Abstract

We investigate the influence of the degree of illumination coherence on through-focus scanning optical microscopy (TSOM) in terms of metrological sensitivity. The investigation reveals that the local periodicity of the target object is a key structural parameter to consider when determining the optimal degree of illumination coherence for improved metrological sensitivity. The optimal coherence conditions for the TSOM inspection of several target objects are analyzed through numerical simulation.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Through-focus scanning optical microscopy with the Fourier modal method

Shin-woong Park, Gyunam Park, Youngbaek Kim, Joong Hwee Cho, Junho Lee, and Hwi Kim
Opt. Express 26(9) 11649-11657 (2018)

Noise analysis for through-focus scanning optical microscopy

Ravikiran Attota
Opt. Lett. 41(4) 745-748 (2016)

Parameter optimization for through-focus scanning optical microscopy

Ravi Kiran Attota and Hyeonggon Kang
Opt. Express 24(13) 14915-14924 (2016)

References

  • View by:
  • |
  • |
  • |

  1. R. Attota, R. Dixson, and A. Vladár, “Through-focus scanning optical microscopy,” Proc. SPIE 8036, 803610 (2011).
    [Crossref]
  2. R. Attota, R. Dixson, J. Kramar, J. Potzick, A. Vladár, B. Bunday, E. Novak, and A. Rudack, “TSOM method for semiconductor metrology,” Proc. SPIE 7971, 79710T (2011).
    [Crossref]
  3. R. Attota, D. G. Seiler, A. C. Diebold, R. McDonald, A. Chabli, and E. M. Secula, “TSOM method for nanoelectronics dimensional metrology,” AIP Conf. Proc. 1395, 57–63 (2011).
    [Crossref]
  4. R. Attota, “Noise analysis for through-focus scanning optical microscopy,” Opt. Lett. 41(4), 745–748 (2016).
    [Crossref] [PubMed]
  5. R. Attota and R. Silver, “Nanometrology using a through-focus scanning optical microscopy method,” Meas. Sci. Technol. 22(2), 024022 (2011).
    [Crossref]
  6. R. Attota, B. Bunday, and V. Vartanian, “Critical dimension metrology by through-focus scanning optical microscopy beyond the 22nm node,” Appl. Phys. Lett. 102(22), 222107 (2013).
    [Crossref]
  7. S.-W. Park, G. Park, Y. Kim, J. H. Cho, J. Lee, and H. Kim, “Through-focus scanning optical microscopy with the Fourier modal method,” Opt. Express 26(9), 11649–11657 (2018).
    [Crossref] [PubMed]
  8. M. Pisarenco and I. Setija, “Alternative discretization in the aperiodic Fourier modal method leading to reduction in computational costs,” Proc. SPIE 8789, 87890K (2013).
    [Crossref]
  9. H. Kim and B. Lee, “Mathematical modeling of crossed nanophotonic structures with generalized scattering-matrix method and local Fourier modal analysis,” J. Opt. Soc. Am. B 25(4), 518–544 (2008).
    [Crossref]
  10. H. Kim and B. Lee, “Pseudo-Fourier modal analysis of two-dimensional arbitrarily shaped grating structures,” J. Opt. Soc. Am. A 25(1), 40–54 (2008).
    [Crossref] [PubMed]
  11. H. Kim, I. M. Lee, and B. Lee, “Extended scattering-matrix method for efficient full parallel implementation of rigorous coupled-wave analysis,” J. Opt. Soc. Am. A 24(8), 2313–2327 (2007).
    [Crossref] [PubMed]
  12. H. Kim, G. Park, and C. Kim, “Investigation of the Convergence Behavior with Fluctuation Features in the Fourier Modal Analysis of a Metallic Grating,” J. Opt. Soc. Korea 16(3), 196–202 (2012).
    [Crossref]
  13. H. Kim, J. Park, and B. Lee, Fourier Modal Method and Its Applications in Computational Nanophotonics (CRC, 2012).
  14. M. V. Ryabko, S. N. Koptyaev, A. V. Shcherbakov, A. D. Lantsov, and S. Y. Oh, “Method for optical inspection of nanoscale objects based upon analysis of their defocused images and features of its practical implementation,” Opt. Express 21(21), 24483–24489 (2013).
    [Crossref] [PubMed]
  15. M. Ryabko, A. Shchekin, S. Koptyaev, A. Lantsov, A. Medvedev, A. Shcherbakov, and S. Y. Oh, “Through-focus scanning optical microscopy (TSOM) considering optical aberrations: practical implementation,” Opt. Express 23(25), 32215–32221 (2015).
    [Crossref] [PubMed]
  16. R. Attota and J. Kramar, “Optimizing noise for defect analysis with through-focus scanning optical microscopy,” Proc. SPIE 9778, 977811 (2016).
    [Crossref] [PubMed]
  17. R. K. Attota, P. Weck, J. A. Kramar, B. Bunday, and V. Vartanian, “Feasibility study on 3-D shape analysis of high-aspect-ratio features using through-focus scanning optical microscopy,” Opt. Express 24(15), 16574–16585 (2016).
    [Crossref] [PubMed]
  18. R. K. Attota and H. Kang, “Parameter optimization for through-focus scanning optical microscopy,” Opt. Express 24(13), 14915–14924 (2016).
    [Crossref] [PubMed]
  19. A. N. Norris, A. J. Callegari, and P. Sheng, “A generalized differential effective medium theory,” J. Mech. Phys. Solids 33(6), 525–543 (1985).
    [Crossref]

