci. (Weinh.) 5(6), 1700955 (2018).
[Crossref] [PubMed]

Dou, W.

J. Margetis, S. Al-Kabi, W. Du, W. Dou, Y. Zhou, T. Pham, P. Grant, S. A. Ghetmiri, A. Mosleh, B. Li, J. Liu, G. Sun, R. A. Soref, J. Tolle, M. Mortazavi, and S.-Q. Yu, “Si-based GeSn lasers with wavelength coverage of 2-3 μm and operating temperature up to 180 K,” ACS Photonics 5(3), 827–833 (2018).
[Crossref]

Du, W.

J. Margetis, S. Al-Kabi, W. Du, W. Dou, Y. Zhou, T. Pham, P. Grant, S. A. Ghetmiri, A. Mosleh, B. Li, J. Liu, G. Sun, R. A. Soref, J. Tolle, M. Mortazavi, and S.-Q. Yu, “Si-based GeSn lasers with wavelength coverage of 2-3 μm and operating temperature up to 180 K,” ACS Photonics 5(3), 827–833 (2018).
[Crossref]

Faist, J.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Fujisawa, T.

M. Akie, T. Fujisawa, T. Sato, M. Arai, and K. Saitoh, “GeSn/SiGeSn multiple-quantum-well electroabsorption modulator with taper coupler for mid-infrared Ge-on-Si platform,” IEEE J. Sel. Top. Quantum Electron. 24(6), 3400208 (2018).
[Crossref]

T. Fujisawa and K. Saitoh, “Material gain analysis of GeSn/SiGeSn quantum wells for mid-infrared Si-based light sources based on many-body theory,” IEEE J. Quantum Electron. 51(5), 7100108 (2015).
[Crossref]

T. Fujisawa and K. Saitoh, “Quantum-confined Stark effect analysis of GeSn/SiGeSn quantum wells for mid-infrared Si-based electroabsorption devices based on many-body theory,” IEEE J. Quantum Electron. 51(11), 8400207 (2015).
[Crossref]

W. Kobayashi, T. Fujisawa, K. Tsuzuki, Y. Ohiso, T. Ito, S. Kanazawa, T. Yamanaka, and H. Sanjoh, “Design and fabrication of wide wavelength range 25.8-Gb/s, 1.3-μm, push-pull-driven DMLs,” J. Lightwave Technol. 32(1), 3–9 (2014).
[Crossref]

T. Tadokoro, W. Kobayashi, T. Fujisawa, T. Yamanaka, and F. Kano, “43-Gb/s 1.3-μm DFB laser for 40-km transmission,” J. Lightwave Technol. 30(15), 2520–2524 (2012).
[Crossref]

T. Fujisawa, T. Sato, M. Mitsuhara, T. Kakitsuka, T. Yamanaka, Y. Kondo, and F. Kano, “Successful application of the 8-band k∙p theory to optical properties of highly strained In(Ga)As/InGaAs quantum wells with strong conduction-valence band coupling,” IEEE J. Quantum Electron. 45(9), 1183–1191 (2009).
[Crossref]

T. Fujisawa and M. Koshiba, “Finite element characterization of chromatic dispersion in nonlinear holey fibers,” Opt. Express 11(13), 1481–1489 (2003).
[Crossref] [PubMed]

Gassenq, A.

V. Reboud, A. Gassenq, N. Pauc, J. Aubin, L. Milord, Q. M. Thai, M. Bertrand, K. Guilloy, D. Rouchon, J. Rothman, T. Zabel, F. A. Pilon, H. Sigg, A. Chelnokov, J. M. Hartmann, and V. Calvo, “Optically pumped GeSn micro-disks with 16% Sn lasing at 3.1 μm up to 180 K,” Appl. Phys. Lett. 111(9), 092101 (2017).
[Crossref]

G. Roelkens, U. D. U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. V. Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, C. A. C. Peacock, X. Liu, R. Osgood, W. M. J. W. Green, J. V. Campenhout, and E. Tournié, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8201511 (2014).

Geiger, R.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Gencarelli, F.

G. Roelkens, U. D. U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. V. Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, C. A. C. Peacock, X. Liu, R. Osgood, W. M. J. W. Green, J. V. Campenhout, and E. Tournié, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8201511 (2014).

Ghetmiri, S. A.

J. Margetis, S. Al-Kabi, W. Du, W. Dou, Y. Zhou, T. Pham, P. Grant, S. A. Ghetmiri, A. Mosleh, B. Li, J. Liu, G. Sun, R. A. Soref, J. Tolle, M. Mortazavi, and S.-Q. Yu, “Si-based GeSn lasers with wavelength coverage of 2-3 μm and operating temperature up to 180 K,” ACS Photonics 5(3), 827–833 (2018).
[Crossref]

Grant, P.

J. Margetis, S. Al-Kabi, W. Du, W. Dou, Y. Zhou, T. Pham, P. Grant, S. A. Ghetmiri, A. Mosleh, B. Li, J. Liu, G. Sun, R. A. Soref, J. Tolle, M. Mortazavi, and S.-Q. Yu, “Si-based GeSn lasers with wavelength coverage of 2-3 μm and operating temperature up to 180 K,” ACS Photonics 5(3), 827–833 (2018).
[Crossref]

Green, W. M. J. W.

