Abstract

This paper reports on large field-of-regard, high-efficiency, and large aperture active optical phased arrays (OPAs) for optical beam steering in LIDAR systems. The fabricated 5 mm-long silicon photonic OPA with a 1.3 μm waveguide pitch achieved adjacent waveguide crosstalk below −12dB. A relatively large and uniform emission aperture has been achieved with a low-contrast silicon nitride assisted grating (~20 dB/cm) whose emission profile can be further optimized using an apodized design. The fabricated silicon-photonic OPA demonstrated > 40° lateral beam steering with no sidelobes in a ± 33° field-of-regard and 3.3° longitudinal beam steering via wavelength tuning by 20 nm centered at 1550 nm. We have fully integrated the silicon photonic OPA device with electronic controls and successfully demonstrated 2-dimensional coherent optical beam steering of pre-planned far-field patterns. Future improvements include placement of a distributed Bragg reflector (DBR) underneath the grating emitter in order to achieve nearly a factor of two improvement in emission efficiency.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Heterogeneous silicon photonics sensing for autonomous cars [Invited]

Weiqiang Xie, Tin Komljenovic, Jinxi Huang, Minh Tran, Michael Davenport, Alfredo Torres, Paolo Pintus, and John Bowers
Opt. Express 27(3) 3642-3663 (2019)

High-resolution aliasing-free optical beam steering

David N. Hutchison, Jie Sun, Jonathan K. Doylend, Ranjeet Kumar, John Heck, Woosung Kim, Christopher T. Phare, Avi Feshali, and Haisheng Rong
Optica 3(8) 887-890 (2016)

Sparse aperiodic arrays for optical beam forming and LIDAR

Tin Komljenovic, Roger Helkey, Larry Coldren, and John E. Bowers
Opt. Express 25(3) 2511-2528 (2017)

