Abstract

We demonstrate a high-temperature resistant distributed Bragg reflector (DBR) fiber laser that is highly compact with an entire cavity length of 12 mm. A partial-reflection tilted fiber Bragg grating (PR-TFBG) is used as the laser output coupler whose reflectivity can be adjusted by changing the TFBG tilt angle. The laser cavity consists of two strong gratings including the PR-TFBG and a high-reflection fiber Bragg grating (HR-FBG), which is directly fabricated in an Er-doped fiber using a femtosecond laser and a phase mask. The thermal stability of the PR-TFBG and HR-FBG is experimentally investigated. After an annealing process, their remained gratings are stable at high temperatures and strong enough for laser oscillation. The laser is also annealed before its stability is tested. The results show that the laser can stably operate in single longitudinal mode with a signal-to-noise ratio better than 65 dB over the temperature range from room temperature to 550°C.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High temperature resistant ultra-short DBR Yb-doped fiber laser

Hushan Wang, Songsong Xiong, Jiazheng Song, Fengyan Zhao, Zhijun Yan, Xiaohu Hong, Ting Zhang, Wei Zhang, Kaiming Zhou, Cheng Li, and Yishan Wang
Appl. Opt. 58(16) 4474-4478 (2019)

Ultra-high-temperature resistant distributed Bragg reflector fiber laser based on type II-IR fiber Bragg gratings

Xuantung Pham, Jinhai Si, Tao Chen, Zhen Niu, and Xun Hou
Appl. Opt. 59(10) 3081-3085 (2020)

Fabrication of high-temperature tilted fiber Bragg gratings using a femtosecond laser

Ruize Wang, Jinhai Si, Tao Chen, Lihe Yan, Houjun Cao, Xuantung Pham, and Xun Hou
Opt. Express 25(20) 23684-23689 (2017)

