Abstract

Optical materials with a high refractive index enable effective manipulation of light at the nanoscale through strong light confinement. However, the optical near field, which is mainly confined inside such high-index nanostructures, is difficult to probe with existing measurement techniques. Here, we exploit the connection between Raman scattering and the stored electric energy to detect resonance-induced near-field enhancements in silicon nanostructures. We introduce a Raman setup with a wavelength-tunable laser, which allows us to tune the Raman excitation wavelength and thereby identify Fabry-Pérot and Mie type resonances in silicon thin films and nanodisk arrays, respectively. We measure the optical near-field enhancement by comparing the Raman response on and off resonance. Our results show that tunable-excitation Raman spectroscopy can be used as a complimentary far-field technique to reflection measurements for nanoscale characterization and quality control. As proof-of-principle for the latter, we demonstrate that Raman spectroscopy captures fabrication imperfections in the silicon nanodisk arrays, enabling an all-optical quality control of metasurfaces.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optical properties and fabrication of dielectric metasurfaces based on amorphous silicon nanodisk arrays

D. Visser, S. B. Basuvalingam, Y. Désières, and S. Anand
Opt. Express 27(4) 5353-5367 (2019)

Surface enhanced resonant Raman scattering in hybrid MoSe2@Au nanostructures

Inès Abid, Weibing Chen, Jiangtan Yuan, Sina Najmaei, Emil C. Peñafiel, Renaud Péchou, Nicolas Large, Jun Lou, and Adnen Mlayah
Opt. Express 26(22) 29411-29423 (2018)

Fiber-optic probes with improved excitation and collection efficiency for deep-UV Raman and resonance Raman spectroscopy

L. Shane Greek, H. Georg Schulze, Michael W. Blades, Charles A. Haynes, Karl-Friedrich Klein, and Robin F. B. Turner
Appl. Opt. 37(1) 170-180 (1998)

References

  • View by:
  • |
  • |
  • |

  1. A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).
    [Crossref]
  2. I. Staude and J. Schilling, “Metamaterial-inspired silicon nanophotonics,” Nat. Photonics 11(5), 274–284 (2017).
    [Crossref]
  3. S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11(1), 23–36 (2016).
    [Crossref]
  4. A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
    [Crossref]
  5. P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem. 1(1), 601–626 (2008).
    [Crossref]
  6. M. Moskovits and J. S. Suh, “Surface selection rules for surface-enhanced Raman spectroscopy: Calculations and application to the surface-enhanced Raman Spectrum of Phthalazine on Silver,” J. Phys. Chem. 88(23), 5526–5530 (1984).
    [Crossref]
  7. P. A. Dmitriev, D. G. Baranov, V. A. Milichko, S. V. Makarov, I. S. Mukhin, A. K. Samusev, A. E. Krasnok, P. A. Belov, and Y. S. Kivshar, “Resonant Raman scattering from silicon nanoparticles enhanced by magnetic response,” Nanoscale 8(18), 9721–9726 (2016).
    [Crossref]
  8. K. Frizyuk, M. Hasan, A. Krasnok, A. Alú, and M. Petrov, “Enhancement of Raman scattering in dielectric nanostructures with electric and magnetic Mie resonances,” Phys. Rev. B 97(8), 085414 (2018).
    [Crossref]
  9. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
    [Crossref]
  10. M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
    [Crossref]
  11. A. Kristensen, J. K. W. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2(1), 16088 (2017).
    [Crossref]
  12. M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
    [Crossref]
  13. S. T. Ha, Y. H. Fu, N. K. Emani, Z. Pan, R. M. Bakker, R. Paniagua-Domínguez, and A. I. Kuznetsov, “Directional lasing in resonant semiconductor nanoantenna arrays,” Nat. Nanotechnol. 13(11), 1042–1047 (2018).
    [Crossref]
  14. A. F. Cihan, A. G. Curto, S. Raza, P. G. Kik, and M. L. Brongersma, “Silicon Mie resonators for highly directional light emission from monolayer MoS2,” Nat. Photonics 12(5), 284–290 (2018).
    [Crossref]
  15. A. Vaskin, J. Bohn, K. E. Chong, T. Bucher, M. Zilk, D.-Y. Choi, D. N. Neshev, Y. S. Kivshar, T. Pertsch, and I. Staude, “Directional and spectral shaping of light emission with Mie-resonant silicon nanoantenna arrays,” ACS Photonics 5(4), 1359–1364 (2018).
    [Crossref]
  16. R. Regmi, J. Berthelot, P. M. Winkler, M. Mivelle, J. Proust, F. Bedu, I. Ozerov, T. Begou, J. Lumeau, H. Rigneault, M. F. García-Parajó, S. Bidault, J. Wenger, and N. Bonod, “All-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules,” Nano Lett. 16(8), 5143–5151 (2016).
    [Crossref]
  17. A. L. Holsteen, S. Raza, P. Fan, P. G. Kik, and M. L. Brongersma, “Purcell effect for active tuning of light scattering from semiconductor optical antennas,” Science 358(6369), 1407–1410 (2017).
    [Crossref]
  18. R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15(3), 2137–2142 (2015).
    [Crossref]
  19. A. Y. Frolov, N. Verellen, J. Li, X. Zheng, H. Paddubrouskaya, D. Denkova, M. R. Shcherbakov, G. A. E. Vandenbosch, V. I. Panov, P. van Dorpe, A. A. Fedyanin, and V. V. Moshchalkov, “Near-field mapping of optical Fabry-Perot modes in all-dielectric nanoantennas,” Nano Lett. 17(12), 7629–7637 (2017).
    [Crossref]
  20. T. Coenen, J. van de Groep, and A. Polman, “Resonant modes of single silicon nanocavities excited by electron irradiation,” ACS Nano 7(2), 1689–1698 (2013).
    [Crossref]
  21. L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8(8), 643–647 (2009).
    [Crossref]
  22. D. G. Baranov, R. Verre, P. Karpinski, and M. Käll, “Anapole-enhanced intrinsic Raman scattering from silicon nanodisks,” ACS Photonics 5(7), 2730–2736 (2018).
    [Crossref]
  23. P. A. Dmitriev, S. V. Makarov, V. A. Milichko, I. S. Mukhin, A. S. Gudovskikh, A. A. Sitnikova, A. K. Samusev, A. E. Krasnok, and P. A. Belov, “Laser fabrication of crystalline silicon nanoresonators from an amorphous film for low-loss all-dielectric nanophotonics,” Nanoscale 8(9), 5043–5048 (2016).
    [Crossref]
  24. M. Aouassa, E. Mitsai, S. Syubaev, D. Pavlov, A. Zhizhchenko, I. Jadli, L. Hassayoun, G. Zograf, S. Makarov, and A. Kuchmizhak, “Temperature-feedback direct laser reshaping of silicon nanostructures,” Appl. Phys. Lett. 111(24), 243103 (2017).
    [Crossref]
  25. G. P. Zograf, M. I. Petrov, D. A. Zuev, P. A. Dmitriev, V. A. Milichko, S. V. Makarov, and P. A. Belov, “Resonant nonplasmonic nanoparticles for efficient temperature-feedback optical heating,” Nano Lett. 17(5), 2945–2952 (2017).
    [Crossref]
  26. V. A. Milichko, D. A. Zuev, D. G. Baranov, G. P. Zograf, K. Volodina, A. A. Krasilin, I. S. Mukhin, P. A. Dmitriev, V. V. Vinogradov, S. V. Makarov, and P. A. Belov, “Metal-dielectric nanocavity for real-time tracing molecular events with temperature feedback,” Laser Photonics Rev. 12(1), 1700227 (2018).
    [Crossref]
  27. A. Krasnok, M. Tymchenko, and A. Alù, “Nonlinear metasurfaces: a paradigm shift in nonlinear optics,” Mater. Today 21(1), 8–21 (2018).
    [Crossref]
  28. M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6(1), 7915 (2015).
    [Crossref]
  29. Z. Huang, J. Wang, Z. Liu, G. Xu, Y. Fan, H. Zhong, B. Cao, C. Wang, and K. Xu, “Strong-field-enhanced spectroscopy in silicon nanoparticle electric and magnetic dipole resonance near a metal surface,” J. Phys. Chem. C 119(50), 28127–28135 (2015).
    [Crossref]
  30. Y.-C. Tseng, T.-Y. Lin, Y.-C. Lee, C.-K. Ku, C.-W. Chen, and H.-L. Chen, “Magnetic dipole resonance and coupling effects directly enhance the Raman signals of as-grown graphene on copper foil by over one hundredfold,” Chem. Mater. 30(5), 1472–1483 (2018).
    [Crossref]
  31. I. Alessandri and J. R. Lombardi, “Enhanced Raman scattering with dielectrics,” Chem. Rev. 116(24), 14921–14981 (2016).
    [Crossref]
  32. A. Krasnok, M. Caldarola, N. Bonod, and A. Alú, “Spectroscopy and biosensing with optically resonant dielectric nanostructures,” Adv. Opt. Mater. 6(5), 1701094 (2018).
    [Crossref]
  33. K. F. McCarty, “Raman scattering as a technique of measuring film thickness: interference effects in thin growing films,” Appl. Opt. 26(20), 4482–4486 (1987).
    [Crossref]
  34. D. V. Murphy and S. R. J. Brueck, “Enhanced Raman scattering from silicon microstructures,” Opt. Lett. 8(9), 494–496 (1983).
    [Crossref]
  35. J. H. Parker Jr, D. W. Feldman, and M. Askin, “Raman scattering by silicon and germanium,” Phys. Rev. 155(3), 712–714 (1967).
    [Crossref]
  36. A. T. Voutsas, M. K. Hatalis, J. Boyce, and A. Chiang, “Raman spectroscopy of amorphous and microcrystalline silicon films deposited by low-pressure chemical vapor deposition,” J. Appl. Phys. 78(12), 6999–7006 (1995).
    [Crossref]
  37. S. Kruk and Y. Kivshar, “Functional meta-optics and nanophotonics governed by Mie resonances,” ACS Photonics 4(11), 2638–2649 (2017).
    [Crossref]
  38. Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4(1), 1527 (2013).
    [Crossref]
  39. N. S. Mueller, S. Juergensen, K. Höflich, S. Reich, and P. Kusch, “Excitation-tunable tip-enhanced Raman spectroscopy,” J. Phys. Chem. C 122(49), 28273–28279 (2018).
    [Crossref]

2018 (10)

K. Frizyuk, M. Hasan, A. Krasnok, A. Alú, and M. Petrov, “Enhancement of Raman scattering in dielectric nanostructures with electric and magnetic Mie resonances,” Phys. Rev. B 97(8), 085414 (2018).
[Crossref]

S. T. Ha, Y. H. Fu, N. K. Emani, Z. Pan, R. M. Bakker, R. Paniagua-Domínguez, and A. I. Kuznetsov, “Directional lasing in resonant semiconductor nanoantenna arrays,” Nat. Nanotechnol. 13(11), 1042–1047 (2018).
[Crossref]