References

  • View by:
  • |
  • |
  • |

  1. W. L. Stutzman and G. A. Thiele, in Antenna Theory and Design, 3 ed. (Wiley, 2013).
  2. J. C. Hulme, J. K. Doylend, M. J. R. Heck, J. D. Peters, M. L. Davenport, J. T. Bovington, L. A. Coldren, and J. E. Bowers, “Fully integrated hybrid silicon two dimensional beam scanner,” Opt. Express 23(5), 5861–5874 (2015).
    [Crossref] [PubMed]
  3. C. V. Poulton, A. Yaacobi, D. B. Cole, M. J. Byrd, M. Raval, D. Vermeulen, and M. R. Watts, “Coherent solid-state LIDAR with silicon photonic optical phased arrays,” Opt. Lett. 42(20), 4091–4094 (2017).
    [Crossref] [PubMed]
  4. J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
    [Crossref] [PubMed]
  5. K. Van Acoleyen, W. Bogaerts, J. Jágerská, N. Le Thomas, R. Houdré, and R. Baets, “Off-chip beam steering with a one-dimensional optical phased array on silicon-on-insulator,” Opt. Lett. 34(9), 1477–1479 (2009).
    [Crossref] [PubMed]
  6. S. Chung, H. Abediasl, and H. Hashemi, “A monolithically integrated large-scale optical phased array in silicon-on-insulator CMOS,” IEEE J. Solid-State Circuits 53(1), 275–296 (2018).
    [Crossref]
  7. C. V. Poulton, M. J. Byrd, E. Timurdogan, P. Russo, D. Vermeulen, and M. R. Watts, “Optical Phased Arrays for Integrated Beam Steering,” in 2018 IEEE 15th International Conference on Group IV Photonics (GFP), 2018), 1–2.
    [Crossref]
  8. S. A. Miller, C. T. Phare, Y.-C. Chang, X. Ji, O. Jimenez, A. Mohanty, S. Roberts, M. C. Shin, B. Stern, zadka, and M. Lipson, “512-element actively steered silicon phased array for low-power LIDAR,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2018), JTh5C.2.
    [Crossref]
  9. C. T. Phare, M. C. Shin, J. Sharma, S. Ahasan, H. Krishnaswamy, and M. Lipson, “Silicon optical phased array with grating lobe-free beam formation over 180 degree field of view,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2018), SM3I.2.
    [Crossref]
  10. H. W. Chen, Y. H. Kuo, and J. E. Bowers, “A hybrid silicon-AlGaInAs phase modulator,” IEEE Photonics Technol. Lett. 20(23), 1920–1922 (2008).
    [Crossref]
  11. D. N. Hutchison, J. Sun, J. K. Doylend, R. Kumar, J. Heck, W. Kim, C. T. Phare, A. Feshali, and H. Rong, “High-resolution aliasing-free optical beam steering,” Optica 3(8), 887–890 (2016).
    [Crossref]
  12. W. Song, R. Gatdula, S. Abbaslou, M. Lu, A. Stein, W. Y. C. Lai, J. Provine, R. F. W. Pease, D. N. Christodoulides, and W. Jiang, “High-density waveguide superlattices with low crosstalk,” Nat. Commun. 6(1), 7027 (2015).
    [Crossref] [PubMed]
  13. M. A. Tran, T. Komljenovic, J. C. Hulme, M. J. Kennedy, D. J. Blumenthal, and J. E. Bowers, “Integrated optical driver for interferometric optical gyroscopes,” Opt. Express 25(4), 3826–3840 (2017).
    [Crossref] [PubMed]
  14. R. C. Jaeger, Introduction to microelectronic fabrication (Addison-Wesley Longman Publishing Co., Inc., 1987), p. 232.
  15. M. Raval, C. V. Poulton, and M. R. Watts, “Unidirectional waveguide grating antennas with uniform emission for optical phased arrays,” Opt. Lett. 42(13), 2563–2566 (2017).
    [Crossref] [PubMed]
  16. K. Shang, C. Qin, Y. Zhang, G. Liu, X. Xiao, S. Feng, and S. J. B. Yoo, “Uniform emission, constant wavevector silicon grating surface emitter for beam steering with ultra-sharp instantaneous field-of-view,” Opt. Express 25(17), 19655–19661 (2017).
    [Crossref] [PubMed]
  17. E. Timurdogan, Z. Su, C. V. Poulton, M. J. Byrd, S. Xin, R.-J. Shiue, B. R. Moss, E. S. Hosseini, and M. R. Watts, “AIM process design kit (AIMPDKv2.0): silicon photonics passive and active component libraries on a 300mm wafer,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2018), M3F.1.
    [Crossref]
  18. K. Shang, S. Pathak, B. Guan, G. Liu, and S. J. B. Yoo, “Low-loss compact multilayer silicon nitride platform for 3D photonic integrated circuits,” Opt. Express 23(16), 21334–21342 (2015).
    [Crossref] [PubMed]
  19. W. Xie, T. Komljenovic, J. Huang, and J. Bowers, “Dense III-V/Si Phase Shifters for Optical Phased Arrays,” in 2018 Asia Communications and Photonics Conference (ACP), 2018), 1–3.
  20. T. Komljenovic and P. Pintus, “On-chip calibration and control of optical phased arrays,” Opt. Express 26(3), 3199–3210 (2018).
    [Crossref] [PubMed]
  21. T. Horikawa, D. Shimura, H. Okayama, S. Jeong, H. Takahashi, J. Ushida, Y. Sobu, A. Shiina, M. Tokushima, K. Kinoshita, and T. Mogami, “A 300-mm silicon photonics platform for large-scale device integration,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–15 (2018).
    [Crossref]
  22. Y. Zhang, Y. C. Ling, Y. Zhang, K. Shang, and S. J. B. Yoo, “High-density wafer-scale 3-D silicon-photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 24, 1–10 (2018).
  23. S. J. B. Yoo, B. Guan, and R. P. Scott, “Heterogeneous 2D/3D photonic integrated microsystems,” Microsyst. Nanoeng. 2(1), 16030 (2016).
    [Crossref]
  24. R. Adams, M. Spasojevic, M. Chagnon, M. Malekiha, J. Li, D. V. Plant, and L. R. Chen, “Wavelength conversion of 28 GBaud 16-QAM signals based on four-wave mixing in a silicon nanowire,” Opt. Express 22(4), 4083–4090 (2014).
    [Crossref] [PubMed]

