Abstract

Vortex beam generators are promising to improve the transmission data rate and enlarge the communication capacity due to the fact that they inherently carry the orbital angular momentum (OAM). However, current available devices are limited because of high profiles and low efficiencies, especially for the transmissive case. Here, we propose a new strategy to design an ultrathin (0.07λ0) transmissive Pancharatnam–Berry (PB) metasurface with nearly unit transmittance. The carefully optimized metasurface integrates an anisotropic crossbar structure with positive permittivity and a holey metallic ring resonator with negative permittivity based on certain criterions placed on both sides of a dielectric substrate, which realize an exact π phase difference due to the control of permittivities at both polarizations. As a proof of concept, a microwave vortex beam generator is designed, fabricated and experimentally characterized. Both measured far-field and near-field characterizations are in excellent agreement with numerical simulations, indicating that our transmissive PB meta-device (operating at 10.6 GHz) exhibits a maximum experimental efficiency of 87%. Our findings can motivate the realizations of high-performance transmissive PB meta-devices with a very low profile or operation at other frequency domains.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High-efficiency broadband vortex beam generator based on transmissive metasurface

Shiwei Tang, Xike Li, Weikang Pan, Jun Zhou, Tao Jiang, and Fei Ding
Opt. Express 27(4) 4281-4291 (2019)

Dual-band vortex beam generation with different OAM modes using single-layer metasurface

Chen Ji, Jiakun Song, Cheng Huang, Xiaoyu Wu, and Xiangang Luo
Opt. Express 27(1) 34-44 (2019)

Broadband, polarization insensitive low-scattering metasurface based on lossy Pancharatnam-Berry phase particles

Lina Qiu, Gaobiao Xiao, Xianghong Kong, and Can Xiong
Opt. Express 27(15) 21226-21238 (2019)

References

  • View by:
  • |
  • |
  • |

  1. Y. J. Cheng, H. Xu, D. Ma, J. Wu, L. Wang, and Y. Fan, “Millimeter-wave shaped-beam substrate integrated conformal array antenna,” IEEE Trans. Antenn. Propag. 61(9), 4558–4566 (2013).
    [Crossref]
  2. X. Y. Lei and Y. Jian Cheng, “High-efficiency and high-polarization separation reflectarray element for OAM-folded antenna application,” IEEE Antennas Wirel. Propag. Lett. 16, 1357–1360 (2017).
    [Crossref]
  3. M. Uchida and A. Tonomura, “Generation of electron beams carrying orbital angular momentum,” Nature 464(7289), 737–739 (2010).
    [Crossref] [PubMed]
  4. R. Niemiec, C. Brousseau, K. Mahdjoubi, O. Emile, and A. Menard, “Characterization of an OAM flat-plate antenna in the millimeter frequency band,” IEEE Antennas Propag. Lett. 13, 1011–1014 (2014).
    [Crossref]
  5. S. Yu, L. Li, G. Shi, C. Zhu, X. Zhou, and Y. Shi, “Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain,” Appl. Phys. Lett. 108(12), 121903 (2016).
    [Crossref]
  6. S. Yu, L. Li, G. Shi, C. Zhu, and Y. Shi, “Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain,” Appl. Phys. Lett. 108(24), 241901 (2016).
    [Crossref]
  7. M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phase plate,” Opt. Commun. 112(5-6), 321–327 (1994).
    [Crossref]
  8. X. Hui, S. Zheng, Y. Hu, C. Xu, X. Jin, H. Chi, and X. Zhang, “Ultralow reflectivity spiral phase plate for generation of millimeter-wave OAM beam,” IEEE Antennas Wirel. Propag. Lett. 14, 966–969 (2015).
    [Crossref]
  9. P. Genevet, J. Lin, M. A. Kats, and F. Capasso, “Holographic detection of the orbital angular momentum of light with plasmonic photodiodes,” Nat. Commun. 3(1), 1278 (2012).
    [Crossref] [PubMed]
  10. F. Tamburini, E. Mari, A. Sponselli, B. Thide, A. Bianchini, and F. Romanato, “Encoding many channels in the same frequency through radio vorticity: first experimental test,” New J. Phys. 14(3), 033001 (2012).
    [Crossref]
  11. X. Y. Lei and Y. J. Cheng, “High-efficiency and high-polarization separation reflectarray element for OAM-folded antenna application,” IEEE Antennas Wirel. Propag. Lett. 16, 1357–1360 (2017).
    [Crossref]
  12. Z. Zhao, J. Wang, S. Li, and A. E. Willner, “Metamaterials-based broadband generation of orbital angular momentum carrying vector beams,” Opt. Lett. 38(6), 932–934 (2013).
    [Crossref] [PubMed]
  13. X. Yi, X. Ling, Z. Zhang, Y. Li, X. Zhou, Y. Liu, S. Chen, H. Luo, and S. Wen, “Generation of cylindrical vector vortex beams by two cascaded metasurfaces,” Opt. Express 22(14), 17207–17215 (2014).
    [Crossref] [PubMed]
  14. Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
    [Crossref] [PubMed]
  15. K. Yang, M. Pu, X. Li, X. Ma, J. Luo, H. Gao, and X. Luo, “Wavelength-selective orbital angular momentum generation based on a plasmonic metasurface,” Nanoscale 8(24), 12267–12271 (2016).
    [Crossref] [PubMed]
  16. E. Karimi, S. A. Schulz, I. De Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light Sci. Appl. 3(5), e167 (2014).
    [Crossref]
  17. M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C. W. Qiu, “Visible-frequency metasurface for structuring and spatially multiplexing optical vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
    [Crossref] [PubMed]
  18. Y. H. Guo, L. S. Yan, W. Pan, and B. Luo, “Generation and manipulation of orbital angular momentum by all-dielectric metasurfaces,” Plasmonics 11(1), 337–344 (2016).
    [Crossref]
  19. F. Yue, D. Wen, C. Zhang, B. D. Gerardot, W. Wang, S. Zhang, and X. Chen, “Multichannel polarization-controllable superpositions of orbital angular momentum states,” Adv. Mater. 29(15), 1603838 (2017).
    [Crossref] [PubMed]
  20. S. W. Tang, T. Cai, G. -M. Wang, J. G. Liang, X. K. Li, and J. C. Yu, “High-efficiency dual-modes vortex beam generator with polarization-dependent transmission and reflection properties,” Sci. Rep. 8, 6422 (2018).
    [Crossref] [PubMed]
  21. W. J. Luo, S. L. Sun, H.-X. Xu, Q. He, and L. Zhou, “Transmissive ultrathin pancharatnam-berry metasurfaces with nearly 100% efficiency,” Phys. Rev. Appl. 7(4), 044033 (2017).
    [Crossref]
  22. J. C. Tung, H. C. Liang, T. H. Lu, K. F. Huang, and Y. F. Chen, “Exploring vortex structures in orbital-angular-momentum beams generated from planar geometric modes with a mode converter,” Opt. Express 24(20), 22796–22805 (2016).
    [Crossref] [PubMed]
  23. S. Berg-Johansen, F. Töppel, B. Stiller, P. Banzer, M. Ornigotti, E. Giacobino, G. Leuchs, A. Aiello, and C. Marquardt, “Classically entangled optical beams for high-speed kinematic sensing,” Optica 2(10), 864–868 (2015).
    [Crossref]
  24. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
    [Crossref] [PubMed]
  25. F. Monticone, N. M. Estakhri, and A. Alù, “Full control of nanoscale optical transmission with a composite metascreen,” Phys. Rev. Lett. 110(20), 203903 (2013).
    [Crossref] [PubMed]
  26. C. Pfeiffer and A. Grbic, “Cascaded metasurfaces for complete phase and polarization control,” Appl. Phys. Lett. 102(23), 231116 (2013).
    [Crossref]
  27. C. Pfeiffer and A. Grbic, “Millimeter-wave transmitarrays for wavefront and polarization control,” IEEE Trans. Microw. Theory Tech. 61(12), 4407–4417 (2013).
    [Crossref]
  28. T. Cai, G.-M. Wang, J.-G. Liang, Y.-Q. Zhuang, and T.-J. Li, “High-performance transmissive meta-surface for c-/x-band lens antenna application,” IEEE Trans. Antenn. Propag. 65(7), 3598–3606 (2017).
    [Crossref]
  29. T. Cai, S. W. Tang, G. M. Wang, H. X. Xu, S. Sun, Q. He, and L. Zhou, “High-performance bifunctional metasurfaces in transmission and reflection geometries,” Adv. Opt. Mater. 5(2), 1600506 (2017).
    [Crossref]
  30. Y. Ran, J. Liang, T. Cai, and H. Li, “High-performance broadband vortex beam generator using reflective Pancharatnam–Berry metasurface,” Opt. Commun. 427, 101–106 (2018).
    [Crossref]
  31. X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C.-W. Qiu, and A. Alù, “Ultrathin Pancharatnam-Berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
    [Crossref] [PubMed]
  32. A. H. Abdelrahman, A. Z. Elsherbeni, and F. Yang, “Transmission phase limit of multilayer frequency-selective surfaces for transmitarray designs,” IEEE Trans. Antenn. Propag. 62(2), 690–697 (2014).
    [Crossref]
  33. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
    [Crossref] [PubMed]
  34. T. Cai, G. M. Wang, F. X. Zhang, Y. W. Wang, B. F. Zong, and H. X. Xu, “Compact microstrip antenna with enhanced bandwidth by loading magneto-electro-dielectric planar waveguided metamaterials,” IEEE Trans. Antenn. Propag. 63(5), 2306–2311 (2015).
    [Crossref]
  35. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
    [Crossref] [PubMed]
  36. L. Zhou, W. Wen, C. Chan, and P. Sheng, “Electromagnetic-wave tunneling through negative-permittivity media with high magnetic fields,” Phys. Rev. Lett. 94(24), 243905 (2005).
    [Crossref]
  37. T. Cai, G. M. Wang, H. X. Xu, S. W. Tang, H. Li, J.-G. Liang, and Y. Q. Zhuang, “Bifunctional pancharatnam-berry metasurface with high-efficiency helicity-dependent transmissions and reflections,” Ann. Phys. 540, 1700321 (2017).