G. Roelkens, U. D. U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. V. Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, C. A. C. Peacock, X. Liu, R. Osgood, W. M. J. W. Green, J. V. Campenhout, and E. Tournié, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8201511 (2014).

Grützmacher, D.

N. von den Driesch, D. Stange, D. Rainko, I. Povstugar, P. Zaumseil, G. Capellini, T. Schröder, T. Denneulin, Z. Ikonic, J.-M. Hartmann, H. Sigg, S. Mantl, D. Grützmacher, and D. Buca, “Advanced GeSn/SiGeSn Group IV Heterostructure Lasers,” Adv. Sci. (Weinh.) 5(6), 1700955 (2018).
[Crossref] [PubMed]

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Guilloy, K.

V. Reboud, A. Gassenq, N. Pauc, J. Aubin, L. Milord, Q. M. Thai, M. Bertrand, K. Guilloy, D. Rouchon, J. Rothman, T. Zabel, F. A. Pilon, H. Sigg, A. Chelnokov, J. M. Hartmann, and V. Calvo, “Optically pumped GeSn micro-disks with 16% Sn lasing at 3.1 μm up to 180 K,” Appl. Phys. Lett. 111(9), 092101 (2017).
[Crossref]

Hartmann, J. M.

V. Reboud, A. Gassenq, N. Pauc, J. Aubin, L. Milord, Q. M. Thai, M. Bertrand, K. Guilloy, D. Rouchon, J. Rothman, T. Zabel, F. A. Pilon, H. Sigg, A. Chelnokov, J. M. Hartmann, and V. Calvo, “Optically pumped GeSn micro-disks with 16% Sn lasing at 3.1 μm up to 180 K,” Appl. Phys. Lett. 111(9), 092101 (2017).
[Crossref]

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Hartmann, J.-M.

N. von den Driesch, D. Stange, D. Rainko, I. Povstugar, P. Zaumseil, G. Capellini, T. Schröder, T. Denneulin, Z. Ikonic, J.-M. Hartmann, H. Sigg, S. Mantl, D. Grützmacher, and D. Buca, “Advanced GeSn/SiGeSn Group IV Heterostructure Lasers,” Adv. Sci. (Weinh.) 5(6), 1700955 (2018).
[Crossref] [PubMed]

Hattasan, N.

G. Roelkens, U. D. U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. V. Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, C. A. C. Peacock, X. Liu, R. Osgood, W. M. J. W. Green, J. V. Campenhout, and E. Tournié, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8201511 (2014).

Healy, N.

G. Roelkens, U. D. U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. V. Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, C. A. C. Peacock, X. Liu, R. Osgood, W. M. J. W. Green, J. V. Campenhout, and E. Tournié, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8201511 (2014).

Hens, Z.

G. Roelkens, U. D. U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. V. Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, C. A. C. Peacock, X. Liu, R. Osgood, W. M. J. W. Green, J. V. Campenhout, and E. Tournié, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8201511 (2014).

Hu, C.

G. Roelkens, U. D. U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. V. Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, C. A. C. Peacock, X. Liu, R. Osgood, W. M. J. W. Green, J. V. Campenhout, and E. Tournié, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8201511 (2014).

Ikonic, Z.

N. von den Driesch, D. Stange, D. Rainko, I. Povstugar, P. Zaumseil, G. Capellini, T. Schröder, T. Denneulin, Z. Ikonic, J.-M. Hartmann, H. Sigg, S. Mantl, D. Grützmacher, and D. Buca, “Advanced GeSn/SiGeSn Group IV Heterostructure Lasers,” Adv. Sci. (Weinh.) 5(6), 1700955 (2018).
[Crossref] [PubMed]

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Ito, T.

Kakitsuka, T.

T. Fujisawa, T. Sato, M. Mitsuhara, T. Kakitsuka, T. Yamanaka, Y. Kondo, and F. Kano, “Successful application of the 8-band k∙p theory to optical properties of highly strained In(Ga)As/InGaAs quantum wells with strong conduction-valence band coupling,” IEEE J. Quantum Electron. 45(9), 1183–1191 (2009).
[Crossref]

Kanazawa, S.

Kano, F.

T. Tadokoro, W. Kobayashi, T. Fujisawa, T. Yamanaka, and F. Kano, “43-Gb/s 1.3-μm DFB laser for 40-km transmission,” J. Lightwave Technol. 30(15), 2520–2524 (2012).
[Crossref]

T. Fujisawa, T. Sato, M. Mitsuhara, T. Kakitsuka, T. Yamanaka, Y. Kondo, and F. Kano, “Successful application of the 8-band k∙p theory to optical properties of highly strained In(Ga)As/InGaAs quantum wells with strong conduction-valence band coupling,” IEEE J. Quantum Electron. 45(9), 1183–1191 (2009).
[Crossref]

Kobayashi, W.

Kondo, Y.