2018 (4)

S. Chung, H. Abediasl, and H. Hashemi, “A monolithically integrated large-scale optical phased array in silicon-on-insulator CMOS,” IEEE J. Solid-State Circuits 53(1), 275–296 (2018).
[Crossref]

T. Komljenovic and P. Pintus, “On-chip calibration and control of optical phased arrays,” Opt. Express 26(3), 3199–3210 (2018).
[Crossref] [PubMed]

T. Horikawa, D. Shimura, H. Okayama, S. Jeong, H. Takahashi, J. Ushida, Y. Sobu, A. Shiina, M. Tokushima, K. Kinoshita, and T. Mogami, “A 300-mm silicon photonics platform for large-scale device integration,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–15 (2018).
[Crossref]

Y. Zhang, Y. C. Ling, Y. Zhang, K. Shang, and S. J. B. Yoo, “High-density wafer-scale 3-D silicon-photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 24, 1–10 (2018).

2017 (4)

2016 (2)

2015 (3)

2014 (1)

2013 (1)

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[Crossref] [PubMed]

2009 (1)

2008 (1)

H. W. Chen, Y. H. Kuo, and J. E. Bowers, “A hybrid silicon-AlGaInAs phase modulator,” IEEE Photonics Technol. Lett. 20(23), 1920–1922 (2008).
[Crossref]

Abbaslou, S.

W. Song, R. Gatdula, S. Abbaslou, M. Lu, A. Stein, W. Y. C. Lai, J. Provine, R. F. W. Pease, D. N. Christodoulides, and W. Jiang, “High-density waveguide superlattices with low crosstalk,” Nat. Commun. 6(1), 7027 (2015).
[Crossref] [PubMed]

Abediasl, H.

S. Chung, H. Abediasl, and H. Hashemi, “A monolithically integrated large-scale optical phased array in silicon-on-insulator CMOS,” IEEE J. Solid-State Circuits 53(1), 275–296 (2018).
[Crossref]

Adams, R.

Baets, R.

Blumenthal, D. J.

Bogaerts, W.

Bovington, J. T.

Bowers, J. E.

Byrd, M. J.

Chagnon, M.

Chen, H. W.

H. W. Chen, Y. H. Kuo, and J. E. Bowers, “A hybrid silicon-AlGaInAs phase modulator,” IEEE Photonics Technol. Lett. 20(23), 1920–1922 (2008).
[Crossref]

Chen, L. R.

Christodoulides, D. N.

W. Song, R. Gatdula, S. Abbaslou, M. Lu, A. Stein, W. Y. C. Lai, J. Provine, R. F. W. Pease, D. N. Christodoulides, and W. Jiang, “High-density waveguide superlattices with low crosstalk,” Nat. Commun. 6(1), 7027 (2015).
[Crossref] [PubMed]

Chung, S.

S. Chung, H. Abediasl, and H. Hashemi, “A monolithically integrated large-scale optical phased array in silicon-on-insulator CMOS,” IEEE J. Solid-State Circuits 53(1), 275–296 (2018).
[Crossref]

Coldren, L. A.

Cole, D. B.

Davenport, M. L.

Doylend, J. K.

Feng, S.

Feshali, A.

Gatdula, R.

W. Song, R. Gatdula, S. Abbaslou, M. Lu, A. Stein, W. Y. C. Lai, J. Provine, R. F. W. Pease, D. N. Christodoulides, and W. Jiang, “High-density waveguide superlattices with low crosstalk,” Nat. Commun. 6(1), 7027 (2015).
[Crossref] [PubMed]

Guan, B.

