Abstract

We describe a cavity-enhanced spontaneous parametric down-conversion (CE-SPDC) source for narrowband photon pairs with filters designed such that 97.7% of the correlated photons are in a single mode of 4.3(4) MHz bandwidth. Type-II phase matching, a tuneable-birefringence resonator, MHz-resolution pump tuning, and tuneable Fabry-Perot filters are used to achieve independent signal and idler tuning. We map the CE-SPDC spectrum using difference frequency generation to precisely locate the emission clusters, demonstrate CE-SPDC driven atomic spectroscopy, and measure a contribution from unwanted modes of 7.7%. The generated photon pairs efficiently interact with neutral rubidium, a well-developed system for quantum networking and quantum simulation. The techniques are readily extensible to other material systems.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Interfacing transitions of different alkali atoms and telecom bands using one narrowband photon pair source

Gerhard Schunk, Ulrich Vogl, Dmitry V. Strekalov, Michael Förtsch, Florian Sedlmeir, Harald G. L. Schwefel, Manuela Göbelt, Silke Christiansen, Gerd Leuchs, and Christoph Marquardt
Optica 2(9) 773-778 (2015)

Interferometric quantum spectroscopy with undetected photons via distinguishability modulation

Sun Kyung Lee, Tai Hyun Yoon, and Minhaeng Cho
Opt. Express 27(10) 14853-14870 (2019)

Direct excitation of a single quantum dot with cavity-SPDC photons

Uttam Paudel, Jia Jun Wong, Michael Goggin, Paul G. Kwiat, Allan S. Bracker, Michael Yakes, Daniel Gammon, and Duncan G. Steel
Opt. Express 27(11) 16308-16319 (2019)