T. Fujisawa, T. Sato, M. Mitsuhara, T. Kakitsuka, T. Yamanaka, Y. Kondo, and F. Kano, “Successful application of the 8-band k∙p theory to optical properties of highly strained In(Ga)As/InGaAs quantum wells with strong conduction-valence band coupling,” IEEE J. Quantum Electron. 45(9), 1183–1191 (2009).
[Crossref]

Koshiba, M.

Kuyken, B.

G. Roelkens, U. D. U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. V. Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, C. A. C. Peacock, X. Liu, R. Osgood, W. M. J. W. Green, J. V. Campenhout, and E. Tournié, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8201511 (2014).

Leo, F.

G. Roelkens, U. D. U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. V. Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, C. A. C. Peacock, X. Liu, R. Osgood, W. M. J. W. Green, J. V. Campenhout, and E. Tournié, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8201511 (2014).

Li, B.

J. Margetis, S. Al-Kabi, W. Du, W. Dou, Y. Zhou, T. Pham, P. Grant, S. A. Ghetmiri, A. Mosleh, B. Li, J. Liu, G. Sun, R. A. Soref, J. Tolle, M. Mortazavi, and S.-Q. Yu, “Si-based GeSn lasers with wavelength coverage of 2-3 μm and operating temperature up to 180 K,” ACS Photonics 5(3), 827–833 (2018).
[Crossref]

Liu, J.

J. Margetis, S. Al-Kabi, W. Du, W. Dou, Y. Zhou, T. Pham, P. Grant, S. A. Ghetmiri, A. Mosleh, B. Li, J. Liu, G. Sun, R. A. Soref, J. Tolle, M. Mortazavi, and S.-Q. Yu, “Si-based GeSn lasers with wavelength coverage of 2-3 μm and operating temperature up to 180 K,” ACS Photonics 5(3), 827–833 (2018).
[Crossref]

Liu, X.

G. Roelkens, U. D. U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. V. Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, C. A. C. Peacock, X. Liu, R. Osgood, W. M. J. W. Green, J. V. Campenhout, and E. Tournié, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8201511 (2014).

Loo, R.

G. Roelkens, U. D. U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. V. Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, C. A. C. Peacock, X. Liu, R. Osgood, W. M. J. W. Green, J. V. Campenhout, and E. Tournié, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8201511 (2014).

Luysberg, M.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Malik, A.

G. Roelkens, U. D. U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. V. Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, C. A. C. Peacock, X. Liu, R. Osgood, W. M. J. W. Green, J. V. Campenhout, and E. Tournié, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8201511 (2014).

Mantl, S.

N. von den Driesch, D. Stange, D. Rainko, I. Povstugar, P. Zaumseil, G. Capellini, T. Schröder, T. Denneulin, Z. Ikonic, J.-M. Hartmann, H. Sigg, S. Mantl, D. Grützmacher, and D. Buca, “Advanced GeSn/SiGeSn Group IV Heterostructure Lasers,” Adv. Sci. (Weinh.) 5(6), 1700955 (2018).
[Crossref] [PubMed]

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Margetis, J.

J. Margetis, S. Al-Kabi, W. Du, W. Dou, Y. Zhou, T. Pham, P. Grant, S. A. Ghetmiri, A. Mosleh, B. Li, J. Liu, G. Sun, R. A. Soref, J. Tolle, M. Mortazavi, and S.-Q. Yu, “Si-based GeSn lasers with wavelength coverage of 2-3 μm and operating temperature up to 180 K,” ACS Photonics 5(3), 827–833 (2018).
[Crossref]

Mashanovich, G.

G. Roelkens, U. D. U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. V. Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, C. A. C. Peacock, X. Liu, R. Osgood, W. M. J. W. Green, J. V. Campenhout, and E. Tournié, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8201511 (2014).

Mashanovich, G. Z.

M. Nedeljkovic, R. Soref, and G. Z. Mashanovich, “Predictions of free-carrier electroabsorption and electrorefraction in Germanium,” IEEE Photonics J. 7(3), 2600214 (2015).
[Crossref]

Milord, L.

V. Reboud, A. Gassenq, N. Pauc, J. Aubin, L. Milord, Q. M. Thai, M. Bertrand, K. Guilloy, D. Rouchon, J. Rothman, T. Zabel, F. A. Pilon, H. Sigg, A. Chelnokov, J. M. Hartmann, and V. Calvo, “Optically pumped GeSn micro-disks with 16% Sn lasing at 3.1 μm up to 180 K,” Appl. Phys. Lett. 111(9), 092101 (2017).
[Crossref]

Mishima, T.

K. Uomi, T. Mishima, and N. Chinone, “Modulation-doped multi-quantum well (MD-MQW) lasers. II Experiment,” Jpn. J. Appl. Phys. 29(1), 88–94 (1990).
[Crossref]

Mitsuhara, M.

T. Fujisawa, T. Sato, M. Mitsuhara, T. Kakitsuka, T. Yamanaka, Y. Kondo, and F. Kano, “Successful application of the 8-band k∙p theory to optical properties of highly strained In(Ga)As/InGaAs quantum wells with strong conduction-valence band coupling,” IEEE J. Quantum Electron. 45(9), 1183–1191 (2009).
[Crossref]

Mortazavi, M.

