Abstract

Measuring high curvatures is essential in various applications such as structural engineering, medical treatment, and robotics. Herein, we present a novel ultra-high curvature sensor with an ultra-thin and highly flexible structure incorporating fiber Bragg gratings (FBGs). The sensor can measure curvature of bidirectional bending up to 200 m−1. In addition, the multi-bend curvature sensor in conjunction with the proposed calibration scheme enables the accurate reconstruction of a curve with varying curvature. The sensitivity and the accuracy of the curvature sensor are investigated for different sensor designs. Finally, we demonstrate the accurate shape sensing of various 2-D patterns using the multi-bend curvatures sensor.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Compact bending sensor based on a fiber Bragg grating in an abrupt biconical taper

Wei Cui, Jinhai Si, Tao Chen, and Xun Hou
Opt. Express 23(9) 11031-11036 (2015)

Bending insensitive sensors for strain and temperature measurements with Bragg gratings in Bragg fibers

Ningliang Liu, Yuhua Li, Ying Wang, Haiyan Wang, Wenbin Liang, and Peixiang Lu
Opt. Express 19(15) 13880-13891 (2011)

Two-dimensional vector bending sensor based on seven-core fiber Bragg gratings

Maoxiang Hou, Kaiming Yang, Jun He, Xizhen Xu, Shuai Ju, Kuikui Guo, and Yiping Wang
Opt. Express 26(18) 23770-23781 (2018)

References

  • View by:
  • |
  • |
  • |

  1. Q. Wang and Y. Liu, “Review of optical fiber bending/curvature sensor,” Measurement 130, 161–176 (2018).
    [Crossref]
  2. A. F. da Silva, A. F. Gonçalves, P. M. Mendes, and J. H. Correia, “FBG sensing glove for monitoring hand posture,” IEEE Sens. J. 11(10), 2442–2448 (2011).
    [Crossref]
  3. G. Sun, H. Li, M. Dong, X. Lou, and L. Zhu, “Optical fiber shape sensing of polyimide skin for a flexible morphing wing,” Appl. Opt. 56(33), 9325–9332 (2017).
    [Crossref] [PubMed]
  4. S. Baek, Y. Jeong, and B. Lee, “Characteristics of short-period blazed fiber Bragg gratings for use as macro-bending sensors,” Appl. Opt. 41(4), 631–636 (2002).
    [Crossref] [PubMed]
  5. Y. X. Jin, C. C. Chan, X. Y. Dong, and Y. F. Zhang, “Temperature-independent bending sensor with tilted fiber Bragg grating interacting with multimode fiber,” Opt. Commun. 282(19), 3905–3907 (2009).
    [Crossref]
  6. W. Zhou, Y. Zhou, X. Dong, L. Y. Shao, J. Cheng, and J. Albert, “Fiber-optic curvature sensor based on cladding-mode bragg grating excited by fiber multimode interferometer,” IEEE Photonics J. 4(3), 1051–1057 (2012).
    [Crossref]
  7. C. Mou, P. Saffari, D. Li, K. Zhou, L. Zhang, R. Soar, and I. Bennion, “Smart structure sensors based on embedded fibre Bragg grating arrays in aluminium alloy matrix by ultrasonic consolidation,” Meas. Sci. Technol. 20(3), 034013 (2009).
    [Crossref]
  8. R. Romero, O. Frazão, D. A. Pereira, H. M. Salgado, F. M. Araújo, and L. A. Ferreira, “Intensity-referenced and temperature-independent curvature-sensing concept based on chirped fiber Bragg gratings,” Appl. Opt. 44(18), 3821–3826 (2005).
    [Crossref] [PubMed]
  9. M. T. V. Wylie, B. G. Colpitts, and A. W. Brown, “Fiber optic distributed differential displacement sensor,” J. Lightwave Technol. 29(18), 2847–2852 (2011).
    [Crossref]
  10. J. Ge, A. E. James, L. Xu, Y. Chen, K. W. Kwok, and M. P. Fok, “Bidirectional soft silicone curvature sensor based on off-centered embedded fiber Bragg grating,” IEEE Photonics Technol. Lett. 28(20), 2237–2240 (2016).
    [Crossref]
  11. L. Xu, J. Ge, J. H. Patel, and M. P. Fok, “Dual-layer orthogonal fiber Bragg grating mesh based soft sensor for 3-dimensional shape sensing,” Opt. Express 25(20), 24727–24734 (2017).
    [Crossref] [PubMed]
  12. J. P. Moore and M. D. Rogge, “Shape sensing using multi-core fiber optic cable and parametric curve solutions,” Opt. Express 20(3), 2967–2973 (2012).
    [Crossref] [PubMed]
  13. M. D. Petrović, J. Petrovic, A. Daničić, M. Vukčević, B. Bojović, Lj. Hadžievski, T. Allsop, G. Lloyd, and D. J. Webb, “Non-invasive respiratory monitoring using long-period fiber grating sensors,” Biomed. Opt. Express 5(4), 1136–1144 (2014).
    [Crossref] [PubMed]
  14. T. Allsop, K. Carroll, G. Lloyd, D. J. Webb, M. Miller, and I. Bennion, “Application of long-period-grating sensors to respiratory plethysmography,” J. Biomed. Opt. 12(6), 064003 (2007).
    [Crossref] [PubMed]
  15. D. Z. Stupar, J. S. Bajić, L. M. Manojlović, M. P. Slankamenac, A. V. Joža, and M. B. Živanov, “Wearable low-cost system for human joint movements monitoring based on fiber-optic curvature sensor,” IEEE Sens. J. 12(12), 3424–3431 (2012).
    [Crossref]
  16. B. Kim, J. Ha, F. C. Park, and P. E. Dupont, “Optimizing curvature sensor placement for fast, accurate shape sensing of continuum robots,” in Proceedings of IEEE International Conference on Robotics and Automation(IEEE,2014), pp. 5374–5379.
    [Crossref]