2018 (1)

2016 (4)

2015 (1)

2013 (3)

M. V. Ryabko, S. N. Koptyaev, A. V. Shcherbakov, A. D. Lantsov, and S. Y. Oh, “Method for optical inspection of nanoscale objects based upon analysis of their defocused images and features of its practical implementation,” Opt. Express 21(21), 24483–24489 (2013).
[Crossref] [PubMed]

R. Attota, B. Bunday, and V. Vartanian, “Critical dimension metrology by through-focus scanning optical microscopy beyond the 22nm node,” Appl. Phys. Lett. 102(22), 222107 (2013).
[Crossref]

M. Pisarenco and I. Setija, “Alternative discretization in the aperiodic Fourier modal method leading to reduction in computational costs,” Proc. SPIE 8789, 87890K (2013).
[Crossref]

2012 (1)

2011 (4)

R. Attota, R. Dixson, and A. Vladár, “Through-focus scanning optical microscopy,” Proc. SPIE 8036, 803610 (2011).
[Crossref]

R. Attota, R. Dixson, J. Kramar, J. Potzick, A. Vladár, B. Bunday, E. Novak, and A. Rudack, “TSOM method for semiconductor metrology,” Proc. SPIE 7971, 79710T (2011).
[Crossref]

R. Attota, D. G. Seiler, A. C. Diebold, R. McDonald, A. Chabli, and E. M. Secula, “TSOM method for nanoelectronics dimensional metrology,” AIP Conf. Proc. 1395, 57–63 (2011).
[Crossref]

R. Attota and R. Silver, “Nanometrology using a through-focus scanning optical microscopy method,” Meas. Sci. Technol. 22(2), 024022 (2011).
[Crossref]

2008 (2)

2007 (1)

1985 (1)

A. N. Norris, A. J. Callegari, and P. Sheng, “A generalized differential effective medium theory,” J. Mech. Phys. Solids 33(6), 525–543 (1985).
[Crossref]

Attota, R.

R. Attota and J. Kramar, “Optimizing noise for defect analysis with through-focus scanning optical microscopy,” Proc. SPIE 9778, 977811 (2016).
[Crossref] [PubMed]

R. Attota, “Noise analysis for through-focus scanning optical microscopy,” Opt. Lett. 41(4), 745–748 (2016).
[Crossref] [PubMed]

R. Attota, B. Bunday, and V. Vartanian, “Critical dimension metrology by through-focus scanning optical microscopy beyond the 22nm node,” Appl. Phys. Lett. 102(22), 222107 (2013).
[Crossref]

R. Attota, R. Dixson, J. Kramar, J. Potzick, A. Vladár, B. Bunday, E. Novak, and A. Rudack, “TSOM method for semiconductor metrology,” Proc. SPIE 7971, 79710T (2011).
[Crossref]

R. Attota, R. Dixson, and A. Vladár, “Through-focus scanning optical microscopy,” Proc. SPIE 8036, 803610 (2011).
[Crossref]

R. Attota, D. G. Seiler, A. C. Diebold, R. McDonald, A. Chabli, and E. M. Secula, “TSOM method for nanoelectronics dimensional metrology,” AIP Conf. Proc. 1395, 57–63 (2011).
[Crossref]

R. Attota and R. Silver, “Nanometrology using a through-focus scanning optical microscopy method,” Meas. Sci. Technol. 22(2), 024022 (2011).
[Crossref]

Attota, R. K.

Bunday, B.

R. K. Attota, P. Weck, J. A. Kramar, B. Bunday, and V. Vartanian, “Feasibility study on 3-D shape analysis of high-aspect-ratio features using through-focus scanning optical microscopy,” Opt. Express 24(15), 16574–16585 (2016).
[Crossref] [PubMed]

R. Attota, B. Bunday, and V. Vartanian, “Critical dimension metrology by through-focus scanning optical microscopy beyond the 22nm node,” Appl. Phys. Lett. 102(22), 222107 (2013).
[Crossref]

R. Attota, R. Dixson, J. Kramar, J. Potzick, A. Vladár, B. Bunday, E. Novak, and A. Rudack, “TSOM method for semiconductor metrology,” Proc. SPIE 7971, 79710T (2011).
[Crossref]

Callegari, A. J.