J. Margetis, S. Al-Kabi, W. Du, W. Dou, Y. Zhou, T. Pham, P. Grant, S. A. Ghetmiri, A. Mosleh, B. Li, J. Liu, G. Sun, R. A. Soref, J. Tolle, M. Mortazavi, and S.-Q. Yu, “Si-based GeSn lasers with wavelength coverage of 2-3 μm and operating temperature up to 180 K,” ACS Photonics 5(3), 827–833 (2018).
[Crossref]

Mosleh, A.

J. Margetis, S. Al-Kabi, W. Du, W. Dou, Y. Zhou, T. Pham, P. Grant, S. A. Ghetmiri, A. Mosleh, B. Li, J. Liu, G. Sun, R. A. Soref, J. Tolle, M. Mortazavi, and S.-Q. Yu, “Si-based GeSn lasers with wavelength coverage of 2-3 μm and operating temperature up to 180 K,” ACS Photonics 5(3), 827–833 (2018).
[Crossref]

Muneeb, M.

G. Roelkens, U. D. U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. V. Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, C. A. C. Peacock, X. Liu, R. Osgood, W. M. J. W. Green, J. V. Campenhout, and E. Tournié, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8201511 (2014).

Mussler, G.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Nedeljkovic, M.

M. Nedeljkovic, R. Soref, and G. Z. Mashanovich, “Predictions of free-carrier electroabsorption and electrorefraction in Germanium,” IEEE Photonics J. 7(3), 2600214 (2015).
[Crossref]

G. Roelkens, U. D. U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. V. Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, C. A. C. Peacock, X. Liu, R. Osgood, W. M. J. W. Green, J. V. Campenhout, and E. Tournié, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8201511 (2014).

Ohiso, Y.

Osgood, R.

G. Roelkens, U. D. U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. V. Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, C. A. C. Peacock, X. Liu, R. Osgood, W. M. J. W. Green, J. V. Campenhout, and E. Tournié, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8201511 (2014).

Pauc, N.

V. Reboud, A. Gassenq, N. Pauc, J. Aubin, L. Milord, Q. M. Thai, M. Bertrand, K. Guilloy, D. Rouchon, J. Rothman, T. Zabel, F. A. Pilon, H. Sigg, A. Chelnokov, J. M. Hartmann, and V. Calvo, “Optically pumped GeSn micro-disks with 16% Sn lasing at 3.1 μm up to 180 K,” Appl. Phys. Lett. 111(9), 092101 (2017).
[Crossref]

Peacock, C. A. C.

G. Roelkens, U. D. U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. V. Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, C. A. C. Peacock, X. Liu, R. Osgood, W. M. J. W. Green, J. V. Campenhout, and E. Tournié, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8201511 (2014).

Pham, T.

J. Margetis, S. Al-Kabi, W. Du, W. Dou, Y. Zhou, T. Pham, P. Grant, S. A. Ghetmiri, A. Mosleh, B. Li, J. Liu, G. Sun, R. A. Soref, J. Tolle, M. Mortazavi, and S.-Q. Yu, “Si-based GeSn lasers with wavelength coverage of 2-3 μm and operating temperature up to 180 K,” ACS Photonics 5(3), 827–833 (2018).
[Crossref]

Pilon, F. A.

V. Reboud, A. Gassenq, N. Pauc, J. Aubin, L. Milord, Q. M. Thai, M. Bertrand, K. Guilloy, D. Rouchon, J. Rothman, T. Zabel, F. A. Pilon, H. Sigg, A. Chelnokov, J. M. Hartmann, and V. Calvo, “Optically pumped GeSn micro-disks with 16% Sn lasing at 3.1 μm up to 180 K,” Appl. Phys. Lett. 111(9), 092101 (2017).
[Crossref]

Povstugar, I.

N. von den Driesch, D. Stange, D. Rainko, I. Povstugar, P. Zaumseil, G. Capellini, T. Schröder, T. Denneulin, Z. Ikonic, J.-M. Hartmann, H. Sigg, S. Mantl, D. Grützmacher, and D. Buca, “Advanced GeSn/SiGeSn Group IV Heterostructure Lasers,” Adv. Sci. (Weinh.) 5(6), 1700955 (2018).
[Crossref] [PubMed]

Rainko, D.

N. von den Driesch, D. Stange, D. Rainko, I. Povstugar, P. Zaumseil, G. Capellini, T. Schröder, T. Denneulin, Z. Ikonic, J.-M. Hartmann, H. Sigg, S. Mantl, D. Grützmacher, and D. Buca, “Advanced GeSn/SiGeSn Group IV Heterostructure Lasers,” Adv. Sci. (Weinh.) 5(6), 1700955 (2018).
[Crossref] [PubMed]

Reboud, V.