2018 (1)

Q. Wang and Y. Liu, “Review of optical fiber bending/curvature sensor,” Measurement 130, 161–176 (2018).
[Crossref]

2017 (2)

2016 (1)

J. Ge, A. E. James, L. Xu, Y. Chen, K. W. Kwok, and M. P. Fok, “Bidirectional soft silicone curvature sensor based on off-centered embedded fiber Bragg grating,” IEEE Photonics Technol. Lett. 28(20), 2237–2240 (2016).
[Crossref]

2014 (1)

2012 (3)

J. P. Moore and M. D. Rogge, “Shape sensing using multi-core fiber optic cable and parametric curve solutions,” Opt. Express 20(3), 2967–2973 (2012).
[Crossref] [PubMed]

D. Z. Stupar, J. S. Bajić, L. M. Manojlović, M. P. Slankamenac, A. V. Joža, and M. B. Živanov, “Wearable low-cost system for human joint movements monitoring based on fiber-optic curvature sensor,” IEEE Sens. J. 12(12), 3424–3431 (2012).
[Crossref]

W. Zhou, Y. Zhou, X. Dong, L. Y. Shao, J. Cheng, and J. Albert, “Fiber-optic curvature sensor based on cladding-mode bragg grating excited by fiber multimode interferometer,” IEEE Photonics J. 4(3), 1051–1057 (2012).
[Crossref]

2011 (2)

A. F. da Silva, A. F. Gonçalves, P. M. Mendes, and J. H. Correia, “FBG sensing glove for monitoring hand posture,” IEEE Sens. J. 11(10), 2442–2448 (2011).
[Crossref]

M. T. V. Wylie, B. G. Colpitts, and A. W. Brown, “Fiber optic distributed differential displacement sensor,” J. Lightwave Technol. 29(18), 2847–2852 (2011).
[Crossref]

2009 (2)

Y. X. Jin, C. C. Chan, X. Y. Dong, and Y. F. Zhang, “Temperature-independent bending sensor with tilted fiber Bragg grating interacting with multimode fiber,” Opt. Commun. 282(19), 3905–3907 (2009).
[Crossref]