References

  • View by:
  • |
  • |
  • |

  1. A. Predojević and M. W. Mitchell, Engineering the Atom-Photon Interaction: Controlling Fundamental Processes with Photons, Atoms and Solids, Nano-Optics and Nanophotonics (Springer International Publishing, 2015).
  2. N. Schlosser, G. Reymond, I. Protsenko, and P. Grangier, “Sub-poissonian loading of single atoms in a microscopic dipole trap,” Nature 411(6841), 1024–1027 (2001).
    [Crossref]
  3. M. Sondermann and G. Leuchs, “Light–matter interaction in free space,” J. Mod. Opt. 60(1), 36–42 (2013).
    [Crossref]
  4. G. Wrigge, I. Gerhardt, J. Hwang, G. Zumofen, and V. Sandoghdar, “Efficient coupling of photons to a single molecule and the observation of its resonance fluorescence,” Nat. Phys. 4(1), 60–66 (2008).
    [Crossref]
  5. B. M. Sparkes, J. Bernu, M. Hosseini, J. Geng, Q. Glorieux, P. A. Altin, P. K. Lam, N. P. Robins, and B. C. Buchler, “Gradient echo memory in an ultra-high optical depth cold atomic ensemble,” New J. Phys. 15(8), 085027 (2013).
    [Crossref]
  6. C. Clausen, N. Sangouard, and M. Drewsen, “Analysis of a photon number resolving detector based on fluorescence readout of an ion coulomb crystal quantum memory inside an optical cavity,” New J. Phys. 15(2), 025021 (2013).
    [Crossref]
  7. H. de Riedmatten, M. Afzelius, M. U. Staudt, C. Simon, and N. Gisin, “A solid-state light–matter interface at the single-photon level,” Nature 456(7223), 773–777 (2008).
    [Crossref]
  8. M. K. Tey, G. Maslennikov, T. C. H. Liew, S. A. Aljunid, F. Huber, B. Chng, Z. Chen, V. Scarani, and C. Kurtsiefer, “Interfacing light and single atoms with a lens,” New J. Phys. 11(4), 043011 (2009).
    [Crossref]
  9. M. Hennrich, A. Kuhn, and G. Rempe, “Transition from antibunching to bunching in cavity qed,” Phys. Rev. Lett. 94(5), 053604 (2005).
    [Crossref]
  10. Z. Y. Ou and Y. J. Lu, “Cavity enhanced spontaneous parametric down-conversion for the prolongation of correlation time between conjugate photons,” Phys. Rev. Lett. 83(13), 2556–2559 (1999).
    [Crossref]
  11. E. M. Purcell, “Proceedings of the american physical society,” Phys. Rev. 69, 681 (1946).
  12. M. Oberparleiter and H. Weinfurter, “Cavity-enhanced generation of polarization-entangled photon pairs,” Opt. Commun. 183(1-4), 133–137 (2000).
    [Crossref]
  13. M. Scholz, F. Wolfgramm, U. Herzog, and O. Benson, “Narrow-band single photons from a single-resonant optical parametric oscillator far below threshold,” Appl. Phys. Lett. 91(19), 191104 (2007).
    [Crossref]
  14. F. Wolfgramm, X. Xing, A. Cerè, A. Predojević, A. M. Steinberg, and M. W. Mitchell, “Bright filter-free source of indistinguishable photon pairs,” Opt. Express 16(22), 18145–18151 (2008).
    [Crossref]
  15. X.-H. Bao, Y. Qian, J. Yang, H. Zhang, Z.-B. Chen, T. Yang, and J.-W. Pan, “Generation of narrow-band polarization-entangled photon pairs for atomic quantum memories,” Phys. Rev. Lett. 101(19), 190501 (2008).
    [Crossref]
  16. F.-Y. Wang, B.-S. Shi, and G.-C. Guo, “Generation of narrow-band photon pairs for quantum memory,” Opt. Commun. 283(14), 2974–2977 (2010).
    [Crossref]
  17. M. Rambach, A. Nikolova, T. J. Weinhold, and A. G. White, “Sub-megahertz linewidth single photon source,” APL Photonics 1(9), 096101 (2016).
    [Crossref]
  18. A. Ahlrichs and O. Benson, “Bright source of indistinguishable photons based on cavity-enhanced parametric down-conversion utilizing the cluster effect,” Appl. Phys. Lett. 108(2), 021111 (2016).
    [Crossref]
  19. A. Haase, N. Piro, J. Eschner, and M. W. Mitchell, “Tunable narrowband entangled photon pair source for resonant single-photon single-atom interaction,” Opt. Lett. 34(1), 55–57 (2009).
    [Crossref]
  20. C. Schuck, F. Rohde, N. Piro, M. Almendros, J. Huwer, M. W. Mitchell, M. Hennrich, A. Haase, F. Dubin, and J. Eschner, “Resonant interaction of a single atom with single photons from a down-conversion source,” Phys. Rev. A 81(1), 011802 (2010).
    [Crossref]
  21. N. Piro, F. Rohde, C. Schuck, M. Almendros, J. Huwer, J. Ghosh, A. Haase, M. Hennrich, F. Dubin, and J. Eschner, “Heralded single-photon absorption by a single atom,” Nat. Phys. 7(1), 17–20 (2011).
    [Crossref]
  22. C. Clausen, I. Usmani, F. Bussières, N. Sangouard, M. Afzelius, H. de Riedmatten, and N. Gisin, “Quantum storage of photonic entanglement in a crystal,” Nature 469(7331), 508–511 (2011).
    [Crossref]
  23. H. Zhang, X.-M. Jin, J. Yang, H.-N. Dai, S.-J. Yang, T.-M. Zhao, J. Rui, Y. He, X. Jiang, F. Yang, G.-S. Pan, Z.-S. Yuan, Y. Deng, Z.-B. Chen, X.-H. Bao, S. Chen, B. Zhao, and J.-W. Pan, “Preparation and storage of frequency-uncorrelated entangled photons from cavity-enhanced spontaneous parametric downconversion,” Nat. Photonics 5(10), 628–632 (2011).
    [Crossref]
  24. D. Rieländer, K. Kutluer, P. M. Ledingham, M. Gündoğan, J. Fekete, M. Mazzera, and H. de Riedmatten, “Quantum storage of heralded single photons in a praseodymium-doped crystal,” Phys. Rev. Lett. 112(4), 040504 (2014).
    [Crossref]
  25. A. Lenhard, M. Bock, C. Becher, S. Kucera, J. Brito, P. Eich, P. Müller, and J. Eschner, “Telecom-heralded single-photon absorption by a single atom,” Phys. Rev. A 92(6), 063827 (2015).
    [Crossref]
  26. G. Schunk, U. Vogl, D. V. Strekalov, M. Förtsch, F. Sedlmeir, H. G. L. Schwefel, M. Göbelt, S. Christiansen, G. Leuchs, and C. Marquardt, “Interfacing transitions of different alkali atoms and telecom bands using one narrowband photon pair source,” Optica 2(9), 773–778 (2015).
    [Crossref]
  27. U. Paudel, J. J. Wong, M. Goggin, P. G. Kwiat, A. S. Bracker, M. Yakes, D. Gammon, and D. G. Steel, “Direct excitation of a single quantum dot with cavity-spdc photons,” Opt. Express 27(11), 16308–16319 (2019).
    [Crossref]
  28. P.-J. Tsai, Y.-F. Hsiao, and Y.-C. Chen, “Quantum storage and manipulation of heralded single photons in atomic quantum memories,” arXiv preprint arXiv:1907.05555 (2019).
  29. F. Wolfgramm, C. Vitelli, F. A. Beduini, N. Godbout, and M. W. Mitchell, “Entanglement-enhanced probing of a delicate material system,” Nat. Photonics 7(1), 28–32 (2013).
    [Crossref]
  30. J. Fekete, D. Rieländer, M. Cristiani, and H. de Riedmatten, “Ultranarrow-band photon-pair source compatible with solid state quantum memories and telecommunication networks,” Phys. Rev. Lett. 110(22), 220502 (2013).
    [Crossref]
  31. A. Seri, A. Lenhard, D. Rieländer, M. Gündoğan, P. M. Ledingham, M. Mazzera, and H. de Riedmatten, “Quantum correlations between single telecom photons and a multimode on-demand solid-state quantum memory,” Phys. Rev. X 7(2), 021028 (2017).
    [Crossref]
  32. E. Pomarico, B. Sanguinetti, C. I. Osorio, H. Herrmann, and R. T. Thew, “Engineering integrated pure narrow-band photon sources,” New J. Phys. 14(3), 033008 (2012).
    [Crossref]
  33. C.-S. Chuu, G. Y. Yin, and S. E. Harris, “A miniature ultrabright source of temporally long, narrowband biphotons,” Appl. Phys. Lett. 101(5), 051108 (2012).
    [Crossref]
  34. K.-H. Luo, H. Herrmann, S. Krapick, B. Brecht, R. Ricken, V. Quiring, H. Suche, W. Sohler, and C. Silberhorn, “Direct generation of genuine single-longitudinal-mode narrowband photon pairs,” New J. Phys. 17(7), 073039 (2015).
    [Crossref]
  35. P.-J. Tsai and Y.-C. Chen, “Ultrabright, narrow-band photon-pair source for atomic quantum memories,” Quantum Sci. Technol. 3(3), 034005 (2018).
    [Crossref]
  36. A. Moqanaki, F. Massa, and P. Walther, “Novel single-mode narrow-band photon source of high brightness tuned to cesium d2 line,” APL Photonics 4(9), 090804 (2019).
    [Crossref]
  37. A. M. Kaufman, B. J. Lester, C. M. Reynolds, M. L. Wall, M. Foss-Feig, K. R. A. Hazzard, A. M. Rey, and C. A. Regal, “Two-particle quantum interference in tunnel-coupled optical tweezers,” Science 345(6194), 306–309 (2014).
    [Crossref]
  38. H. Labuhn, D. Barredo, S. Ravets, S. de Léséleuc, T. Macrì, T. Lahaye, and A. Browaeys, “Tunable two-dimensional arrays of single rydberg atoms for realizing quantum ising models,” Nature 534(7609), 667–670 (2016).
    [Crossref]
  39. S. Jennewein, M. Besbes, N. J. Schilder, S. D. Jenkins, C. Sauvan, J. Ruostekoski, J.-J. Greffet, Y. R. P. Sortais, and A. Browaeys, “Coherent scattering of near-resonant light by a dense microscopic cold atomic cloud,” Phys. Rev. Lett. 116(23), 233601 (2016).
    [Crossref]
  40. Y.-S. Chin, M. Steiner, and C. Kurtsiefer, “Nonlinear photon-atom coupling with 4pi microscopy,” Nat. Commun. 8(1), 1200 (2017).
    [Crossref]
  41. N. Bruno, L. C. Bianchet, V. Prakash, N. Li, N. Alves, and M. W. Mitchell, “Maltese cross coupling to individual cold atoms in free space,” Opt. Express 27(21), 31042–31052 (2019).
    [Crossref]
  42. S. E. Harris and Y. Yamamoto, “Photon switching by quantum interference,” Phys. Rev. Lett. 81(17), 3611–3614 (1998).
    [Crossref]
  43. S. E. Harris and L. V. Hau, “Nonlinear optics at low light levels,” Phys. Rev. Lett. 82(23), 4611–4614 (1999).
    [Crossref]
  44. D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3(11), 807–812 (2007).
    [Crossref]
  45. J. Hwang, M. Pototschnig, R. Lettow, G. Zumofen, A. Renn, S. Götzinger, and V. Sandoghdar, “A single-molecule optical transistor,” Nature 460(7251), 76–80 (2009).
    [Crossref]
  46. P. Kolchin, R. F. Oulton, and X. Zhang, “Nonlinear quantum optics in a waveguide: Distinct single photons strongly interacting at the single atom level,” Phys. Rev. Lett. 106(11), 113601 (2011).
    [Crossref]
  47. T. Peyronel, O. Firstenberg, Q.-Y. Liang, S. Hofferberth, A. V. Gorshkov, T. Pohl, M. D. Lukin, and V. Vuletić, “Quantum nonlinear optics with single photons enabled by strongly interacting atoms,” Nature 488(7409), 57–60 (2012).
    [Crossref]
  48. J. Perczel, J. Borregaard, D. E. Chang, H. Pichler, S. F. Yelin, P. Zoller, and M. D. Lukin, “Topological quantum optics in two-dimensional atomic arrays,” Phys. Rev. Lett. 119(2), 023603 (2017).
    [Crossref]
  49. M. W. Mitchell, C. I. Hancox, and R. Y. Chiao, “Dynamics of atom-mediated photon-photon scattering,” Phys. Rev. A 62(4), 043819 (2000).
    [Crossref]
  50. W. Chen, K. M. Beck, R. Bücker, M. Gullans, M. D. Lukin, H. Tanji-Suzuki, and V. Vuletić, “All-optical switch and transistor gated by one stored photon,” Science 341(6147), 768–770 (2013).
    [Crossref]
  51. J. Volz, M. Scheucher, C. Junge, and A. Rauschenbeutel, “Nonlinear phase shift for single fibre-guided photons interacting with a single resonator-enhanced atom,” Nat. Photonics 8(12), 965–970 (2014).
    [Crossref]
  52. F. Wolfgramm, “Atomic quantum metrology with narrowband entangled and squeezed states of light,” PhD dissertation, UPC - Universitat Politecnica de Catalunya (2012).
  53. M. Scholz, L. Koch, and O. Benson, “Analytical treatment of spectral properties and signal − idler intensity correlations for a double-resonant optical parametric oscillator far below threshold,” Opt. Commun. 282(17), 3518–3523 (2009).
    [Crossref]
  54. C. K. Hong and L. Mandel, “Theory of parametric frequency down conversion of light,” Phys. Rev. A 31(4), 2409–2418 (1985).
    [Crossref]
  55. W. P. Grice and I. A. Walmsley, “Spectral information and distinguishability in type-II down-conversion with a broadband pump,” Phys. Rev. A 56(2), 1627–1634 (1997).
    [Crossref]
  56. Y. Jeronimo-Moreno, S. Rodriguez-Benavides, and A. B. U’ Ren, “Theory of cavity-enhanced spontaneous parametric downconversion,” Laser Phys. 20(5), 1221–1233 (2010).
    [Crossref]
  57. K. Kato and E. Takaoka, “Sellmeier and thermo-optic dispersion formulas for KTP,” Appl. Opt. 41(24), 5040–5044 (2002).
    [Crossref]
  58. R. C. Eckardt, C. D. Nabors, W. J. Kozlovsky, and R. L. Byer, “Optical parametric oscillator frequency tuning and control,” J. Opt. Soc. Am. B 8(3), 646–667 (1991).
    [Crossref]
  59. A. Henderson, M. Padgett, F. Colville, J. Zhang, and M. Dunn, “Doubly-resonant optical parametric oscillators: tuning behaviour and stability requirements,” Opt. Commun. 119(1-2), 256–264 (1995).
    [Crossref]
  60. A. Eckstein, G. Boucher, A. Lemaître, P. Filloux, I. Favero, G. Leo, J. E. Sipe, M. Liscidini, and S. Ducci, “High-resolution spectral characterization of two photon states via classical measurements,” Laser & Photonics Rev. 8(5), L76–L80 (2014).
    [Crossref]
  61. P. Palittapongarnpim, A. MacRae, and A. Lvovsky, “Note: A monolithic filter cavity for experiments in quantum optics,” Rev. Sci. Instrum. 83(6), 066101 (2012).
    [Crossref]
  62. A. Ahlrichs, C. Berkemeier, B. Sprenger, and O. Benson, “A monolithic polarization-independent frequency-filter system for filtering of photon pairs,” Appl. Phys. Lett. 103(24), 241110 (2013).
    [Crossref]
  63. U. Herzog, M. Scholz, and O. Benson, “Theory of biphoton generation in a single-resonant optical parametric oscillator far below threshold,” Phys. Rev. A 77(2), 023826 (2008).
    [Crossref]
  64. F. Wolfgramm, Y. A. de Icaza Astiz, F. A. Beduini, A. Cere, and M. W. Mitchell, “Atom-resonant heralded single photons by interaction-free measurement,” Phys. Rev. Lett. 106(5), 053602 (2011).
    [Crossref]
  65. A. Roulet, H. N. Le, and V. Scarani, “Two photons on an atomic beam splitter: Nonlinear scattering and induced correlations,” Phys. Rev. A 93(3), 033838 (2016).
    [Crossref]
  66. P. Kochan and H. J. Carmichael, “Photon-statistics dependence of single-atom absorption,” Phys. Rev. A 50(2), 1700–1709 (1994).
    [Crossref]

2019 (3)

2018 (1)

P.-J. Tsai and Y.-C. Chen, “Ultrabright, narrow-band photon-pair source for atomic quantum memories,” Quantum Sci. Technol. 3(3), 034005 (2018).
[Crossref]

2017 (3)

A. Seri, A. Lenhard, D. Rieländer, M. Gündoğan, P. M. Ledingham, M. Mazzera, and H. de Riedmatten, “Quantum correlations between single telecom photons and a multimode on-demand solid-state quantum memory,” Phys. Rev. X 7(2), 021028 (2017).
[Crossref]

Y.-S. Chin, M. Steiner, and C. Kurtsiefer, “Nonlinear photon-atom coupling with 4pi microscopy,” Nat. Commun. 8(1), 1200 (2017).
[Crossref]

J. Perczel, J. Borregaard, D. E. Chang, H. Pichler, S. F. Yelin, P. Zoller, and M. D. Lukin, “Topological quantum optics in two-dimensional atomic arrays,” Phys. Rev. Lett. 119(2), 023603 (2017).
[Crossref]