Hashemi, H.

S. Chung, H. Abediasl, and H. Hashemi, “A monolithically integrated large-scale optical phased array in silicon-on-insulator CMOS,” IEEE J. Solid-State Circuits 53(1), 275–296 (2018).
[Crossref]

Heck, J.

Heck, M. J. R.

Horikawa, T.

T. Horikawa, D. Shimura, H. Okayama, S. Jeong, H. Takahashi, J. Ushida, Y. Sobu, A. Shiina, M. Tokushima, K. Kinoshita, and T. Mogami, “A 300-mm silicon photonics platform for large-scale device integration,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–15 (2018).
[Crossref]

Hosseini, E. S.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[Crossref] [PubMed]

Houdré, R.

Hulme, J. C.

Hutchison, D. N.

Jágerská, J.

Jeong, S.

T. Horikawa, D. Shimura, H. Okayama, S. Jeong, H. Takahashi, J. Ushida, Y. Sobu, A. Shiina, M. Tokushima, K. Kinoshita, and T. Mogami, “A 300-mm silicon photonics platform for large-scale device integration,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–15 (2018).
[Crossref]

Jiang, W.

W. Song, R. Gatdula, S. Abbaslou, M. Lu, A. Stein, W. Y. C. Lai, J. Provine, R. F. W. Pease, D. N. Christodoulides, and W. Jiang, “High-density waveguide superlattices with low crosstalk,” Nat. Commun. 6(1), 7027 (2015).
[Crossref] [PubMed]

Kennedy, M. J.

Kim, W.

Kinoshita, K.

T. Horikawa, D. Shimura, H. Okayama, S. Jeong, H. Takahashi, J. Ushida, Y. Sobu, A. Shiina, M. Tokushima, K. Kinoshita, and T. Mogami, “A 300-mm silicon photonics platform for large-scale device integration,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–15 (2018).
[Crossref]

Komljenovic, T.

Kumar, R.

Kuo, Y. H.

H. W. Chen, Y. H. Kuo, and J. E. Bowers, “A hybrid silicon-AlGaInAs phase modulator,” IEEE Photonics Technol. Lett. 20(23), 1920–1922 (2008).
[Crossref]

Lai, W. Y. C.

W. Song, R. Gatdula, S. Abbaslou, M. Lu, A. Stein, W. Y. C. Lai, J. Provine, R. F. W. Pease, D. N. Christodoulides, and W. Jiang, “High-density waveguide superlattices with low crosstalk,” Nat. Commun. 6(1), 7027 (2015).
[Crossref] [PubMed]

Le Thomas, N.

Li, J.

Ling, Y. C.

Y. Zhang, Y. C. Ling, Y. Zhang, K. Shang, and S. J. B. Yoo, “High-density wafer-scale 3-D silicon-photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 24, 1–10 (2018).

Liu, G.

Lu, M.

W. Song, R. Gatdula, S. Abbaslou, M. Lu, A. Stein, W. Y. C. Lai, J. Provine, R. F. W. Pease, D. N. Christodoulides, and W. Jiang, “High-density waveguide superlattices with low crosstalk,” Nat. Commun. 6(1), 7027 (2015).
[Crossref] [PubMed]

Malekiha, M.

Mogami, T.

T. Horikawa, D. Shimura, H. Okayama, S. Jeong, H. Takahashi, J. Ushida, Y. Sobu, A. Shiina, M. Tokushima, K. Kinoshita, and T. Mogami, “A 300-mm silicon photonics platform for large-scale device integration,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–15 (2018).
[Crossref]

Okayama, H.

T. Horikawa, D. Shimura, H. Okayama, S. Jeong, H. Takahashi, J. Ushida, Y. Sobu, A. Shiina, M. Tokushima, K. Kinoshita, and T. Mogami, “A 300-mm silicon photonics platform for large-scale device integration,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–15 (2018).
[Crossref]

Pathak, S.

Pease, R. F. W.