References

  • View by:
  • |
  • |
  • |

  1. S. Fu, W. Shi, Y. Feng, L. Zhang, Z. Yang, S. Xu, X. Zhu, R. A. Norwood, and N. Peyghambarian, “Review of recent progress on single-frequency fiber lasers,” J. Opt. Soc. Am. B 34(3), A49 (2017).
    [Crossref]
  2. Y. Zhang, B. Guan, and H. Tam, “Characteristics of the distributed Bragg reflector fiber laser sensor for lateral force measurement,” Opt. Commun. 281(18), 4619–4622 (2008).
    [Crossref]
  3. Y. Zhang and B. Guan, “High-Sensitivity Distributed Bragg Reflector Fiber Laser Displacement Sensor,” IEEE Photonics Technol. Lett. 21(5), 280–282 (2009).
    [Crossref]
  4. W. Liu, T. Guo, A. C. Wong, H. Y. Tam, and S. He, “Highly sensitive bending sensor based on Er3+-doped DBR fiber laser,” Opt. Express 18(17), 17834–17840 (2010).
    [Crossref]
  5. Y. Zha, Z. Xu, P. Xiao, F. Feng, Y. Ran, and B. Guan, “Phase-shifted type-IIa fiber Bragg gratings for high-temperature laser applications,” Opt. Express 27(4), 4346–4353 (2019).
    [Crossref]
  6. Y. Lai, A. Martinez, I. Khrushchev, and I. Bennion, “Distributed Bragg reflector fiber laser fabricated by femtosecond laser inscription,” Opt. Lett. 31(11), 1672–1674 (2006).
    [Crossref]
  7. B. Guan, Y. Zhang, H. Wang, D. Chen, and H. Tam, “High-temperature-resistant distributed Bragg reflector fiber laser written in Er/Yb co-doped fiber,” Opt. Express 16(5), 2958–2964 (2008).
    [Crossref]
  8. R. Chen, A. Yan, M. Li, T. Chen, Q. Wang, J. Canning, K. Cook, and K. P. Chen, “Regenerated distributed Bragg reflector fiber lasers for high-temperature operation,” Opt. Lett. 38(14), 2490–2492 (2013).
    [Crossref]
  9. Y. Ran, F. Feng, Y. Liang, L. Jin, and B. Guan, “Type IIa Bragg grating based ultra-short DBR fiber laser with high temperature resistance,” Opt. Lett. 40(24), 5706–5709 (2015).
    [Crossref]
  10. H. Wang, S. Xiong, J. Song, F. Zhao, Z. Yan, X. Hong, T. Zhang, W. Zhang, K. Zhou, C. Li, and Y. Wang, “High temperature resistant ultra-short DBR Yb-doped fiber laser,” Appl. Opt. 58(16), 4474–4478 (2019).
    [Crossref]
  11. F. Feng, Y. Ran, Y. Liang, S. Gao, Y. Feng, L. Jin, and B. Guan, “Thermally triggered fiber lasers based on secondary-type-In Bragg gratings,” Opt. Lett. 41(11), 2470–2473 (2016).
    [Crossref]
  12. Y. Zhang, B. O. Guan, and H. Y. Tam, “Ultra-short distributed Bragg reflector fiber laser for sensing applications,” Opt. Express 17(12), 10050–10055 (2009).
    [Crossref]
  13. Y. Lai, K. Zhou, K. Sugden, and I. Bennion, “Point-by-point inscription of first-order fiber Bragg grating for C-band applications,” Opt. Express 15(26), 18318–18325 (2007).
    [Crossref]
  14. R. Wang, J. Si, T. Chen, L. Yan, H. Cao, X. Pham, and X. Hou, “Fabrication of high-temperature tilted fiber Bragg gratings using a femtosecond laser,” Opt. Express 25(20), 23684–23689 (2017).
    [Crossref]
  15. X. Pham, J. Si, T. Chen, R. Wang, L. Yan, H. Cao, and X. Hou, “Demodulation method for tilted fiber Bragg grating refractometer with high sensitivity,” J. Appl. Phys. 123(17), 174501 (2018).
    [Crossref]
  16. X. Pham, J. Si, T. Chen, F. Qin, and X. Hou, “Wide Range Refractive Index Measurement Based on Off-Axis Tilted Fiber Bragg Gratings Fabricated Using Femtosecond Laser,” J. Lightwave Technol. 37(13), 3027–3034 (2019).
    [Crossref]
  17. S. J. Mihailov, C. W. Smelser, D. Grobnic, R. B. Walker, P. Lu, H. Ding, and J. Unruh, “Bragg Gratings Written in All-SiO2 and Ge-Doped Core Fibers With 800-nm Femtosecond Radiation and a Phase Mask,” J. Lightwave Technol. 22(1), 94–100 (2004).
    [Crossref]
  18. X. Zhang, C. Chen, Y. Yu, W. Wei, Q. Guo, Y. Chen, X. Zhang, L. Qin, Y. Ning, and H. Sun, “High-Order-Tilted Fiber Bragg Gratings With Superposed Refractive Index Modulation,” IEEE Photonics J. 10(1), 1–8 (2018).
    [Crossref]
  19. C. Smelser, S. Mihailov, and D. Grobnic, “Formation of Type I-IR and Type II-IR gratings with an ultrafast IR laser and a phase mask,” Opt. Express 13(14), 5377–5386 (2005).
    [Crossref]
  20. S. H. Xu, Z. M. Yang, T. Liu, W. N. Zhang, Z. M. Feng, Q. Y. Zhang, and Z. H. Jiang, “An efficient compact 300 mW narrow-linewidth single frequency fiber laser at 1.5 µm,” Opt. Express 18(2), 1249–1254 (2010).
    [Crossref]
  21. Q. Fang, J. Li, W. Shi, Y. Qin, Y. Xu, X. Meng, R. A. Norwood, and N. Peyghambarian, “5 kW Near-Diffraction-Limited and 8 kW High-Brightness Monolithic Continuous Wave Fiber Lasers Directly Pumped by Laser Diodes,” IEEE Photonics J. 9(5), 1–7 (2017).
    [Crossref]
  22. T. Wang, L. Shao, J. Canning, and K. Cook, “Temperature and strain characterization of regenerated gratings,” Opt. Lett. 38(3), 247–249 (2013).
    [Crossref]
  23. N. Kagi, A. Oyobe, and K. Nakamura, “Temperature dependence of the gain in erbium-doped fibers,” J. Lightwave Technol. 9(2), 261–265 (1991).
    [Crossref]
  24. F. Huang, T. Chen, J. Si, X. Pham, and X. Hou, “Fiber laser based on a fiber Bragg grating and its application in high-temperature sensing,” Opt. Commun. 452, 233–237 (2019).
    [Crossref]