2016 (5)

A. Roulet, H. N. Le, and V. Scarani, “Two photons on an atomic beam splitter: Nonlinear scattering and induced correlations,” Phys. Rev. A 93(3), 033838 (2016).
[Crossref]

H. Labuhn, D. Barredo, S. Ravets, S. de Léséleuc, T. Macrì, T. Lahaye, and A. Browaeys, “Tunable two-dimensional arrays of single rydberg atoms for realizing quantum ising models,” Nature 534(7609), 667–670 (2016).
[Crossref]

S. Jennewein, M. Besbes, N. J. Schilder, S. D. Jenkins, C. Sauvan, J. Ruostekoski, J.-J. Greffet, Y. R. P. Sortais, and A. Browaeys, “Coherent scattering of near-resonant light by a dense microscopic cold atomic cloud,” Phys. Rev. Lett. 116(23), 233601 (2016).
[Crossref]

M. Rambach, A. Nikolova, T. J. Weinhold, and A. G. White, “Sub-megahertz linewidth single photon source,” APL Photonics 1(9), 096101 (2016).
[Crossref]

A. Ahlrichs and O. Benson, “Bright source of indistinguishable photons based on cavity-enhanced parametric down-conversion utilizing the cluster effect,” Appl. Phys. Lett. 108(2), 021111 (2016).
[Crossref]

2015 (3)

K.-H. Luo, H. Herrmann, S. Krapick, B. Brecht, R. Ricken, V. Quiring, H. Suche, W. Sohler, and C. Silberhorn, “Direct generation of genuine single-longitudinal-mode narrowband photon pairs,” New J. Phys. 17(7), 073039 (2015).
[Crossref]

A. Lenhard, M. Bock, C. Becher, S. Kucera, J. Brito, P. Eich, P. Müller, and J. Eschner, “Telecom-heralded single-photon absorption by a single atom,” Phys. Rev. A 92(6), 063827 (2015).
[Crossref]

G. Schunk, U. Vogl, D. V. Strekalov, M. Förtsch, F. Sedlmeir, H. G. L. Schwefel, M. Göbelt, S. Christiansen, G. Leuchs, and C. Marquardt, “Interfacing transitions of different alkali atoms and telecom bands using one narrowband photon pair source,” Optica 2(9), 773–778 (2015).
[Crossref]

2014 (4)

D. Rieländer, K. Kutluer, P. M. Ledingham, M. Gündoğan, J. Fekete, M. Mazzera, and H. de Riedmatten, “Quantum storage of heralded single photons in a praseodymium-doped crystal,” Phys. Rev. Lett. 112(4), 040504 (2014).
[Crossref]

A. M. Kaufman, B. J. Lester, C. M. Reynolds, M. L. Wall, M. Foss-Feig, K. R. A. Hazzard, A. M. Rey, and C. A. Regal, “Two-particle quantum interference in tunnel-coupled optical tweezers,” Science 345(6194), 306–309 (2014).
[Crossref]

A. Eckstein, G. Boucher, A. Lemaître, P. Filloux, I. Favero, G. Leo, J. E. Sipe, M. Liscidini, and S. Ducci, “High-resolution spectral characterization of two photon states via classical measurements,” Laser & Photonics Rev. 8(5), L76–L80 (2014).
[Crossref]

J. Volz, M. Scheucher, C. Junge, and A. Rauschenbeutel, “Nonlinear phase shift for single fibre-guided photons interacting with a single resonator-enhanced atom,” Nat. Photonics 8(12), 965–970 (2014).
[Crossref]

2013 (7)

W. Chen, K. M. Beck, R. Bücker, M. Gullans, M. D. Lukin, H. Tanji-Suzuki, and V. Vuletić, “All-optical switch and transistor gated by one stored photon,” Science 341(6147), 768–770 (2013).
[Crossref]

A. Ahlrichs, C. Berkemeier, B. Sprenger, and O. Benson, “A monolithic polarization-independent frequency-filter system for filtering of photon pairs,” Appl. Phys. Lett. 103(24), 241110 (2013).
[Crossref]

F. Wolfgramm, C. Vitelli, F. A. Beduini, N. Godbout, and M. W. Mitchell, “Entanglement-enhanced probing of a delicate material system,” Nat. Photonics 7(1), 28–32 (2013).
[Crossref]

J. Fekete, D. Rieländer, M. Cristiani, and H. de Riedmatten, “Ultranarrow-band photon-pair source compatible with solid state quantum memories and telecommunication networks,” Phys. Rev. Lett. 110(22), 220502 (2013).
[Crossref]

M. Sondermann and G. Leuchs, “Light–matter interaction in free space,” J. Mod. Opt. 60(1), 36–42 (2013).
[Crossref]

B. M. Sparkes, J. Bernu, M. Hosseini, J. Geng, Q. Glorieux, P. A. Altin, P. K. Lam, N. P. Robins, and B. C. Buchler, “Gradient echo memory in an ultra-high optical depth cold atomic ensemble,” New J. Phys. 15(8), 085027 (2013).
[Crossref]

C. Clausen, N. Sangouard, and M. Drewsen, “Analysis of a photon number resolving detector based on fluorescence readout of an ion coulomb crystal quantum memory inside an optical cavity,” New J. Phys. 15(2), 025021 (2013).
[Crossref]

2012 (4)

E. Pomarico, B. Sanguinetti, C. I. Osorio, H. Herrmann, and R. T. Thew, “Engineering integrated pure narrow-band photon sources,” New J. Phys. 14(3), 033008 (2012).
[Crossref]

C.-S. Chuu, G. Y. Yin, and S. E. Harris, “A miniature ultrabright source of temporally long, narrowband biphotons,” Appl. Phys. Lett. 101(5), 051108 (2012).
[Crossref]

P. Palittapongarnpim, A. MacRae, and A. Lvovsky, “Note: A monolithic filter cavity for experiments in quantum optics,” Rev. Sci. Instrum. 83(6), 066101 (2012).
[Crossref]

T. Peyronel, O. Firstenberg, Q.-Y. Liang, S. Hofferberth, A. V. Gorshkov, T. Pohl, M. D. Lukin, and V. Vuletić, “Quantum nonlinear optics with single photons enabled by strongly interacting atoms,” Nature 488(7409), 57–60 (2012).
[Crossref]

2011 (5)

P. Kolchin, R. F. Oulton, and X. Zhang, “Nonlinear quantum optics in a waveguide: Distinct single photons strongly interacting at the single atom level,” Phys. Rev. Lett. 106(11), 113601 (2011).
[Crossref]

F. Wolfgramm, Y. A. de Icaza Astiz, F. A. Beduini, A. Cere, and M. W. Mitchell, “Atom-resonant heralded single photons by interaction-free measurement,” Phys. Rev. Lett. 106(5), 053602 (2011).
[Crossref]

N. Piro, F. Rohde, C. Schuck, M. Almendros, J. Huwer, J. Ghosh, A. Haase, M. Hennrich, F. Dubin, and J. Eschner, “Heralded single-photon absorption by a single atom,” Nat. Phys. 7(1), 17–20 (2011).
[Crossref]

C. Clausen, I. Usmani, F. Bussières, N. Sangouard, M. Afzelius, H. de Riedmatten, and N. Gisin, “Quantum storage of photonic entanglement in a crystal,” Nature 469(7331), 508–511 (2011).
[Crossref]

H. Zhang, X.-M. Jin, J. Yang, H.-N. Dai, S.-J. Yang, T.-M. Zhao, J. Rui, Y. He, X. Jiang, F. Yang, G.-S. Pan, Z.-S. Yuan, Y. Deng, Z.-B. Chen, X.-H. Bao, S. Chen, B. Zhao, and J.-W. Pan, “Preparation and storage of frequency-uncorrelated entangled photons from cavity-enhanced spontaneous parametric downconversion,” Nat. Photonics 5(10), 628–632 (2011).
[Crossref]

2010 (3)

C. Schuck, F. Rohde, N. Piro, M. Almendros, J. Huwer, M. W. Mitchell, M. Hennrich, A. Haase, F. Dubin, and J. Eschner, “Resonant interaction of a single atom with single photons from a down-conversion source,” Phys. Rev. A 81(1), 011802 (2010).
[Crossref]

F.-Y. Wang, B.-S. Shi, and G.-C. Guo, “Generation of narrow-band photon pairs for quantum memory,” Opt. Commun. 283(14), 2974–2977 (2010).
[Crossref]

Y. Jeronimo-Moreno, S. Rodriguez-Benavides, and A. B. U’ Ren, “Theory of cavity-enhanced spontaneous parametric downconversion,” Laser Phys. 20(5), 1221–1233 (2010).
[Crossref]

2009 (4)

M. Scholz, L. Koch, and O. Benson, “Analytical treatment of spectral properties and signal − idler intensity correlations for a double-resonant optical parametric oscillator far below threshold,” Opt. Commun. 282(17), 3518–3523 (2009).
[Crossref]

J. Hwang, M. Pototschnig, R. Lettow, G. Zumofen, A. Renn, S. Götzinger, and V. Sandoghdar, “A single-molecule optical transistor,” Nature 460(7251), 76–80 (2009).
[Crossref]

A. Haase, N. Piro, J. Eschner, and M. W. Mitchell, “Tunable narrowband entangled photon pair source for resonant single-photon single-atom interaction,” Opt. Lett. 34(1), 55–57 (2009).
[Crossref]

M. K. Tey, G. Maslennikov, T. C. H. Liew, S. A. Aljunid, F. Huber, B. Chng, Z. Chen, V. Scarani, and C. Kurtsiefer, “Interfacing light and single atoms with a lens,” New J. Phys. 11(4), 043011 (2009).
[Crossref]