A. N. Norris, A. J. Callegari, and P. Sheng, “A generalized differential effective medium theory,” J. Mech. Phys. Solids 33(6), 525–543 (1985).
[Crossref]

Chabli, A.

R. Attota, D. G. Seiler, A. C. Diebold, R. McDonald, A. Chabli, and E. M. Secula, “TSOM method for nanoelectronics dimensional metrology,” AIP Conf. Proc. 1395, 57–63 (2011).
[Crossref]

Cho, J. H.

Diebold, A. C.

R. Attota, D. G. Seiler, A. C. Diebold, R. McDonald, A. Chabli, and E. M. Secula, “TSOM method for nanoelectronics dimensional metrology,” AIP Conf. Proc. 1395, 57–63 (2011).
[Crossref]

Dixson, R.

R. Attota, R. Dixson, and A. Vladár, “Through-focus scanning optical microscopy,” Proc. SPIE 8036, 803610 (2011).
[Crossref]

R. Attota, R. Dixson, J. Kramar, J. Potzick, A. Vladár, B. Bunday, E. Novak, and A. Rudack, “TSOM method for semiconductor metrology,” Proc. SPIE 7971, 79710T (2011).
[Crossref]

Kang, H.

Kim, C.

Kim, H.

Kim, Y.

Koptyaev, S.

Koptyaev, S. N.

Kramar, J.

R. Attota and J. Kramar, “Optimizing noise for defect analysis with through-focus scanning optical microscopy,” Proc. SPIE 9778, 977811 (2016).
[Crossref] [PubMed]

R. Attota, R. Dixson, J. Kramar, J. Potzick, A. Vladár, B. Bunday, E. Novak, and A. Rudack, “TSOM method for semiconductor metrology,” Proc. SPIE 7971, 79710T (2011).
[Crossref]

Kramar, J. A.

Lantsov, A.

Lantsov, A. D.

Lee, B.

Lee, I. M.

Lee, J.

McDonald, R.

R. Attota, D. G. Seiler, A. C. Diebold, R. McDonald, A. Chabli, and E. M. Secula, “TSOM method for nanoelectronics dimensional metrology,” AIP Conf. Proc. 1395, 57–63 (2011).
[Crossref]

Medvedev, A.

Norris, A. N.

A. N. Norris, A. J. Callegari, and P. Sheng, “A generalized differential effective medium theory,” J. Mech. Phys. Solids 33(6), 525–543 (1985).
[Crossref]

Novak, E.

R. Attota, R. Dixson, J. Kramar, J. Potzick, A. Vladár, B. Bunday, E. Novak, and A. Rudack, “TSOM method for semiconductor metrology,” Proc. SPIE 7971, 79710T (2011).
[Crossref]

Oh, S. Y.

Park, G.

Park, S.-W.

Pisarenco, M.

M. Pisarenco and I. Setija, “Alternative discretization in the aperiodic Fourier modal method leading to reduction in computational costs,” Proc. SPIE 8789, 87890K (2013).
[Crossref]

Potzick, J.

R. Attota, R. Dixson, J. Kramar, J. Potzick, A. Vladár, B. Bunday, E. Novak, and A. Rudack, “TSOM method for semiconductor metrology,” Proc. SPIE 7971, 79710T (2011).
[Crossref]

Rudack, A.

R. Attota, R. Dixson, J. Kramar, J. Potzick, A. Vladár, B. Bunday, E. Novak, and A. Rudack, “TSOM method for semiconductor metrology,” Proc. SPIE 7971, 79710T (2011).
[Crossref]

Ryabko, M.

Ryabko, M. V.

Secula, E. M.

R. Attota, D. G. Seiler, A. C. Diebold, R. McDonald, A. Chabli, and E. M. Secula, “TSOM method for nanoelectronics dimensional metrology,” AIP Conf. Proc. 1395, 57–63 (2011).
[Crossref]

Seiler, D. G.

R. Attota, D. G. Seiler, A. C. Diebold, R. McDonald, A. Chabli, and E. M. Secula, “TSOM method for nanoelectronics dimensional metrology,” AIP Conf. Proc. 1395, 57–63 (2011).
[Crossref]

Setija, I.

M. Pisarenco and I. Setija, “Alternative discretization in the aperiodic Fourier modal method leading to reduction in computational costs,” Proc. SPIE 8789, 87890K (2013).
[Crossref]

Shchekin, A.

Shcherbakov, A.

Shcherbakov, A. V.

Sheng, P.

A. N. Norris, A. J. Callegari, and P. Sheng, “A generalized differential effective medium theory,” J. Mech. Phys. Solids 33(6), 525–543 (1985).
[Crossref]

Silver, R.