A. F. Cihan, A. G. Curto, S. Raza, P. G. Kik, and M. L. Brongersma, “Silicon Mie resonators for highly directional light emission from monolayer MoS2,” Nat. Photonics 12(5), 284–290 (2018).
[Crossref]

A. Vaskin, J. Bohn, K. E. Chong, T. Bucher, M. Zilk, D.-Y. Choi, D. N. Neshev, Y. S. Kivshar, T. Pertsch, and I. Staude, “Directional and spectral shaping of light emission with Mie-resonant silicon nanoantenna arrays,” ACS Photonics 5(4), 1359–1364 (2018).
[Crossref]

D. G. Baranov, R. Verre, P. Karpinski, and M. Käll, “Anapole-enhanced intrinsic Raman scattering from silicon nanodisks,” ACS Photonics 5(7), 2730–2736 (2018).
[Crossref]

V. A. Milichko, D. A. Zuev, D. G. Baranov, G. P. Zograf, K. Volodina, A. A. Krasilin, I. S. Mukhin, P. A. Dmitriev, V. V. Vinogradov, S. V. Makarov, and P. A. Belov, “Metal-dielectric nanocavity for real-time tracing molecular events with temperature feedback,” Laser Photonics Rev. 12(1), 1700227 (2018).
[Crossref]

A. Krasnok, M. Tymchenko, and A. Alù, “Nonlinear metasurfaces: a paradigm shift in nonlinear optics,” Mater. Today 21(1), 8–21 (2018).
[Crossref]

Y.-C. Tseng, T.-Y. Lin, Y.-C. Lee, C.-K. Ku, C.-W. Chen, and H.-L. Chen, “Magnetic dipole resonance and coupling effects directly enhance the Raman signals of as-grown graphene on copper foil by over one hundredfold,” Chem. Mater. 30(5), 1472–1483 (2018).
[Crossref]

A. Krasnok, M. Caldarola, N. Bonod, and A. Alú, “Spectroscopy and biosensing with optically resonant dielectric nanostructures,” Adv. Opt. Mater. 6(5), 1701094 (2018).
[Crossref]

N. S. Mueller, S. Juergensen, K. Höflich, S. Reich, and P. Kusch, “Excitation-tunable tip-enhanced Raman spectroscopy,” J. Phys. Chem. C 122(49), 28273–28279 (2018).
[Crossref]

2017 (7)

S. Kruk and Y. Kivshar, “Functional meta-optics and nanophotonics governed by Mie resonances,” ACS Photonics 4(11), 2638–2649 (2017).
[Crossref]

M. Aouassa, E. Mitsai, S. Syubaev, D. Pavlov, A. Zhizhchenko, I. Jadli, L. Hassayoun, G. Zograf, S. Makarov, and A. Kuchmizhak, “Temperature-feedback direct laser reshaping of silicon nanostructures,” Appl. Phys. Lett. 111(24), 243103 (2017).
[Crossref]

G. P. Zograf, M. I. Petrov, D. A. Zuev, P. A. Dmitriev, V. A. Milichko, S. V. Makarov, and P. A. Belov, “Resonant nonplasmonic nanoparticles for efficient temperature-feedback optical heating,” Nano Lett. 17(5), 2945–2952 (2017).
[Crossref]

A. Y. Frolov, N. Verellen, J. Li, X. Zheng, H. Paddubrouskaya, D. Denkova, M. R. Shcherbakov, G. A. E. Vandenbosch, V. I. Panov, P. van Dorpe, A. A. Fedyanin, and V. V. Moshchalkov, “Near-field mapping of optical Fabry-Perot modes in all-dielectric nanoantennas,” Nano Lett. 17(12), 7629–7637 (2017).
[Crossref]

A. Kristensen, J. K. W. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2(1), 16088 (2017).
[Crossref]

A. L. Holsteen, S. Raza, P. Fan, P. G. Kik, and M. L. Brongersma, “Purcell effect for active tuning of light scattering from semiconductor optical antennas,” Science 358(6369), 1407–1410 (2017).
[Crossref]

I. Staude and J. Schilling, “Metamaterial-inspired silicon nanophotonics,” Nat. Photonics 11(5), 274–284 (2017).
[Crossref]

2016 (7)

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11(1), 23–36 (2016).
[Crossref]

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).
[Crossref]

P. A. Dmitriev, D. G. Baranov, V. A. Milichko, S. V. Makarov, I. S. Mukhin, A. K. Samusev, A. E. Krasnok, P. A. Belov, and Y. S. Kivshar, “Resonant Raman scattering from silicon nanoparticles enhanced by magnetic response,” Nanoscale 8(18), 9721–9726 (2016).
[Crossref]

R. Regmi, J. Berthelot, P. M. Winkler, M. Mivelle, J. Proust, F. Bedu, I. Ozerov, T. Begou, J. Lumeau, H. Rigneault, M. F. García-Parajó, S. Bidault, J. Wenger, and N. Bonod, “All-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules,” Nano Lett. 16(8), 5143–5151 (2016).
[Crossref]

P. A. Dmitriev, S. V. Makarov, V. A. Milichko, I. S. Mukhin, A. S. Gudovskikh, A. A. Sitnikova, A. K. Samusev, A. E. Krasnok, and P. A. Belov, “Laser fabrication of crystalline silicon nanoresonators from an amorphous film for low-loss all-dielectric nanophotonics,” Nanoscale 8(9), 5043–5048 (2016).
[Crossref]

I. Alessandri and J. R. Lombardi, “Enhanced Raman scattering with dielectrics,” Chem. Rev. 116(24), 14921–14981 (2016).
[Crossref]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref]

2015 (5)

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6(1), 7915 (2015).
[Crossref]

Z. Huang, J. Wang, Z. Liu, G. Xu, Y. Fan, H. Zhong, B. Cao, C. Wang, and K. Xu, “Strong-field-enhanced spectroscopy in silicon nanoparticle electric and magnetic dipole resonance near a metal surface,” J. Phys. Chem. C 119(50), 28127–28135 (2015).
[Crossref]

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15(3), 2137–2142 (2015).
[Crossref]

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
[Crossref]

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref]

2013 (2)

T. Coenen, J. van de Groep, and A. Polman, “Resonant modes of single silicon nanocavities excited by electron irradiation,” ACS Nano 7(2), 1689–1698 (2013).
[Crossref]

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4(1), 1527 (2013).
[Crossref]

2009 (1)

L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8(8), 643–647 (2009).
[Crossref]

2008 (1)

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem. 1(1), 601–626 (2008).
[Crossref]

1997 (1)

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

1995 (1)

A. T. Voutsas, M. K. Hatalis, J. Boyce, and A. Chiang, “Raman spectroscopy of amorphous and microcrystalline silicon films deposited by low-pressure chemical vapor deposition,” J. Appl. Phys. 78(12), 6999–7006 (1995).
[Crossref]

1987 (1)

1984 (1)

M. Moskovits and J. S. Suh, “Surface selection rules for surface-enhanced Raman spectroscopy: Calculations and application to the surface-enhanced Raman Spectrum of Phthalazine on Silver,” J. Phys. Chem. 88(23), 5526–5530 (1984).
[Crossref]

1983 (1)

1967 (1)

J. H. Parker Jr, D. W. Feldman, and M. Askin, “Raman scattering by silicon and germanium,” Phys. Rev. 155(3), 712–714 (1967).
[Crossref]

Albella, P.

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6(1), 7915 (2015).
[Crossref]

Alessandri, I.

I. Alessandri and J. R. Lombardi, “Enhanced Raman scattering with dielectrics,” Chem. Rev. 116(24), 14921–14981 (2016).
[Crossref]

Alú, A.

A. Krasnok, M. Caldarola, N. Bonod, and A. Alú, “Spectroscopy and biosensing with optically resonant dielectric nanostructures,” Adv. Opt. Mater. 6(5), 1701094 (2018).
[Crossref]

K. Frizyuk, M. Hasan, A. Krasnok, A. Alú, and M. Petrov, “Enhancement of Raman scattering in dielectric nanostructures with electric and magnetic Mie resonances,” Phys. Rev. B 97(8), 085414 (2018).
[Crossref]

Alù, A.

A. Krasnok, M. Tymchenko, and A. Alù, “Nonlinear metasurfaces: a paradigm shift in nonlinear optics,” Mater. Today 21(1), 8–21 (2018).
[Crossref]

Aouassa, M.

M. Aouassa, E. Mitsai, S. Syubaev, D. Pavlov, A. Zhizhchenko, I. Jadli, L. Hassayoun, G. Zograf, S. Makarov, and A. Kuchmizhak, “Temperature-feedback direct laser reshaping of silicon nanostructures,” Appl. Phys. Lett. 111(24), 243103 (2017).
[Crossref]

Arbabi, A.

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref]

Askin, M.

J. H. Parker Jr, D. W. Feldman, and M. Askin, “Raman scattering by silicon and germanium,” Phys. Rev. 155(3), 712–714 (1967).
[Crossref]

Bagheri, M.

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref]

Bakker, R. M.

S. T. Ha, Y. H. Fu, N. K. Emani, Z. Pan, R. M. Bakker, R. Paniagua-Domínguez, and A. I. Kuznetsov, “Directional lasing in resonant semiconductor nanoantenna arrays,” Nat. Nanotechnol. 13(11), 1042–1047 (2018).
[Crossref]

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15(3), 2137–2142 (2015).
[Crossref]

Baranov, D. G.

D. G. Baranov, R. Verre, P. Karpinski, and M. Käll, “Anapole-enhanced intrinsic Raman scattering from silicon nanodisks,” ACS Photonics 5(7), 2730–2736 (2018).
[Crossref]

V. A. Milichko, D. A. Zuev, D. G. Baranov, G. P. Zograf, K. Volodina, A. A. Krasilin, I. S. Mukhin, P. A. Dmitriev, V. V. Vinogradov, S. V. Makarov, and P. A. Belov, “Metal-dielectric nanocavity for real-time tracing molecular events with temperature feedback,” Laser Photonics Rev. 12(1), 1700227 (2018).
[Crossref]

P. A. Dmitriev, D. G. Baranov, V. A. Milichko, S. V. Makarov, I. S. Mukhin, A. K. Samusev, A. E. Krasnok, P. A. Belov, and Y. S. Kivshar, “Resonant Raman scattering from silicon nanoparticles enhanced by magnetic response,” Nanoscale 8(18), 9721–9726 (2016).
[Crossref]

Bedu, F.

R. Regmi, J. Berthelot, P. M. Winkler, M. Mivelle, J. Proust, F. Bedu, I. Ozerov, T. Begou, J. Lumeau, H. Rigneault, M. F. García-Parajó, S. Bidault, J. Wenger, and N. Bonod, “All-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules,” Nano Lett. 16(8), 5143–5151 (2016).
[Crossref]

Begou, T.

R. Regmi, J. Berthelot, P. M. Winkler, M. Mivelle, J. Proust, F. Bedu, I. Ozerov, T. Begou, J. Lumeau, H. Rigneault, M. F. García-Parajó, S. Bidault, J. Wenger, and N. Bonod, “All-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules,” Nano Lett. 16(8), 5143–5151 (2016).
[Crossref]

Belov, P. A.