2018 (2)

S. W. Tang, T. Cai, G. -M. Wang, J. G. Liang, X. K. Li, and J. C. Yu, “High-efficiency dual-modes vortex beam generator with polarization-dependent transmission and reflection properties,” Sci. Rep. 8, 6422 (2018).
[Crossref] [PubMed]

Y. Ran, J. Liang, T. Cai, and H. Li, “High-performance broadband vortex beam generator using reflective Pancharatnam–Berry metasurface,” Opt. Commun. 427, 101–106 (2018).
[Crossref]

2017 (7)

F. Yue, D. Wen, C. Zhang, B. D. Gerardot, W. Wang, S. Zhang, and X. Chen, “Multichannel polarization-controllable superpositions of orbital angular momentum states,” Adv. Mater. 29(15), 1603838 (2017).
[Crossref] [PubMed]

W. J. Luo, S. L. Sun, H.-X. Xu, Q. He, and L. Zhou, “Transmissive ultrathin pancharatnam-berry metasurfaces with nearly 100% efficiency,” Phys. Rev. Appl. 7(4), 044033 (2017).
[Crossref]

T. Cai, G.-M. Wang, J.-G. Liang, Y.-Q. Zhuang, and T.-J. Li, “High-performance transmissive meta-surface for c-/x-band lens antenna application,” IEEE Trans. Antenn. Propag. 65(7), 3598–3606 (2017).
[Crossref]

T. Cai, S. W. Tang, G. M. Wang, H. X. Xu, S. Sun, Q. He, and L. Zhou, “High-performance bifunctional metasurfaces in transmission and reflection geometries,” Adv. Opt. Mater. 5(2), 1600506 (2017).
[Crossref]

X. Y. Lei and Y. Jian Cheng, “High-efficiency and high-polarization separation reflectarray element for OAM-folded antenna application,” IEEE Antennas Wirel. Propag. Lett. 16, 1357–1360 (2017).
[Crossref]

X. Y. Lei and Y. J. Cheng, “High-efficiency and high-polarization separation reflectarray element for OAM-folded antenna application,” IEEE Antennas Wirel. Propag. Lett. 16, 1357–1360 (2017).
[Crossref]

T. Cai, G. M. Wang, H. X. Xu, S. W. Tang, H. Li, J.-G. Liang, and Y. Q. Zhuang, “Bifunctional pancharatnam-berry metasurface with high-efficiency helicity-dependent transmissions and reflections,” Ann. Phys. 540, 1700321 (2017).

2016 (6)

K. Yang, M. Pu, X. Li, X. Ma, J. Luo, H. Gao, and X. Luo, “Wavelength-selective orbital angular momentum generation based on a plasmonic metasurface,” Nanoscale 8(24), 12267–12271 (2016).
[Crossref] [PubMed]

M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C. W. Qiu, “Visible-frequency metasurface for structuring and spatially multiplexing optical vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref] [PubMed]

Y. H. Guo, L. S. Yan, W. Pan, and B. Luo, “Generation and manipulation of orbital angular momentum by all-dielectric metasurfaces,” Plasmonics 11(1), 337–344 (2016).
[Crossref]

S. Yu, L. Li, G. Shi, C. Zhu, X. Zhou, and Y. Shi, “Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain,” Appl. Phys. Lett. 108(12), 121903 (2016).
[Crossref]

S. Yu, L. Li, G. Shi, C. Zhu, and Y. Shi, “Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain,” Appl. Phys. Lett. 108(24), 241901 (2016).
[Crossref]

J. C. Tung, H. C. Liang, T. H. Lu, K. F. Huang, and Y. F. Chen, “Exploring vortex structures in orbital-angular-momentum beams generated from planar geometric modes with a mode converter,” Opt. Express 24(20), 22796–22805 (2016).
[Crossref] [PubMed]

2015 (4)

S. Berg-Johansen, F. Töppel, B. Stiller, P. Banzer, M. Ornigotti, E. Giacobino, G. Leuchs, A. Aiello, and C. Marquardt, “Classically entangled optical beams for high-speed kinematic sensing,” Optica 2(10), 864–868 (2015).
[Crossref]

T. Cai, G. M. Wang, F. X. Zhang, Y. W. Wang, B. F. Zong, and H. X. Xu, “Compact microstrip antenna with enhanced bandwidth by loading magneto-electro-dielectric planar waveguided metamaterials,” IEEE Trans. Antenn. Propag. 63(5), 2306–2311 (2015).
[Crossref]

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C.-W. Qiu, and A. Alù, “Ultrathin Pancharatnam-Berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
[Crossref] [PubMed]

X. Hui, S. Zheng, Y. Hu, C. Xu, X. Jin, H. Chi, and X. Zhang, “Ultralow reflectivity spiral phase plate for generation of millimeter-wave OAM beam,” IEEE Antennas Wirel. Propag. Lett. 14, 966–969 (2015).
[Crossref]

2014 (5)

R. Niemiec, C. Brousseau, K. Mahdjoubi, O. Emile, and A. Menard, “Characterization of an OAM flat-plate antenna in the millimeter frequency band,” IEEE Antennas Propag. Lett. 13, 1011–1014 (2014).
[Crossref]

E. Karimi, S. A. Schulz, I. De Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light Sci. Appl. 3(5), e167 (2014).
[Crossref]

X. Yi, X. Ling, Z. Zhang, Y. Li, X. Zhou, Y. Liu, S. Chen, H. Luo, and S. Wen, “Generation of cylindrical vector vortex beams by two cascaded metasurfaces,” Opt. Express 22(14), 17207–17215 (2014).
[Crossref] [PubMed]

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref] [PubMed]

A. H. Abdelrahman, A. Z. Elsherbeni, and F. Yang, “Transmission phase limit of multilayer frequency-selective surfaces for transmitarray designs,” IEEE Trans. Antenn. Propag. 62(2), 690–697 (2014).
[Crossref]

2013 (5)

F. Monticone, N. M. Estakhri, and A. Alù, “Full control of nanoscale optical transmission with a composite metascreen,” Phys. Rev. Lett. 110(20), 203903 (2013).
[Crossref] [PubMed]

C. Pfeiffer and A. Grbic, “Cascaded metasurfaces for complete phase and polarization control,” Appl. Phys. Lett. 102(23), 231116 (2013).
[Crossref]

C. Pfeiffer and A. Grbic, “Millimeter-wave transmitarrays for wavefront and polarization control,” IEEE Trans. Microw. Theory Tech. 61(12), 4407–4417 (2013).
[Crossref]

Z. Zhao, J. Wang, S. Li, and A. E. Willner, “Metamaterials-based broadband generation of orbital angular momentum carrying vector beams,” Opt. Lett. 38(6), 932–934 (2013).
[Crossref] [PubMed]