2019 (4)

2018 (2)

X. Zhang, C. Chen, Y. Yu, W. Wei, Q. Guo, Y. Chen, X. Zhang, L. Qin, Y. Ning, and H. Sun, “High-Order-Tilted Fiber Bragg Gratings With Superposed Refractive Index Modulation,” IEEE Photonics J. 10(1), 1–8 (2018).
[Crossref]

X. Pham, J. Si, T. Chen, R. Wang, L. Yan, H. Cao, and X. Hou, “Demodulation method for tilted fiber Bragg grating refractometer with high sensitivity,” J. Appl. Phys. 123(17), 174501 (2018).
[Crossref]

2017 (3)

2016 (1)

2015 (1)

2013 (2)

2010 (2)

2009 (2)

Y. Zhang and B. Guan, “High-Sensitivity Distributed Bragg Reflector Fiber Laser Displacement Sensor,” IEEE Photonics Technol. Lett. 21(5), 280–282 (2009).
[Crossref]

Y. Zhang, B. O. Guan, and H. Y. Tam, “Ultra-short distributed Bragg reflector fiber laser for sensing applications,” Opt. Express 17(12), 10050–10055 (2009).
[Crossref]

2008 (2)

Y. Zhang, B. Guan, and H. Tam, “Characteristics of the distributed Bragg reflector fiber laser sensor for lateral force measurement,” Opt. Commun. 281(18), 4619–4622 (2008).
[Crossref]

B. Guan, Y. Zhang, H. Wang, D. Chen, and H. Tam, “High-temperature-resistant distributed Bragg reflector fiber laser written in Er/Yb co-doped fiber,” Opt. Express 16(5), 2958–2964 (2008).
[Crossref]

2007 (1)

2006 (1)

2005 (1)

2004 (1)

1991 (1)

N. Kagi, A. Oyobe, and K. Nakamura, “Temperature dependence of the gain in erbium-doped fibers,” J. Lightwave Technol. 9(2), 261–265 (1991).
[Crossref]

Bennion, I.

Canning, J.

Cao, H.

X. Pham, J. Si, T. Chen, R. Wang, L. Yan, H. Cao, and X. Hou, “Demodulation method for tilted fiber Bragg grating refractometer with high sensitivity,” J. Appl. Phys. 123(17), 174501 (2018).
[Crossref]

R. Wang, J. Si, T. Chen, L. Yan, H. Cao, X. Pham, and X. Hou, “Fabrication of high-temperature tilted fiber Bragg gratings using a femtosecond laser,” Opt. Express 25(20), 23684–23689 (2017).
[Crossref]

Chen, C.

X. Zhang, C. Chen, Y. Yu, W. Wei, Q. Guo, Y. Chen, X. Zhang, L. Qin, Y. Ning, and H. Sun, “High-Order-Tilted Fiber Bragg Gratings With Superposed Refractive Index Modulation,” IEEE Photonics J. 10(1), 1–8 (2018).
[Crossref]

Chen, D.

Chen, K. P.

Chen, R.

Chen, T.

Chen, Y.

X. Zhang, C. Chen, Y. Yu, W. Wei, Q. Guo, Y. Chen, X. Zhang, L. Qin, Y. Ning, and H. Sun, “High-Order-Tilted Fiber Bragg Gratings With Superposed Refractive Index Modulation,” IEEE Photonics J. 10(1), 1–8 (2018).
[Crossref]

Cook, K.

Ding, H.

Fang, Q.