V. A. Milichko, D. A. Zuev, D. G. Baranov, G. P. Zograf, K. Volodina, A. A. Krasilin, I. S. Mukhin, P. A. Dmitriev, V. V. Vinogradov, S. V. Makarov, and P. A. Belov, “Metal-dielectric nanocavity for real-time tracing molecular events with temperature feedback,” Laser Photonics Rev. 12(1), 1700227 (2018).
[Crossref]

G. P. Zograf, M. I. Petrov, D. A. Zuev, P. A. Dmitriev, V. A. Milichko, S. V. Makarov, and P. A. Belov, “Resonant nonplasmonic nanoparticles for efficient temperature-feedback optical heating,” Nano Lett. 17(5), 2945–2952 (2017).
[Crossref]

P. A. Dmitriev, S. V. Makarov, V. A. Milichko, I. S. Mukhin, A. S. Gudovskikh, A. A. Sitnikova, A. K. Samusev, A. E. Krasnok, and P. A. Belov, “Laser fabrication of crystalline silicon nanoresonators from an amorphous film for low-loss all-dielectric nanophotonics,” Nanoscale 8(9), 5043–5048 (2016).
[Crossref]

P. A. Dmitriev, D. G. Baranov, V. A. Milichko, S. V. Makarov, I. S. Mukhin, A. K. Samusev, A. E. Krasnok, P. A. Belov, and Y. S. Kivshar, “Resonant Raman scattering from silicon nanoparticles enhanced by magnetic response,” Nanoscale 8(18), 9721–9726 (2016).
[Crossref]

Berthelot, J.

R. Regmi, J. Berthelot, P. M. Winkler, M. Mivelle, J. Proust, F. Bedu, I. Ozerov, T. Begou, J. Lumeau, H. Rigneault, M. F. García-Parajó, S. Bidault, J. Wenger, and N. Bonod, “All-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules,” Nano Lett. 16(8), 5143–5151 (2016).
[Crossref]

Bidault, S.

R. Regmi, J. Berthelot, P. M. Winkler, M. Mivelle, J. Proust, F. Bedu, I. Ozerov, T. Begou, J. Lumeau, H. Rigneault, M. F. García-Parajó, S. Bidault, J. Wenger, and N. Bonod, “All-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules,” Nano Lett. 16(8), 5143–5151 (2016).
[Crossref]

Bohn, J.

A. Vaskin, J. Bohn, K. E. Chong, T. Bucher, M. Zilk, D.-Y. Choi, D. N. Neshev, Y. S. Kivshar, T. Pertsch, and I. Staude, “Directional and spectral shaping of light emission with Mie-resonant silicon nanoantenna arrays,” ACS Photonics 5(4), 1359–1364 (2018).
[Crossref]

Bonod, N.

A. Krasnok, M. Caldarola, N. Bonod, and A. Alú, “Spectroscopy and biosensing with optically resonant dielectric nanostructures,” Adv. Opt. Mater. 6(5), 1701094 (2018).
[Crossref]

R. Regmi, J. Berthelot, P. M. Winkler, M. Mivelle, J. Proust, F. Bedu, I. Ozerov, T. Begou, J. Lumeau, H. Rigneault, M. F. García-Parajó, S. Bidault, J. Wenger, and N. Bonod, “All-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules,” Nano Lett. 16(8), 5143–5151 (2016).
[Crossref]

Boyce, J.

A. T. Voutsas, M. K. Hatalis, J. Boyce, and A. Chiang, “Raman spectroscopy of amorphous and microcrystalline silicon films deposited by low-pressure chemical vapor deposition,” J. Appl. Phys. 78(12), 6999–7006 (1995).
[Crossref]

Bozhevolnyi, S. I.

A. Kristensen, J. K. W. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2(1), 16088 (2017).
[Crossref]

Bragas, A. V.

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6(1), 7915 (2015).
[Crossref]

Brener, I.

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
[Crossref]

Brongersma, M. L.

A. F. Cihan, A. G. Curto, S. Raza, P. G. Kik, and M. L. Brongersma, “Silicon Mie resonators for highly directional light emission from monolayer MoS2,” Nat. Photonics 12(5), 284–290 (2018).
[Crossref]

A. L. Holsteen, S. Raza, P. Fan, P. G. Kik, and M. L. Brongersma, “Purcell effect for active tuning of light scattering from semiconductor optical antennas,” Science 358(6369), 1407–1410 (2017).
[Crossref]

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).
[Crossref]

L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8(8), 643–647 (2009).
[Crossref]

Brueck, S. R. J.

Bucher, T.

A. Vaskin, J. Bohn, K. E. Chong, T. Bucher, M. Zilk, D.-Y. Choi, D. N. Neshev, Y. S. Kivshar, T. Pertsch, and I. Staude, “Directional and spectral shaping of light emission with Mie-resonant silicon nanoantenna arrays,” ACS Photonics 5(4), 1359–1364 (2018).
[Crossref]

Caldarola, M.

A. Krasnok, M. Caldarola, N. Bonod, and A. Alú, “Spectroscopy and biosensing with optically resonant dielectric nanostructures,” Adv. Opt. Mater. 6(5), 1701094 (2018).
[Crossref]

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6(1), 7915 (2015).
[Crossref]

Cao, B.

Z. Huang, J. Wang, Z. Liu, G. Xu, Y. Fan, H. Zhong, B. Cao, C. Wang, and K. Xu, “Strong-field-enhanced spectroscopy in silicon nanoparticle electric and magnetic dipole resonance near a metal surface,” J. Phys. Chem. C 119(50), 28127–28135 (2015).
[Crossref]

Cao, L.

L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8(8), 643–647 (2009).
[Crossref]

Capasso, F.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref]

Chen, C.-W.

Y.-C. Tseng, T.-Y. Lin, Y.-C. Lee, C.-K. Ku, C.-W. Chen, and H.-L. Chen, “Magnetic dipole resonance and coupling effects directly enhance the Raman signals of as-grown graphene on copper foil by over one hundredfold,” Chem. Mater. 30(5), 1472–1483 (2018).
[Crossref]

Chen, H.-L.

Y.-C. Tseng, T.-Y. Lin, Y.-C. Lee, C.-K. Ku, C.-W. Chen, and H.-L. Chen, “Magnetic dipole resonance and coupling effects directly enhance the Raman signals of as-grown graphene on copper foil by over one hundredfold,” Chem. Mater. 30(5), 1472–1483 (2018).
[Crossref]

Chen, W. T.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref]

Chiang, A.

A. T. Voutsas, M. K. Hatalis, J. Boyce, and A. Chiang, “Raman spectroscopy of amorphous and microcrystalline silicon films deposited by low-pressure chemical vapor deposition,” J. Appl. Phys. 78(12), 6999–7006 (1995).
[Crossref]

Choi, D.-Y.

A. Vaskin, J. Bohn, K. E. Chong, T. Bucher, M. Zilk, D.-Y. Choi, D. N. Neshev, Y. S. Kivshar, T. Pertsch, and I. Staude, “Directional and spectral shaping of light emission with Mie-resonant silicon nanoantenna arrays,” ACS Photonics 5(4), 1359–1364 (2018).
[Crossref]

Chong, K. E.

A. Vaskin, J. Bohn, K. E. Chong, T. Bucher, M. Zilk, D.-Y. Choi, D. N. Neshev, Y. S. Kivshar, T. Pertsch, and I. Staude, “Directional and spectral shaping of light emission with Mie-resonant silicon nanoantenna arrays,” ACS Photonics 5(4), 1359–1364 (2018).
[Crossref]

Cihan, A. F.

A. F. Cihan, A. G. Curto, S. Raza, P. G. Kik, and M. L. Brongersma, “Silicon Mie resonators for highly directional light emission from monolayer MoS2,” Nat. Photonics 12(5), 284–290 (2018).
[Crossref]

Clemens, B. M.

L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8(8), 643–647 (2009).
[Crossref]

Coenen, T.

T. Coenen, J. van de Groep, and A. Polman, “Resonant modes of single silicon nanocavities excited by electron irradiation,” ACS Nano 7(2), 1689–1698 (2013).
[Crossref]

Cortés, E.

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6(1), 7915 (2015).
[Crossref]

Curto, A. G.

A. F. Cihan, A. G. Curto, S. Raza, P. G. Kik, and M. L. Brongersma, “Silicon Mie resonators for highly directional light emission from monolayer MoS2,” Nat. Photonics 12(5), 284–290 (2018).
[Crossref]

Dasari, R. R.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Decker, M.

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
[Crossref]

Denkova, D.

A. Y. Frolov, N. Verellen, J. Li, X. Zheng, H. Paddubrouskaya, D. Denkova, M. R. Shcherbakov, G. A. E. Vandenbosch, V. I. Panov, P. van Dorpe, A. A. Fedyanin, and V. V. Moshchalkov, “Near-field mapping of optical Fabry-Perot modes in all-dielectric nanoantennas,” Nano Lett. 17(12), 7629–7637 (2017).
[Crossref]

Devlin, R. C.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref]

Dieringer, J. A.

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem. 1(1), 601–626 (2008).
[Crossref]

Dmitriev, P. A.

V. A. Milichko, D. A. Zuev, D. G. Baranov, G. P. Zograf, K. Volodina, A. A. Krasilin, I. S. Mukhin, P. A. Dmitriev, V. V. Vinogradov, S. V. Makarov, and P. A. Belov, “Metal-dielectric nanocavity for real-time tracing molecular events with temperature feedback,” Laser Photonics Rev. 12(1), 1700227 (2018).
[Crossref]

G. P. Zograf, M. I. Petrov, D. A. Zuev, P. A. Dmitriev, V. A. Milichko, S. V. Makarov, and P. A. Belov, “Resonant nonplasmonic nanoparticles for efficient temperature-feedback optical heating,” Nano Lett. 17(5), 2945–2952 (2017).
[Crossref]

P. A. Dmitriev, D. G. Baranov, V. A. Milichko, S. V. Makarov, I. S. Mukhin, A. K. Samusev, A. E. Krasnok, P. A. Belov, and Y. S. Kivshar, “Resonant Raman scattering from silicon nanoparticles enhanced by magnetic response,” Nanoscale 8(18), 9721–9726 (2016).
[Crossref]

P. A. Dmitriev, S. V. Makarov, V. A. Milichko, I. S. Mukhin, A. S. Gudovskikh, A. A. Sitnikova, A. K. Samusev, A. E. Krasnok, and P. A. Belov, “Laser fabrication of crystalline silicon nanoresonators from an amorphous film for low-loss all-dielectric nanophotonics,” Nanoscale 8(9), 5043–5048 (2016).
[Crossref]

Dominguez, J.

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
[Crossref]

Emani, N. K.

S. T. Ha, Y. H. Fu, N. K. Emani, Z. Pan, R. M. Bakker, R. Paniagua-Domínguez, and A. I. Kuznetsov, “Directional lasing in resonant semiconductor nanoantenna arrays,” Nat. Nanotechnol. 13(11), 1042–1047 (2018).
[Crossref]

Falkner, M.

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
[Crossref]

Fan, P.