V. Reboud, A. Gassenq, N. Pauc, J. Aubin, L. Milord, Q. M. Thai, M. Bertrand, K. Guilloy, D. Rouchon, J. Rothman, T. Zabel, F. A. Pilon, H. Sigg, A. Chelnokov, J. M. Hartmann, and V. Calvo, “Optically pumped GeSn micro-disks with 16% Sn lasing at 3.1 μm up to 180 K,” Appl. Phys. Lett. 111(9), 092101 (2017).
[Crossref]

Rodriguez, J.-B.

G. Roelkens, U. D. U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. V. Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, C. A. C. Peacock, X. Liu, R. Osgood, W. M. J. W. Green, J. V. Campenhout, and E. Tournié, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8201511 (2014).

Roelkens, G.

G. Roelkens, U. D. U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. V. Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, C. A. C. Peacock, X. Liu, R. Osgood, W. M. J. W. Green, J. V. Campenhout, and E. Tournié, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8201511 (2014).

Rothman, J.

V. Reboud, A. Gassenq, N. Pauc, J. Aubin, L. Milord, Q. M. Thai, M. Bertrand, K. Guilloy, D. Rouchon, J. Rothman, T. Zabel, F. A. Pilon, H. Sigg, A. Chelnokov, J. M. Hartmann, and V. Calvo, “Optically pumped GeSn micro-disks with 16% Sn lasing at 3.1 μm up to 180 K,” Appl. Phys. Lett. 111(9), 092101 (2017).
[Crossref]

Rouchon, D.

V. Reboud, A. Gassenq, N. Pauc, J. Aubin, L. Milord, Q. M. Thai, M. Bertrand, K. Guilloy, D. Rouchon, J. Rothman, T. Zabel, F. A. Pilon, H. Sigg, A. Chelnokov, J. M. Hartmann, and V. Calvo, “Optically pumped GeSn micro-disks with 16% Sn lasing at 3.1 μm up to 180 K,” Appl. Phys. Lett. 111(9), 092101 (2017).
[Crossref]

Ryckeboer, E.

G. Roelkens, U. D. U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. V. Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, C. A. C. Peacock, X. Liu, R. Osgood, W. M. J. W. Green, J. V. Campenhout, and E. Tournié, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8201511 (2014).

Saitoh, K.

M. Akie, T. Fujisawa, T. Sato, M. Arai, and K. Saitoh, “GeSn/SiGeSn multiple-quantum-well electroabsorption modulator with taper coupler for mid-infrared Ge-on-Si platform,” IEEE J. Sel. Top. Quantum Electron. 24(6), 3400208 (2018).
[Crossref]

T. Fujisawa and K. Saitoh, “Quantum-confined Stark effect analysis of GeSn/SiGeSn quantum wells for mid-infrared Si-based electroabsorption devices based on many-body theory,” IEEE J. Quantum Electron. 51(11), 8400207 (2015).
[Crossref]

T. Fujisawa and K. Saitoh, “Material gain analysis of GeSn/SiGeSn quantum wells for mid-infrared Si-based light sources based on many-body theory,” IEEE J. Quantum Electron. 51(5), 7100108 (2015).
[Crossref]

Sanchez, D.

G. Roelkens, U. D. U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. V. Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, C. A. C. Peacock, X. Liu, R. Osgood, W. M. J. W. Green, J. V. Campenhout, and E. Tournié, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8201511 (2014).

Sanjoh, H.

Sato, T.

M. Akie, T. Fujisawa, T. Sato, M. Arai, and K. Saitoh, “GeSn/SiGeSn multiple-quantum-well electroabsorption modulator with taper coupler for mid-infrared Ge-on-Si platform,” IEEE J. Sel. Top. Quantum Electron. 24(6), 3400208 (2018).
[Crossref]

T. Fujisawa, T. Sato, M. Mitsuhara, T. Kakitsuka, T. Yamanaka, Y. Kondo, and F. Kano, “Successful application of the 8-band k∙p theory to optical properties of highly strained In(Ga)As/InGaAs quantum wells with strong conduction-valence band coupling,” IEEE J. Quantum Electron. 45(9), 1183–1191 (2009).
[Crossref]

Schröder, T.

N. von den Driesch, D. Stange, D. Rainko, I. Povstugar, P. Zaumseil, G. Capellini, T. Schröder, T. Denneulin, Z. Ikonic, J.-M. Hartmann, H. Sigg, S. Mantl, D. Grützmacher, and D. Buca, “Advanced GeSn/SiGeSn Group IV Heterostructure Lasers,” Adv. Sci. (Weinh.) 5(6), 1700955 (2018).
[Crossref] [PubMed]

Shen, L.

G. Roelkens, U. D. U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. V. Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, C. A. C. Peacock, X. Liu, R. Osgood, W. M. J. W. Green, J. V. Campenhout, and E. Tournié, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8201511 (2014).

Shimura, Y.

G. Roelkens, U. D. U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. V. Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, C. A. C. Peacock, X. Liu, R. Osgood, W. M. J. W. Green, J. V. Campenhout, and E. Tournié, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8201511 (2014).

Sigg, H.