Q. Fang, J. Li, W. Shi, Y. Qin, Y. Xu, X. Meng, R. A. Norwood, and N. Peyghambarian, “5 kW Near-Diffraction-Limited and 8 kW High-Brightness Monolithic Continuous Wave Fiber Lasers Directly Pumped by Laser Diodes,” IEEE Photonics J. 9(5), 1–7 (2017).
[Crossref]

Feng, F.

Feng, Y.

Feng, Z. M.

Fu, S.

Gao, S.

Grobnic, D.

Guan, B.

Guan, B. O.

Guo, Q.

X. Zhang, C. Chen, Y. Yu, W. Wei, Q. Guo, Y. Chen, X. Zhang, L. Qin, Y. Ning, and H. Sun, “High-Order-Tilted Fiber Bragg Gratings With Superposed Refractive Index Modulation,” IEEE Photonics J. 10(1), 1–8 (2018).
[Crossref]

Guo, T.

He, S.

Hong, X.

Hou, X.

X. Pham, J. Si, T. Chen, F. Qin, and X. Hou, “Wide Range Refractive Index Measurement Based on Off-Axis Tilted Fiber Bragg Gratings Fabricated Using Femtosecond Laser,” J. Lightwave Technol. 37(13), 3027–3034 (2019).
[Crossref]

F. Huang, T. Chen, J. Si, X. Pham, and X. Hou, “Fiber laser based on a fiber Bragg grating and its application in high-temperature sensing,” Opt. Commun. 452, 233–237 (2019).
[Crossref]

X. Pham, J. Si, T. Chen, R. Wang, L. Yan, H. Cao, and X. Hou, “Demodulation method for tilted fiber Bragg grating refractometer with high sensitivity,” J. Appl. Phys. 123(17), 174501 (2018).
[Crossref]

R. Wang, J. Si, T. Chen, L. Yan, H. Cao, X. Pham, and X. Hou, “Fabrication of high-temperature tilted fiber Bragg gratings using a femtosecond laser,” Opt. Express 25(20), 23684–23689 (2017).
[Crossref]

Huang, F.

F. Huang, T. Chen, J. Si, X. Pham, and X. Hou, “Fiber laser based on a fiber Bragg grating and its application in high-temperature sensing,” Opt. Commun. 452, 233–237 (2019).
[Crossref]

Jiang, Z. H.

Jin, L.

Kagi, N.

N. Kagi, A. Oyobe, and K. Nakamura, “Temperature dependence of the gain in erbium-doped fibers,” J. Lightwave Technol. 9(2), 261–265 (1991).
[Crossref]

Khrushchev, I.

Lai, Y.

Li, C.

Li, J.

Q. Fang, J. Li, W. Shi, Y. Qin, Y. Xu, X. Meng, R. A. Norwood, and N. Peyghambarian, “5 kW Near-Diffraction-Limited and 8 kW High-Brightness Monolithic Continuous Wave Fiber Lasers Directly Pumped by Laser Diodes,” IEEE Photonics J. 9(5), 1–7 (2017).
[Crossref]

Li, M.

Liang, Y.

Liu, T.

Liu, W.

Lu, P.

Martinez, A.

Meng, X.

Q. Fang, J. Li, W. Shi, Y. Qin, Y. Xu, X. Meng, R. A. Norwood, and N. Peyghambarian, “5 kW Near-Diffraction-Limited and 8 kW High-Brightness Monolithic Continuous Wave Fiber Lasers Directly Pumped by Laser Diodes,” IEEE Photonics J. 9(5), 1–7 (2017).
[Crossref]

Mihailov, S.

Mihailov, S. J.

Nakamura, K.

N. Kagi, A. Oyobe, and K. Nakamura, “Temperature dependence of the gain in erbium-doped fibers,” J. Lightwave Technol. 9(2), 261–265 (1991).
[Crossref]

Ning, Y.

X. Zhang, C. Chen, Y. Yu, W. Wei, Q. Guo, Y. Chen, X. Zhang, L. Qin, Y. Ning, and H. Sun, “High-Order-Tilted Fiber Bragg Gratings With Superposed Refractive Index Modulation,” IEEE Photonics J. 10(1), 1–8 (2018).
[Crossref]

Norwood, R. A.