Y. J. Cheng, H. Xu, D. Ma, J. Wu, L. Wang, and Y. Fan, “Millimeter-wave shaped-beam substrate integrated conformal array antenna,” IEEE Trans. Antenn. Propag. 61(9), 4558–4566 (2013).
[Crossref]

2012 (2)

P. Genevet, J. Lin, M. A. Kats, and F. Capasso, “Holographic detection of the orbital angular momentum of light with plasmonic photodiodes,” Nat. Commun. 3(1), 1278 (2012).
[Crossref] [PubMed]

F. Tamburini, E. Mari, A. Sponselli, B. Thide, A. Bianchini, and F. Romanato, “Encoding many channels in the same frequency through radio vorticity: first experimental test,” New J. Phys. 14(3), 033001 (2012).
[Crossref]

2011 (1)

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

2010 (1)

M. Uchida and A. Tonomura, “Generation of electron beams carrying orbital angular momentum,” Nature 464(7289), 737–739 (2010).
[Crossref] [PubMed]

2005 (1)

L. Zhou, W. Wen, C. Chan, and P. Sheng, “Electromagnetic-wave tunneling through negative-permittivity media with high magnetic fields,” Phys. Rev. Lett. 94(24), 243905 (2005).
[Crossref]

2000 (1)

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

1996 (1)

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[Crossref] [PubMed]

1994 (1)

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phase plate,” Opt. Commun. 112(5-6), 321–327 (1994).
[Crossref]

Abdelrahman, A. H.

A. H. Abdelrahman, A. Z. Elsherbeni, and F. Yang, “Transmission phase limit of multilayer frequency-selective surfaces for transmitarray designs,” IEEE Trans. Antenn. Propag. 62(2), 690–697 (2014).
[Crossref]

Aiello, A.

Aieta, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Alù, A.

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C.-W. Qiu, and A. Alù, “Ultrathin Pancharatnam-Berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
[Crossref] [PubMed]

F. Monticone, N. M. Estakhri, and A. Alù, “Full control of nanoscale optical transmission with a composite metascreen,” Phys. Rev. Lett. 110(20), 203903 (2013).
[Crossref] [PubMed]

Banzer, P.

Beijersbergen, M. W.

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phase plate,” Opt. Commun. 112(5-6), 321–327 (1994).
[Crossref]

Berg-Johansen, S.

Bianchini, A.

F. Tamburini, E. Mari, A. Sponselli, B. Thide, A. Bianchini, and F. Romanato, “Encoding many channels in the same frequency through radio vorticity: first experimental test,” New J. Phys. 14(3), 033001 (2012).
[Crossref]

Boyd, R. W.

E. Karimi, S. A. Schulz, I. De Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light Sci. Appl. 3(5), e167 (2014).
[Crossref]

Briggs, D. P.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref] [PubMed]

Brousseau, C.

R. Niemiec, C. Brousseau, K. Mahdjoubi, O. Emile, and A. Menard, “Characterization of an OAM flat-plate antenna in the millimeter frequency band,” IEEE Antennas Propag. Lett. 13, 1011–1014 (2014).
[Crossref]

Burokur, S. N.

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C.-W. Qiu, and A. Alù, “Ultrathin Pancharatnam-Berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
[Crossref] [PubMed]

Cai, T.

Y. Ran, J. Liang, T. Cai, and H. Li, “High-performance broadband vortex beam generator using reflective Pancharatnam–Berry metasurface,” Opt. Commun. 427, 101–106 (2018).
[Crossref]

S. W. Tang, T. Cai, G. -M. Wang, J. G. Liang, X. K. Li, and J. C. Yu, “High-efficiency dual-modes vortex beam generator with polarization-dependent transmission and reflection properties,” Sci. Rep. 8, 6422 (2018).
[Crossref] [PubMed]

T. Cai, G.-M. Wang, J.-G. Liang, Y.-Q. Zhuang, and T.-J. Li, “High-performance transmissive meta-surface for c-/x-band lens antenna application,” IEEE Trans. Antenn. Propag. 65(7), 3598–3606 (2017).
[Crossref]

T. Cai, S. W. Tang, G. M. Wang, H. X. Xu, S. Sun, Q. He, and L. Zhou, “High-performance bifunctional metasurfaces in transmission and reflection geometries,” Adv. Opt. Mater. 5(2), 1600506 (2017).
[Crossref]

T. Cai, G. M. Wang, H. X. Xu, S. W. Tang, H. Li, J.-G. Liang, and Y. Q. Zhuang, “Bifunctional pancharatnam-berry metasurface with high-efficiency helicity-dependent transmissions and reflections,” Ann. Phys. 540, 1700321 (2017).

T. Cai, G. M. Wang, F. X. Zhang, Y. W. Wang, B. F. Zong, and H. X. Xu, “Compact microstrip antenna with enhanced bandwidth by loading magneto-electro-dielectric planar waveguided metamaterials,” IEEE Trans. Antenn. Propag. 63(5), 2306–2311 (2015).
[Crossref]

Capasso, F.

P. Genevet, J. Lin, M. A. Kats, and F. Capasso, “Holographic detection of the orbital angular momentum of light with plasmonic photodiodes,” Nat. Commun. 3(1), 1278 (2012).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Chan, C.

L. Zhou, W. Wen, C. Chan, and P. Sheng, “Electromagnetic-wave tunneling through negative-permittivity media with high magnetic fields,” Phys. Rev. Lett. 94(24), 243905 (2005).
[Crossref]

Chen, S.

Chen, X.

F. Yue, D. Wen, C. Zhang, B. D. Gerardot, W. Wang, S. Zhang, and X. Chen, “Multichannel polarization-controllable superpositions of orbital angular momentum states,” Adv. Mater. 29(15), 1603838 (2017).
[Crossref] [PubMed]

Chen, Y. F.

Cheng, Y. J.

X. Y. Lei and Y. J. Cheng, “High-efficiency and high-polarization separation reflectarray element for OAM-folded antenna application,” IEEE Antennas Wirel. Propag. Lett. 16, 1357–1360 (2017).
[Crossref]

Y. J. Cheng, H. Xu, D. Ma, J. Wu, L. Wang, and Y. Fan, “Millimeter-wave shaped-beam substrate integrated conformal array antenna,” IEEE Trans. Antenn. Propag. 61(9), 4558–4566 (2013).
[Crossref]

Cheng, Y. Jian

X. Y. Lei and Y. Jian Cheng, “High-efficiency and high-polarization separation reflectarray element for OAM-folded antenna application,” IEEE Antennas Wirel. Propag. Lett. 16, 1357–1360 (2017).
[Crossref]

Chi, H.

X. Hui, S. Zheng, Y. Hu, C. Xu, X. Jin, H. Chi, and X. Zhang, “Ultralow reflectivity spiral phase plate for generation of millimeter-wave OAM beam,” IEEE Antennas Wirel. Propag. Lett. 14, 966–969 (2015).
[Crossref]

Coerwinkel, R. P. C.

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phase plate,” Opt. Commun. 112(5-6), 321–327 (1994).
[Crossref]

Danner, A.

M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C. W. Qiu, “Visible-frequency metasurface for structuring and spatially multiplexing optical vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref] [PubMed]

De Leon, I.

E. Karimi, S. A. Schulz, I. De Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light Sci. Appl. 3(5), e167 (2014).
[Crossref]

de Lustrac, A.

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C.-W. Qiu, and A. Alù, “Ultrathin Pancharatnam-Berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
[Crossref] [PubMed]

Ding, X.

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C.-W. Qiu, and A. Alù, “Ultrathin Pancharatnam-Berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
[Crossref] [PubMed]

Elsherbeni, A. Z.

A. H. Abdelrahman, A. Z. Elsherbeni, and F. Yang, “Transmission phase limit of multilayer frequency-selective surfaces for transmitarray designs,” IEEE Trans. Antenn. Propag. 62(2), 690–697 (2014).
[Crossref]

Emile, O.

R. Niemiec, C. Brousseau, K. Mahdjoubi, O. Emile, and A. Menard, “Characterization of an OAM flat-plate antenna in the millimeter frequency band,” IEEE Antennas Propag. Lett. 13, 1011–1014 (2014).
[Crossref]

Estakhri, N. M.