2008 (5)

H. de Riedmatten, M. Afzelius, M. U. Staudt, C. Simon, and N. Gisin, “A solid-state light–matter interface at the single-photon level,” Nature 456(7223), 773–777 (2008).
[Crossref]

G. Wrigge, I. Gerhardt, J. Hwang, G. Zumofen, and V. Sandoghdar, “Efficient coupling of photons to a single molecule and the observation of its resonance fluorescence,” Nat. Phys. 4(1), 60–66 (2008).
[Crossref]

F. Wolfgramm, X. Xing, A. Cerè, A. Predojević, A. M. Steinberg, and M. W. Mitchell, “Bright filter-free source of indistinguishable photon pairs,” Opt. Express 16(22), 18145–18151 (2008).
[Crossref]

X.-H. Bao, Y. Qian, J. Yang, H. Zhang, Z.-B. Chen, T. Yang, and J.-W. Pan, “Generation of narrow-band polarization-entangled photon pairs for atomic quantum memories,” Phys. Rev. Lett. 101(19), 190501 (2008).
[Crossref]

U. Herzog, M. Scholz, and O. Benson, “Theory of biphoton generation in a single-resonant optical parametric oscillator far below threshold,” Phys. Rev. A 77(2), 023826 (2008).
[Crossref]

2007 (2)

D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3(11), 807–812 (2007).
[Crossref]

M. Scholz, F. Wolfgramm, U. Herzog, and O. Benson, “Narrow-band single photons from a single-resonant optical parametric oscillator far below threshold,” Appl. Phys. Lett. 91(19), 191104 (2007).
[Crossref]

2005 (1)

M. Hennrich, A. Kuhn, and G. Rempe, “Transition from antibunching to bunching in cavity qed,” Phys. Rev. Lett. 94(5), 053604 (2005).
[Crossref]

2002 (1)

2001 (1)

N. Schlosser, G. Reymond, I. Protsenko, and P. Grangier, “Sub-poissonian loading of single atoms in a microscopic dipole trap,” Nature 411(6841), 1024–1027 (2001).
[Crossref]

2000 (2)

M. Oberparleiter and H. Weinfurter, “Cavity-enhanced generation of polarization-entangled photon pairs,” Opt. Commun. 183(1-4), 133–137 (2000).
[Crossref]

M. W. Mitchell, C. I. Hancox, and R. Y. Chiao, “Dynamics of atom-mediated photon-photon scattering,” Phys. Rev. A 62(4), 043819 (2000).
[Crossref]

1999 (2)

S. E. Harris and L. V. Hau, “Nonlinear optics at low light levels,” Phys. Rev. Lett. 82(23), 4611–4614 (1999).
[Crossref]

Z. Y. Ou and Y. J. Lu, “Cavity enhanced spontaneous parametric down-conversion for the prolongation of correlation time between conjugate photons,” Phys. Rev. Lett. 83(13), 2556–2559 (1999).
[Crossref]

1998 (1)

S. E. Harris and Y. Yamamoto, “Photon switching by quantum interference,” Phys. Rev. Lett. 81(17), 3611–3614 (1998).
[Crossref]

1997 (1)

W. P. Grice and I. A. Walmsley, “Spectral information and distinguishability in type-II down-conversion with a broadband pump,” Phys. Rev. A 56(2), 1627–1634 (1997).
[Crossref]

1995 (1)

A. Henderson, M. Padgett, F. Colville, J. Zhang, and M. Dunn, “Doubly-resonant optical parametric oscillators: tuning behaviour and stability requirements,” Opt. Commun. 119(1-2), 256–264 (1995).
[Crossref]

1994 (1)

P. Kochan and H. J. Carmichael, “Photon-statistics dependence of single-atom absorption,” Phys. Rev. A 50(2), 1700–1709 (1994).
[Crossref]

1991 (1)

1985 (1)

C. K. Hong and L. Mandel, “Theory of parametric frequency down conversion of light,” Phys. Rev. A 31(4), 2409–2418 (1985).
[Crossref]

1946 (1)

E. M. Purcell, “Proceedings of the american physical society,” Phys. Rev. 69, 681 (1946).

Afzelius, M.

C. Clausen, I. Usmani, F. Bussières, N. Sangouard, M. Afzelius, H. de Riedmatten, and N. Gisin, “Quantum storage of photonic entanglement in a crystal,” Nature 469(7331), 508–511 (2011).
[Crossref]

H. de Riedmatten, M. Afzelius, M. U. Staudt, C. Simon, and N. Gisin, “A solid-state light–matter interface at the single-photon level,” Nature 456(7223), 773–777 (2008).
[Crossref]

Ahlrichs, A.

A. Ahlrichs and O. Benson, “Bright source of indistinguishable photons based on cavity-enhanced parametric down-conversion utilizing the cluster effect,” Appl. Phys. Lett. 108(2), 021111 (2016).
[Crossref]

A. Ahlrichs, C. Berkemeier, B. Sprenger, and O. Benson, “A monolithic polarization-independent frequency-filter system for filtering of photon pairs,” Appl. Phys. Lett. 103(24), 241110 (2013).
[Crossref]

Aljunid, S. A.

M. K. Tey, G. Maslennikov, T. C. H. Liew, S. A. Aljunid, F. Huber, B. Chng, Z. Chen, V. Scarani, and C. Kurtsiefer, “Interfacing light and single atoms with a lens,” New J. Phys. 11(4), 043011 (2009).
[Crossref]

Almendros, M.

N. Piro, F. Rohde, C. Schuck, M. Almendros, J. Huwer, J. Ghosh, A. Haase, M. Hennrich, F. Dubin, and J. Eschner, “Heralded single-photon absorption by a single atom,” Nat. Phys. 7(1), 17–20 (2011).
[Crossref]

C. Schuck, F. Rohde, N. Piro, M. Almendros, J. Huwer, M. W. Mitchell, M. Hennrich, A. Haase, F. Dubin, and J. Eschner, “Resonant interaction of a single atom with single photons from a down-conversion source,” Phys. Rev. A 81(1), 011802 (2010).
[Crossref]

Altin, P. A.

B. M. Sparkes, J. Bernu, M. Hosseini, J. Geng, Q. Glorieux, P. A. Altin, P. K. Lam, N. P. Robins, and B. C. Buchler, “Gradient echo memory in an ultra-high optical depth cold atomic ensemble,” New J. Phys. 15(8), 085027 (2013).
[Crossref]

Alves, N.

Bao, X.-H.

H. Zhang, X.-M. Jin, J. Yang, H.-N. Dai, S.-J. Yang, T.-M. Zhao, J. Rui, Y. He, X. Jiang, F. Yang, G.-S. Pan, Z.-S. Yuan, Y. Deng, Z.-B. Chen, X.-H. Bao, S. Chen, B. Zhao, and J.-W. Pan, “Preparation and storage of frequency-uncorrelated entangled photons from cavity-enhanced spontaneous parametric downconversion,” Nat. Photonics 5(10), 628–632 (2011).
[Crossref]

X.-H. Bao, Y. Qian, J. Yang, H. Zhang, Z.-B. Chen, T. Yang, and J.-W. Pan, “Generation of narrow-band polarization-entangled photon pairs for atomic quantum memories,” Phys. Rev. Lett. 101(19), 190501 (2008).
[Crossref]

Barredo, D.

H. Labuhn, D. Barredo, S. Ravets, S. de Léséleuc, T. Macrì, T. Lahaye, and A. Browaeys, “Tunable two-dimensional arrays of single rydberg atoms for realizing quantum ising models,” Nature 534(7609), 667–670 (2016).
[Crossref]

Becher, C.

A. Lenhard, M. Bock, C. Becher, S. Kucera, J. Brito, P. Eich, P. Müller, and J. Eschner, “Telecom-heralded single-photon absorption by a single atom,” Phys. Rev. A 92(6), 063827 (2015).
[Crossref]

Beck, K. M.

W. Chen, K. M. Beck, R. Bücker, M. Gullans, M. D. Lukin, H. Tanji-Suzuki, and V. Vuletić, “All-optical switch and transistor gated by one stored photon,” Science 341(6147), 768–770 (2013).
[Crossref]

Beduini, F. A.

F. Wolfgramm, C. Vitelli, F. A. Beduini, N. Godbout, and M. W. Mitchell, “Entanglement-enhanced probing of a delicate material system,” Nat. Photonics 7(1), 28–32 (2013).
[Crossref]

F. Wolfgramm, Y. A. de Icaza Astiz, F. A. Beduini, A. Cere, and M. W. Mitchell, “Atom-resonant heralded single photons by interaction-free measurement,” Phys. Rev. Lett. 106(5), 053602 (2011).
[Crossref]

Benson, O.

A. Ahlrichs and O. Benson, “Bright source of indistinguishable photons based on cavity-enhanced parametric down-conversion utilizing the cluster effect,” Appl. Phys. Lett. 108(2), 021111 (2016).
[Crossref]

A. Ahlrichs, C. Berkemeier, B. Sprenger, and O. Benson, “A monolithic polarization-independent frequency-filter system for filtering of photon pairs,” Appl. Phys. Lett. 103(24), 241110 (2013).
[Crossref]

M. Scholz, L. Koch, and O. Benson, “Analytical treatment of spectral properties and signal − idler intensity correlations for a double-resonant optical parametric oscillator far below threshold,” Opt. Commun. 282(17), 3518–3523 (2009).
[Crossref]

U. Herzog, M. Scholz, and O. Benson, “Theory of biphoton generation in a single-resonant optical parametric oscillator far below threshold,” Phys. Rev. A 77(2), 023826 (2008).
[Crossref]

M. Scholz, F. Wolfgramm, U. Herzog, and O. Benson, “Narrow-band single photons from a single-resonant optical parametric oscillator far below threshold,” Appl. Phys. Lett. 91(19), 191104 (2007).
[Crossref]

Berkemeier, C.