A. L. Holsteen, S. Raza, P. Fan, P. G. Kik, and M. L. Brongersma, “Purcell effect for active tuning of light scattering from semiconductor optical antennas,” Science 358(6369), 1407–1410 (2017).
[Crossref]

Fan, Y.

Z. Huang, J. Wang, Z. Liu, G. Xu, Y. Fan, H. Zhong, B. Cao, C. Wang, and K. Xu, “Strong-field-enhanced spectroscopy in silicon nanoparticle electric and magnetic dipole resonance near a metal surface,” J. Phys. Chem. C 119(50), 28127–28135 (2015).
[Crossref]

Faraon, A.

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref]

Fedyanin, A. A.

A. Y. Frolov, N. Verellen, J. Li, X. Zheng, H. Paddubrouskaya, D. Denkova, M. R. Shcherbakov, G. A. E. Vandenbosch, V. I. Panov, P. van Dorpe, A. A. Fedyanin, and V. V. Moshchalkov, “Near-field mapping of optical Fabry-Perot modes in all-dielectric nanoantennas,” Nano Lett. 17(12), 7629–7637 (2017).
[Crossref]

Feld, M. S.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Feldman, D. W.

J. H. Parker Jr, D. W. Feldman, and M. Askin, “Raman scattering by silicon and germanium,” Phys. Rev. 155(3), 712–714 (1967).
[Crossref]

Frizyuk, K.

K. Frizyuk, M. Hasan, A. Krasnok, A. Alú, and M. Petrov, “Enhancement of Raman scattering in dielectric nanostructures with electric and magnetic Mie resonances,” Phys. Rev. B 97(8), 085414 (2018).
[Crossref]

Frolov, A. Y.

A. Y. Frolov, N. Verellen, J. Li, X. Zheng, H. Paddubrouskaya, D. Denkova, M. R. Shcherbakov, G. A. E. Vandenbosch, V. I. Panov, P. van Dorpe, A. A. Fedyanin, and V. V. Moshchalkov, “Near-field mapping of optical Fabry-Perot modes in all-dielectric nanoantennas,” Nano Lett. 17(12), 7629–7637 (2017).
[Crossref]

Fu, Y. H.

S. T. Ha, Y. H. Fu, N. K. Emani, Z. Pan, R. M. Bakker, R. Paniagua-Domínguez, and A. I. Kuznetsov, “Directional lasing in resonant semiconductor nanoantenna arrays,” Nat. Nanotechnol. 13(11), 1042–1047 (2018).
[Crossref]

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4(1), 1527 (2013).
[Crossref]

García-Parajó, M. F.

R. Regmi, J. Berthelot, P. M. Winkler, M. Mivelle, J. Proust, F. Bedu, I. Ozerov, T. Begou, J. Lumeau, H. Rigneault, M. F. García-Parajó, S. Bidault, J. Wenger, and N. Bonod, “All-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules,” Nano Lett. 16(8), 5143–5151 (2016).
[Crossref]

Gonzaga, L.

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15(3), 2137–2142 (2015).
[Crossref]

Grinblat, G.

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6(1), 7915 (2015).
[Crossref]

Gudovskikh, A. S.

P. A. Dmitriev, S. V. Makarov, V. A. Milichko, I. S. Mukhin, A. S. Gudovskikh, A. A. Sitnikova, A. K. Samusev, A. E. Krasnok, and P. A. Belov, “Laser fabrication of crystalline silicon nanoresonators from an amorphous film for low-loss all-dielectric nanophotonics,” Nanoscale 8(9), 5043–5048 (2016).
[Crossref]

Ha, S. T.

S. T. Ha, Y. H. Fu, N. K. Emani, Z. Pan, R. M. Bakker, R. Paniagua-Domínguez, and A. I. Kuznetsov, “Directional lasing in resonant semiconductor nanoantenna arrays,” Nat. Nanotechnol. 13(11), 1042–1047 (2018).
[Crossref]

Halas, N. J.

A. Kristensen, J. K. W. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2(1), 16088 (2017).
[Crossref]

Hasan, M.

K. Frizyuk, M. Hasan, A. Krasnok, A. Alú, and M. Petrov, “Enhancement of Raman scattering in dielectric nanostructures with electric and magnetic Mie resonances,” Phys. Rev. B 97(8), 085414 (2018).
[Crossref]

Hassayoun, L.

M. Aouassa, E. Mitsai, S. Syubaev, D. Pavlov, A. Zhizhchenko, I. Jadli, L. Hassayoun, G. Zograf, S. Makarov, and A. Kuchmizhak, “Temperature-feedback direct laser reshaping of silicon nanostructures,” Appl. Phys. Lett. 111(24), 243103 (2017).
[Crossref]

Hatalis, M. K.

A. T. Voutsas, M. K. Hatalis, J. Boyce, and A. Chiang, “Raman spectroscopy of amorphous and microcrystalline silicon films deposited by low-pressure chemical vapor deposition,” J. Appl. Phys. 78(12), 6999–7006 (1995).
[Crossref]

Höflich, K.

N. S. Mueller, S. Juergensen, K. Höflich, S. Reich, and P. Kusch, “Excitation-tunable tip-enhanced Raman spectroscopy,” J. Phys. Chem. C 122(49), 28273–28279 (2018).
[Crossref]

Holsteen, A. L.

A. L. Holsteen, S. Raza, P. Fan, P. G. Kik, and M. L. Brongersma, “Purcell effect for active tuning of light scattering from semiconductor optical antennas,” Science 358(6369), 1407–1410 (2017).
[Crossref]

Horie, Y.

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref]

Huang, Z.

Z. Huang, J. Wang, Z. Liu, G. Xu, Y. Fan, H. Zhong, B. Cao, C. Wang, and K. Xu, “Strong-field-enhanced spectroscopy in silicon nanoparticle electric and magnetic dipole resonance near a metal surface,” J. Phys. Chem. C 119(50), 28127–28135 (2015).
[Crossref]

Itzkan, I.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Jacob, Z.

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11(1), 23–36 (2016).
[Crossref]

Jadli, I.

M. Aouassa, E. Mitsai, S. Syubaev, D. Pavlov, A. Zhizhchenko, I. Jadli, L. Hassayoun, G. Zograf, S. Makarov, and A. Kuchmizhak, “Temperature-feedback direct laser reshaping of silicon nanostructures,” Appl. Phys. Lett. 111(24), 243103 (2017).
[Crossref]

Jahani, S.

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11(1), 23–36 (2016).
[Crossref]

Juergensen, S.

N. S. Mueller, S. Juergensen, K. Höflich, S. Reich, and P. Kusch, “Excitation-tunable tip-enhanced Raman spectroscopy,” J. Phys. Chem. C 122(49), 28273–28279 (2018).
[Crossref]

Käll, M.

D. G. Baranov, R. Verre, P. Karpinski, and M. Käll, “Anapole-enhanced intrinsic Raman scattering from silicon nanodisks,” ACS Photonics 5(7), 2730–2736 (2018).
[Crossref]

Karpinski, P.

D. G. Baranov, R. Verre, P. Karpinski, and M. Käll, “Anapole-enhanced intrinsic Raman scattering from silicon nanodisks,” ACS Photonics 5(7), 2730–2736 (2018).
[Crossref]

Khorasaninejad, M.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref]

Kik, P. G.

A. F. Cihan, A. G. Curto, S. Raza, P. G. Kik, and M. L. Brongersma, “Silicon Mie resonators for highly directional light emission from monolayer MoS2,” Nat. Photonics 12(5), 284–290 (2018).
[Crossref]

A. L. Holsteen, S. Raza, P. Fan, P. G. Kik, and M. L. Brongersma, “Purcell effect for active tuning of light scattering from semiconductor optical antennas,” Science 358(6369), 1407–1410 (2017).
[Crossref]

Kivshar, Y.

S. Kruk and Y. Kivshar, “Functional meta-optics and nanophotonics governed by Mie resonances,” ACS Photonics 4(11), 2638–2649 (2017).
[Crossref]

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15(3), 2137–2142 (2015).
[Crossref]

Kivshar, Y. S.

A. Vaskin, J. Bohn, K. E. Chong, T. Bucher, M. Zilk, D.-Y. Choi, D. N. Neshev, Y. S. Kivshar, T. Pertsch, and I. Staude, “Directional and spectral shaping of light emission with Mie-resonant silicon nanoantenna arrays,” ACS Photonics 5(4), 1359–1364 (2018).
[Crossref]

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).
[Crossref]

P. A. Dmitriev, D. G. Baranov, V. A. Milichko, S. V. Makarov, I. S. Mukhin, A. K. Samusev, A. E. Krasnok, P. A. Belov, and Y. S. Kivshar, “Resonant Raman scattering from silicon nanoparticles enhanced by magnetic response,” Nanoscale 8(18), 9721–9726 (2016).
[Crossref]

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
[Crossref]

Kneipp, H.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Kneipp, K.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Krasilin, A. A.

V. A. Milichko, D. A. Zuev, D. G. Baranov, G. P. Zograf, K. Volodina, A. A. Krasilin, I. S. Mukhin, P. A. Dmitriev, V. V. Vinogradov, S. V. Makarov, and P. A. Belov, “Metal-dielectric nanocavity for real-time tracing molecular events with temperature feedback,” Laser Photonics Rev. 12(1), 1700227 (2018).
[Crossref]

Krasnok, A.

A. Krasnok, M. Tymchenko, and A. Alù, “Nonlinear metasurfaces: a paradigm shift in nonlinear optics,” Mater. Today 21(1), 8–21 (2018).
[Crossref]

A. Krasnok, M. Caldarola, N. Bonod, and A. Alú, “Spectroscopy and biosensing with optically resonant dielectric nanostructures,” Adv. Opt. Mater. 6(5), 1701094 (2018).
[Crossref]

K. Frizyuk, M. Hasan, A. Krasnok, A. Alú, and M. Petrov, “Enhancement of Raman scattering in dielectric nanostructures with electric and magnetic Mie resonances,” Phys. Rev. B 97(8), 085414 (2018).
[Crossref]

Krasnok, A. E.

P. A. Dmitriev, D. G. Baranov, V. A. Milichko, S. V. Makarov, I. S. Mukhin, A. K. Samusev, A. E. Krasnok, P. A. Belov, and Y. S. Kivshar, “Resonant Raman scattering from silicon nanoparticles enhanced by magnetic response,” Nanoscale 8(18), 9721–9726 (2016).
[Crossref]

P. A. Dmitriev, S. V. Makarov, V. A. Milichko, I. S. Mukhin, A. S. Gudovskikh, A. A. Sitnikova, A. K. Samusev, A. E. Krasnok, and P. A. Belov, “Laser fabrication of crystalline silicon nanoresonators from an amorphous film for low-loss all-dielectric nanophotonics,” Nanoscale 8(9), 5043–5048 (2016).
[Crossref]

Kristensen, A.

A. Kristensen, J. K. W. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2(1), 16088 (2017).
[Crossref]

Kruk, S.

S. Kruk and Y. Kivshar, “Functional meta-optics and nanophotonics governed by Mie resonances,” ACS Photonics 4(11), 2638–2649 (2017).
[Crossref]

Ku, C.-K.