F. Monticone, N. M. Estakhri, and A. Alù, “Full control of nanoscale optical transmission with a composite metascreen,” Phys. Rev. Lett. 110(20), 203903 (2013).
[Crossref] [PubMed]

Fan, Y.

Y. J. Cheng, H. Xu, D. Ma, J. Wu, L. Wang, and Y. Fan, “Millimeter-wave shaped-beam substrate integrated conformal array antenna,” IEEE Trans. Antenn. Propag. 61(9), 4558–4566 (2013).
[Crossref]

Gaburro, Z.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Gao, D.

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C.-W. Qiu, and A. Alù, “Ultrathin Pancharatnam-Berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
[Crossref] [PubMed]

Gao, H.

K. Yang, M. Pu, X. Li, X. Ma, J. Luo, H. Gao, and X. Luo, “Wavelength-selective orbital angular momentum generation based on a plasmonic metasurface,” Nanoscale 8(24), 12267–12271 (2016).
[Crossref] [PubMed]

Genevet, P.

P. Genevet, J. Lin, M. A. Kats, and F. Capasso, “Holographic detection of the orbital angular momentum of light with plasmonic photodiodes,” Nat. Commun. 3(1), 1278 (2012).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Gerardot, B. D.

F. Yue, D. Wen, C. Zhang, B. D. Gerardot, W. Wang, S. Zhang, and X. Chen, “Multichannel polarization-controllable superpositions of orbital angular momentum states,” Adv. Mater. 29(15), 1603838 (2017).
[Crossref] [PubMed]

Giacobino, E.

Grbic, A.

C. Pfeiffer and A. Grbic, “Cascaded metasurfaces for complete phase and polarization control,” Appl. Phys. Lett. 102(23), 231116 (2013).
[Crossref]

C. Pfeiffer and A. Grbic, “Millimeter-wave transmitarrays for wavefront and polarization control,” IEEE Trans. Microw. Theory Tech. 61(12), 4407–4417 (2013).
[Crossref]

Guo, Y. H.

Y. H. Guo, L. S. Yan, W. Pan, and B. Luo, “Generation and manipulation of orbital angular momentum by all-dielectric metasurfaces,” Plasmonics 11(1), 337–344 (2016).
[Crossref]

He, Q.

W. J. Luo, S. L. Sun, H.-X. Xu, Q. He, and L. Zhou, “Transmissive ultrathin pancharatnam-berry metasurfaces with nearly 100% efficiency,” Phys. Rev. Appl. 7(4), 044033 (2017).
[Crossref]

T. Cai, S. W. Tang, G. M. Wang, H. X. Xu, S. Sun, Q. He, and L. Zhou, “High-performance bifunctional metasurfaces in transmission and reflection geometries,” Adv. Opt. Mater. 5(2), 1600506 (2017).
[Crossref]

Holden, A. J.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[Crossref] [PubMed]

Hu, Y.

X. Hui, S. Zheng, Y. Hu, C. Xu, X. Jin, H. Chi, and X. Zhang, “Ultralow reflectivity spiral phase plate for generation of millimeter-wave OAM beam,” IEEE Antennas Wirel. Propag. Lett. 14, 966–969 (2015).
[Crossref]

Huang, K.

M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C. W. Qiu, “Visible-frequency metasurface for structuring and spatially multiplexing optical vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref] [PubMed]

Huang, K. F.

Hui, X.

X. Hui, S. Zheng, Y. Hu, C. Xu, X. Jin, H. Chi, and X. Zhang, “Ultralow reflectivity spiral phase plate for generation of millimeter-wave OAM beam,” IEEE Antennas Wirel. Propag. Lett. 14, 966–969 (2015).
[Crossref]

Hussain, S.

M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C. W. Qiu, “Visible-frequency metasurface for structuring and spatially multiplexing optical vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref] [PubMed]

Jin, X.

X. Hui, S. Zheng, Y. Hu, C. Xu, X. Jin, H. Chi, and X. Zhang, “Ultralow reflectivity spiral phase plate for generation of millimeter-wave OAM beam,” IEEE Antennas Wirel. Propag. Lett. 14, 966–969 (2015).
[Crossref]

Karimi, E.

E. Karimi, S. A. Schulz, I. De Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light Sci. Appl. 3(5), e167 (2014).
[Crossref]

Kats, M. A.

P. Genevet, J. Lin, M. A. Kats, and F. Capasso, “Holographic detection of the orbital angular momentum of light with plasmonic photodiodes,” Nat. Commun. 3(1), 1278 (2012).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Kravchenko, I. I.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref] [PubMed]

Kristensen, M.

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phase plate,” Opt. Commun. 112(5-6), 321–327 (1994).
[Crossref]

Lei, X. Y.

X. Y. Lei and Y. Jian Cheng, “High-efficiency and high-polarization separation reflectarray element for OAM-folded antenna application,” IEEE Antennas Wirel. Propag. Lett. 16, 1357–1360 (2017).
[Crossref]

X. Y. Lei and Y. J. Cheng, “High-efficiency and high-polarization separation reflectarray element for OAM-folded antenna application,” IEEE Antennas Wirel. Propag. Lett. 16, 1357–1360 (2017).
[Crossref]

Leuchs, G.

Li, H.

Y. Ran, J. Liang, T. Cai, and H. Li, “High-performance broadband vortex beam generator using reflective Pancharatnam–Berry metasurface,” Opt. Commun. 427, 101–106 (2018).
[Crossref]

T. Cai, G. M. Wang, H. X. Xu, S. W. Tang, H. Li, J.-G. Liang, and Y. Q. Zhuang, “Bifunctional pancharatnam-berry metasurface with high-efficiency helicity-dependent transmissions and reflections,” Ann. Phys. 540, 1700321 (2017).

Li, L.

S. Yu, L. Li, G. Shi, C. Zhu, X. Zhou, and Y. Shi, “Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain,” Appl. Phys. Lett. 108(12), 121903 (2016).
[Crossref]

S. Yu, L. Li, G. Shi, C. Zhu, and Y. Shi, “Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain,” Appl. Phys. Lett. 108(24), 241901 (2016).
[Crossref]

Li, S.

Li, T.-J.

T. Cai, G.-M. Wang, J.-G. Liang, Y.-Q. Zhuang, and T.-J. Li, “High-performance transmissive meta-surface for c-/x-band lens antenna application,” IEEE Trans. Antenn. Propag. 65(7), 3598–3606 (2017).
[Crossref]

Li, X.

K. Yang, M. Pu, X. Li, X. Ma, J. Luo, H. Gao, and X. Luo, “Wavelength-selective orbital angular momentum generation based on a plasmonic metasurface,” Nanoscale 8(24), 12267–12271 (2016).
[Crossref] [PubMed]

Li, X. K.

S. W. Tang, T. Cai, G. -M. Wang, J. G. Liang, X. K. Li, and J. C. Yu, “High-efficiency dual-modes vortex beam generator with polarization-dependent transmission and reflection properties,” Sci. Rep. 8, 6422 (2018).
[Crossref] [PubMed]

Li, Y.

Liang, H. C.

Liang, J.

Y. Ran, J. Liang, T. Cai, and H. Li, “High-performance broadband vortex beam generator using reflective Pancharatnam–Berry metasurface,” Opt. Commun. 427, 101–106 (2018).
[Crossref]

Liang, J. G.

S. W. Tang, T. Cai, G. -M. Wang, J. G. Liang, X. K. Li, and J. C. Yu, “High-efficiency dual-modes vortex beam generator with polarization-dependent transmission and reflection properties,” Sci. Rep. 8, 6422 (2018).
[Crossref] [PubMed]

Liang, J.-G.

T. Cai, G.-M. Wang, J.-G. Liang, Y.-Q. Zhuang, and T.-J. Li, “High-performance transmissive meta-surface for c-/x-band lens antenna application,” IEEE Trans. Antenn. Propag. 65(7), 3598–3606 (2017).
[Crossref]

T. Cai, G. M. Wang, H. X. Xu, S. W. Tang, H. Li, J.-G. Liang, and Y. Q. Zhuang, “Bifunctional pancharatnam-berry metasurface with high-efficiency helicity-dependent transmissions and reflections,” Ann. Phys. 540, 1700321 (2017).

Lin, J.

P. Genevet, J. Lin, M. A. Kats, and F. Capasso, “Holographic detection of the orbital angular momentum of light with plasmonic photodiodes,” Nat. Commun. 3(1), 1278 (2012).
[Crossref] [PubMed]

Ling, X.