A. Ahlrichs, C. Berkemeier, B. Sprenger, and O. Benson, “A monolithic polarization-independent frequency-filter system for filtering of photon pairs,” Appl. Phys. Lett. 103(24), 241110 (2013).
[Crossref]

Bernu, J.

B. M. Sparkes, J. Bernu, M. Hosseini, J. Geng, Q. Glorieux, P. A. Altin, P. K. Lam, N. P. Robins, and B. C. Buchler, “Gradient echo memory in an ultra-high optical depth cold atomic ensemble,” New J. Phys. 15(8), 085027 (2013).
[Crossref]

Besbes, M.

S. Jennewein, M. Besbes, N. J. Schilder, S. D. Jenkins, C. Sauvan, J. Ruostekoski, J.-J. Greffet, Y. R. P. Sortais, and A. Browaeys, “Coherent scattering of near-resonant light by a dense microscopic cold atomic cloud,” Phys. Rev. Lett. 116(23), 233601 (2016).
[Crossref]

Bianchet, L. C.

Bock, M.

A. Lenhard, M. Bock, C. Becher, S. Kucera, J. Brito, P. Eich, P. Müller, and J. Eschner, “Telecom-heralded single-photon absorption by a single atom,” Phys. Rev. A 92(6), 063827 (2015).
[Crossref]

Borregaard, J.

J. Perczel, J. Borregaard, D. E. Chang, H. Pichler, S. F. Yelin, P. Zoller, and M. D. Lukin, “Topological quantum optics in two-dimensional atomic arrays,” Phys. Rev. Lett. 119(2), 023603 (2017).
[Crossref]

Boucher, G.

A. Eckstein, G. Boucher, A. Lemaître, P. Filloux, I. Favero, G. Leo, J. E. Sipe, M. Liscidini, and S. Ducci, “High-resolution spectral characterization of two photon states via classical measurements,” Laser & Photonics Rev. 8(5), L76–L80 (2014).
[Crossref]

Bracker, A. S.

Brecht, B.

K.-H. Luo, H. Herrmann, S. Krapick, B. Brecht, R. Ricken, V. Quiring, H. Suche, W. Sohler, and C. Silberhorn, “Direct generation of genuine single-longitudinal-mode narrowband photon pairs,” New J. Phys. 17(7), 073039 (2015).
[Crossref]

Brito, J.

A. Lenhard, M. Bock, C. Becher, S. Kucera, J. Brito, P. Eich, P. Müller, and J. Eschner, “Telecom-heralded single-photon absorption by a single atom,” Phys. Rev. A 92(6), 063827 (2015).
[Crossref]

Browaeys, A.

H. Labuhn, D. Barredo, S. Ravets, S. de Léséleuc, T. Macrì, T. Lahaye, and A. Browaeys, “Tunable two-dimensional arrays of single rydberg atoms for realizing quantum ising models,” Nature 534(7609), 667–670 (2016).
[Crossref]

S. Jennewein, M. Besbes, N. J. Schilder, S. D. Jenkins, C. Sauvan, J. Ruostekoski, J.-J. Greffet, Y. R. P. Sortais, and A. Browaeys, “Coherent scattering of near-resonant light by a dense microscopic cold atomic cloud,” Phys. Rev. Lett. 116(23), 233601 (2016).
[Crossref]

Bruno, N.

Buchler, B. C.

B. M. Sparkes, J. Bernu, M. Hosseini, J. Geng, Q. Glorieux, P. A. Altin, P. K. Lam, N. P. Robins, and B. C. Buchler, “Gradient echo memory in an ultra-high optical depth cold atomic ensemble,” New J. Phys. 15(8), 085027 (2013).
[Crossref]

Bücker, R.

W. Chen, K. M. Beck, R. Bücker, M. Gullans, M. D. Lukin, H. Tanji-Suzuki, and V. Vuletić, “All-optical switch and transistor gated by one stored photon,” Science 341(6147), 768–770 (2013).
[Crossref]

Bussières, F.

C. Clausen, I. Usmani, F. Bussières, N. Sangouard, M. Afzelius, H. de Riedmatten, and N. Gisin, “Quantum storage of photonic entanglement in a crystal,” Nature 469(7331), 508–511 (2011).
[Crossref]

Byer, R. L.

Carmichael, H. J.

P. Kochan and H. J. Carmichael, “Photon-statistics dependence of single-atom absorption,” Phys. Rev. A 50(2), 1700–1709 (1994).
[Crossref]

Cere, A.

F. Wolfgramm, Y. A. de Icaza Astiz, F. A. Beduini, A. Cere, and M. W. Mitchell, “Atom-resonant heralded single photons by interaction-free measurement,” Phys. Rev. Lett. 106(5), 053602 (2011).
[Crossref]

Cerè, A.

Chang, D. E.

J. Perczel, J. Borregaard, D. E. Chang, H. Pichler, S. F. Yelin, P. Zoller, and M. D. Lukin, “Topological quantum optics in two-dimensional atomic arrays,” Phys. Rev. Lett. 119(2), 023603 (2017).
[Crossref]

D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3(11), 807–812 (2007).
[Crossref]

Chen, S.

H. Zhang, X.-M. Jin, J. Yang, H.-N. Dai, S.-J. Yang, T.-M. Zhao, J. Rui, Y. He, X. Jiang, F. Yang, G.-S. Pan, Z.-S. Yuan, Y. Deng, Z.-B. Chen, X.-H. Bao, S. Chen, B. Zhao, and J.-W. Pan, “Preparation and storage of frequency-uncorrelated entangled photons from cavity-enhanced spontaneous parametric downconversion,” Nat. Photonics 5(10), 628–632 (2011).
[Crossref]

Chen, W.

W. Chen, K. M. Beck, R. Bücker, M. Gullans, M. D. Lukin, H. Tanji-Suzuki, and V. Vuletić, “All-optical switch and transistor gated by one stored photon,” Science 341(6147), 768–770 (2013).
[Crossref]

Chen, Y.-C.

P.-J. Tsai and Y.-C. Chen, “Ultrabright, narrow-band photon-pair source for atomic quantum memories,” Quantum Sci. Technol. 3(3), 034005 (2018).
[Crossref]

P.-J. Tsai, Y.-F. Hsiao, and Y.-C. Chen, “Quantum storage and manipulation of heralded single photons in atomic quantum memories,” arXiv preprint arXiv:1907.05555 (2019).

Chen, Z.

M. K. Tey, G. Maslennikov, T. C. H. Liew, S. A. Aljunid, F. Huber, B. Chng, Z. Chen, V. Scarani, and C. Kurtsiefer, “Interfacing light and single atoms with a lens,” New J. Phys. 11(4), 043011 (2009).
[Crossref]

Chen, Z.-B.

H. Zhang, X.-M. Jin, J. Yang, H.-N. Dai, S.-J. Yang, T.-M. Zhao, J. Rui, Y. He, X. Jiang, F. Yang, G.-S. Pan, Z.-S. Yuan, Y. Deng, Z.-B. Chen, X.-H. Bao, S. Chen, B. Zhao, and J.-W. Pan, “Preparation and storage of frequency-uncorrelated entangled photons from cavity-enhanced spontaneous parametric downconversion,” Nat. Photonics 5(10), 628–632 (2011).
[Crossref]

X.-H. Bao, Y. Qian, J. Yang, H. Zhang, Z.-B. Chen, T. Yang, and J.-W. Pan, “Generation of narrow-band polarization-entangled photon pairs for atomic quantum memories,” Phys. Rev. Lett. 101(19), 190501 (2008).
[Crossref]

Chiao, R. Y.

M. W. Mitchell, C. I. Hancox, and R. Y. Chiao, “Dynamics of atom-mediated photon-photon scattering,” Phys. Rev. A 62(4), 043819 (2000).
[Crossref]

Chin, Y.-S.

Y.-S. Chin, M. Steiner, and C. Kurtsiefer, “Nonlinear photon-atom coupling with 4pi microscopy,” Nat. Commun. 8(1), 1200 (2017).
[Crossref]

Chng, B.

M. K. Tey, G. Maslennikov, T. C. H. Liew, S. A. Aljunid, F. Huber, B. Chng, Z. Chen, V. Scarani, and C. Kurtsiefer, “Interfacing light and single atoms with a lens,” New J. Phys. 11(4), 043011 (2009).
[Crossref]

Christiansen, S.

Chuu, C.-S.

C.-S. Chuu, G. Y. Yin, and S. E. Harris, “A miniature ultrabright source of temporally long, narrowband biphotons,” Appl. Phys. Lett. 101(5), 051108 (2012).
[Crossref]

Clausen, C.

C. Clausen, N. Sangouard, and M. Drewsen, “Analysis of a photon number resolving detector based on fluorescence readout of an ion coulomb crystal quantum memory inside an optical cavity,” New J. Phys. 15(2), 025021 (2013).
[Crossref]

C. Clausen, I. Usmani, F. Bussières, N. Sangouard, M. Afzelius, H. de Riedmatten, and N. Gisin, “Quantum storage of photonic entanglement in a crystal,” Nature 469(7331), 508–511 (2011).
[Crossref]

Colville, F.

A. Henderson, M. Padgett, F. Colville, J. Zhang, and M. Dunn, “Doubly-resonant optical parametric oscillators: tuning behaviour and stability requirements,” Opt. Commun. 119(1-2), 256–264 (1995).
[Crossref]

Cristiani, M.

J. Fekete, D. Rieländer, M. Cristiani, and H. de Riedmatten, “Ultranarrow-band photon-pair source compatible with solid state quantum memories and telecommunication networks,” Phys. Rev. Lett. 110(22), 220502 (2013).
[Crossref]

Dai, H.-N.