R. Attota and R. Silver, “Nanometrology using a through-focus scanning optical microscopy method,” Meas. Sci. Technol. 22(2), 024022 (2011).
[Crossref]

Vartanian, V.

R. K. Attota, P. Weck, J. A. Kramar, B. Bunday, and V. Vartanian, “Feasibility study on 3-D shape analysis of high-aspect-ratio features using through-focus scanning optical microscopy,” Opt. Express 24(15), 16574–16585 (2016).
[Crossref] [PubMed]

R. Attota, B. Bunday, and V. Vartanian, “Critical dimension metrology by through-focus scanning optical microscopy beyond the 22nm node,” Appl. Phys. Lett. 102(22), 222107 (2013).
[Crossref]

Vladár, A.

R. Attota, R. Dixson, and A. Vladár, “Through-focus scanning optical microscopy,” Proc. SPIE 8036, 803610 (2011).
[Crossref]

R. Attota, R. Dixson, J. Kramar, J. Potzick, A. Vladár, B. Bunday, E. Novak, and A. Rudack, “TSOM method for semiconductor metrology,” Proc. SPIE 7971, 79710T (2011).
[Crossref]

Weck, P.

AIP Conf. Proc. (1)

R. Attota, D. G. Seiler, A. C. Diebold, R. McDonald, A. Chabli, and E. M. Secula, “TSOM method for nanoelectronics dimensional metrology,” AIP Conf. Proc. 1395, 57–63 (2011).
[Crossref]

Appl. Phys. Lett. (1)

R. Attota, B. Bunday, and V. Vartanian, “Critical dimension metrology by through-focus scanning optical microscopy beyond the 22nm node,” Appl. Phys. Lett. 102(22), 222107 (2013).
[Crossref]

J. Mech. Phys. Solids (1)

A. N. Norris, A. J. Callegari, and P. Sheng, “A generalized differential effective medium theory,” J. Mech. Phys. Solids 33(6), 525–543 (1985).
[Crossref]

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. B (1)

J. Opt. Soc. Korea (1)

Meas. Sci. Technol. (1)

R. Attota and R. Silver, “Nanometrology using a through-focus scanning optical microscopy method,” Meas. Sci. Technol. 22(2), 024022 (2011).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Proc. SPIE (4)

R. Attota, R. Dixson, and A. Vladár, “Through-focus scanning optical microscopy,” Proc. SPIE 8036, 803610 (2011).
[Crossref]

R. Attota, R. Dixson, J. Kramar, J. Potzick, A. Vladár, B. Bunday, E. Novak, and A. Rudack, “TSOM method for semiconductor metrology,” Proc. SPIE 7971, 79710T (2011).
[Crossref]

M. Pisarenco and I. Setija, “Alternative discretization in the aperiodic Fourier modal method leading to reduction in computational costs,” Proc. SPIE 8789, 87890K (2013).
[Crossref]

R. Attota and J. Kramar, “Optimizing noise for defect analysis with through-focus scanning optical microscopy,” Proc. SPIE 9778, 977811 (2016).
[Crossref] [PubMed]

Other (1)

H. Kim, J. Park, and B. Lee, Fourier Modal Method and Its Applications in Computational Nanophotonics (CRC, 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Schematic of an objective showing illumination and collection NA. Illustrations of the incident lighting case of (b) coherent, (c) partially coherent, and (d) incoherent illumination.
Fig. 2
Fig. 2 TSOM images obtained with coherent and incoherent illumination conditions using an upgraded prototype of TSOM presented in ref [7].
Fig. 3
Fig. 3 TSOM images for the structures (a) and (e) according to the degree of coherence, incoherent: (b) and (f), partially coherent: (c) and (g), and coherent illumination: (d) and (h).
Fig. 4
Fig. 4 Fin structures for numerical simulation.
Fig. 5
Fig. 5 TSOM images for the structural cases of Fig. 4 with the wavelength of 546nm, TM mode.
Fig. 6
Fig. 6 The variation of the (a)-(f) OIR and (g)-(l) MSD curves of the six structures in Fig. 4.
Fig. 7
Fig. 7 MSD plots of the simulation structures: (a) INA 0.1 and (b)-(d) INA 0.3.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

| E r |= g=1 G | 1 deg# | g g |deg# E r, g | 2 ,
| E r |= g=1 G | E r,g | 2 ( incoherent illumination ),
| E r |=| g=1 G E r,g | ( coherent illumination ),
MSD= 1 N i=1 N ( TSOM[ref .] i TSOM[comp .] i ) 2 ,
OIR=[ max( TSOM[ref .] i TSOM[comp .] i | i=1,2,,N ) min( TSOM[ref .] j TSOM[comp .] j | j=1,2,,N ) ]×100

Metrics