M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C. W. Qiu, “Visible-frequency metasurface for structuring and spatially multiplexing optical vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref] [PubMed]

X. Yi, X. Ling, Z. Zhang, Y. Li, X. Zhou, Y. Liu, S. Chen, H. Luo, and S. Wen, “Generation of cylindrical vector vortex beams by two cascaded metasurfaces,” Opt. Express 22(14), 17207–17215 (2014).
[Crossref] [PubMed]

Liu, H.

M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C. W. Qiu, “Visible-frequency metasurface for structuring and spatially multiplexing optical vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref] [PubMed]

Liu, Y.

Lu, T. H.

Luo, B.

Y. H. Guo, L. S. Yan, W. Pan, and B. Luo, “Generation and manipulation of orbital angular momentum by all-dielectric metasurfaces,” Plasmonics 11(1), 337–344 (2016).
[Crossref]

Luo, H.

Luo, J.

K. Yang, M. Pu, X. Li, X. Ma, J. Luo, H. Gao, and X. Luo, “Wavelength-selective orbital angular momentum generation based on a plasmonic metasurface,” Nanoscale 8(24), 12267–12271 (2016).
[Crossref] [PubMed]

Luo, W. J.

W. J. Luo, S. L. Sun, H.-X. Xu, Q. He, and L. Zhou, “Transmissive ultrathin pancharatnam-berry metasurfaces with nearly 100% efficiency,” Phys. Rev. Appl. 7(4), 044033 (2017).
[Crossref]

Luo, X.

K. Yang, M. Pu, X. Li, X. Ma, J. Luo, H. Gao, and X. Luo, “Wavelength-selective orbital angular momentum generation based on a plasmonic metasurface,” Nanoscale 8(24), 12267–12271 (2016).
[Crossref] [PubMed]

Ma, D.

Y. J. Cheng, H. Xu, D. Ma, J. Wu, L. Wang, and Y. Fan, “Millimeter-wave shaped-beam substrate integrated conformal array antenna,” IEEE Trans. Antenn. Propag. 61(9), 4558–4566 (2013).
[Crossref]

Ma, X.

K. Yang, M. Pu, X. Li, X. Ma, J. Luo, H. Gao, and X. Luo, “Wavelength-selective orbital angular momentum generation based on a plasmonic metasurface,” Nanoscale 8(24), 12267–12271 (2016).
[Crossref] [PubMed]

Mahdjoubi, K.

R. Niemiec, C. Brousseau, K. Mahdjoubi, O. Emile, and A. Menard, “Characterization of an OAM flat-plate antenna in the millimeter frequency band,” IEEE Antennas Propag. Lett. 13, 1011–1014 (2014).
[Crossref]

Mari, E.

F. Tamburini, E. Mari, A. Sponselli, B. Thide, A. Bianchini, and F. Romanato, “Encoding many channels in the same frequency through radio vorticity: first experimental test,” New J. Phys. 14(3), 033001 (2012).
[Crossref]

Marquardt, C.

Mehmood, M. Q.

M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C. W. Qiu, “Visible-frequency metasurface for structuring and spatially multiplexing optical vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref] [PubMed]

Mei, S.

M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C. W. Qiu, “Visible-frequency metasurface for structuring and spatially multiplexing optical vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref] [PubMed]

Menard, A.

R. Niemiec, C. Brousseau, K. Mahdjoubi, O. Emile, and A. Menard, “Characterization of an OAM flat-plate antenna in the millimeter frequency band,” IEEE Antennas Propag. Lett. 13, 1011–1014 (2014).
[Crossref]

Moitra, P.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref] [PubMed]

Monticone, F.

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C.-W. Qiu, and A. Alù, “Ultrathin Pancharatnam-Berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
[Crossref] [PubMed]

F. Monticone, N. M. Estakhri, and A. Alù, “Full control of nanoscale optical transmission with a composite metascreen,” Phys. Rev. Lett. 110(20), 203903 (2013).
[Crossref] [PubMed]

Nemat-Nasser, S. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Niemiec, R.

R. Niemiec, C. Brousseau, K. Mahdjoubi, O. Emile, and A. Menard, “Characterization of an OAM flat-plate antenna in the millimeter frequency band,” IEEE Antennas Propag. Lett. 13, 1011–1014 (2014).
[Crossref]

Ornigotti, M.

Padilla, W. J.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Pan, W.

Y. H. Guo, L. S. Yan, W. Pan, and B. Luo, “Generation and manipulation of orbital angular momentum by all-dielectric metasurfaces,” Plasmonics 11(1), 337–344 (2016).
[Crossref]

Pendry, J. B.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[Crossref] [PubMed]

Pfeiffer, C.

C. Pfeiffer and A. Grbic, “Millimeter-wave transmitarrays for wavefront and polarization control,” IEEE Trans. Microw. Theory Tech. 61(12), 4407–4417 (2013).
[Crossref]

C. Pfeiffer and A. Grbic, “Cascaded metasurfaces for complete phase and polarization control,” Appl. Phys. Lett. 102(23), 231116 (2013).
[Crossref]

Pu, M.

K. Yang, M. Pu, X. Li, X. Ma, J. Luo, H. Gao, and X. Luo, “Wavelength-selective orbital angular momentum generation based on a plasmonic metasurface,” Nanoscale 8(24), 12267–12271 (2016).
[Crossref] [PubMed]

Qassim, H.

E. Karimi, S. A. Schulz, I. De Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light Sci. Appl. 3(5), e167 (2014).
[Crossref]

Qiu, C. W.

M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C. W. Qiu, “Visible-frequency metasurface for structuring and spatially multiplexing optical vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref] [PubMed]

Qiu, C.-W.

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C.-W. Qiu, and A. Alù, “Ultrathin Pancharatnam-Berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
[Crossref] [PubMed]

Ran, Y.

Y. Ran, J. Liang, T. Cai, and H. Li, “High-performance broadband vortex beam generator using reflective Pancharatnam–Berry metasurface,” Opt. Commun. 427, 101–106 (2018).
[Crossref]

Romanato, F.

F. Tamburini, E. Mari, A. Sponselli, B. Thide, A. Bianchini, and F. Romanato, “Encoding many channels in the same frequency through radio vorticity: first experimental test,” New J. Phys. 14(3), 033001 (2012).
[Crossref]

Schultz, S.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Schulz, S. A.

E. Karimi, S. A. Schulz, I. De Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light Sci. Appl. 3(5), e167 (2014).
[Crossref]

Sheng, P.

L. Zhou, W. Wen, C. Chan, and P. Sheng, “Electromagnetic-wave tunneling through negative-permittivity media with high magnetic fields,” Phys. Rev. Lett. 94(24), 243905 (2005).
[Crossref]

Shi, G.

S. Yu, L. Li, G. Shi, C. Zhu, and Y. Shi, “Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain,” Appl. Phys. Lett. 108(24), 241901 (2016).
[Crossref]

S. Yu, L. Li, G. Shi, C. Zhu, X. Zhou, and Y. Shi, “Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain,” Appl. Phys. Lett. 108(12), 121903 (2016).
[Crossref]

Shi, Y.

S. Yu, L. Li, G. Shi, C. Zhu, and Y. Shi, “Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain,” Appl. Phys. Lett. 108(24), 241901 (2016).
[Crossref]

S. Yu, L. Li, G. Shi, C. Zhu, X. Zhou, and Y. Shi, “Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain,” Appl. Phys. Lett. 108(12), 121903 (2016).
[Crossref]

Siew, S. Y.

M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C. W. Qiu, “Visible-frequency metasurface for structuring and spatially multiplexing optical vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref] [PubMed]

Smith, D. R.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Sponselli, A.

F. Tamburini, E. Mari, A. Sponselli, B. Thide, A. Bianchini, and F. Romanato, “Encoding many channels in the same frequency through radio vorticity: first experimental test,” New J. Phys. 14(3), 033001 (2012).
[Crossref]

Stewart, W. J.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[Crossref] [PubMed]

Stiller, B.

Sun, S.

T. Cai, S. W. Tang, G. M. Wang, H. X. Xu, S. Sun, Q. He, and L. Zhou, “High-performance bifunctional metasurfaces in transmission and reflection geometries,” Adv. Opt. Mater. 5(2), 1600506 (2017).
[Crossref]

Sun, S. L.