Y.-C. Tseng, T.-Y. Lin, Y.-C. Lee, C.-K. Ku, C.-W. Chen, and H.-L. Chen, “Magnetic dipole resonance and coupling effects directly enhance the Raman signals of as-grown graphene on copper foil by over one hundredfold,” Chem. Mater. 30(5), 1472–1483 (2018).
[Crossref]

Kuchmizhak, A.

M. Aouassa, E. Mitsai, S. Syubaev, D. Pavlov, A. Zhizhchenko, I. Jadli, L. Hassayoun, G. Zograf, S. Makarov, and A. Kuchmizhak, “Temperature-feedback direct laser reshaping of silicon nanostructures,” Appl. Phys. Lett. 111(24), 243103 (2017).
[Crossref]

Kusch, P.

N. S. Mueller, S. Juergensen, K. Höflich, S. Reich, and P. Kusch, “Excitation-tunable tip-enhanced Raman spectroscopy,” J. Phys. Chem. C 122(49), 28273–28279 (2018).
[Crossref]

Kuznetsov, A. I.

S. T. Ha, Y. H. Fu, N. K. Emani, Z. Pan, R. M. Bakker, R. Paniagua-Domínguez, and A. I. Kuznetsov, “Directional lasing in resonant semiconductor nanoantenna arrays,” Nat. Nanotechnol. 13(11), 1042–1047 (2018).
[Crossref]

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).
[Crossref]

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15(3), 2137–2142 (2015).
[Crossref]

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4(1), 1527 (2013).
[Crossref]

Lee, Y.-C.

Y.-C. Tseng, T.-Y. Lin, Y.-C. Lee, C.-K. Ku, C.-W. Chen, and H.-L. Chen, “Magnetic dipole resonance and coupling effects directly enhance the Raman signals of as-grown graphene on copper foil by over one hundredfold,” Chem. Mater. 30(5), 1472–1483 (2018).
[Crossref]

Li, J.

A. Y. Frolov, N. Verellen, J. Li, X. Zheng, H. Paddubrouskaya, D. Denkova, M. R. Shcherbakov, G. A. E. Vandenbosch, V. I. Panov, P. van Dorpe, A. A. Fedyanin, and V. V. Moshchalkov, “Near-field mapping of optical Fabry-Perot modes in all-dielectric nanoantennas,” Nano Lett. 17(12), 7629–7637 (2017).
[Crossref]

Lin, T.-Y.

Y.-C. Tseng, T.-Y. Lin, Y.-C. Lee, C.-K. Ku, C.-W. Chen, and H.-L. Chen, “Magnetic dipole resonance and coupling effects directly enhance the Raman signals of as-grown graphene on copper foil by over one hundredfold,” Chem. Mater. 30(5), 1472–1483 (2018).
[Crossref]

Link, S.

A. Kristensen, J. K. W. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2(1), 16088 (2017).
[Crossref]

Liu, Z.

Z. Huang, J. Wang, Z. Liu, G. Xu, Y. Fan, H. Zhong, B. Cao, C. Wang, and K. Xu, “Strong-field-enhanced spectroscopy in silicon nanoparticle electric and magnetic dipole resonance near a metal surface,” J. Phys. Chem. C 119(50), 28127–28135 (2015).
[Crossref]

Lombardi, J. R.

I. Alessandri and J. R. Lombardi, “Enhanced Raman scattering with dielectrics,” Chem. Rev. 116(24), 14921–14981 (2016).
[Crossref]

Luk’yanchuk, B.

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).
[Crossref]

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15(3), 2137–2142 (2015).
[Crossref]

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4(1), 1527 (2013).
[Crossref]

Lumeau, J.

R. Regmi, J. Berthelot, P. M. Winkler, M. Mivelle, J. Proust, F. Bedu, I. Ozerov, T. Begou, J. Lumeau, H. Rigneault, M. F. García-Parajó, S. Bidault, J. Wenger, and N. Bonod, “All-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules,” Nano Lett. 16(8), 5143–5151 (2016).
[Crossref]

Maier, S. A.

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6(1), 7915 (2015).
[Crossref]

Makarov, S.

M. Aouassa, E. Mitsai, S. Syubaev, D. Pavlov, A. Zhizhchenko, I. Jadli, L. Hassayoun, G. Zograf, S. Makarov, and A. Kuchmizhak, “Temperature-feedback direct laser reshaping of silicon nanostructures,” Appl. Phys. Lett. 111(24), 243103 (2017).
[Crossref]

Makarov, S. V.

V. A. Milichko, D. A. Zuev, D. G. Baranov, G. P. Zograf, K. Volodina, A. A. Krasilin, I. S. Mukhin, P. A. Dmitriev, V. V. Vinogradov, S. V. Makarov, and P. A. Belov, “Metal-dielectric nanocavity for real-time tracing molecular events with temperature feedback,” Laser Photonics Rev. 12(1), 1700227 (2018).
[Crossref]

G. P. Zograf, M. I. Petrov, D. A. Zuev, P. A. Dmitriev, V. A. Milichko, S. V. Makarov, and P. A. Belov, “Resonant nonplasmonic nanoparticles for efficient temperature-feedback optical heating,” Nano Lett. 17(5), 2945–2952 (2017).
[Crossref]

P. A. Dmitriev, S. V. Makarov, V. A. Milichko, I. S. Mukhin, A. S. Gudovskikh, A. A. Sitnikova, A. K. Samusev, A. E. Krasnok, and P. A. Belov, “Laser fabrication of crystalline silicon nanoresonators from an amorphous film for low-loss all-dielectric nanophotonics,” Nanoscale 8(9), 5043–5048 (2016).
[Crossref]

P. A. Dmitriev, D. G. Baranov, V. A. Milichko, S. V. Makarov, I. S. Mukhin, A. K. Samusev, A. E. Krasnok, P. A. Belov, and Y. S. Kivshar, “Resonant Raman scattering from silicon nanoparticles enhanced by magnetic response,” Nanoscale 8(18), 9721–9726 (2016).
[Crossref]

Markovich, D.

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15(3), 2137–2142 (2015).
[Crossref]

McCarty, K. F.

Milichko, V. A.

V. A. Milichko, D. A. Zuev, D. G. Baranov, G. P. Zograf, K. Volodina, A. A. Krasilin, I. S. Mukhin, P. A. Dmitriev, V. V. Vinogradov, S. V. Makarov, and P. A. Belov, “Metal-dielectric nanocavity for real-time tracing molecular events with temperature feedback,” Laser Photonics Rev. 12(1), 1700227 (2018).
[Crossref]

G. P. Zograf, M. I. Petrov, D. A. Zuev, P. A. Dmitriev, V. A. Milichko, S. V. Makarov, and P. A. Belov, “Resonant nonplasmonic nanoparticles for efficient temperature-feedback optical heating,” Nano Lett. 17(5), 2945–2952 (2017).
[Crossref]

P. A. Dmitriev, S. V. Makarov, V. A. Milichko, I. S. Mukhin, A. S. Gudovskikh, A. A. Sitnikova, A. K. Samusev, A. E. Krasnok, and P. A. Belov, “Laser fabrication of crystalline silicon nanoresonators from an amorphous film for low-loss all-dielectric nanophotonics,” Nanoscale 8(9), 5043–5048 (2016).
[Crossref]

P. A. Dmitriev, D. G. Baranov, V. A. Milichko, S. V. Makarov, I. S. Mukhin, A. K. Samusev, A. E. Krasnok, P. A. Belov, and Y. S. Kivshar, “Resonant Raman scattering from silicon nanoparticles enhanced by magnetic response,” Nanoscale 8(18), 9721–9726 (2016).
[Crossref]

Miroshnichenko, A. E.

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).
[Crossref]

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4(1), 1527 (2013).
[Crossref]

Mitsai, E.

M. Aouassa, E. Mitsai, S. Syubaev, D. Pavlov, A. Zhizhchenko, I. Jadli, L. Hassayoun, G. Zograf, S. Makarov, and A. Kuchmizhak, “Temperature-feedback direct laser reshaping of silicon nanostructures,” Appl. Phys. Lett. 111(24), 243103 (2017).
[Crossref]

Mivelle, M.

R. Regmi, J. Berthelot, P. M. Winkler, M. Mivelle, J. Proust, F. Bedu, I. Ozerov, T. Begou, J. Lumeau, H. Rigneault, M. F. García-Parajó, S. Bidault, J. Wenger, and N. Bonod, “All-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules,” Nano Lett. 16(8), 5143–5151 (2016).
[Crossref]

Mortensen, N. A.

A. Kristensen, J. K. W. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2(1), 16088 (2017).
[Crossref]

Moshchalkov, V. V.

A. Y. Frolov, N. Verellen, J. Li, X. Zheng, H. Paddubrouskaya, D. Denkova, M. R. Shcherbakov, G. A. E. Vandenbosch, V. I. Panov, P. van Dorpe, A. A. Fedyanin, and V. V. Moshchalkov, “Near-field mapping of optical Fabry-Perot modes in all-dielectric nanoantennas,” Nano Lett. 17(12), 7629–7637 (2017).
[Crossref]

Moskovits, M.

M. Moskovits and J. S. Suh, “Surface selection rules for surface-enhanced Raman spectroscopy: Calculations and application to the surface-enhanced Raman Spectrum of Phthalazine on Silver,” J. Phys. Chem. 88(23), 5526–5530 (1984).
[Crossref]

Mueller, N. S.

N. S. Mueller, S. Juergensen, K. Höflich, S. Reich, and P. Kusch, “Excitation-tunable tip-enhanced Raman spectroscopy,” J. Phys. Chem. C 122(49), 28273–28279 (2018).
[Crossref]

Mukhin, I. S.

V. A. Milichko, D. A. Zuev, D. G. Baranov, G. P. Zograf, K. Volodina, A. A. Krasilin, I. S. Mukhin, P. A. Dmitriev, V. V. Vinogradov, S. V. Makarov, and P. A. Belov, “Metal-dielectric nanocavity for real-time tracing molecular events with temperature feedback,” Laser Photonics Rev. 12(1), 1700227 (2018).
[Crossref]

P. A. Dmitriev, D. G. Baranov, V. A. Milichko, S. V. Makarov, I. S. Mukhin, A. K. Samusev, A. E. Krasnok, P. A. Belov, and Y. S. Kivshar, “Resonant Raman scattering from silicon nanoparticles enhanced by magnetic response,” Nanoscale 8(18), 9721–9726 (2016).
[Crossref]

P. A. Dmitriev, S. V. Makarov, V. A. Milichko, I. S. Mukhin, A. S. Gudovskikh, A. A. Sitnikova, A. K. Samusev, A. E. Krasnok, and P. A. Belov, “Laser fabrication of crystalline silicon nanoresonators from an amorphous film for low-loss all-dielectric nanophotonics,” Nanoscale 8(9), 5043–5048 (2016).
[Crossref]

Murphy, D. V.

Neshev, D. N.