W. Song, R. Gatdula, S. Abbaslou, M. Lu, A. Stein, W. Y. C. Lai, J. Provine, R. F. W. Pease, D. N. Christodoulides, and W. Jiang, “High-density waveguide superlattices with low crosstalk,” Nat. Commun. 6(1), 7027 (2015).
[Crossref] [PubMed]

Peters, J. D.

Phare, C. T.

Pintus, P.

Plant, D. V.

Poulton, C. V.

Provine, J.

W. Song, R. Gatdula, S. Abbaslou, M. Lu, A. Stein, W. Y. C. Lai, J. Provine, R. F. W. Pease, D. N. Christodoulides, and W. Jiang, “High-density waveguide superlattices with low crosstalk,” Nat. Commun. 6(1), 7027 (2015).
[Crossref] [PubMed]

Qin, C.

Raval, M.

Rong, H.

Scott, R. P.

S. J. B. Yoo, B. Guan, and R. P. Scott, “Heterogeneous 2D/3D photonic integrated microsystems,” Microsyst. Nanoeng. 2(1), 16030 (2016).
[Crossref]

Shang, K.

Shiina, A.

T. Horikawa, D. Shimura, H. Okayama, S. Jeong, H. Takahashi, J. Ushida, Y. Sobu, A. Shiina, M. Tokushima, K. Kinoshita, and T. Mogami, “A 300-mm silicon photonics platform for large-scale device integration,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–15 (2018).
[Crossref]

Shimura, D.

T. Horikawa, D. Shimura, H. Okayama, S. Jeong, H. Takahashi, J. Ushida, Y. Sobu, A. Shiina, M. Tokushima, K. Kinoshita, and T. Mogami, “A 300-mm silicon photonics platform for large-scale device integration,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–15 (2018).
[Crossref]

Sobu, Y.

T. Horikawa, D. Shimura, H. Okayama, S. Jeong, H. Takahashi, J. Ushida, Y. Sobu, A. Shiina, M. Tokushima, K. Kinoshita, and T. Mogami, “A 300-mm silicon photonics platform for large-scale device integration,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–15 (2018).
[Crossref]

Song, W.

W. Song, R. Gatdula, S. Abbaslou, M. Lu, A. Stein, W. Y. C. Lai, J. Provine, R. F. W. Pease, D. N. Christodoulides, and W. Jiang, “High-density waveguide superlattices with low crosstalk,” Nat. Commun. 6(1), 7027 (2015).
[Crossref] [PubMed]

Spasojevic, M.

Stein, A.

W. Song, R. Gatdula, S. Abbaslou, M. Lu, A. Stein, W. Y. C. Lai, J. Provine, R. F. W. Pease, D. N. Christodoulides, and W. Jiang, “High-density waveguide superlattices with low crosstalk,” Nat. Commun. 6(1), 7027 (2015).
[Crossref] [PubMed]

Sun, J.

D. N. Hutchison, J. Sun, J. K. Doylend, R. Kumar, J. Heck, W. Kim, C. T. Phare, A. Feshali, and H. Rong, “High-resolution aliasing-free optical beam steering,” Optica 3(8), 887–890 (2016).
[Crossref]

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[Crossref] [PubMed]

Takahashi, H.

T. Horikawa, D. Shimura, H. Okayama, S. Jeong, H. Takahashi, J. Ushida, Y. Sobu, A. Shiina, M. Tokushima, K. Kinoshita, and T. Mogami, “A 300-mm silicon photonics platform for large-scale device integration,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–15 (2018).
[Crossref]

Timurdogan, E.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[Crossref] [PubMed]

Tokushima, M.

T. Horikawa, D. Shimura, H. Okayama, S. Jeong, H. Takahashi, J. Ushida, Y. Sobu, A. Shiina, M. Tokushima, K. Kinoshita, and T. Mogami, “A 300-mm silicon photonics platform for large-scale device integration,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–15 (2018).
[Crossref]

Tran, M. A.

Ushida, J.