C. Mou, P. Saffari, D. Li, K. Zhou, L. Zhang, R. Soar, and I. Bennion, “Smart structure sensors based on embedded fibre Bragg grating arrays in aluminium alloy matrix by ultrasonic consolidation,” Meas. Sci. Technol. 20(3), 034013 (2009).
[Crossref]

2007 (1)

T. Allsop, K. Carroll, G. Lloyd, D. J. Webb, M. Miller, and I. Bennion, “Application of long-period-grating sensors to respiratory plethysmography,” J. Biomed. Opt. 12(6), 064003 (2007).
[Crossref] [PubMed]

2005 (1)

2002 (1)

Albert, J.

W. Zhou, Y. Zhou, X. Dong, L. Y. Shao, J. Cheng, and J. Albert, “Fiber-optic curvature sensor based on cladding-mode bragg grating excited by fiber multimode interferometer,” IEEE Photonics J. 4(3), 1051–1057 (2012).
[Crossref]

Allsop, T.

Araújo, F. M.

Baek, S.

Bajic, J. S.

D. Z. Stupar, J. S. Bajić, L. M. Manojlović, M. P. Slankamenac, A. V. Joža, and M. B. Živanov, “Wearable low-cost system for human joint movements monitoring based on fiber-optic curvature sensor,” IEEE Sens. J. 12(12), 3424–3431 (2012).
[Crossref]

Bennion, I.

C. Mou, P. Saffari, D. Li, K. Zhou, L. Zhang, R. Soar, and I. Bennion, “Smart structure sensors based on embedded fibre Bragg grating arrays in aluminium alloy matrix by ultrasonic consolidation,” Meas. Sci. Technol. 20(3), 034013 (2009).
[Crossref]

T. Allsop, K. Carroll, G. Lloyd, D. J. Webb, M. Miller, and I. Bennion, “Application of long-period-grating sensors to respiratory plethysmography,” J. Biomed. Opt. 12(6), 064003 (2007).
[Crossref] [PubMed]

Bojovic, B.

Brown, A. W.

Carroll, K.

T. Allsop, K. Carroll, G. Lloyd, D. J. Webb, M. Miller, and I. Bennion, “Application of long-period-grating sensors to respiratory plethysmography,” J. Biomed. Opt. 12(6), 064003 (2007).
[Crossref] [PubMed]

Chan, C. C.

Y. X. Jin, C. C. Chan, X. Y. Dong, and Y. F. Zhang, “Temperature-independent bending sensor with tilted fiber Bragg grating interacting with multimode fiber,” Opt. Commun. 282(19), 3905–3907 (2009).
[Crossref]

Chen, Y.

J. Ge, A. E. James, L. Xu, Y. Chen, K. W. Kwok, and M. P. Fok, “Bidirectional soft silicone curvature sensor based on off-centered embedded fiber Bragg grating,” IEEE Photonics Technol. Lett. 28(20), 2237–2240 (2016).
[Crossref]

Cheng, J.

W. Zhou, Y. Zhou, X. Dong, L. Y. Shao, J. Cheng, and J. Albert, “Fiber-optic curvature sensor based on cladding-mode bragg grating excited by fiber multimode interferometer,” IEEE Photonics J. 4(3), 1051–1057 (2012).
[Crossref]

Colpitts, B. G.

Correia, J. H.

A. F. da Silva, A. F. Gonçalves, P. M. Mendes, and J. H. Correia, “FBG sensing glove for monitoring hand posture,” IEEE Sens. J. 11(10), 2442–2448 (2011).
[Crossref]

da Silva, A. F.

A. F. da Silva, A. F. Gonçalves, P. M. Mendes, and J. H. Correia, “FBG sensing glove for monitoring hand posture,” IEEE Sens. J. 11(10), 2442–2448 (2011).
[Crossref]

Danicic, A.

Dong, M.

Dong, X.

W. Zhou, Y. Zhou, X. Dong, L. Y. Shao, J. Cheng, and J. Albert, “Fiber-optic curvature sensor based on cladding-mode bragg grating excited by fiber multimode interferometer,” IEEE Photonics J. 4(3), 1051–1057 (2012).
[Crossref]

Dong, X. Y.