N. von den Driesch, D. Stange, D. Rainko, I. Povstugar, P. Zaumseil, G. Capellini, T. Schröder, T. Denneulin, Z. Ikonic, J.-M. Hartmann, H. Sigg, S. Mantl, D. Grützmacher, and D. Buca, “Advanced GeSn/SiGeSn Group IV Heterostructure Lasers,” Adv. Sci. (Weinh.) 5(6), 1700955 (2018).
[Crossref] [PubMed]

V. Reboud, A. Gassenq, N. Pauc, J. Aubin, L. Milord, Q. M. Thai, M. Bertrand, K. Guilloy, D. Rouchon, J. Rothman, T. Zabel, F. A. Pilon, H. Sigg, A. Chelnokov, J. M. Hartmann, and V. Calvo, “Optically pumped GeSn micro-disks with 16% Sn lasing at 3.1 μm up to 180 K,” Appl. Phys. Lett. 111(9), 092101 (2017).
[Crossref]

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Soref, R.

M. Nedeljkovic, R. Soref, and G. Z. Mashanovich, “Predictions of free-carrier electroabsorption and electrorefraction in Germanium,” IEEE Photonics J. 7(3), 2600214 (2015).
[Crossref]

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4(8), 495–497 (2010).
[Crossref]

Soref, R. A.

J. Margetis, S. Al-Kabi, W. Du, W. Dou, Y. Zhou, T. Pham, P. Grant, S. A. Ghetmiri, A. Mosleh, B. Li, J. Liu, G. Sun, R. A. Soref, J. Tolle, M. Mortazavi, and S.-Q. Yu, “Si-based GeSn lasers with wavelength coverage of 2-3 μm and operating temperature up to 180 K,” ACS Photonics 5(3), 827–833 (2018).
[Crossref]

Stange, D.

N. von den Driesch, D. Stange, D. Rainko, I. Povstugar, P. Zaumseil, G. Capellini, T. Schröder, T. Denneulin, Z. Ikonic, J.-M. Hartmann, H. Sigg, S. Mantl, D. Grützmacher, and D. Buca, “Advanced GeSn/SiGeSn Group IV Heterostructure Lasers,” Adv. Sci. (Weinh.) 5(6), 1700955 (2018).
[Crossref] [PubMed]

Stoica, T.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Sun, G.

J. Margetis, S. Al-Kabi, W. Du, W. Dou, Y. Zhou, T. Pham, P. Grant, S. A. Ghetmiri, A. Mosleh, B. Li, J. Liu, G. Sun, R. A. Soref, J. Tolle, M. Mortazavi, and S.-Q. Yu, “Si-based GeSn lasers with wavelength coverage of 2-3 μm and operating temperature up to 180 K,” ACS Photonics 5(3), 827–833 (2018).
[Crossref]

Tadokoro, T.

Thai, Q. M.

V. Reboud, A. Gassenq, N. Pauc, J. Aubin, L. Milord, Q. M. Thai, M. Bertrand, K. Guilloy, D. Rouchon, J. Rothman, T. Zabel, F. A. Pilon, H. Sigg, A. Chelnokov, J. M. Hartmann, and V. Calvo, “Optically pumped GeSn micro-disks with 16% Sn lasing at 3.1 μm up to 180 K,” Appl. Phys. Lett. 111(9), 092101 (2017).
[Crossref]

Tolle, J.

J. Margetis, S. Al-Kabi, W. Du, W. Dou, Y. Zhou, T. Pham, P. Grant, S. A. Ghetmiri, A. Mosleh, B. Li, J. Liu, G. Sun, R. A. Soref, J. Tolle, M. Mortazavi, and S.-Q. Yu, “Si-based GeSn lasers with wavelength coverage of 2-3 μm and operating temperature up to 180 K,” ACS Photonics 5(3), 827–833 (2018).
[Crossref]

Tournie, E.

G. Roelkens, U. D. U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. V. Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, C. A. C. Peacock, X. Liu, R. Osgood, W. M. J. W. Green, J. V. Campenhout, and E. Tournié, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8201511 (2014).

Tournié, E.

G. Roelkens, U. D. U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. V. Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, C. A. C. Peacock, X. Liu, R. Osgood, W. M. J. W. Green, J. V. Campenhout, and E. Tournié, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8201511 (2014).

Tsuzuki, K.

Uomi, K.

K. Uomi, “Modulation-doped multi-quantum well (MD-MQW) lasers. I Theory,” Jpn. J. Appl. Phys. 29(1), 81–87 (1990).
[Crossref]

K. Uomi, T. Mishima, and N. Chinone, “Modulation-doped multi-quantum well (MD-MQW) lasers. II Experiment,” Jpn. J. Appl. Phys. 29(1), 88–94 (1990).
[Crossref]

Uvin, S.

G. Roelkens, U. D. U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. V. Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, C. A. C. Peacock, X. Liu, R. Osgood, W. M. J. W. Green, J. V. Campenhout, and E. Tournié, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8201511 (2014).

Vincent, B.

G. Roelkens, U. D. U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. V. Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, C. A. C. Peacock, X. Liu, R. Osgood, W. M. J. W. Green, J. V. Campenhout, and E. Tournié, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8201511 (2014).

von den Driesch, N.