S. Fu, W. Shi, Y. Feng, L. Zhang, Z. Yang, S. Xu, X. Zhu, R. A. Norwood, and N. Peyghambarian, “Review of recent progress on single-frequency fiber lasers,” J. Opt. Soc. Am. B 34(3), A49 (2017).
[Crossref]

Q. Fang, J. Li, W. Shi, Y. Qin, Y. Xu, X. Meng, R. A. Norwood, and N. Peyghambarian, “5 kW Near-Diffraction-Limited and 8 kW High-Brightness Monolithic Continuous Wave Fiber Lasers Directly Pumped by Laser Diodes,” IEEE Photonics J. 9(5), 1–7 (2017).
[Crossref]

Oyobe, A.

N. Kagi, A. Oyobe, and K. Nakamura, “Temperature dependence of the gain in erbium-doped fibers,” J. Lightwave Technol. 9(2), 261–265 (1991).
[Crossref]

Peyghambarian, N.

Q. Fang, J. Li, W. Shi, Y. Qin, Y. Xu, X. Meng, R. A. Norwood, and N. Peyghambarian, “5 kW Near-Diffraction-Limited and 8 kW High-Brightness Monolithic Continuous Wave Fiber Lasers Directly Pumped by Laser Diodes,” IEEE Photonics J. 9(5), 1–7 (2017).
[Crossref]

S. Fu, W. Shi, Y. Feng, L. Zhang, Z. Yang, S. Xu, X. Zhu, R. A. Norwood, and N. Peyghambarian, “Review of recent progress on single-frequency fiber lasers,” J. Opt. Soc. Am. B 34(3), A49 (2017).
[Crossref]

Pham, X.

F. Huang, T. Chen, J. Si, X. Pham, and X. Hou, “Fiber laser based on a fiber Bragg grating and its application in high-temperature sensing,” Opt. Commun. 452, 233–237 (2019).
[Crossref]

X. Pham, J. Si, T. Chen, F. Qin, and X. Hou, “Wide Range Refractive Index Measurement Based on Off-Axis Tilted Fiber Bragg Gratings Fabricated Using Femtosecond Laser,” J. Lightwave Technol. 37(13), 3027–3034 (2019).
[Crossref]

X. Pham, J. Si, T. Chen, R. Wang, L. Yan, H. Cao, and X. Hou, “Demodulation method for tilted fiber Bragg grating refractometer with high sensitivity,” J. Appl. Phys. 123(17), 174501 (2018).
[Crossref]

R. Wang, J. Si, T. Chen, L. Yan, H. Cao, X. Pham, and X. Hou, “Fabrication of high-temperature tilted fiber Bragg gratings using a femtosecond laser,” Opt. Express 25(20), 23684–23689 (2017).
[Crossref]

Qin, F.

Qin, L.

X. Zhang, C. Chen, Y. Yu, W. Wei, Q. Guo, Y. Chen, X. Zhang, L. Qin, Y. Ning, and H. Sun, “High-Order-Tilted Fiber Bragg Gratings With Superposed Refractive Index Modulation,” IEEE Photonics J. 10(1), 1–8 (2018).
[Crossref]

Qin, Y.

Q. Fang, J. Li, W. Shi, Y. Qin, Y. Xu, X. Meng, R. A. Norwood, and N. Peyghambarian, “5 kW Near-Diffraction-Limited and 8 kW High-Brightness Monolithic Continuous Wave Fiber Lasers Directly Pumped by Laser Diodes,” IEEE Photonics J. 9(5), 1–7 (2017).
[Crossref]

Ran, Y.

Shao, L.

Shi, W.