A. Vaskin, J. Bohn, K. E. Chong, T. Bucher, M. Zilk, D.-Y. Choi, D. N. Neshev, Y. S. Kivshar, T. Pertsch, and I. Staude, “Directional and spectral shaping of light emission with Mie-resonant silicon nanoantenna arrays,” ACS Photonics 5(4), 1359–1364 (2018).
[Crossref]

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
[Crossref]

Nordlander, P.

A. Kristensen, J. K. W. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2(1), 16088 (2017).
[Crossref]

Oh, J.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref]

Oulton, R. F.

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6(1), 7915 (2015).
[Crossref]

Ozerov, I.

R. Regmi, J. Berthelot, P. M. Winkler, M. Mivelle, J. Proust, F. Bedu, I. Ozerov, T. Begou, J. Lumeau, H. Rigneault, M. F. García-Parajó, S. Bidault, J. Wenger, and N. Bonod, “All-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules,” Nano Lett. 16(8), 5143–5151 (2016).
[Crossref]

Paddubrouskaya, H.

A. Y. Frolov, N. Verellen, J. Li, X. Zheng, H. Paddubrouskaya, D. Denkova, M. R. Shcherbakov, G. A. E. Vandenbosch, V. I. Panov, P. van Dorpe, A. A. Fedyanin, and V. V. Moshchalkov, “Near-field mapping of optical Fabry-Perot modes in all-dielectric nanoantennas,” Nano Lett. 17(12), 7629–7637 (2017).
[Crossref]

Pan, Z.

S. T. Ha, Y. H. Fu, N. K. Emani, Z. Pan, R. M. Bakker, R. Paniagua-Domínguez, and A. I. Kuznetsov, “Directional lasing in resonant semiconductor nanoantenna arrays,” Nat. Nanotechnol. 13(11), 1042–1047 (2018).
[Crossref]

Paniagua-Domínguez, R.

S. T. Ha, Y. H. Fu, N. K. Emani, Z. Pan, R. M. Bakker, R. Paniagua-Domínguez, and A. I. Kuznetsov, “Directional lasing in resonant semiconductor nanoantenna arrays,” Nat. Nanotechnol. 13(11), 1042–1047 (2018).
[Crossref]

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15(3), 2137–2142 (2015).
[Crossref]

Panov, V. I.

A. Y. Frolov, N. Verellen, J. Li, X. Zheng, H. Paddubrouskaya, D. Denkova, M. R. Shcherbakov, G. A. E. Vandenbosch, V. I. Panov, P. van Dorpe, A. A. Fedyanin, and V. V. Moshchalkov, “Near-field mapping of optical Fabry-Perot modes in all-dielectric nanoantennas,” Nano Lett. 17(12), 7629–7637 (2017).
[Crossref]

Park, J.-S.

L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8(8), 643–647 (2009).
[Crossref]

Parker Jr, J. H.

J. H. Parker Jr, D. W. Feldman, and M. Askin, “Raman scattering by silicon and germanium,” Phys. Rev. 155(3), 712–714 (1967).
[Crossref]

Pavlov, D.

M. Aouassa, E. Mitsai, S. Syubaev, D. Pavlov, A. Zhizhchenko, I. Jadli, L. Hassayoun, G. Zograf, S. Makarov, and A. Kuchmizhak, “Temperature-feedback direct laser reshaping of silicon nanostructures,” Appl. Phys. Lett. 111(24), 243103 (2017).
[Crossref]

Perelman, L. T.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Permyakov, D.

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15(3), 2137–2142 (2015).
[Crossref]

Pertsch, T.

A. Vaskin, J. Bohn, K. E. Chong, T. Bucher, M. Zilk, D.-Y. Choi, D. N. Neshev, Y. S. Kivshar, T. Pertsch, and I. Staude, “Directional and spectral shaping of light emission with Mie-resonant silicon nanoantenna arrays,” ACS Photonics 5(4), 1359–1364 (2018).
[Crossref]

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
[Crossref]

Petrov, M.

K. Frizyuk, M. Hasan, A. Krasnok, A. Alú, and M. Petrov, “Enhancement of Raman scattering in dielectric nanostructures with electric and magnetic Mie resonances,” Phys. Rev. B 97(8), 085414 (2018).
[Crossref]

Petrov, M. I.

G. P. Zograf, M. I. Petrov, D. A. Zuev, P. A. Dmitriev, V. A. Milichko, S. V. Makarov, and P. A. Belov, “Resonant nonplasmonic nanoparticles for efficient temperature-feedback optical heating,” Nano Lett. 17(5), 2945–2952 (2017).
[Crossref]

Polman, A.

T. Coenen, J. van de Groep, and A. Polman, “Resonant modes of single silicon nanocavities excited by electron irradiation,” ACS Nano 7(2), 1689–1698 (2013).
[Crossref]

Proust, J.

R. Regmi, J. Berthelot, P. M. Winkler, M. Mivelle, J. Proust, F. Bedu, I. Ozerov, T. Begou, J. Lumeau, H. Rigneault, M. F. García-Parajó, S. Bidault, J. Wenger, and N. Bonod, “All-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules,” Nano Lett. 16(8), 5143–5151 (2016).
[Crossref]

Rahmani, M.

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6(1), 7915 (2015).
[Crossref]

Raza, S.

A. F. Cihan, A. G. Curto, S. Raza, P. G. Kik, and M. L. Brongersma, “Silicon Mie resonators for highly directional light emission from monolayer MoS2,” Nat. Photonics 12(5), 284–290 (2018).
[Crossref]

A. L. Holsteen, S. Raza, P. Fan, P. G. Kik, and M. L. Brongersma, “Purcell effect for active tuning of light scattering from semiconductor optical antennas,” Science 358(6369), 1407–1410 (2017).
[Crossref]

Regmi, R.

R. Regmi, J. Berthelot, P. M. Winkler, M. Mivelle, J. Proust, F. Bedu, I. Ozerov, T. Begou, J. Lumeau, H. Rigneault, M. F. García-Parajó, S. Bidault, J. Wenger, and N. Bonod, “All-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules,” Nano Lett. 16(8), 5143–5151 (2016).
[Crossref]

Reich, S.

N. S. Mueller, S. Juergensen, K. Höflich, S. Reich, and P. Kusch, “Excitation-tunable tip-enhanced Raman spectroscopy,” J. Phys. Chem. C 122(49), 28273–28279 (2018).
[Crossref]

Rigneault, H.

R. Regmi, J. Berthelot, P. M. Winkler, M. Mivelle, J. Proust, F. Bedu, I. Ozerov, T. Begou, J. Lumeau, H. Rigneault, M. F. García-Parajó, S. Bidault, J. Wenger, and N. Bonod, “All-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules,” Nano Lett. 16(8), 5143–5151 (2016).
[Crossref]

Roschuk, T.

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6(1), 7915 (2015).
[Crossref]

Samusev, A.

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15(3), 2137–2142 (2015).
[Crossref]

Samusev, A. K.

P. A. Dmitriev, D. G. Baranov, V. A. Milichko, S. V. Makarov, I. S. Mukhin, A. K. Samusev, A. E. Krasnok, P. A. Belov, and Y. S. Kivshar, “Resonant Raman scattering from silicon nanoparticles enhanced by magnetic response,” Nanoscale 8(18), 9721–9726 (2016).
[Crossref]

P. A. Dmitriev, S. V. Makarov, V. A. Milichko, I. S. Mukhin, A. S. Gudovskikh, A. A. Sitnikova, A. K. Samusev, A. E. Krasnok, and P. A. Belov, “Laser fabrication of crystalline silicon nanoresonators from an amorphous film for low-loss all-dielectric nanophotonics,” Nanoscale 8(9), 5043–5048 (2016).
[Crossref]

Schilling, J.

I. Staude and J. Schilling, “Metamaterial-inspired silicon nanophotonics,” Nat. Photonics 11(5), 274–284 (2017).
[Crossref]

Schuller, J. A.

L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8(8), 643–647 (2009).
[Crossref]

Shah, N. C.

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem. 1(1), 601–626 (2008).
[Crossref]

Shcherbakov, M. R.

A. Y. Frolov, N. Verellen, J. Li, X. Zheng, H. Paddubrouskaya, D. Denkova, M. R. Shcherbakov, G. A. E. Vandenbosch, V. I. Panov, P. van Dorpe, A. A. Fedyanin, and V. V. Moshchalkov, “Near-field mapping of optical Fabry-Perot modes in all-dielectric nanoantennas,” Nano Lett. 17(12), 7629–7637 (2017).
[Crossref]

Sitnikova, A. A.

P. A. Dmitriev, S. V. Makarov, V. A. Milichko, I. S. Mukhin, A. S. Gudovskikh, A. A. Sitnikova, A. K. Samusev, A. E. Krasnok, and P. A. Belov, “Laser fabrication of crystalline silicon nanoresonators from an amorphous film for low-loss all-dielectric nanophotonics,” Nanoscale 8(9), 5043–5048 (2016).
[Crossref]

Staude, I.

A. Vaskin, J. Bohn, K. E. Chong, T. Bucher, M. Zilk, D.-Y. Choi, D. N. Neshev, Y. S. Kivshar, T. Pertsch, and I. Staude, “Directional and spectral shaping of light emission with Mie-resonant silicon nanoantenna arrays,” ACS Photonics 5(4), 1359–1364 (2018).
[Crossref]

I. Staude and J. Schilling, “Metamaterial-inspired silicon nanophotonics,” Nat. Photonics 11(5), 274–284 (2017).
[Crossref]

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
[Crossref]

Stiles, P. L.

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem. 1(1), 601–626 (2008).
[Crossref]

Suh, J. S.

M. Moskovits and J. S. Suh, “Surface selection rules for surface-enhanced Raman spectroscopy: Calculations and application to the surface-enhanced Raman Spectrum of Phthalazine on Silver,” J. Phys. Chem. 88(23), 5526–5530 (1984).
[Crossref]

Syubaev, S.

M. Aouassa, E. Mitsai, S. Syubaev, D. Pavlov, A. Zhizhchenko, I. Jadli, L. Hassayoun, G. Zograf, S. Makarov, and A. Kuchmizhak, “Temperature-feedback direct laser reshaping of silicon nanostructures,” Appl. Phys. Lett. 111(24), 243103 (2017).
[Crossref]

Tseng, Y.-C.

Y.-C. Tseng, T.-Y. Lin, Y.-C. Lee, C.-K. Ku, C.-W. Chen, and H.-L. Chen, “Magnetic dipole resonance and coupling effects directly enhance the Raman signals of as-grown graphene on copper foil by over one hundredfold,” Chem. Mater. 30(5), 1472–1483 (2018).
[Crossref]

Tymchenko, M.

A. Krasnok, M. Tymchenko, and A. Alù, “Nonlinear metasurfaces: a paradigm shift in nonlinear optics,” Mater. Today 21(1), 8–21 (2018).
[Crossref]

van de Groep, J.

T. Coenen, J. van de Groep, and A. Polman, “Resonant modes of single silicon nanocavities excited by electron irradiation,” ACS Nano 7(2), 1689–1698 (2013).
[Crossref]

van Dorpe, P.