Y. X. Jin, C. C. Chan, X. Y. Dong, and Y. F. Zhang, “Temperature-independent bending sensor with tilted fiber Bragg grating interacting with multimode fiber,” Opt. Commun. 282(19), 3905–3907 (2009).
[Crossref]

Dupont, P. E.

B. Kim, J. Ha, F. C. Park, and P. E. Dupont, “Optimizing curvature sensor placement for fast, accurate shape sensing of continuum robots,” in Proceedings of IEEE International Conference on Robotics and Automation(IEEE,2014), pp. 5374–5379.
[Crossref]

Ferreira, L. A.

Fok, M. P.

L. Xu, J. Ge, J. H. Patel, and M. P. Fok, “Dual-layer orthogonal fiber Bragg grating mesh based soft sensor for 3-dimensional shape sensing,” Opt. Express 25(20), 24727–24734 (2017).
[Crossref] [PubMed]

J. Ge, A. E. James, L. Xu, Y. Chen, K. W. Kwok, and M. P. Fok, “Bidirectional soft silicone curvature sensor based on off-centered embedded fiber Bragg grating,” IEEE Photonics Technol. Lett. 28(20), 2237–2240 (2016).
[Crossref]

Frazão, O.

Ge, J.

L. Xu, J. Ge, J. H. Patel, and M. P. Fok, “Dual-layer orthogonal fiber Bragg grating mesh based soft sensor for 3-dimensional shape sensing,” Opt. Express 25(20), 24727–24734 (2017).
[Crossref] [PubMed]

J. Ge, A. E. James, L. Xu, Y. Chen, K. W. Kwok, and M. P. Fok, “Bidirectional soft silicone curvature sensor based on off-centered embedded fiber Bragg grating,” IEEE Photonics Technol. Lett. 28(20), 2237–2240 (2016).
[Crossref]

Gonçalves, A. F.

A. F. da Silva, A. F. Gonçalves, P. M. Mendes, and J. H. Correia, “FBG sensing glove for monitoring hand posture,” IEEE Sens. J. 11(10), 2442–2448 (2011).
[Crossref]

Ha, J.

B. Kim, J. Ha, F. C. Park, and P. E. Dupont, “Optimizing curvature sensor placement for fast, accurate shape sensing of continuum robots,” in Proceedings of IEEE International Conference on Robotics and Automation(IEEE,2014), pp. 5374–5379.
[Crossref]

Hadžievski, Lj.

James, A. E.

J. Ge, A. E. James, L. Xu, Y. Chen, K. W. Kwok, and M. P. Fok, “Bidirectional soft silicone curvature sensor based on off-centered embedded fiber Bragg grating,” IEEE Photonics Technol. Lett. 28(20), 2237–2240 (2016).
[Crossref]

Jeong, Y.

Jin, Y. X.

Y. X. Jin, C. C. Chan, X. Y. Dong, and Y. F. Zhang, “Temperature-independent bending sensor with tilted fiber Bragg grating interacting with multimode fiber,” Opt. Commun. 282(19), 3905–3907 (2009).
[Crossref]

Joža, A. V.

D. Z. Stupar, J. S. Bajić, L. M. Manojlović, M. P. Slankamenac, A. V. Joža, and M. B. Živanov, “Wearable low-cost system for human joint movements monitoring based on fiber-optic curvature sensor,” IEEE Sens. J. 12(12), 3424–3431 (2012).
[Crossref]

Kim, B.

B. Kim, J. Ha, F. C. Park, and P. E. Dupont, “Optimizing curvature sensor placement for fast, accurate shape sensing of continuum robots,” in Proceedings of IEEE International Conference on Robotics and Automation(IEEE,2014), pp. 5374–5379.
[Crossref]

Kwok, K. W.

J. Ge, A. E. James, L. Xu, Y. Chen, K. W. Kwok, and M. P. Fok, “Bidirectional soft silicone curvature sensor based on off-centered embedded fiber Bragg grating,” IEEE Photonics Technol. Lett. 28(20), 2237–2240 (2016).
[Crossref]

Lee, B.