Q. Fang, J. Li, W. Shi, Y. Qin, Y. Xu, X. Meng, R. A. Norwood, and N. Peyghambarian, “5 kW Near-Diffraction-Limited and 8 kW High-Brightness Monolithic Continuous Wave Fiber Lasers Directly Pumped by Laser Diodes,” IEEE Photonics J. 9(5), 1–7 (2017).
[Crossref]

S. Fu, W. Shi, Y. Feng, L. Zhang, Z. Yang, S. Xu, X. Zhu, R. A. Norwood, and N. Peyghambarian, “Review of recent progress on single-frequency fiber lasers,” J. Opt. Soc. Am. B 34(3), A49 (2017).
[Crossref]

Si, J.

F. Huang, T. Chen, J. Si, X. Pham, and X. Hou, “Fiber laser based on a fiber Bragg grating and its application in high-temperature sensing,” Opt. Commun. 452, 233–237 (2019).
[Crossref]

X. Pham, J. Si, T. Chen, F. Qin, and X. Hou, “Wide Range Refractive Index Measurement Based on Off-Axis Tilted Fiber Bragg Gratings Fabricated Using Femtosecond Laser,” J. Lightwave Technol. 37(13), 3027–3034 (2019).
[Crossref]

X. Pham, J. Si, T. Chen, R. Wang, L. Yan, H. Cao, and X. Hou, “Demodulation method for tilted fiber Bragg grating refractometer with high sensitivity,” J. Appl. Phys. 123(17), 174501 (2018).
[Crossref]

R. Wang, J. Si, T. Chen, L. Yan, H. Cao, X. Pham, and X. Hou, “Fabrication of high-temperature tilted fiber Bragg gratings using a femtosecond laser,” Opt. Express 25(20), 23684–23689 (2017).
[Crossref]

Smelser, C.

Smelser, C. W.

Song, J.

Sugden, K.

Sun, H.

X. Zhang, C. Chen, Y. Yu, W. Wei, Q. Guo, Y. Chen, X. Zhang, L. Qin, Y. Ning, and H. Sun, “High-Order-Tilted Fiber Bragg Gratings With Superposed Refractive Index Modulation,” IEEE Photonics J. 10(1), 1–8 (2018).
[Crossref]

Tam, H.

Y. Zhang, B. Guan, and H. Tam, “Characteristics of the distributed Bragg reflector fiber laser sensor for lateral force measurement,” Opt. Commun. 281(18), 4619–4622 (2008).
[Crossref]

B. Guan, Y. Zhang, H. Wang, D. Chen, and H. Tam, “High-temperature-resistant distributed Bragg reflector fiber laser written in Er/Yb co-doped fiber,” Opt. Express 16(5), 2958–2964 (2008).
[Crossref]

Tam, H. Y.

Unruh, J.

Walker, R. B.

Wang, H.

Wang, Q.

Wang, R.

X. Pham, J. Si, T. Chen, R. Wang, L. Yan, H. Cao, and X. Hou, “Demodulation method for tilted fiber Bragg grating refractometer with high sensitivity,” J. Appl. Phys. 123(17), 174501 (2018).
[Crossref]

R. Wang, J. Si, T. Chen, L. Yan, H. Cao, X. Pham, and X. Hou, “Fabrication of high-temperature tilted fiber Bragg gratings using a femtosecond laser,” Opt. Express 25(20), 23684–23689 (2017).
[Crossref]

Wang, T.

Wang, Y.

Wei, W.

X. Zhang, C. Chen, Y. Yu, W. Wei, Q. Guo, Y. Chen, X. Zhang, L. Qin, Y. Ning, and H. Sun, “High-Order-Tilted Fiber Bragg Gratings With Superposed Refractive Index Modulation,” IEEE Photonics J. 10(1), 1–8 (2018).
[Crossref]

Wong, A. C.

Xiao, P.

Xiong, S.

Xu, S.

Xu, S. H.

Xu, Y.

Q. Fang, J. Li, W. Shi, Y. Qin, Y. Xu, X. Meng, R. A. Norwood, and N. Peyghambarian, “5 kW Near-Diffraction-Limited and 8 kW High-Brightness Monolithic Continuous Wave Fiber Lasers Directly Pumped by Laser Diodes,” IEEE Photonics J. 9(5), 1–7 (2017).
[Crossref]

Xu, Z.

Yan, A.