N. von den Driesch, D. Stange, D. Rainko, I. Povstugar, P. Zaumseil, G. Capellini, T. Schröder, T. Denneulin, Z. Ikonic, J.-M. Hartmann, H. Sigg, S. Mantl, D. Grützmacher, and D. Buca, “Advanced GeSn/SiGeSn Group IV Heterostructure Lasers,” Adv. Sci. (Weinh.) 5(6), 1700955 (2018).
[Crossref] [PubMed]

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Wang, R.

G. Roelkens, U. D. U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. V. Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, C. A. C. Peacock, X. Liu, R. Osgood, W. M. J. W. Green, J. V. Campenhout, and E. Tournié, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8201511 (2014).

Wirths, S.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Yamanaka, T.

W. Kobayashi, T. Fujisawa, K. Tsuzuki, Y. Ohiso, T. Ito, S. Kanazawa, T. Yamanaka, and H. Sanjoh, “Design and fabrication of wide wavelength range 25.8-Gb/s, 1.3-μm, push-pull-driven DMLs,” J. Lightwave Technol. 32(1), 3–9 (2014).
[Crossref]

T. Tadokoro, W. Kobayashi, T. Fujisawa, T. Yamanaka, and F. Kano, “43-Gb/s 1.3-μm DFB laser for 40-km transmission,” J. Lightwave Technol. 30(15), 2520–2524 (2012).
[Crossref]

T. Fujisawa, T. Sato, M. Mitsuhara, T. Kakitsuka, T. Yamanaka, Y. Kondo, and F. Kano, “Successful application of the 8-band k∙p theory to optical properties of highly strained In(Ga)As/InGaAs quantum wells with strong conduction-valence band coupling,” IEEE J. Quantum Electron. 45(9), 1183–1191 (2009).
[Crossref]

Yu, S.-Q.

J. Margetis, S. Al-Kabi, W. Du, W. Dou, Y. Zhou, T. Pham, P. Grant, S. A. Ghetmiri, A. Mosleh, B. Li, J. Liu, G. Sun, R. A. Soref, J. Tolle, M. Mortazavi, and S.-Q. Yu, “Si-based GeSn lasers with wavelength coverage of 2-3 μm and operating temperature up to 180 K,” ACS Photonics 5(3), 827–833 (2018).
[Crossref]

Zabel, T.

V. Reboud, A. Gassenq, N. Pauc, J. Aubin, L. Milord, Q. M. Thai, M. Bertrand, K. Guilloy, D. Rouchon, J. Rothman, T. Zabel, F. A. Pilon, H. Sigg, A. Chelnokov, J. M. Hartmann, and V. Calvo, “Optically pumped GeSn micro-disks with 16% Sn lasing at 3.1 μm up to 180 K,” Appl. Phys. Lett. 111(9), 092101 (2017).
[Crossref]

Zaumseil, P.

N. von den Driesch, D. Stange, D. Rainko, I. Povstugar, P. Zaumseil, G. Capellini, T. Schröder, T. Denneulin, Z. Ikonic, J.-M. Hartmann, H. Sigg, S. Mantl, D. Grützmacher, and D. Buca, “Advanced GeSn/SiGeSn Group IV Heterostructure Lasers,” Adv. Sci. (Weinh.) 5(6), 1700955 (2018).
[Crossref] [PubMed]

Zhou, Y.

J. Margetis, S. Al-Kabi, W. Du, W. Dou, Y. Zhou, T. Pham, P. Grant, S. A. Ghetmiri, A. Mosleh, B. Li, J. Liu, G. Sun, R. A. Soref, J. Tolle, M. Mortazavi, and S.-Q. Yu, “Si-based GeSn lasers with wavelength coverage of 2-3 μm and operating temperature up to 180 K,” ACS Photonics 5(3), 827–833 (2018).
[Crossref]

ACS Photonics (1)

J. Margetis, S. Al-Kabi, W. Du, W. Dou, Y. Zhou, T. Pham, P. Grant, S. A. Ghetmiri, A. Mosleh, B. Li, J. Liu, G. Sun, R. A. Soref, J. Tolle, M. Mortazavi, and S.-Q. Yu, “Si-based GeSn lasers with wavelength coverage of 2-3 μm and operating temperature up to 180 K,” ACS Photonics 5(3), 827–833 (2018).
[Crossref]

Adv. Sci. (Weinh.) (1)

N. von den Driesch, D. Stange, D. Rainko, I. Povstugar, P. Zaumseil, G. Capellini, T. Schröder, T. Denneulin, Z. Ikonic, J.-M. Hartmann, H. Sigg, S. Mantl, D. Grützmacher, and D. Buca, “Advanced GeSn/SiGeSn Group IV Heterostructure Lasers,” Adv. Sci. (Weinh.) 5(6), 1700955 (2018).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