Li, D.

C. Mou, P. Saffari, D. Li, K. Zhou, L. Zhang, R. Soar, and I. Bennion, “Smart structure sensors based on embedded fibre Bragg grating arrays in aluminium alloy matrix by ultrasonic consolidation,” Meas. Sci. Technol. 20(3), 034013 (2009).
[Crossref]

Li, H.

Liu, Y.

Q. Wang and Y. Liu, “Review of optical fiber bending/curvature sensor,” Measurement 130, 161–176 (2018).
[Crossref]

Lloyd, G.

Lou, X.

Manojlovic, L. M.

D. Z. Stupar, J. S. Bajić, L. M. Manojlović, M. P. Slankamenac, A. V. Joža, and M. B. Živanov, “Wearable low-cost system for human joint movements monitoring based on fiber-optic curvature sensor,” IEEE Sens. J. 12(12), 3424–3431 (2012).
[Crossref]

Mendes, P. M.

A. F. da Silva, A. F. Gonçalves, P. M. Mendes, and J. H. Correia, “FBG sensing glove for monitoring hand posture,” IEEE Sens. J. 11(10), 2442–2448 (2011).
[Crossref]

Miller, M.

T. Allsop, K. Carroll, G. Lloyd, D. J. Webb, M. Miller, and I. Bennion, “Application of long-period-grating sensors to respiratory plethysmography,” J. Biomed. Opt. 12(6), 064003 (2007).
[Crossref] [PubMed]

Moore, J. P.

Mou, C.

C. Mou, P. Saffari, D. Li, K. Zhou, L. Zhang, R. Soar, and I. Bennion, “Smart structure sensors based on embedded fibre Bragg grating arrays in aluminium alloy matrix by ultrasonic consolidation,” Meas. Sci. Technol. 20(3), 034013 (2009).
[Crossref]

Park, F. C.

B. Kim, J. Ha, F. C. Park, and P. E. Dupont, “Optimizing curvature sensor placement for fast, accurate shape sensing of continuum robots,” in Proceedings of IEEE International Conference on Robotics and Automation(IEEE,2014), pp. 5374–5379.
[Crossref]

Patel, J. H.

Pereira, D. A.

Petrovic, J.

Petrovic, M. D.

Rogge, M. D.

Romero, R.

Saffari, P.

C. Mou, P. Saffari, D. Li, K. Zhou, L. Zhang, R. Soar, and I. Bennion, “Smart structure sensors based on embedded fibre Bragg grating arrays in aluminium alloy matrix by ultrasonic consolidation,” Meas. Sci. Technol. 20(3), 034013 (2009).
[Crossref]

Salgado, H. M.

Shao, L. Y.

W. Zhou, Y. Zhou, X. Dong, L. Y. Shao, J. Cheng, and J. Albert, “Fiber-optic curvature sensor based on cladding-mode bragg grating excited by fiber multimode interferometer,” IEEE Photonics J. 4(3), 1051–1057 (2012).
[Crossref]

Slankamenac, M. P.

D. Z. Stupar, J. S. Bajić, L. M. Manojlović, M. P. Slankamenac, A. V. Joža, and M. B. Živanov, “Wearable low-cost system for human joint movements monitoring based on fiber-optic curvature sensor,” IEEE Sens. J. 12(12), 3424–3431 (2012).
[Crossref]

Soar, R.

C. Mou, P. Saffari, D. Li, K. Zhou, L. Zhang, R. Soar, and I. Bennion, “Smart structure sensors based on embedded fibre Bragg grating arrays in aluminium alloy matrix by ultrasonic consolidation,” Meas. Sci. Technol. 20(3), 034013 (2009).
[Crossref]

Stupar, D. Z.

D. Z. Stupar, J. S. Bajić, L. M. Manojlović, M. P. Slankamenac, A. V. Joža, and M. B. Živanov, “Wearable low-cost system for human joint movements monitoring based on fiber-optic curvature sensor,” IEEE Sens. J. 12(12), 3424–3431 (2012).
[Crossref]

Sun, G.