H. Zhang, X.-M. Jin, J. Yang, H.-N. Dai, S.-J. Yang, T.-M. Zhao, J. Rui, Y. He, X. Jiang, F. Yang, G.-S. Pan, Z.-S. Yuan, Y. Deng, Z.-B. Chen, X.-H. Bao, S. Chen, B. Zhao, and J.-W. Pan, “Preparation and storage of frequency-uncorrelated entangled photons from cavity-enhanced spontaneous parametric downconversion,” Nat. Photonics 5(10), 628–632 (2011).
[Crossref]

de Icaza Astiz, Y. A.

F. Wolfgramm, Y. A. de Icaza Astiz, F. A. Beduini, A. Cere, and M. W. Mitchell, “Atom-resonant heralded single photons by interaction-free measurement,” Phys. Rev. Lett. 106(5), 053602 (2011).
[Crossref]

de Léséleuc, S.

H. Labuhn, D. Barredo, S. Ravets, S. de Léséleuc, T. Macrì, T. Lahaye, and A. Browaeys, “Tunable two-dimensional arrays of single rydberg atoms for realizing quantum ising models,” Nature 534(7609), 667–670 (2016).
[Crossref]

de Riedmatten, H.

A. Seri, A. Lenhard, D. Rieländer, M. Gündoğan, P. M. Ledingham, M. Mazzera, and H. de Riedmatten, “Quantum correlations between single telecom photons and a multimode on-demand solid-state quantum memory,” Phys. Rev. X 7(2), 021028 (2017).
[Crossref]

D. Rieländer, K. Kutluer, P. M. Ledingham, M. Gündoğan, J. Fekete, M. Mazzera, and H. de Riedmatten, “Quantum storage of heralded single photons in a praseodymium-doped crystal,” Phys. Rev. Lett. 112(4), 040504 (2014).
[Crossref]

J. Fekete, D. Rieländer, M. Cristiani, and H. de Riedmatten, “Ultranarrow-band photon-pair source compatible with solid state quantum memories and telecommunication networks,” Phys. Rev. Lett. 110(22), 220502 (2013).
[Crossref]

C. Clausen, I. Usmani, F. Bussières, N. Sangouard, M. Afzelius, H. de Riedmatten, and N. Gisin, “Quantum storage of photonic entanglement in a crystal,” Nature 469(7331), 508–511 (2011).
[Crossref]

H. de Riedmatten, M. Afzelius, M. U. Staudt, C. Simon, and N. Gisin, “A solid-state light–matter interface at the single-photon level,” Nature 456(7223), 773–777 (2008).
[Crossref]

Demler, E. A.

D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3(11), 807–812 (2007).
[Crossref]

Deng, Y.

H. Zhang, X.-M. Jin, J. Yang, H.-N. Dai, S.-J. Yang, T.-M. Zhao, J. Rui, Y. He, X. Jiang, F. Yang, G.-S. Pan, Z.-S. Yuan, Y. Deng, Z.-B. Chen, X.-H. Bao, S. Chen, B. Zhao, and J.-W. Pan, “Preparation and storage of frequency-uncorrelated entangled photons from cavity-enhanced spontaneous parametric downconversion,” Nat. Photonics 5(10), 628–632 (2011).
[Crossref]

Drewsen, M.

C. Clausen, N. Sangouard, and M. Drewsen, “Analysis of a photon number resolving detector based on fluorescence readout of an ion coulomb crystal quantum memory inside an optical cavity,” New J. Phys. 15(2), 025021 (2013).
[Crossref]

Dubin, F.

N. Piro, F. Rohde, C. Schuck, M. Almendros, J. Huwer, J. Ghosh, A. Haase, M. Hennrich, F. Dubin, and J. Eschner, “Heralded single-photon absorption by a single atom,” Nat. Phys. 7(1), 17–20 (2011).
[Crossref]

C. Schuck, F. Rohde, N. Piro, M. Almendros, J. Huwer, M. W. Mitchell, M. Hennrich, A. Haase, F. Dubin, and J. Eschner, “Resonant interaction of a single atom with single photons from a down-conversion source,” Phys. Rev. A 81(1), 011802 (2010).
[Crossref]

Ducci, S.

A. Eckstein, G. Boucher, A. Lemaître, P. Filloux, I. Favero, G. Leo, J. E. Sipe, M. Liscidini, and S. Ducci, “High-resolution spectral characterization of two photon states via classical measurements,” Laser & Photonics Rev. 8(5), L76–L80 (2014).
[Crossref]

Dunn, M.

A. Henderson, M. Padgett, F. Colville, J. Zhang, and M. Dunn, “Doubly-resonant optical parametric oscillators: tuning behaviour and stability requirements,” Opt. Commun. 119(1-2), 256–264 (1995).
[Crossref]

Eckardt, R. C.

Eckstein, A.

A. Eckstein, G. Boucher, A. Lemaître, P. Filloux, I. Favero, G. Leo, J. E. Sipe, M. Liscidini, and S. Ducci, “High-resolution spectral characterization of two photon states via classical measurements,” Laser & Photonics Rev. 8(5), L76–L80 (2014).
[Crossref]

Eich, P.

A. Lenhard, M. Bock, C. Becher, S. Kucera, J. Brito, P. Eich, P. Müller, and J. Eschner, “Telecom-heralded single-photon absorption by a single atom,” Phys. Rev. A 92(6), 063827 (2015).
[Crossref]

Eschner, J.

A. Lenhard, M. Bock, C. Becher, S. Kucera, J. Brito, P. Eich, P. Müller, and J. Eschner, “Telecom-heralded single-photon absorption by a single atom,” Phys. Rev. A 92(6), 063827 (2015).
[Crossref]

N. Piro, F. Rohde, C. Schuck, M. Almendros, J. Huwer, J. Ghosh, A. Haase, M. Hennrich, F. Dubin, and J. Eschner, “Heralded single-photon absorption by a single atom,” Nat. Phys. 7(1), 17–20 (2011).
[Crossref]

C. Schuck, F. Rohde, N. Piro, M. Almendros, J. Huwer, M. W. Mitchell, M. Hennrich, A. Haase, F. Dubin, and J. Eschner, “Resonant interaction of a single atom with single photons from a down-conversion source,” Phys. Rev. A 81(1), 011802 (2010).
[Crossref]

A. Haase, N. Piro, J. Eschner, and M. W. Mitchell, “Tunable narrowband entangled photon pair source for resonant single-photon single-atom interaction,” Opt. Lett. 34(1), 55–57 (2009).
[Crossref]

Favero, I.

A. Eckstein, G. Boucher, A. Lemaître, P. Filloux, I. Favero, G. Leo, J. E. Sipe, M. Liscidini, and S. Ducci, “High-resolution spectral characterization of two photon states via classical measurements,” Laser & Photonics Rev. 8(5), L76–L80 (2014).
[Crossref]

Fekete, J.

D. Rieländer, K. Kutluer, P. M. Ledingham, M. Gündoğan, J. Fekete, M. Mazzera, and H. de Riedmatten, “Quantum storage of heralded single photons in a praseodymium-doped crystal,” Phys. Rev. Lett. 112(4), 040504 (2014).
[Crossref]

J. Fekete, D. Rieländer, M. Cristiani, and H. de Riedmatten, “Ultranarrow-band photon-pair source compatible with solid state quantum memories and telecommunication networks,” Phys. Rev. Lett. 110(22), 220502 (2013).
[Crossref]

Filloux, P.

A. Eckstein, G. Boucher, A. Lemaître, P. Filloux, I. Favero, G. Leo, J. E. Sipe, M. Liscidini, and S. Ducci, “High-resolution spectral characterization of two photon states via classical measurements,” Laser & Photonics Rev. 8(5), L76–L80 (2014).
[Crossref]

Firstenberg, O.

T. Peyronel, O. Firstenberg, Q.-Y. Liang, S. Hofferberth, A. V. Gorshkov, T. Pohl, M. D. Lukin, and V. Vuletić, “Quantum nonlinear optics with single photons enabled by strongly interacting atoms,” Nature 488(7409), 57–60 (2012).
[Crossref]

Förtsch, M.

Foss-Feig, M.

A. M. Kaufman, B. J. Lester, C. M. Reynolds, M. L. Wall, M. Foss-Feig, K. R. A. Hazzard, A. M. Rey, and C. A. Regal, “Two-particle quantum interference in tunnel-coupled optical tweezers,” Science 345(6194), 306–309 (2014).
[Crossref]

Gammon, D.

Geng, J.

B. M. Sparkes, J. Bernu, M. Hosseini, J. Geng, Q. Glorieux, P. A. Altin, P. K. Lam, N. P. Robins, and B. C. Buchler, “Gradient echo memory in an ultra-high optical depth cold atomic ensemble,” New J. Phys. 15(8), 085027 (2013).
[Crossref]

Gerhardt, I.

G. Wrigge, I. Gerhardt, J. Hwang, G. Zumofen, and V. Sandoghdar, “Efficient coupling of photons to a single molecule and the observation of its resonance fluorescence,” Nat. Phys. 4(1), 60–66 (2008).
[Crossref]

Ghosh, J.

N. Piro, F. Rohde, C. Schuck, M. Almendros, J. Huwer, J. Ghosh, A. Haase, M. Hennrich, F. Dubin, and J. Eschner, “Heralded single-photon absorption by a single atom,” Nat. Phys. 7(1), 17–20 (2011).
[Crossref]

Gisin, N.