A. Y. Frolov, N. Verellen, J. Li, X. Zheng, H. Paddubrouskaya, D. Denkova, M. R. Shcherbakov, G. A. E. Vandenbosch, V. I. Panov, P. van Dorpe, A. A. Fedyanin, and V. V. Moshchalkov, “Near-field mapping of optical Fabry-Perot modes in all-dielectric nanoantennas,” Nano Lett. 17(12), 7629–7637 (2017).
[Crossref]

Van Duyne, R. P.

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem. 1(1), 601–626 (2008).
[Crossref]

Vandenbosch, G. A. E.

A. Y. Frolov, N. Verellen, J. Li, X. Zheng, H. Paddubrouskaya, D. Denkova, M. R. Shcherbakov, G. A. E. Vandenbosch, V. I. Panov, P. van Dorpe, A. A. Fedyanin, and V. V. Moshchalkov, “Near-field mapping of optical Fabry-Perot modes in all-dielectric nanoantennas,” Nano Lett. 17(12), 7629–7637 (2017).
[Crossref]

Vaskin, A.

A. Vaskin, J. Bohn, K. E. Chong, T. Bucher, M. Zilk, D.-Y. Choi, D. N. Neshev, Y. S. Kivshar, T. Pertsch, and I. Staude, “Directional and spectral shaping of light emission with Mie-resonant silicon nanoantenna arrays,” ACS Photonics 5(4), 1359–1364 (2018).
[Crossref]

Verellen, N.

A. Y. Frolov, N. Verellen, J. Li, X. Zheng, H. Paddubrouskaya, D. Denkova, M. R. Shcherbakov, G. A. E. Vandenbosch, V. I. Panov, P. van Dorpe, A. A. Fedyanin, and V. V. Moshchalkov, “Near-field mapping of optical Fabry-Perot modes in all-dielectric nanoantennas,” Nano Lett. 17(12), 7629–7637 (2017).
[Crossref]

Verre, R.

D. G. Baranov, R. Verre, P. Karpinski, and M. Käll, “Anapole-enhanced intrinsic Raman scattering from silicon nanodisks,” ACS Photonics 5(7), 2730–2736 (2018).
[Crossref]

Vinogradov, V. V.

V. A. Milichko, D. A. Zuev, D. G. Baranov, G. P. Zograf, K. Volodina, A. A. Krasilin, I. S. Mukhin, P. A. Dmitriev, V. V. Vinogradov, S. V. Makarov, and P. A. Belov, “Metal-dielectric nanocavity for real-time tracing molecular events with temperature feedback,” Laser Photonics Rev. 12(1), 1700227 (2018).
[Crossref]

Volodina, K.

V. A. Milichko, D. A. Zuev, D. G. Baranov, G. P. Zograf, K. Volodina, A. A. Krasilin, I. S. Mukhin, P. A. Dmitriev, V. V. Vinogradov, S. V. Makarov, and P. A. Belov, “Metal-dielectric nanocavity for real-time tracing molecular events with temperature feedback,” Laser Photonics Rev. 12(1), 1700227 (2018).
[Crossref]

Voutsas, A. T.

A. T. Voutsas, M. K. Hatalis, J. Boyce, and A. Chiang, “Raman spectroscopy of amorphous and microcrystalline silicon films deposited by low-pressure chemical vapor deposition,” J. Appl. Phys. 78(12), 6999–7006 (1995).
[Crossref]

Wang, C.

Z. Huang, J. Wang, Z. Liu, G. Xu, Y. Fan, H. Zhong, B. Cao, C. Wang, and K. Xu, “Strong-field-enhanced spectroscopy in silicon nanoparticle electric and magnetic dipole resonance near a metal surface,” J. Phys. Chem. C 119(50), 28127–28135 (2015).
[Crossref]

Wang, J.

Z. Huang, J. Wang, Z. Liu, G. Xu, Y. Fan, H. Zhong, B. Cao, C. Wang, and K. Xu, “Strong-field-enhanced spectroscopy in silicon nanoparticle electric and magnetic dipole resonance near a metal surface,” J. Phys. Chem. C 119(50), 28127–28135 (2015).
[Crossref]

Wang, Y.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Wenger, J.

R. Regmi, J. Berthelot, P. M. Winkler, M. Mivelle, J. Proust, F. Bedu, I. Ozerov, T. Begou, J. Lumeau, H. Rigneault, M. F. García-Parajó, S. Bidault, J. Wenger, and N. Bonod, “All-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules,” Nano Lett. 16(8), 5143–5151 (2016).
[Crossref]

White, J. S.

L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8(8), 643–647 (2009).
[Crossref]

Winkler, P. M.

R. Regmi, J. Berthelot, P. M. Winkler, M. Mivelle, J. Proust, F. Bedu, I. Ozerov, T. Begou, J. Lumeau, H. Rigneault, M. F. García-Parajó, S. Bidault, J. Wenger, and N. Bonod, “All-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules,” Nano Lett. 16(8), 5143–5151 (2016).
[Crossref]

Xu, G.

Z. Huang, J. Wang, Z. Liu, G. Xu, Y. Fan, H. Zhong, B. Cao, C. Wang, and K. Xu, “Strong-field-enhanced spectroscopy in silicon nanoparticle electric and magnetic dipole resonance near a metal surface,” J. Phys. Chem. C 119(50), 28127–28135 (2015).
[Crossref]

Xu, K.

Z. Huang, J. Wang, Z. Liu, G. Xu, Y. Fan, H. Zhong, B. Cao, C. Wang, and K. Xu, “Strong-field-enhanced spectroscopy in silicon nanoparticle electric and magnetic dipole resonance near a metal surface,” J. Phys. Chem. C 119(50), 28127–28135 (2015).
[Crossref]

Yang, J. K. W.

A. Kristensen, J. K. W. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2(1), 16088 (2017).
[Crossref]

Yu, Y. F.

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15(3), 2137–2142 (2015).
[Crossref]

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4(1), 1527 (2013).
[Crossref]

Zheng, X.

A. Y. Frolov, N. Verellen, J. Li, X. Zheng, H. Paddubrouskaya, D. Denkova, M. R. Shcherbakov, G. A. E. Vandenbosch, V. I. Panov, P. van Dorpe, A. A. Fedyanin, and V. V. Moshchalkov, “Near-field mapping of optical Fabry-Perot modes in all-dielectric nanoantennas,” Nano Lett. 17(12), 7629–7637 (2017).
[Crossref]

Zhizhchenko, A.

M. Aouassa, E. Mitsai, S. Syubaev, D. Pavlov, A. Zhizhchenko, I. Jadli, L. Hassayoun, G. Zograf, S. Makarov, and A. Kuchmizhak, “Temperature-feedback direct laser reshaping of silicon nanostructures,” Appl. Phys. Lett. 111(24), 243103 (2017).
[Crossref]

Zhong, H.

Z. Huang, J. Wang, Z. Liu, G. Xu, Y. Fan, H. Zhong, B. Cao, C. Wang, and K. Xu, “Strong-field-enhanced spectroscopy in silicon nanoparticle electric and magnetic dipole resonance near a metal surface,” J. Phys. Chem. C 119(50), 28127–28135 (2015).
[Crossref]

Zhu, A. Y.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref]

Zilk, M.

A. Vaskin, J. Bohn, K. E. Chong, T. Bucher, M. Zilk, D.-Y. Choi, D. N. Neshev, Y. S. Kivshar, T. Pertsch, and I. Staude, “Directional and spectral shaping of light emission with Mie-resonant silicon nanoantenna arrays,” ACS Photonics 5(4), 1359–1364 (2018).
[Crossref]

Zograf, G.

M. Aouassa, E. Mitsai, S. Syubaev, D. Pavlov, A. Zhizhchenko, I. Jadli, L. Hassayoun, G. Zograf, S. Makarov, and A. Kuchmizhak, “Temperature-feedback direct laser reshaping of silicon nanostructures,” Appl. Phys. Lett. 111(24), 243103 (2017).
[Crossref]

Zograf, G. P.

V. A. Milichko, D. A. Zuev, D. G. Baranov, G. P. Zograf, K. Volodina, A. A. Krasilin, I. S. Mukhin, P. A. Dmitriev, V. V. Vinogradov, S. V. Makarov, and P. A. Belov, “Metal-dielectric nanocavity for real-time tracing molecular events with temperature feedback,” Laser Photonics Rev. 12(1), 1700227 (2018).
[Crossref]

G. P. Zograf, M. I. Petrov, D. A. Zuev, P. A. Dmitriev, V. A. Milichko, S. V. Makarov, and P. A. Belov, “Resonant nonplasmonic nanoparticles for efficient temperature-feedback optical heating,” Nano Lett. 17(5), 2945–2952 (2017).
[Crossref]

Zuev, D. A.

V. A. Milichko, D. A. Zuev, D. G. Baranov, G. P. Zograf, K. Volodina, A. A. Krasilin, I. S. Mukhin, P. A. Dmitriev, V. V. Vinogradov, S. V. Makarov, and P. A. Belov, “Metal-dielectric nanocavity for real-time tracing molecular events with temperature feedback,” Laser Photonics Rev. 12(1), 1700227 (2018).
[Crossref]

G. P. Zograf, M. I. Petrov, D. A. Zuev, P. A. Dmitriev, V. A. Milichko, S. V. Makarov, and P. A. Belov, “Resonant nonplasmonic nanoparticles for efficient temperature-feedback optical heating,” Nano Lett. 17(5), 2945–2952 (2017).
[Crossref]

ACS Nano (1)

T. Coenen, J. van de Groep, and A. Polman, “Resonant modes of single silicon nanocavities excited by electron irradiation,” ACS Nano 7(2), 1689–1698 (2013).
[Crossref]

ACS Photonics (3)

A. Vaskin, J. Bohn, K. E. Chong, T. Bucher, M. Zilk, D.-Y. Choi, D. N. Neshev, Y. S. Kivshar, T. Pertsch, and I. Staude, “Directional and spectral shaping of light emission with Mie-resonant silicon nanoantenna arrays,” ACS Photonics 5(4), 1359–1364 (2018).
[Crossref]

D. G. Baranov, R. Verre, P. Karpinski, and M. Käll, “Anapole-enhanced intrinsic Raman scattering from silicon nanodisks,” ACS Photonics 5(7), 2730–2736 (2018).
[Crossref]

S. Kruk and Y. Kivshar, “Functional meta-optics and nanophotonics governed by Mie resonances,” ACS Photonics 4(11), 2638–2649 (2017).
[Crossref]

Adv. Opt. Mater. (2)

A. Krasnok, M. Caldarola, N. Bonod, and A. Alú, “Spectroscopy and biosensing with optically resonant dielectric nanostructures,” Adv. Opt. Mater. 6(5), 1701094 (2018).
[Crossref]

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
[Crossref]

Annu. Rev. Anal. Chem. (1)

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem. 1(1), 601–626 (2008).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

M. Aouassa, E. Mitsai, S. Syubaev, D. Pavlov, A. Zhizhchenko, I. Jadli, L. Hassayoun, G. Zograf, S. Makarov, and A. Kuchmizhak, “Temperature-feedback direct laser reshaping of silicon nanostructures,” Appl. Phys. Lett. 111(24), 243103 (2017).
[Crossref]