T. Horikawa, D. Shimura, H. Okayama, S. Jeong, H. Takahashi, J. Ushida, Y. Sobu, A. Shiina, M. Tokushima, K. Kinoshita, and T. Mogami, “A 300-mm silicon photonics platform for large-scale device integration,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–15 (2018).
[Crossref]

Van Acoleyen, K.

Vermeulen, D.

Watts, M. R.

Xiao, X.

Yaacobi, A.

Yoo, S. J. B.

Zhang, Y.

Y. Zhang, Y. C. Ling, Y. Zhang, K. Shang, and S. J. B. Yoo, “High-density wafer-scale 3-D silicon-photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 24, 1–10 (2018).

Y. Zhang, Y. C. Ling, Y. Zhang, K. Shang, and S. J. B. Yoo, “High-density wafer-scale 3-D silicon-photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 24, 1–10 (2018).

K. Shang, C. Qin, Y. Zhang, G. Liu, X. Xiao, S. Feng, and S. J. B. Yoo, “Uniform emission, constant wavevector silicon grating surface emitter for beam steering with ultra-sharp instantaneous field-of-view,” Opt. Express 25(17), 19655–19661 (2017).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (2)

T. Horikawa, D. Shimura, H. Okayama, S. Jeong, H. Takahashi, J. Ushida, Y. Sobu, A. Shiina, M. Tokushima, K. Kinoshita, and T. Mogami, “A 300-mm silicon photonics platform for large-scale device integration,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–15 (2018).
[Crossref]

Y. Zhang, Y. C. Ling, Y. Zhang, K. Shang, and S. J. B. Yoo, “High-density wafer-scale 3-D silicon-photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 24, 1–10 (2018).

IEEE J. Solid-State Circuits (1)

S. Chung, H. Abediasl, and H. Hashemi, “A monolithically integrated large-scale optical phased array in silicon-on-insulator CMOS,” IEEE J. Solid-State Circuits 53(1), 275–296 (2018).
[Crossref]

IEEE Photonics Technol. Lett. (1)

H. W. Chen, Y. H. Kuo, and J. E. Bowers, “A hybrid silicon-AlGaInAs phase modulator,” IEEE Photonics Technol. Lett. 20(23), 1920–1922 (2008).
[Crossref]

Microsyst. Nanoeng. (1)

S. J. B. Yoo, B. Guan, and R. P. Scott, “Heterogeneous 2D/3D photonic integrated microsystems,” Microsyst. Nanoeng. 2(1), 16030 (2016).
[Crossref]

Nat. Commun. (1)

W. Song, R. Gatdula, S. Abbaslou, M. Lu, A. Stein, W. Y. C. Lai, J. Provine, R. F. W. Pease, D. N. Christodoulides, and W. Jiang, “High-density waveguide superlattices with low crosstalk,” Nat. Commun. 6(1), 7027 (2015).
[Crossref] [PubMed]

Nature (1)

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[Crossref] [PubMed]

Opt. Express (6)

Opt. Lett. (3)

Optica (1)

Other (7)

R. C. Jaeger, Introduction to microelectronic fabrication (Addison-Wesley Longman Publishing Co., Inc., 1987), p. 232.

W. L. Stutzman and G. A. Thiele, in Antenna Theory and Design, 3 ed. (Wiley, 2013).

E. Timurdogan, Z. Su, C. V. Poulton, M. J. Byrd, S. Xin, R.-J. Shiue, B. R. Moss, E. S. Hosseini, and M. R. Watts, “AIM process design kit (AIMPDKv2.0): silicon photonics passive and active component libraries on a 300mm wafer,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2018), M3F.1.
[Crossref]

C. V. Poulton, M. J. Byrd, E. Timurdogan, P. Russo, D. Vermeulen, and M. R. Watts, “Optical Phased Arrays for Integrated Beam Steering,” in 2018 IEEE 15th International Conference on Group IV Photonics (GFP), 2018), 1–2.
[Crossref]