W. J. Luo, S. L. Sun, H.-X. Xu, Q. He, and L. Zhou, “Transmissive ultrathin pancharatnam-berry metasurfaces with nearly 100% efficiency,” Phys. Rev. Appl. 7(4), 044033 (2017).
[Crossref]

Tamburini, F.

F. Tamburini, E. Mari, A. Sponselli, B. Thide, A. Bianchini, and F. Romanato, “Encoding many channels in the same frequency through radio vorticity: first experimental test,” New J. Phys. 14(3), 033001 (2012).
[Crossref]

Tang, S. W.

S. W. Tang, T. Cai, G. -M. Wang, J. G. Liang, X. K. Li, and J. C. Yu, “High-efficiency dual-modes vortex beam generator with polarization-dependent transmission and reflection properties,” Sci. Rep. 8, 6422 (2018).
[Crossref] [PubMed]

T. Cai, S. W. Tang, G. M. Wang, H. X. Xu, S. Sun, Q. He, and L. Zhou, “High-performance bifunctional metasurfaces in transmission and reflection geometries,” Adv. Opt. Mater. 5(2), 1600506 (2017).
[Crossref]

T. Cai, G. M. Wang, H. X. Xu, S. W. Tang, H. Li, J.-G. Liang, and Y. Q. Zhuang, “Bifunctional pancharatnam-berry metasurface with high-efficiency helicity-dependent transmissions and reflections,” Ann. Phys. 540, 1700321 (2017).

Teng, J.

M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C. W. Qiu, “Visible-frequency metasurface for structuring and spatially multiplexing optical vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref] [PubMed]

Tetienne, J. P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Thide, B.

F. Tamburini, E. Mari, A. Sponselli, B. Thide, A. Bianchini, and F. Romanato, “Encoding many channels in the same frequency through radio vorticity: first experimental test,” New J. Phys. 14(3), 033001 (2012).
[Crossref]

Tonomura, A.

M. Uchida and A. Tonomura, “Generation of electron beams carrying orbital angular momentum,” Nature 464(7289), 737–739 (2010).
[Crossref] [PubMed]

Töppel, F.

Tung, J. C.

Uchida, M.

M. Uchida and A. Tonomura, “Generation of electron beams carrying orbital angular momentum,” Nature 464(7289), 737–739 (2010).
[Crossref] [PubMed]

Upham, J.

E. Karimi, S. A. Schulz, I. De Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light Sci. Appl. 3(5), e167 (2014).
[Crossref]

Valentine, J.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref] [PubMed]

Vier, D. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Wang, G. M.

T. Cai, G. M. Wang, H. X. Xu, S. W. Tang, H. Li, J.-G. Liang, and Y. Q. Zhuang, “Bifunctional pancharatnam-berry metasurface with high-efficiency helicity-dependent transmissions and reflections,” Ann. Phys. 540, 1700321 (2017).

T. Cai, S. W. Tang, G. M. Wang, H. X. Xu, S. Sun, Q. He, and L. Zhou, “High-performance bifunctional metasurfaces in transmission and reflection geometries,” Adv. Opt. Mater. 5(2), 1600506 (2017).
[Crossref]

T. Cai, G. M. Wang, F. X. Zhang, Y. W. Wang, B. F. Zong, and H. X. Xu, “Compact microstrip antenna with enhanced bandwidth by loading magneto-electro-dielectric planar waveguided metamaterials,” IEEE Trans. Antenn. Propag. 63(5), 2306–2311 (2015).
[Crossref]

Wang, G. -M.

S. W. Tang, T. Cai, G. -M. Wang, J. G. Liang, X. K. Li, and J. C. Yu, “High-efficiency dual-modes vortex beam generator with polarization-dependent transmission and reflection properties,” Sci. Rep. 8, 6422 (2018).
[Crossref] [PubMed]

Wang, G.-M.

T. Cai, G.-M. Wang, J.-G. Liang, Y.-Q. Zhuang, and T.-J. Li, “High-performance transmissive meta-surface for c-/x-band lens antenna application,” IEEE Trans. Antenn. Propag. 65(7), 3598–3606 (2017).
[Crossref]

Wang, J.

Wang, L.

Y. J. Cheng, H. Xu, D. Ma, J. Wu, L. Wang, and Y. Fan, “Millimeter-wave shaped-beam substrate integrated conformal array antenna,” IEEE Trans. Antenn. Propag. 61(9), 4558–4566 (2013).
[Crossref]

Wang, W.

F. Yue, D. Wen, C. Zhang, B. D. Gerardot, W. Wang, S. Zhang, and X. Chen, “Multichannel polarization-controllable superpositions of orbital angular momentum states,” Adv. Mater. 29(15), 1603838 (2017).
[Crossref] [PubMed]

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref] [PubMed]

Wang, Y. W.

T. Cai, G. M. Wang, F. X. Zhang, Y. W. Wang, B. F. Zong, and H. X. Xu, “Compact microstrip antenna with enhanced bandwidth by loading magneto-electro-dielectric planar waveguided metamaterials,” IEEE Trans. Antenn. Propag. 63(5), 2306–2311 (2015).
[Crossref]

Wen, D.

F. Yue, D. Wen, C. Zhang, B. D. Gerardot, W. Wang, S. Zhang, and X. Chen, “Multichannel polarization-controllable superpositions of orbital angular momentum states,” Adv. Mater. 29(15), 1603838 (2017).
[Crossref] [PubMed]

Wen, S.

Wen, W.

L. Zhou, W. Wen, C. Chan, and P. Sheng, “Electromagnetic-wave tunneling through negative-permittivity media with high magnetic fields,” Phys. Rev. Lett. 94(24), 243905 (2005).
[Crossref]

Willner, A. E.

Woerdman, J. P.

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phase plate,” Opt. Commun. 112(5-6), 321–327 (1994).
[Crossref]

Wu, J.

Y. J. Cheng, H. Xu, D. Ma, J. Wu, L. Wang, and Y. Fan, “Millimeter-wave shaped-beam substrate integrated conformal array antenna,” IEEE Trans. Antenn. Propag. 61(9), 4558–4566 (2013).
[Crossref]

Wu, Q.

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C.-W. Qiu, and A. Alù, “Ultrathin Pancharatnam-Berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
[Crossref] [PubMed]

Xu, C.

X. Hui, S. Zheng, Y. Hu, C. Xu, X. Jin, H. Chi, and X. Zhang, “Ultralow reflectivity spiral phase plate for generation of millimeter-wave OAM beam,” IEEE Antennas Wirel. Propag. Lett. 14, 966–969 (2015).
[Crossref]

Xu, H.

Y. J. Cheng, H. Xu, D. Ma, J. Wu, L. Wang, and Y. Fan, “Millimeter-wave shaped-beam substrate integrated conformal array antenna,” IEEE Trans. Antenn. Propag. 61(9), 4558–4566 (2013).
[Crossref]

Xu, H. X.

T. Cai, S. W. Tang, G. M. Wang, H. X. Xu, S. Sun, Q. He, and L. Zhou, “High-performance bifunctional metasurfaces in transmission and reflection geometries,” Adv. Opt. Mater. 5(2), 1600506 (2017).
[Crossref]

T. Cai, G. M. Wang, H. X. Xu, S. W. Tang, H. Li, J.-G. Liang, and Y. Q. Zhuang, “Bifunctional pancharatnam-berry metasurface with high-efficiency helicity-dependent transmissions and reflections,” Ann. Phys. 540, 1700321 (2017).

T. Cai, G. M. Wang, F. X. Zhang, Y. W. Wang, B. F. Zong, and H. X. Xu, “Compact microstrip antenna with enhanced bandwidth by loading magneto-electro-dielectric planar waveguided metamaterials,” IEEE Trans. Antenn. Propag. 63(5), 2306–2311 (2015).
[Crossref]

Xu, H.-X.

W. J. Luo, S. L. Sun, H.-X. Xu, Q. He, and L. Zhou, “Transmissive ultrathin pancharatnam-berry metasurfaces with nearly 100% efficiency,” Phys. Rev. Appl. 7(4), 044033 (2017).
[Crossref]

Yan, L. S.

Y. H. Guo, L. S. Yan, W. Pan, and B. Luo, “Generation and manipulation of orbital angular momentum by all-dielectric metasurfaces,” Plasmonics 11(1), 337–344 (2016).
[Crossref]

Yang, F.

A. H. Abdelrahman, A. Z. Elsherbeni, and F. Yang, “Transmission phase limit of multilayer frequency-selective surfaces for transmitarray designs,” IEEE Trans. Antenn. Propag. 62(2), 690–697 (2014).
[Crossref]

Yang, K.