C. Clausen, I. Usmani, F. Bussières, N. Sangouard, M. Afzelius, H. de Riedmatten, and N. Gisin, “Quantum storage of photonic entanglement in a crystal,” Nature 469(7331), 508–511 (2011).
[Crossref]

H. de Riedmatten, M. Afzelius, M. U. Staudt, C. Simon, and N. Gisin, “A solid-state light–matter interface at the single-photon level,” Nature 456(7223), 773–777 (2008).
[Crossref]

Glorieux, Q.

B. M. Sparkes, J. Bernu, M. Hosseini, J. Geng, Q. Glorieux, P. A. Altin, P. K. Lam, N. P. Robins, and B. C. Buchler, “Gradient echo memory in an ultra-high optical depth cold atomic ensemble,” New J. Phys. 15(8), 085027 (2013).
[Crossref]

Göbelt, M.

Godbout, N.

F. Wolfgramm, C. Vitelli, F. A. Beduini, N. Godbout, and M. W. Mitchell, “Entanglement-enhanced probing of a delicate material system,” Nat. Photonics 7(1), 28–32 (2013).
[Crossref]

Goggin, M.

Gorshkov, A. V.

T. Peyronel, O. Firstenberg, Q.-Y. Liang, S. Hofferberth, A. V. Gorshkov, T. Pohl, M. D. Lukin, and V. Vuletić, “Quantum nonlinear optics with single photons enabled by strongly interacting atoms,” Nature 488(7409), 57–60 (2012).
[Crossref]

Götzinger, S.

J. Hwang, M. Pototschnig, R. Lettow, G. Zumofen, A. Renn, S. Götzinger, and V. Sandoghdar, “A single-molecule optical transistor,” Nature 460(7251), 76–80 (2009).
[Crossref]

Grangier, P.

N. Schlosser, G. Reymond, I. Protsenko, and P. Grangier, “Sub-poissonian loading of single atoms in a microscopic dipole trap,” Nature 411(6841), 1024–1027 (2001).
[Crossref]

Greffet, J.-J.

S. Jennewein, M. Besbes, N. J. Schilder, S. D. Jenkins, C. Sauvan, J. Ruostekoski, J.-J. Greffet, Y. R. P. Sortais, and A. Browaeys, “Coherent scattering of near-resonant light by a dense microscopic cold atomic cloud,” Phys. Rev. Lett. 116(23), 233601 (2016).
[Crossref]

Grice, W. P.

W. P. Grice and I. A. Walmsley, “Spectral information and distinguishability in type-II down-conversion with a broadband pump,” Phys. Rev. A 56(2), 1627–1634 (1997).
[Crossref]

Gullans, M.

W. Chen, K. M. Beck, R. Bücker, M. Gullans, M. D. Lukin, H. Tanji-Suzuki, and V. Vuletić, “All-optical switch and transistor gated by one stored photon,” Science 341(6147), 768–770 (2013).
[Crossref]

Gündogan, M.

A. Seri, A. Lenhard, D. Rieländer, M. Gündoğan, P. M. Ledingham, M. Mazzera, and H. de Riedmatten, “Quantum correlations between single telecom photons and a multimode on-demand solid-state quantum memory,” Phys. Rev. X 7(2), 021028 (2017).
[Crossref]

D. Rieländer, K. Kutluer, P. M. Ledingham, M. Gündoğan, J. Fekete, M. Mazzera, and H. de Riedmatten, “Quantum storage of heralded single photons in a praseodymium-doped crystal,” Phys. Rev. Lett. 112(4), 040504 (2014).
[Crossref]

Guo, G.-C.

F.-Y. Wang, B.-S. Shi, and G.-C. Guo, “Generation of narrow-band photon pairs for quantum memory,” Opt. Commun. 283(14), 2974–2977 (2010).
[Crossref]

Haase, A.

N. Piro, F. Rohde, C. Schuck, M. Almendros, J. Huwer, J. Ghosh, A. Haase, M. Hennrich, F. Dubin, and J. Eschner, “Heralded single-photon absorption by a single atom,” Nat. Phys. 7(1), 17–20 (2011).
[Crossref]

C. Schuck, F. Rohde, N. Piro, M. Almendros, J. Huwer, M. W. Mitchell, M. Hennrich, A. Haase, F. Dubin, and J. Eschner, “Resonant interaction of a single atom with single photons from a down-conversion source,” Phys. Rev. A 81(1), 011802 (2010).
[Crossref]

A. Haase, N. Piro, J. Eschner, and M. W. Mitchell, “Tunable narrowband entangled photon pair source for resonant single-photon single-atom interaction,” Opt. Lett. 34(1), 55–57 (2009).
[Crossref]

Hancox, C. I.

M. W. Mitchell, C. I. Hancox, and R. Y. Chiao, “Dynamics of atom-mediated photon-photon scattering,” Phys. Rev. A 62(4), 043819 (2000).
[Crossref]

Harris, S. E.

C.-S. Chuu, G. Y. Yin, and S. E. Harris, “A miniature ultrabright source of temporally long, narrowband biphotons,” Appl. Phys. Lett. 101(5), 051108 (2012).
[Crossref]

S. E. Harris and L. V. Hau, “Nonlinear optics at low light levels,” Phys. Rev. Lett. 82(23), 4611–4614 (1999).
[Crossref]

S. E. Harris and Y. Yamamoto, “Photon switching by quantum interference,” Phys. Rev. Lett. 81(17), 3611–3614 (1998).
[Crossref]

Hau, L. V.

S. E. Harris and L. V. Hau, “Nonlinear optics at low light levels,” Phys. Rev. Lett. 82(23), 4611–4614 (1999).
[Crossref]

Hazzard, K. R. A.

A. M. Kaufman, B. J. Lester, C. M. Reynolds, M. L. Wall, M. Foss-Feig, K. R. A. Hazzard, A. M. Rey, and C. A. Regal, “Two-particle quantum interference in tunnel-coupled optical tweezers,” Science 345(6194), 306–309 (2014).
[Crossref]

He, Y.

H. Zhang, X.-M. Jin, J. Yang, H.-N. Dai, S.-J. Yang, T.-M. Zhao, J. Rui, Y. He, X. Jiang, F. Yang, G.-S. Pan, Z.-S. Yuan, Y. Deng, Z.-B. Chen, X.-H. Bao, S. Chen, B. Zhao, and J.-W. Pan, “Preparation and storage of frequency-uncorrelated entangled photons from cavity-enhanced spontaneous parametric downconversion,” Nat. Photonics 5(10), 628–632 (2011).
[Crossref]

Henderson, A.

A. Henderson, M. Padgett, F. Colville, J. Zhang, and M. Dunn, “Doubly-resonant optical parametric oscillators: tuning behaviour and stability requirements,” Opt. Commun. 119(1-2), 256–264 (1995).
[Crossref]

Hennrich, M.

N. Piro, F. Rohde, C. Schuck, M. Almendros, J. Huwer, J. Ghosh, A. Haase, M. Hennrich, F. Dubin, and J. Eschner, “Heralded single-photon absorption by a single atom,” Nat. Phys. 7(1), 17–20 (2011).
[Crossref]

C. Schuck, F. Rohde, N. Piro, M. Almendros, J. Huwer, M. W. Mitchell, M. Hennrich, A. Haase, F. Dubin, and J. Eschner, “Resonant interaction of a single atom with single photons from a down-conversion source,” Phys. Rev. A 81(1), 011802 (2010).
[Crossref]

M. Hennrich, A. Kuhn, and G. Rempe, “Transition from antibunching to bunching in cavity qed,” Phys. Rev. Lett. 94(5), 053604 (2005).
[Crossref]

Herrmann, H.

K.-H. Luo, H. Herrmann, S. Krapick, B. Brecht, R. Ricken, V. Quiring, H. Suche, W. Sohler, and C. Silberhorn, “Direct generation of genuine single-longitudinal-mode narrowband photon pairs,” New J. Phys. 17(7), 073039 (2015).
[Crossref]

E. Pomarico, B. Sanguinetti, C. I. Osorio, H. Herrmann, and R. T. Thew, “Engineering integrated pure narrow-band photon sources,” New J. Phys. 14(3), 033008 (2012).
[Crossref]

Herzog, U.

U. Herzog, M. Scholz, and O. Benson, “Theory of biphoton generation in a single-resonant optical parametric oscillator far below threshold,” Phys. Rev. A 77(2), 023826 (2008).
[Crossref]

M. Scholz, F. Wolfgramm, U. Herzog, and O. Benson, “Narrow-band single photons from a single-resonant optical parametric oscillator far below threshold,” Appl. Phys. Lett. 91(19), 191104 (2007).
[Crossref]

Hofferberth, S.

T. Peyronel, O. Firstenberg, Q.-Y. Liang, S. Hofferberth, A. V. Gorshkov, T. Pohl, M. D. Lukin, and V. Vuletić, “Quantum nonlinear optics with single photons enabled by strongly interacting atoms,” Nature 488(7409), 57–60 (2012).
[Crossref]

Hong, C. K.

C. K. Hong and L. Mandel, “Theory of parametric frequency down conversion of light,” Phys. Rev. A 31(4), 2409–2418 (1985).
[Crossref]

Hosseini, M.

B. M. Sparkes, J. Bernu, M. Hosseini, J. Geng, Q. Glorieux, P. A. Altin, P. K. Lam, N. P. Robins, and B. C. Buchler, “Gradient echo memory in an ultra-high optical depth cold atomic ensemble,” New J. Phys. 15(8), 085027 (2013).
[Crossref]

Hsiao, Y.-F.

P.-J. Tsai, Y.-F. Hsiao, and Y.-C. Chen, “Quantum storage and manipulation of heralded single photons in atomic quantum memories,” arXiv preprint arXiv:1907.05555 (2019).

Huber, F.