S. A. Miller, C. T. Phare, Y.-C. Chang, X. Ji, O. Jimenez, A. Mohanty, S. Roberts, M. C. Shin, B. Stern, zadka, and M. Lipson, “512-element actively steered silicon phased array for low-power LIDAR,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2018), JTh5C.2.
[Crossref]

C. T. Phare, M. C. Shin, J. Sharma, S. Ahasan, H. Krishnaswamy, and M. Lipson, “Silicon optical phased array with grating lobe-free beam formation over 180 degree field of view,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2018), SM3I.2.
[Crossref]

W. Xie, T. Komljenovic, J. Huang, and J. Bowers, “Dense III-V/Si Phase Shifters for Optical Phased Arrays,” in 2018 Asia Communications and Photonics Conference (ACP), 2018), 1–3.

Supplementary Material (1)

NameDescription
» Visualization 1       2D optical beam steering results from the packaged system

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1 Schematic of an OPA device for 2D coherent optical beam steering.
Fig. 2
Fig. 2 (a) Calculated sidelobe free steering angle as a function of waveguide pitch at 1550 nm. (b) Simulated far-field distribution of 24 element array with 1.3 μm and 2.0 μm pitch.
Fig. 3
Fig. 3 (a) Schematic of the waveguide coupling model for FEM simulation. (b) FEM simulated coupling length as a function of waveguide pitch with different silicon layer thickness.
Fig. 4
Fig. 4 (a) Top-view scanning electron microscope (SEM) picture of directional coupler test structures for optical crosstalk extraction. (b) Zoom of the waveguide coupling part with 1.3 μm pitch. Measured drop port and through port transmission spectra for 5 mm long directional coupler structure with waveguide pitch of (c) 1.3 μm and (d) 1.5 μm.
Fig. 5
Fig. 5 (a) SEM picture of fabricated single stage MMI splitter. (b) Simulated and measured excess loss of the MMI splitter as a function of MMI length. Inset: simulated intensity distribution profile in the MMI.
Fig. 6
Fig. 6 (a) Top-view and (b) 75°-tilted-view SEM of fabricated vertical taper on the grating waveguide array. (c) Tilted-view SEM of vertical taper before waveguide etching.
Fig. 7
Fig. 7 (a) Cross-sectional SEM picture of deposited 2 pairs of α-Si/SiO2 DBR on a silicon substrate. (b) Measured reflectance of 1 pair of DBR, 2 pairs of DBR, silicon and gold-coated reference sample.
Fig. 8
Fig. 8 (a) Schematic of the FDTD simulation setup for the grating with DBR. Simulated grating emission profile (b) with and (c) without bottom DBRs.
Fig. 9
Fig. 9 (a) Schematic and top-view and cross-sectional-view SEM pictures of fabricated SiN assisted weakly emitting grating. (b) Measured grating radiator loss as a function of grating length. (c) Measured grating near-field infrared (IR) image along the grating.
Fig. 10
Fig. 10 (a) Optical microscope image of fabricated proof-of-concept 2D integrated silicon photonic unit cell. Zoom-in of (b) the MMI tree based splitters, (c) the heater based phase shifters and (d) the 2μm pitch waveguide grating array.
Fig. 11
Fig. 11 (a) Measured thermal-optical phase shifter tuning efficiency. (b) Measured thermal crosstalk from an adjacent channel.
Fig. 12
Fig. 12 (a) Experimental setup for OPA far-field measurement. Measured far-field IR images (b) before phase error correction (PEC) and (c) after phase error correction.
Fig. 13
Fig. 13 (a) Measured far-field image at different wavelength. (b) Measured far-field image at different phase gradient.
Fig. 14
Fig. 14 (a) Fully packaged coherent 2D optical beam steerer with electronic controls. (b) Zoom-in of the OPA chip on the PCB. (c) Composite IR image for the scanning spots (see Visualization 1).
Fig. 15
Fig. 15 3D structures developed for future large aperture scaling.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

L= λ 2| n even n odd |

Metrics