Chem. Mater. (1)

Y.-C. Tseng, T.-Y. Lin, Y.-C. Lee, C.-K. Ku, C.-W. Chen, and H.-L. Chen, “Magnetic dipole resonance and coupling effects directly enhance the Raman signals of as-grown graphene on copper foil by over one hundredfold,” Chem. Mater. 30(5), 1472–1483 (2018).
[Crossref]

Chem. Rev. (1)

I. Alessandri and J. R. Lombardi, “Enhanced Raman scattering with dielectrics,” Chem. Rev. 116(24), 14921–14981 (2016).
[Crossref]

J. Appl. Phys. (1)

A. T. Voutsas, M. K. Hatalis, J. Boyce, and A. Chiang, “Raman spectroscopy of amorphous and microcrystalline silicon films deposited by low-pressure chemical vapor deposition,” J. Appl. Phys. 78(12), 6999–7006 (1995).
[Crossref]

J. Phys. Chem. (1)

M. Moskovits and J. S. Suh, “Surface selection rules for surface-enhanced Raman spectroscopy: Calculations and application to the surface-enhanced Raman Spectrum of Phthalazine on Silver,” J. Phys. Chem. 88(23), 5526–5530 (1984).
[Crossref]

J. Phys. Chem. C (2)

N. S. Mueller, S. Juergensen, K. Höflich, S. Reich, and P. Kusch, “Excitation-tunable tip-enhanced Raman spectroscopy,” J. Phys. Chem. C 122(49), 28273–28279 (2018).
[Crossref]

Z. Huang, J. Wang, Z. Liu, G. Xu, Y. Fan, H. Zhong, B. Cao, C. Wang, and K. Xu, “Strong-field-enhanced spectroscopy in silicon nanoparticle electric and magnetic dipole resonance near a metal surface,” J. Phys. Chem. C 119(50), 28127–28135 (2015).
[Crossref]

Laser Photonics Rev. (1)

V. A. Milichko, D. A. Zuev, D. G. Baranov, G. P. Zograf, K. Volodina, A. A. Krasilin, I. S. Mukhin, P. A. Dmitriev, V. V. Vinogradov, S. V. Makarov, and P. A. Belov, “Metal-dielectric nanocavity for real-time tracing molecular events with temperature feedback,” Laser Photonics Rev. 12(1), 1700227 (2018).
[Crossref]

Mater. Today (1)

A. Krasnok, M. Tymchenko, and A. Alù, “Nonlinear metasurfaces: a paradigm shift in nonlinear optics,” Mater. Today 21(1), 8–21 (2018).
[Crossref]

Nano Lett. (4)

G. P. Zograf, M. I. Petrov, D. A. Zuev, P. A. Dmitriev, V. A. Milichko, S. V. Makarov, and P. A. Belov, “Resonant nonplasmonic nanoparticles for efficient temperature-feedback optical heating,” Nano Lett. 17(5), 2945–2952 (2017).
[Crossref]

R. Regmi, J. Berthelot, P. M. Winkler, M. Mivelle, J. Proust, F. Bedu, I. Ozerov, T. Begou, J. Lumeau, H. Rigneault, M. F. García-Parajó, S. Bidault, J. Wenger, and N. Bonod, “All-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules,” Nano Lett. 16(8), 5143–5151 (2016).
[Crossref]

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15(3), 2137–2142 (2015).
[Crossref]

A. Y. Frolov, N. Verellen, J. Li, X. Zheng, H. Paddubrouskaya, D. Denkova, M. R. Shcherbakov, G. A. E. Vandenbosch, V. I. Panov, P. van Dorpe, A. A. Fedyanin, and V. V. Moshchalkov, “Near-field mapping of optical Fabry-Perot modes in all-dielectric nanoantennas,” Nano Lett. 17(12), 7629–7637 (2017).
[Crossref]

Nanoscale (2)

P. A. Dmitriev, D. G. Baranov, V. A. Milichko, S. V. Makarov, I. S. Mukhin, A. K. Samusev, A. E. Krasnok, P. A. Belov, and Y. S. Kivshar, “Resonant Raman scattering from silicon nanoparticles enhanced by magnetic response,” Nanoscale 8(18), 9721–9726 (2016).
[Crossref]

P. A. Dmitriev, S. V. Makarov, V. A. Milichko, I. S. Mukhin, A. S. Gudovskikh, A. A. Sitnikova, A. K. Samusev, A. E. Krasnok, and P. A. Belov, “Laser fabrication of crystalline silicon nanoresonators from an amorphous film for low-loss all-dielectric nanophotonics,” Nanoscale 8(9), 5043–5048 (2016).
[Crossref]

Nat. Commun. (2)

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6(1), 7915 (2015).
[Crossref]

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4(1), 1527 (2013).
[Crossref]

Nat. Mater. (1)

L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8(8), 643–647 (2009).
[Crossref]

Nat. Nanotechnol. (3)

S. T. Ha, Y. H. Fu, N. K. Emani, Z. Pan, R. M. Bakker, R. Paniagua-Domínguez, and A. I. Kuznetsov, “Directional lasing in resonant semiconductor nanoantenna arrays,” Nat. Nanotechnol. 13(11), 1042–1047 (2018).
[Crossref]

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11(1), 23–36 (2016).
[Crossref]

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref]

Nat. Photonics (2)

I. Staude and J. Schilling, “Metamaterial-inspired silicon nanophotonics,” Nat. Photonics 11(5), 274–284 (2017).
[Crossref]

A. F. Cihan, A. G. Curto, S. Raza, P. G. Kik, and M. L. Brongersma, “Silicon Mie resonators for highly directional light emission from monolayer MoS2,” Nat. Photonics 12(5), 284–290 (2018).
[Crossref]

Nat. Rev. Mater. (1)

A. Kristensen, J. K. W. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2(1), 16088 (2017).
[Crossref]

Opt. Lett. (1)

Phys. Rev. (1)

J. H. Parker Jr, D. W. Feldman, and M. Askin, “Raman scattering by silicon and germanium,” Phys. Rev. 155(3), 712–714 (1967).
[Crossref]

Phys. Rev. B (1)

K. Frizyuk, M. Hasan, A. Krasnok, A. Alú, and M. Petrov, “Enhancement of Raman scattering in dielectric nanostructures with electric and magnetic Mie resonances,” Phys. Rev. B 97(8), 085414 (2018).
[Crossref]

Phys. Rev. Lett. (1)

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Science (3)

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref]

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).
[Crossref]

A. L. Holsteen, S. Raza, P. Fan, P. G. Kik, and M. L. Brongersma, “Purcell effect for active tuning of light scattering from semiconductor optical antennas,” Science 358(6369), 1407–1410 (2017).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Raman spectroscopy on silicon thin films. (a) A Fabry-Pérot resonator is formed by depositing a poly-crystalline silicon film of thickness t on a fused silica substrate. The microscope-based Raman experiment is performed with an excitation wavelength of 785 nm. (b) Enlarged view showing the electric-field intensity of the second-order Fabry-Pérot resonance inside the thin film. (c) Optical reflectance spectra measured on silicon films of different thicknesses. The reflectance minima, corresponding to the Fabry-Pérot resonance, have different offsets compared to the Raman excitation wavelength. (d) Raman spectra measured for different film thicknesses. The silicon Raman peak is observed at 518 cm−1 (corresponding to 818 nm emission wavelength) and the signal strength shows strong dependence on the film thickness. (e) Intensity of the silicon Raman peak plotted as function of wavelength of reflectance minimum and compared to the calculated Raman enhancement S. The Raman intensities of both the theoretical and experimental results are normalized to the off-resonant case (i.e., reflectance minimum of 635 nm).
Fig. 2.
Fig. 2. Raman spectroscopy on silicon nanodisk arrays. (a) Schematic of lithographically-defined polycrystalline silicon nanodisk arrays on a fused silica substrate. The nanodisks of diameter D (ranging from 90 nm to 200 nm) and height h = 200 nm form a square array of period p = 400 nm. (b) Scanning electron microscopy and (c) optical microscopy images of the nanodisk arrays. (d) Measured and simulated reflectance spectra of nanodisk arrays of three different diameters. Inset: Magnetic field intensity of the magnetic dipole resonance. (e) Calculated stored energy enhancement spectra for the same nanodisk geometries. (f) Intensity of the silicon Raman peak plotted as function of wavelength of the magnetic-dipole reflectance peak. The experimental results are compared to the simulated Raman enhancement S.
Fig. 3.
Fig. 3. Effect of thin silicon residual layer. (a) Schematic of the nanodisk unit cell with a silicon residual layer of thickness tres. (b, c) Reflectance and stored energy enhancement spectra for different residual layer thicknesses (D = 180 nm). The magnetic quadrupole resonance wavelength is strongly influenced by the residual layer and shifts to longer wavelengths for increasing layer thickness. Importantly, the magnetic dipole resonance wavelength and its stored energy enhancement is weakly influenced by the thin silicon layer. The stored energy peak at the shortest wavelengths is due to a Fano resonance, enabled by a coupling of the array and the localized resonance in the nanoparticle due to the thin residual layer.
Fig. 4.
Fig. 4. Tunable excitation Raman spectroscopy. (a) Measured reflectance spectrum and (b) simulated stored energy enhancement for a silicon thin film sample with thickness t = 205 nm, which supports a Fabry-Pérot resonance at 800 nm. (c) Measured Raman intensity of the silicon peak as a function of excitation wavelength (with step size of 5 nm). The dashed line is a guide to the eye. (d-f) Similar to (a-c) but for a nanodisk array of diameter D = 170 nm, which supports a magnetic-dipole Mie resonance at a wavelength of 780 nm.
Fig. 5.
Fig. 5. Raman spectroscopy for quality control. (a) Measured reflectance and (b) Raman spectra of partially etched silicon nanodisk arrays with different nominal diameters D. The reflectance spectra show two peaks, which is characteristic for Mie-type optical response. Inset: Schematic of partially etched silicon nanodisks. (c) Intensity of the silicon Raman peak (at 518 cm−1) plotted as function of the nominal nanodisk diameter. The Raman intensities are normalized to the minimum Raman intensity measured (i.e., nominal diameter of 120 nm). The Raman excitation wavelength is 785 nm. The dashed line is a spline fit as a guide to the eye. (d) Top: Atomic-force microscopy image of the partially etched silicon nanodisk array. Bottom: Linescan of AFM image which shows that the height of the nanodisks are only around 50 nm, instead of the designed 200 nm (i.e., fully etched nanodisks).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

S W ( λ e x c ) W ( λ e m i )
E ( z ) = E 0 t air 1 + r air r sub e i 2 k t [ e i k z + r sub e i 2 k t e i k z ] x ^ ,
W ( λ ) = n 2 0 t | E ( z ) | 2 d z E 0 2 t = n 2 | t air | 2 | 1 + r air r sub e i 2 k t | 2 [ 1 + | r sub | 2 + 2 | r sub | sinc ( 2 k t ) ]

Metrics