K. Yang, M. Pu, X. Li, X. Ma, J. Luo, H. Gao, and X. Luo, “Wavelength-selective orbital angular momentum generation based on a plasmonic metasurface,” Nanoscale 8(24), 12267–12271 (2016).
[Crossref] [PubMed]

Yang, Y.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref] [PubMed]

Yi, X.

Youngs, I.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[Crossref] [PubMed]

Yu, J. C.

S. W. Tang, T. Cai, G. -M. Wang, J. G. Liang, X. K. Li, and J. C. Yu, “High-efficiency dual-modes vortex beam generator with polarization-dependent transmission and reflection properties,” Sci. Rep. 8, 6422 (2018).
[Crossref] [PubMed]

Yu, N.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Yu, S.

S. Yu, L. Li, G. Shi, C. Zhu, X. Zhou, and Y. Shi, “Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain,” Appl. Phys. Lett. 108(12), 121903 (2016).
[Crossref]

S. Yu, L. Li, G. Shi, C. Zhu, and Y. Shi, “Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain,” Appl. Phys. Lett. 108(24), 241901 (2016).
[Crossref]

Yue, F.

F. Yue, D. Wen, C. Zhang, B. D. Gerardot, W. Wang, S. Zhang, and X. Chen, “Multichannel polarization-controllable superpositions of orbital angular momentum states,” Adv. Mater. 29(15), 1603838 (2017).
[Crossref] [PubMed]

Zhang, C.

F. Yue, D. Wen, C. Zhang, B. D. Gerardot, W. Wang, S. Zhang, and X. Chen, “Multichannel polarization-controllable superpositions of orbital angular momentum states,” Adv. Mater. 29(15), 1603838 (2017).
[Crossref] [PubMed]

Zhang, F. X.

T. Cai, G. M. Wang, F. X. Zhang, Y. W. Wang, B. F. Zong, and H. X. Xu, “Compact microstrip antenna with enhanced bandwidth by loading magneto-electro-dielectric planar waveguided metamaterials,” IEEE Trans. Antenn. Propag. 63(5), 2306–2311 (2015).
[Crossref]

Zhang, K.

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C.-W. Qiu, and A. Alù, “Ultrathin Pancharatnam-Berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
[Crossref] [PubMed]

Zhang, L.

M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C. W. Qiu, “Visible-frequency metasurface for structuring and spatially multiplexing optical vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref] [PubMed]

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C.-W. Qiu, and A. Alù, “Ultrathin Pancharatnam-Berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
[Crossref] [PubMed]

Zhang, S.

F. Yue, D. Wen, C. Zhang, B. D. Gerardot, W. Wang, S. Zhang, and X. Chen, “Multichannel polarization-controllable superpositions of orbital angular momentum states,” Adv. Mater. 29(15), 1603838 (2017).
[Crossref] [PubMed]

M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C. W. Qiu, “Visible-frequency metasurface for structuring and spatially multiplexing optical vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref] [PubMed]

Zhang, T.

M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C. W. Qiu, “Visible-frequency metasurface for structuring and spatially multiplexing optical vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref] [PubMed]

Zhang, X.

X. Hui, S. Zheng, Y. Hu, C. Xu, X. Jin, H. Chi, and X. Zhang, “Ultralow reflectivity spiral phase plate for generation of millimeter-wave OAM beam,” IEEE Antennas Wirel. Propag. Lett. 14, 966–969 (2015).
[Crossref]

Zhang, Z.

Zhao, Z.

Zheng, S.

X. Hui, S. Zheng, Y. Hu, C. Xu, X. Jin, H. Chi, and X. Zhang, “Ultralow reflectivity spiral phase plate for generation of millimeter-wave OAM beam,” IEEE Antennas Wirel. Propag. Lett. 14, 966–969 (2015).
[Crossref]

Zhou, L.

W. J. Luo, S. L. Sun, H.-X. Xu, Q. He, and L. Zhou, “Transmissive ultrathin pancharatnam-berry metasurfaces with nearly 100% efficiency,” Phys. Rev. Appl. 7(4), 044033 (2017).
[Crossref]

T. Cai, S. W. Tang, G. M. Wang, H. X. Xu, S. Sun, Q. He, and L. Zhou, “High-performance bifunctional metasurfaces in transmission and reflection geometries,” Adv. Opt. Mater. 5(2), 1600506 (2017).
[Crossref]

L. Zhou, W. Wen, C. Chan, and P. Sheng, “Electromagnetic-wave tunneling through negative-permittivity media with high magnetic fields,” Phys. Rev. Lett. 94(24), 243905 (2005).
[Crossref]

Zhou, X.

S. Yu, L. Li, G. Shi, C. Zhu, X. Zhou, and Y. Shi, “Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain,” Appl. Phys. Lett. 108(12), 121903 (2016).
[Crossref]

X. Yi, X. Ling, Z. Zhang, Y. Li, X. Zhou, Y. Liu, S. Chen, H. Luo, and S. Wen, “Generation of cylindrical vector vortex beams by two cascaded metasurfaces,” Opt. Express 22(14), 17207–17215 (2014).
[Crossref] [PubMed]

Zhu, C.

S. Yu, L. Li, G. Shi, C. Zhu, and Y. Shi, “Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain,” Appl. Phys. Lett. 108(24), 241901 (2016).
[Crossref]

S. Yu, L. Li, G. Shi, C. Zhu, X. Zhou, and Y. Shi, “Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain,” Appl. Phys. Lett. 108(12), 121903 (2016).
[Crossref]

Zhuang, Y. Q.

T. Cai, G. M. Wang, H. X. Xu, S. W. Tang, H. Li, J.-G. Liang, and Y. Q. Zhuang, “Bifunctional pancharatnam-berry metasurface with high-efficiency helicity-dependent transmissions and reflections,” Ann. Phys. 540, 1700321 (2017).

Zhuang, Y.-Q.

T. Cai, G.-M. Wang, J.-G. Liang, Y.-Q. Zhuang, and T.-J. Li, “High-performance transmissive meta-surface for c-/x-band lens antenna application,” IEEE Trans. Antenn. Propag. 65(7), 3598–3606 (2017).
[Crossref]

Zong, B. F.

T. Cai, G. M. Wang, F. X. Zhang, Y. W. Wang, B. F. Zong, and H. X. Xu, “Compact microstrip antenna with enhanced bandwidth by loading magneto-electro-dielectric planar waveguided metamaterials,” IEEE Trans. Antenn. Propag. 63(5), 2306–2311 (2015).
[Crossref]

Adv. Mater. (3)

M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C. W. Qiu, “Visible-frequency metasurface for structuring and spatially multiplexing optical vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref] [PubMed]

F. Yue, D. Wen, C. Zhang, B. D. Gerardot, W. Wang, S. Zhang, and X. Chen, “Multichannel polarization-controllable superpositions of orbital angular momentum states,” Adv. Mater. 29(15), 1603838 (2017).
[Crossref] [PubMed]

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C.-W. Qiu, and A. Alù, “Ultrathin Pancharatnam-Berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

T. Cai, S. W. Tang, G. M. Wang, H. X. Xu, S. Sun, Q. He, and L. Zhou, “High-performance bifunctional metasurfaces in transmission and reflection geometries,” Adv. Opt. Mater. 5(2), 1600506 (2017).
[Crossref]

Ann. Phys. (1)

T. Cai, G. M. Wang, H. X. Xu, S. W. Tang, H. Li, J.-G. Liang, and Y. Q. Zhuang, “Bifunctional pancharatnam-berry metasurface with high-efficiency helicity-dependent transmissions and reflections,” Ann. Phys. 540, 1700321 (2017).