Vukcevic, M.

Wang, Q.

Q. Wang and Y. Liu, “Review of optical fiber bending/curvature sensor,” Measurement 130, 161–176 (2018).
[Crossref]

Webb, D. J.

Wylie, M. T. V.

Xu, L.

L. Xu, J. Ge, J. H. Patel, and M. P. Fok, “Dual-layer orthogonal fiber Bragg grating mesh based soft sensor for 3-dimensional shape sensing,” Opt. Express 25(20), 24727–24734 (2017).
[Crossref] [PubMed]

J. Ge, A. E. James, L. Xu, Y. Chen, K. W. Kwok, and M. P. Fok, “Bidirectional soft silicone curvature sensor based on off-centered embedded fiber Bragg grating,” IEEE Photonics Technol. Lett. 28(20), 2237–2240 (2016).
[Crossref]

Zhang, L.

C. Mou, P. Saffari, D. Li, K. Zhou, L. Zhang, R. Soar, and I. Bennion, “Smart structure sensors based on embedded fibre Bragg grating arrays in aluminium alloy matrix by ultrasonic consolidation,” Meas. Sci. Technol. 20(3), 034013 (2009).
[Crossref]

Zhang, Y. F.

Y. X. Jin, C. C. Chan, X. Y. Dong, and Y. F. Zhang, “Temperature-independent bending sensor with tilted fiber Bragg grating interacting with multimode fiber,” Opt. Commun. 282(19), 3905–3907 (2009).
[Crossref]

Zhou, K.

C. Mou, P. Saffari, D. Li, K. Zhou, L. Zhang, R. Soar, and I. Bennion, “Smart structure sensors based on embedded fibre Bragg grating arrays in aluminium alloy matrix by ultrasonic consolidation,” Meas. Sci. Technol. 20(3), 034013 (2009).
[Crossref]

Zhou, W.

W. Zhou, Y. Zhou, X. Dong, L. Y. Shao, J. Cheng, and J. Albert, “Fiber-optic curvature sensor based on cladding-mode bragg grating excited by fiber multimode interferometer,” IEEE Photonics J. 4(3), 1051–1057 (2012).
[Crossref]

Zhou, Y.

W. Zhou, Y. Zhou, X. Dong, L. Y. Shao, J. Cheng, and J. Albert, “Fiber-optic curvature sensor based on cladding-mode bragg grating excited by fiber multimode interferometer,” IEEE Photonics J. 4(3), 1051–1057 (2012).
[Crossref]

Zhu, L.

Živanov, M. B.

D. Z. Stupar, J. S. Bajić, L. M. Manojlović, M. P. Slankamenac, A. V. Joža, and M. B. Živanov, “Wearable low-cost system for human joint movements monitoring based on fiber-optic curvature sensor,” IEEE Sens. J. 12(12), 3424–3431 (2012).
[Crossref]

Appl. Opt. (3)

Biomed. Opt. Express (1)

IEEE Photonics J. (1)

W. Zhou, Y. Zhou, X. Dong, L. Y. Shao, J. Cheng, and J. Albert, “Fiber-optic curvature sensor based on cladding-mode bragg grating excited by fiber multimode interferometer,” IEEE Photonics J. 4(3), 1051–1057 (2012).
[Crossref]

IEEE Photonics Technol. Lett. (1)

J. Ge, A. E. James, L. Xu, Y. Chen, K. W. Kwok, and M. P. Fok, “Bidirectional soft silicone curvature sensor based on off-centered embedded fiber Bragg grating,” IEEE Photonics Technol. Lett. 28(20), 2237–2240 (2016).
[Crossref]

IEEE Sens. J. (2)

D. Z. Stupar, J. S. Bajić, L. M. Manojlović, M. P. Slankamenac, A. V. Joža, and M. B. Živanov, “Wearable low-cost system for human joint movements monitoring based on fiber-optic curvature sensor,” IEEE Sens. J. 12(12), 3424–3431 (2012).
[Crossref]