Yan, L.

X. Pham, J. Si, T. Chen, R. Wang, L. Yan, H. Cao, and X. Hou, “Demodulation method for tilted fiber Bragg grating refractometer with high sensitivity,” J. Appl. Phys. 123(17), 174501 (2018).
[Crossref]

R. Wang, J. Si, T. Chen, L. Yan, H. Cao, X. Pham, and X. Hou, “Fabrication of high-temperature tilted fiber Bragg gratings using a femtosecond laser,” Opt. Express 25(20), 23684–23689 (2017).
[Crossref]

Yan, Z.

Yang, Z.

Yang, Z. M.

Yu, Y.

X. Zhang, C. Chen, Y. Yu, W. Wei, Q. Guo, Y. Chen, X. Zhang, L. Qin, Y. Ning, and H. Sun, “High-Order-Tilted Fiber Bragg Gratings With Superposed Refractive Index Modulation,” IEEE Photonics J. 10(1), 1–8 (2018).
[Crossref]

Zha, Y.

Zhang, L.

Zhang, Q. Y.

Zhang, T.

Zhang, W.

Zhang, W. N.

Zhang, X.

X. Zhang, C. Chen, Y. Yu, W. Wei, Q. Guo, Y. Chen, X. Zhang, L. Qin, Y. Ning, and H. Sun, “High-Order-Tilted Fiber Bragg Gratings With Superposed Refractive Index Modulation,” IEEE Photonics J. 10(1), 1–8 (2018).
[Crossref]

X. Zhang, C. Chen, Y. Yu, W. Wei, Q. Guo, Y. Chen, X. Zhang, L. Qin, Y. Ning, and H. Sun, “High-Order-Tilted Fiber Bragg Gratings With Superposed Refractive Index Modulation,” IEEE Photonics J. 10(1), 1–8 (2018).
[Crossref]

Zhang, Y.

Y. Zhang, B. O. Guan, and H. Y. Tam, “Ultra-short distributed Bragg reflector fiber laser for sensing applications,” Opt. Express 17(12), 10050–10055 (2009).
[Crossref]

Y. Zhang and B. Guan, “High-Sensitivity Distributed Bragg Reflector Fiber Laser Displacement Sensor,” IEEE Photonics Technol. Lett. 21(5), 280–282 (2009).
[Crossref]

Y. Zhang, B. Guan, and H. Tam, “Characteristics of the distributed Bragg reflector fiber laser sensor for lateral force measurement,” Opt. Commun. 281(18), 4619–4622 (2008).
[Crossref]

B. Guan, Y. Zhang, H. Wang, D. Chen, and H. Tam, “High-temperature-resistant distributed Bragg reflector fiber laser written in Er/Yb co-doped fiber,” Opt. Express 16(5), 2958–2964 (2008).
[Crossref]

Zhao, F.

Zhou, K.

Zhu, X.

Appl. Opt. (1)

IEEE Photonics J. (2)

X. Zhang, C. Chen, Y. Yu, W. Wei, Q. Guo, Y. Chen, X. Zhang, L. Qin, Y. Ning, and H. Sun, “High-Order-Tilted Fiber Bragg Gratings With Superposed Refractive Index Modulation,” IEEE Photonics J. 10(1), 1–8 (2018).
[Crossref]

Q. Fang, J. Li, W. Shi, Y. Qin, Y. Xu, X. Meng, R. A. Norwood, and N. Peyghambarian, “5 kW Near-Diffraction-Limited and 8 kW High-Brightness Monolithic Continuous Wave Fiber Lasers Directly Pumped by Laser Diodes,” IEEE Photonics J. 9(5), 1–7 (2017).
[Crossref]

IEEE Photonics Technol. Lett. (1)

Y. Zhang and B. Guan, “High-Sensitivity Distributed Bragg Reflector Fiber Laser Displacement Sensor,” IEEE Photonics Technol. Lett. 21(5), 280–282 (2009).
[Crossref]