Appl. Phys. Lett. (3)

C. Pfeiffer and A. Grbic, “Cascaded metasurfaces for complete phase and polarization control,” Appl. Phys. Lett. 102(23), 231116 (2013).
[Crossref]

S. Yu, L. Li, G. Shi, C. Zhu, X. Zhou, and Y. Shi, “Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain,” Appl. Phys. Lett. 108(12), 121903 (2016).
[Crossref]

S. Yu, L. Li, G. Shi, C. Zhu, and Y. Shi, “Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain,” Appl. Phys. Lett. 108(24), 241901 (2016).
[Crossref]

IEEE Antennas Propag. Lett. (1)

R. Niemiec, C. Brousseau, K. Mahdjoubi, O. Emile, and A. Menard, “Characterization of an OAM flat-plate antenna in the millimeter frequency band,” IEEE Antennas Propag. Lett. 13, 1011–1014 (2014).
[Crossref]

IEEE Antennas Wirel. Propag. Lett. (3)

X. Y. Lei and Y. Jian Cheng, “High-efficiency and high-polarization separation reflectarray element for OAM-folded antenna application,” IEEE Antennas Wirel. Propag. Lett. 16, 1357–1360 (2017).
[Crossref]

X. Hui, S. Zheng, Y. Hu, C. Xu, X. Jin, H. Chi, and X. Zhang, “Ultralow reflectivity spiral phase plate for generation of millimeter-wave OAM beam,” IEEE Antennas Wirel. Propag. Lett. 14, 966–969 (2015).
[Crossref]

X. Y. Lei and Y. J. Cheng, “High-efficiency and high-polarization separation reflectarray element for OAM-folded antenna application,” IEEE Antennas Wirel. Propag. Lett. 16, 1357–1360 (2017).
[Crossref]

IEEE Trans. Antenn. Propag. (4)

Y. J. Cheng, H. Xu, D. Ma, J. Wu, L. Wang, and Y. Fan, “Millimeter-wave shaped-beam substrate integrated conformal array antenna,” IEEE Trans. Antenn. Propag. 61(9), 4558–4566 (2013).
[Crossref]

A. H. Abdelrahman, A. Z. Elsherbeni, and F. Yang, “Transmission phase limit of multilayer frequency-selective surfaces for transmitarray designs,” IEEE Trans. Antenn. Propag. 62(2), 690–697 (2014).
[Crossref]

T. Cai, G. M. Wang, F. X. Zhang, Y. W. Wang, B. F. Zong, and H. X. Xu, “Compact microstrip antenna with enhanced bandwidth by loading magneto-electro-dielectric planar waveguided metamaterials,” IEEE Trans. Antenn. Propag. 63(5), 2306–2311 (2015).
[Crossref]

T. Cai, G.-M. Wang, J.-G. Liang, Y.-Q. Zhuang, and T.-J. Li, “High-performance transmissive meta-surface for c-/x-band lens antenna application,” IEEE Trans. Antenn. Propag. 65(7), 3598–3606 (2017).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

C. Pfeiffer and A. Grbic, “Millimeter-wave transmitarrays for wavefront and polarization control,” IEEE Trans. Microw. Theory Tech. 61(12), 4407–4417 (2013).
[Crossref]

Light Sci. Appl. (1)

E. Karimi, S. A. Schulz, I. De Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light Sci. Appl. 3(5), e167 (2014).
[Crossref]

Nano Lett. (1)

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref] [PubMed]

Nanoscale (1)

K. Yang, M. Pu, X. Li, X. Ma, J. Luo, H. Gao, and X. Luo, “Wavelength-selective orbital angular momentum generation based on a plasmonic metasurface,” Nanoscale 8(24), 12267–12271 (2016).
[Crossref] [PubMed]

Nat. Commun. (1)

P. Genevet, J. Lin, M. A. Kats, and F. Capasso, “Holographic detection of the orbital angular momentum of light with plasmonic photodiodes,” Nat. Commun. 3(1), 1278 (2012).
[Crossref] [PubMed]

Nature (1)

M. Uchida and A. Tonomura, “Generation of electron beams carrying orbital angular momentum,” Nature 464(7289), 737–739 (2010).
[Crossref] [PubMed]

New J. Phys. (1)

F. Tamburini, E. Mari, A. Sponselli, B. Thide, A. Bianchini, and F. Romanato, “Encoding many channels in the same frequency through radio vorticity: first experimental test,” New J. Phys. 14(3), 033001 (2012).
[Crossref]

Opt. Commun. (2)

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phase plate,” Opt. Commun. 112(5-6), 321–327 (1994).
[Crossref]

Y. Ran, J. Liang, T. Cai, and H. Li, “High-performance broadband vortex beam generator using reflective Pancharatnam–Berry metasurface,” Opt. Commun. 427, 101–106 (2018).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Optica (1)

Phys. Rev. Appl. (1)

W. J. Luo, S. L. Sun, H.-X. Xu, Q. He, and L. Zhou, “Transmissive ultrathin pancharatnam-berry metasurfaces with nearly 100% efficiency,” Phys. Rev. Appl. 7(4), 044033 (2017).
[Crossref]

Phys. Rev. Lett. (4)

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

L. Zhou, W. Wen, C. Chan, and P. Sheng, “Electromagnetic-wave tunneling through negative-permittivity media with high magnetic fields,” Phys. Rev. Lett. 94(24), 243905 (2005).
[Crossref]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[Crossref] [PubMed]

F. Monticone, N. M. Estakhri, and A. Alù, “Full control of nanoscale optical transmission with a composite metascreen,” Phys. Rev. Lett. 110(20), 203903 (2013).
[Crossref] [PubMed]

Plasmonics (1)

Y. H. Guo, L. S. Yan, W. Pan, and B. Luo, “Generation and manipulation of orbital angular momentum by all-dielectric metasurfaces,” Plasmonics 11(1), 337–344 (2016).
[Crossref]

Sci. Rep. (1)

S. W. Tang, T. Cai, G. -M. Wang, J. G. Liang, X. K. Li, and J. C. Yu, “High-efficiency dual-modes vortex beam generator with polarization-dependent transmission and reflection properties,” Sci. Rep. 8, 6422 (2018).
[Crossref] [PubMed]

Science (1)

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematics and working principles of the high-performance vortex beam generator. The meta-device can convert the quasi-spherical beam to vortex beam with the topological charge m = + 1. Inset shows the top-view of the Archimedes spiral antenna.
Fig. 2
Fig. 2 Effective medium theory for our designed system. (a) Transmission amplitudes and (b) transmission phases in the ε A - ε B diagram for our system ( d M =0.1mm, d D =1.8mm and ε D =4.3) calculated by the transfer-matrix-method (TMM) at target frequency of f 0 =10.6GHz. Inset to (a) illustrates the structure of our system. (c) FDTD calculated transmission amplitudes for single holey metallic ring resonator A and cross bar resonator B. (d) FDTD and EMT calculated transmission spectra for a combination of A and B resonators placed at both sides of a dielectric substrate.
Fig. 3
Fig. 3 EM characteristics of our designed meta-atom. (a) Schematic of the designed meta-atom composed by sandwich structure with two identical composite resonators separated by a dielectric spacer with thickness h = 2 mm and ε r =4.3. The detailed geometrical parameters are fixed: P = 8 mm, a1 = 1.5 mm, b1 = 6.5 mm, a2 = 0.15 mm, b2 = 6.3 mm. (b) The picture of the fabricated meta-atom array. Measured and FDTD simulated (c) transmission amplitudes and (e) phase spectra for the periodic metasurface under excitations with different linearly-polarized microwaves. Measured and FDTD simulated (d) transmission amplitude ( | t LL |, | t RL |) and (f) reflection amplitude ( | r LL |, | r RL |) for the periodic metasurface under illumination of the left-handed circularly-polarized EM wave.
Fig. 4
Fig. 4 Design of transmissive PB vortex beam generator. (a) Picture of our designed/fabricated meta-device. (b) Transmission phase (φ) distribution at each meta-atom of the designed/fabricated meta-device.
Fig. 5
Fig. 5 The performance of our designed vortex beam generator. (a) Experimental setup of the vortex beam generator. Inset to (a) shows the picture of the fabricated Archimedes spiral antenna. (b) Measured efficiency against frequency for our vortex beam generator. Measured (c) Re( E y ) and (d) phase distributions on an xy plane 30 cm in front of the metasurface at 10.6 GHz. (e) FDTD simulated 3D radiation pattern of the metadevice at 10.6 GHz. (f) Measured and simulated 2D radiation patterns at xoz plane at 10.6 GHz.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

t RL = 1 2 ( t xx t yy ) e j2ϕ r LL = 1 2 ( r xx r yy ) e j2ϕ t LL = 1 2 ( t xx + t yy ) r RL = 1 2 ( r xx + r yy )
r xx = r yy =0, | t xx |=| t yy |=1, φ xx = φ yy ±π
φ= k 0 ( F 0 2 + y 2 + x 2 F 0 )+m tan 1 (y/x)
η= P t,RL P tot ×100%.

Metrics