A. F. da Silva, A. F. Gonçalves, P. M. Mendes, and J. H. Correia, “FBG sensing glove for monitoring hand posture,” IEEE Sens. J. 11(10), 2442–2448 (2011).
[Crossref]

J. Biomed. Opt. (1)

T. Allsop, K. Carroll, G. Lloyd, D. J. Webb, M. Miller, and I. Bennion, “Application of long-period-grating sensors to respiratory plethysmography,” J. Biomed. Opt. 12(6), 064003 (2007).
[Crossref] [PubMed]

J. Lightwave Technol. (1)

Meas. Sci. Technol. (1)

C. Mou, P. Saffari, D. Li, K. Zhou, L. Zhang, R. Soar, and I. Bennion, “Smart structure sensors based on embedded fibre Bragg grating arrays in aluminium alloy matrix by ultrasonic consolidation,” Meas. Sci. Technol. 20(3), 034013 (2009).
[Crossref]

Measurement (1)

Q. Wang and Y. Liu, “Review of optical fiber bending/curvature sensor,” Measurement 130, 161–176 (2018).
[Crossref]

Opt. Commun. (1)

Y. X. Jin, C. C. Chan, X. Y. Dong, and Y. F. Zhang, “Temperature-independent bending sensor with tilted fiber Bragg grating interacting with multimode fiber,” Opt. Commun. 282(19), 3905–3907 (2009).
[Crossref]

Opt. Express (2)

Other (1)

B. Kim, J. Ha, F. C. Park, and P. E. Dupont, “Optimizing curvature sensor placement for fast, accurate shape sensing of continuum robots,” in Proceedings of IEEE International Conference on Robotics and Automation(IEEE,2014), pp. 5374–5379.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Illustration of the FBG-embedded curvature sensor. Inset on the left shows the cross-section of the curvature sensor.
Fig. 2
Fig. 2 Fabrication procedure of the FBG curvature sensor.
Fig. 3
Fig. 3 (a) The measurement setup for the FBG curvature sensor. (b) The spectrum data during three kinds of deformation, upper and down bending and straight state.
Fig. 4
Fig. 4 (a) Cross-sectional photomicrographs of the curvature sensors of which thickness. (b) Average thicknesses at the various locations of the sensors with error bars (n = 3); Dotted lines indicate the target values—200, 280 and 360 µm. (c) Average offset distances at the various locations with error bars; the design values—20, 60, 100 are depicted as dotted lines.
Fig. 5
Fig. 5 (a) The reflected wavelength peak shift of three types of curvature sensor during bending with various curvature. (b) Comparison of the measured curvature error.
Fig. 6
Fig. 6 2-D Reconstruction of an Archimedean spiral using the multi-bend curvature sensors. (a) A test pattern fabricated by a laser engraving machine; the red star symbols indicate both ends of the sensor in the slot of the pattern. (b) and (c) Reconstructed trajectories with the uncalibrated and the calibrated sensors, respectively.
Fig. 7
Fig. 7 Reconstruction results of curvature sensor with various shape. The red star symbols indicate both ends of the multi-bend curvature sensor.

Tables (2)

Tables Icon

Table 1 Specification of fabricated curvature sensors.

Tables Icon

Table 2 Comparison of reconstruction results for the uncalibrated and the calibrated sensors—curvature and position error at each FBG node.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

λ b =2nΛ,
Δ λ b λ b =(1 ρ e )ε+( α Λ + α n )ΔT,
ε=κd,
k= 1 d(1 ρ e ) Δ λ b λ b .
t min =2( d offset + d o )+ d fiber ,
dT(s) ds =κN(s), dN(s) ds =κT(s)+τB(s), dB(s) ds =τN(s),
T(i)= T(i1)+ κ i1 N(i1)ds T(i1)+ κ i1 N(i1)ds , N(i)= N(i1) κ i1 T(i1)ds N(i1) κ i1 T(i1)ds , B(i)=T(i)×N(i).
R(N)= i=1 N T(i) ds+R(0),
ε i up = κ s FBGs d i and ε i down = κ s FBGs d i
d i = 1 N s=1 N ε i up ε i down 2 κ s FBG

Metrics