V. Reboud, A. Gassenq, N. Pauc, J. Aubin, L. Milord, Q. M. Thai, M. Bertrand, K. Guilloy, D. Rouchon, J. Rothman, T. Zabel, F. A. Pilon, H. Sigg, A. Chelnokov, J. M. Hartmann, and V. Calvo, “Optically pumped GeSn micro-disks with 16% Sn lasing at 3.1 μm up to 180 K,” Appl. Phys. Lett. 111(9), 092101 (2017).
[Crossref]

IEEE J. Quantum Electron. (4)

G.-E. Chang, S.-W. Chang, and S. L. Chuang, “Strain-balanced GezSn1-z-SixGeySn1-x-y multiple-quantum-well lasers,” IEEE J. Quantum Electron. 46(12), 1813–1820 (2010).
[Crossref]

T. Fujisawa, T. Sato, M. Mitsuhara, T. Kakitsuka, T. Yamanaka, Y. Kondo, and F. Kano, “Successful application of the 8-band k∙p theory to optical properties of highly strained In(Ga)As/InGaAs quantum wells with strong conduction-valence band coupling,” IEEE J. Quantum Electron. 45(9), 1183–1191 (2009).
[Crossref]

T. Fujisawa and K. Saitoh, “Material gain analysis of GeSn/SiGeSn quantum wells for mid-infrared Si-based light sources based on many-body theory,” IEEE J. Quantum Electron. 51(5), 7100108 (2015).
[Crossref]

T. Fujisawa and K. Saitoh, “Quantum-confined Stark effect analysis of GeSn/SiGeSn quantum wells for mid-infrared Si-based electroabsorption devices based on many-body theory,” IEEE J. Quantum Electron. 51(11), 8400207 (2015).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

G. Roelkens, U. D. U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. V. Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, C. A. C. Peacock, X. Liu, R. Osgood, W. M. J. W. Green, J. V. Campenhout, and E. Tournié, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8201511 (2014).

M. Akie, T. Fujisawa, T. Sato, M. Arai, and K. Saitoh, “GeSn/SiGeSn multiple-quantum-well electroabsorption modulator with taper coupler for mid-infrared Ge-on-Si platform,” IEEE J. Sel. Top. Quantum Electron. 24(6), 3400208 (2018).
[Crossref]

IEEE Photonics J. (1)

M. Nedeljkovic, R. Soref, and G. Z. Mashanovich, “Predictions of free-carrier electroabsorption and electrorefraction in Germanium,” IEEE Photonics J. 7(3), 2600214 (2015).
[Crossref]

J. Lightwave Technol. (2)

Jpn. J. Appl. Phys. (2)

K. Uomi, “Modulation-doped multi-quantum well (MD-MQW) lasers. I Theory,” Jpn. J. Appl. Phys. 29(1), 81–87 (1990).
[Crossref]

K. Uomi, T. Mishima, and N. Chinone, “Modulation-doped multi-quantum well (MD-MQW) lasers. II Experiment,” Jpn. J. Appl. Phys. 29(1), 88–94 (1990).
[Crossref]

Nat. Photonics (2)

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4(8), 495–497 (2010).
[Crossref]

Opt. Express (2)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic cross section of the waveguide (left) and fundamental quasi-TE mode field distribution (right).
Fig. 2
Fig. 2 Peak material gain as a function of injected carrier density of GeSn QW for different temperatures. The dashed line shows peak material gain of III-V QW presented in [10].
Fig. 3
Fig. 3 Conduction band structures of GeSn QW without MD.
Fig. 4
Fig. 4 Peak material gain as a function of injected carrier density of n-type GeSn MD QW for different doping densities at room temperature. The dashed line shows peak material gain of III-V QW presented in [10].
Fig. 5
Fig. 5 Peak material gain as a function of injected carrier density of p-type GeSn MD QW for different doping densities at room temperature. The dashed line shows peak material gain of III-V QW presented in [10].
Fig. 6
Fig. 6 Threshold carrier densities as a function of doping density of n- and p-type GeSn MD QWs.
Fig. 7
Fig. 7 Threshold differential gain as a function of doping density of n- and p-type GeSn MD QWs.
Fig. 8
Fig. 8 Threshold carrier densities and gain as a function of doping density of n-type GeSn MD QWs.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

  Γ well g th ( N th )= Γ well α f,well + Γ n α f,n + Γ p α f,p + α m
  α f,well = e 3 λ 2 4 π 2 c 3 ε 0 n r [ n Γ μ Γ 2 + n L μ L 2 + p μ p 2 ]
  d p k dt =i ω k p k i Ω k ( f c + f v 1 )+ p k t | col
g( ω ) =Im[ P ε 0 n r 2 E 0 ]=Im[ P ε 0 n r 2 E 0 V k μ k * p k ]
N= N MD + N inj = N MD + N Γ + N L = k t π L w f c ( E Γ )d k t + 8 4 π 2 L w f c ( E L )d k 1 d k 2
P= P inj = k t π L w f v ( E Γ )d k t
N= N inj = N Γ + N L = k t π L w f c ( E Γ )d k t + 8 4 π 2 L w f c ( E L )d k 1 d k 2
P= N MD + P inj = k t π L w f v ( E Γ )d k t

Metrics