J. Appl. Phys. (1)

X. Pham, J. Si, T. Chen, R. Wang, L. Yan, H. Cao, and X. Hou, “Demodulation method for tilted fiber Bragg grating refractometer with high sensitivity,” J. Appl. Phys. 123(17), 174501 (2018).
[Crossref]

J. Lightwave Technol. (3)

J. Opt. Soc. Am. B (1)

Opt. Commun. (2)

Y. Zhang, B. Guan, and H. Tam, “Characteristics of the distributed Bragg reflector fiber laser sensor for lateral force measurement,” Opt. Commun. 281(18), 4619–4622 (2008).
[Crossref]

F. Huang, T. Chen, J. Si, X. Pham, and X. Hou, “Fiber laser based on a fiber Bragg grating and its application in high-temperature sensing,” Opt. Commun. 452, 233–237 (2019).
[Crossref]

Opt. Express (8)

C. Smelser, S. Mihailov, and D. Grobnic, “Formation of Type I-IR and Type II-IR gratings with an ultrafast IR laser and a phase mask,” Opt. Express 13(14), 5377–5386 (2005).
[Crossref]

Y. Lai, K. Zhou, K. Sugden, and I. Bennion, “Point-by-point inscription of first-order fiber Bragg grating for C-band applications,” Opt. Express 15(26), 18318–18325 (2007).
[Crossref]

B. Guan, Y. Zhang, H. Wang, D. Chen, and H. Tam, “High-temperature-resistant distributed Bragg reflector fiber laser written in Er/Yb co-doped fiber,” Opt. Express 16(5), 2958–2964 (2008).
[Crossref]

Y. Zhang, B. O. Guan, and H. Y. Tam, “Ultra-short distributed Bragg reflector fiber laser for sensing applications,” Opt. Express 17(12), 10050–10055 (2009).
[Crossref]

S. H. Xu, Z. M. Yang, T. Liu, W. N. Zhang, Z. M. Feng, Q. Y. Zhang, and Z. H. Jiang, “An efficient compact 300 mW narrow-linewidth single frequency fiber laser at 1.5 µm,” Opt. Express 18(2), 1249–1254 (2010).
[Crossref]

W. Liu, T. Guo, A. C. Wong, H. Y. Tam, and S. He, “Highly sensitive bending sensor based on Er3+-doped DBR fiber laser,” Opt. Express 18(17), 17834–17840 (2010).
[Crossref]

R. Wang, J. Si, T. Chen, L. Yan, H. Cao, X. Pham, and X. Hou, “Fabrication of high-temperature tilted fiber Bragg gratings using a femtosecond laser,” Opt. Express 25(20), 23684–23689 (2017).
[Crossref]

Y. Zha, Z. Xu, P. Xiao, F. Feng, Y. Ran, and B. Guan, “Phase-shifted type-IIa fiber Bragg gratings for high-temperature laser applications,” Opt. Express 27(4), 4346–4353 (2019).
[Crossref]

Opt. Lett. (5)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Experimental setup of the ultra-short DBR fiber laser.
Fig. 2.
Fig. 2. (a) The transmission spectra of the TFBGs with tilt angles from 0° to 3.8°. The 0° TFBG is also a regular FBG. (b) The transmission spectra of the 1.8° TFBG and FBG after the annealing process. These transmission spectra are measured at room temperature (28°C).
Fig. 3.
Fig. 3. The Bragg wavelengths of the (a) 1.8° TFBG and (b) FBG versus temperature. The insets show the transmission spectra of the 1.8° TFBG and FBG at various temperatures. Thermal stability of the (c) 1.8° TFBG and (d) FBG at temperatures from 300°C to 800°C after the annealing process.
Fig. 4.
Fig. 4. (a) Photograph of the DBR fiber laser. The transmission spectra of the F-P interference and the output spectra of the laser (b) before and (c) after the annealing process. The pump power of 255 mW is used. (d) The stability of the laser output power and wavelength at room temperature in 1 hour.
Fig. 5.
Fig. 5. (a) The lasing wavelength versus temperature. The inset shows the output spectra of the DBR laser at different temperatures. (b) Laser output power stability at different temperatures.

Metrics