M. K. Tey, G. Maslennikov, T. C. H. Liew, S. A. Aljunid, F. Huber, B. Chng, Z. Chen, V. Scarani, and C. Kurtsiefer, “Interfacing light and single atoms with a lens,” New J. Phys. 11(4), 043011 (2009).
[Crossref]

Huwer, J.

N. Piro, F. Rohde, C. Schuck, M. Almendros, J. Huwer, J. Ghosh, A. Haase, M. Hennrich, F. Dubin, and J. Eschner, “Heralded single-photon absorption by a single atom,” Nat. Phys. 7(1), 17–20 (2011).
[Crossref]

C. Schuck, F. Rohde, N. Piro, M. Almendros, J. Huwer, M. W. Mitchell, M. Hennrich, A. Haase, F. Dubin, and J. Eschner, “Resonant interaction of a single atom with single photons from a down-conversion source,” Phys. Rev. A 81(1), 011802 (2010).
[Crossref]

Hwang, J.

J. Hwang, M. Pototschnig, R. Lettow, G. Zumofen, A. Renn, S. Götzinger, and V. Sandoghdar, “A single-molecule optical transistor,” Nature 460(7251), 76–80 (2009).
[Crossref]

G. Wrigge, I. Gerhardt, J. Hwang, G. Zumofen, and V. Sandoghdar, “Efficient coupling of photons to a single molecule and the observation of its resonance fluorescence,” Nat. Phys. 4(1), 60–66 (2008).
[Crossref]

Jenkins, S. D.

S. Jennewein, M. Besbes, N. J. Schilder, S. D. Jenkins, C. Sauvan, J. Ruostekoski, J.-J. Greffet, Y. R. P. Sortais, and A. Browaeys, “Coherent scattering of near-resonant light by a dense microscopic cold atomic cloud,” Phys. Rev. Lett. 116(23), 233601 (2016).
[Crossref]

Jennewein, S.

S. Jennewein, M. Besbes, N. J. Schilder, S. D. Jenkins, C. Sauvan, J. Ruostekoski, J.-J. Greffet, Y. R. P. Sortais, and A. Browaeys, “Coherent scattering of near-resonant light by a dense microscopic cold atomic cloud,” Phys. Rev. Lett. 116(23), 233601 (2016).
[Crossref]

Jeronimo-Moreno, Y.

Y. Jeronimo-Moreno, S. Rodriguez-Benavides, and A. B. U’ Ren, “Theory of cavity-enhanced spontaneous parametric downconversion,” Laser Phys. 20(5), 1221–1233 (2010).
[Crossref]

Jiang, X.

H. Zhang, X.-M. Jin, J. Yang, H.-N. Dai, S.-J. Yang, T.-M. Zhao, J. Rui, Y. He, X. Jiang, F. Yang, G.-S. Pan, Z.-S. Yuan, Y. Deng, Z.-B. Chen, X.-H. Bao, S. Chen, B. Zhao, and J.-W. Pan, “Preparation and storage of frequency-uncorrelated entangled photons from cavity-enhanced spontaneous parametric downconversion,” Nat. Photonics 5(10), 628–632 (2011).
[Crossref]

Jin, X.-M.

H. Zhang, X.-M. Jin, J. Yang, H.-N. Dai, S.-J. Yang, T.-M. Zhao, J. Rui, Y. He, X. Jiang, F. Yang, G.-S. Pan, Z.-S. Yuan, Y. Deng, Z.-B. Chen, X.-H. Bao, S. Chen, B. Zhao, and J.-W. Pan, “Preparation and storage of frequency-uncorrelated entangled photons from cavity-enhanced spontaneous parametric downconversion,” Nat. Photonics 5(10), 628–632 (2011).
[Crossref]

Junge, C.

J. Volz, M. Scheucher, C. Junge, and A. Rauschenbeutel, “Nonlinear phase shift for single fibre-guided photons interacting with a single resonator-enhanced atom,” Nat. Photonics 8(12), 965–970 (2014).
[Crossref]

Kato, K.

Kaufman, A. M.

A. M. Kaufman, B. J. Lester, C. M. Reynolds, M. L. Wall, M. Foss-Feig, K. R. A. Hazzard, A. M. Rey, and C. A. Regal, “Two-particle quantum interference in tunnel-coupled optical tweezers,” Science 345(6194), 306–309 (2014).
[Crossref]

Koch, L.

M. Scholz, L. Koch, and O. Benson, “Analytical treatment of spectral properties and signal − idler intensity correlations for a double-resonant optical parametric oscillator far below threshold,” Opt. Commun. 282(17), 3518–3523 (2009).
[Crossref]

Kochan, P.

P. Kochan and H. J. Carmichael, “Photon-statistics dependence of single-atom absorption,” Phys. Rev. A 50(2), 1700–1709 (1994).
[Crossref]

Kolchin, P.

P. Kolchin, R. F. Oulton, and X. Zhang, “Nonlinear quantum optics in a waveguide: Distinct single photons strongly interacting at the single atom level,” Phys. Rev. Lett. 106(11), 113601 (2011).
[Crossref]

Kozlovsky, W. J.

Krapick, S.

K.-H. Luo, H. Herrmann, S. Krapick, B. Brecht, R. Ricken, V. Quiring, H. Suche, W. Sohler, and C. Silberhorn, “Direct generation of genuine single-longitudinal-mode narrowband photon pairs,” New J. Phys. 17(7), 073039 (2015).
[Crossref]

Kucera, S.

A. Lenhard, M. Bock, C. Becher, S. Kucera, J. Brito, P. Eich, P. Müller, and J. Eschner, “Telecom-heralded single-photon absorption by a single atom,” Phys. Rev. A 92(6), 063827 (2015).
[Crossref]

Kuhn, A.

M. Hennrich, A. Kuhn, and G. Rempe, “Transition from antibunching to bunching in cavity qed,” Phys. Rev. Lett. 94(5), 053604 (2005).
[Crossref]

Kurtsiefer, C.

Y.-S. Chin, M. Steiner, and C. Kurtsiefer, “Nonlinear photon-atom coupling with 4pi microscopy,” Nat. Commun. 8(1), 1200 (2017).
[Crossref]

M. K. Tey, G. Maslennikov, T. C. H. Liew, S. A. Aljunid, F. Huber, B. Chng, Z. Chen, V. Scarani, and C. Kurtsiefer, “Interfacing light and single atoms with a lens,” New J. Phys. 11(4), 043011 (2009).
[Crossref]

Kutluer, K.

D. Rieländer, K. Kutluer, P. M. Ledingham, M. Gündoğan, J. Fekete, M. Mazzera, and H. de Riedmatten, “Quantum storage of heralded single photons in a praseodymium-doped crystal,” Phys. Rev. Lett. 112(4), 040504 (2014).
[Crossref]

Kwiat, P. G.

Labuhn, H.

H. Labuhn, D. Barredo, S. Ravets, S. de Léséleuc, T. Macrì, T. Lahaye, and A. Browaeys, “Tunable two-dimensional arrays of single rydberg atoms for realizing quantum ising models,” Nature 534(7609), 667–670 (2016).
[Crossref]

Lahaye, T.

H. Labuhn, D. Barredo, S. Ravets, S. de Léséleuc, T. Macrì, T. Lahaye, and A. Browaeys, “Tunable two-dimensional arrays of single rydberg atoms for realizing quantum ising models,” Nature 534(7609), 667–670 (2016).
[Crossref]

Lam, P. K.

B. M. Sparkes, J. Bernu, M. Hosseini, J. Geng, Q. Glorieux, P. A. Altin, P. K. Lam, N. P. Robins, and B. C. Buchler, “Gradient echo memory in an ultra-high optical depth cold atomic ensemble,” New J. Phys. 15(8), 085027 (2013).
[Crossref]

Le, H. N.

A. Roulet, H. N. Le, and V. Scarani, “Two photons on an atomic beam splitter: Nonlinear scattering and induced correlations,” Phys. Rev. A 93(3), 033838 (2016).
[Crossref]

Ledingham, P. M.

A. Seri, A. Lenhard, D. Rieländer, M. Gündoğan, P. M. Ledingham, M. Mazzera, and H. de Riedmatten, “Quantum correlations between single telecom photons and a multimode on-demand solid-state quantum memory,” Phys. Rev. X 7(2), 021028 (2017).
[Crossref]

D. Rieländer, K. Kutluer, P. M. Ledingham, M. Gündoğan, J. Fekete, M. Mazzera, and H. de Riedmatten, “Quantum storage of heralded single photons in a praseodymium-doped crystal,” Phys. Rev. Lett. 112(4), 040504 (2014).
[Crossref]

Lemaître, A.

A. Eckstein, G. Boucher, A. Lemaître, P. Filloux, I. Favero, G. Leo, J. E. Sipe, M. Liscidini, and S. Ducci, “High-resolution spectral characterization of two photon states via classical measurements,” Laser & Photonics Rev. 8(5), L76–L80 (2014).
[Crossref]

Lenhard, A.

A. Seri, A. Lenhard, D. Rieländer, M. Gündoğan, P. M. Ledingham, M. Mazzera, and H. de Riedmatten, “Quantum correlations between single telecom photons and a multimode on-demand solid-state quantum memory,” Phys. Rev. X 7(2), 021028 (2017).
[Crossref]

A. Lenhard, M. Bock, C. Becher, S. Kucera, J. Brito, P. Eich, P. Müller, and J. Eschner, “Telecom-heralded single-photon absorption by a single atom,” Phys. Rev. A 92(6), 063827 (2015).
[Crossref]

Leo, G.

A. Eckstein, G. Boucher, A. Lemaître, P. Filloux, I. Favero, G. Leo, J. E. Sipe, M. Liscidini, and S. Ducci, “High-resolution spectral characterization of two photon states via classical measurements,” Laser & Photonics Rev. 8(5), L76–L80 (2014).
[Crossref]

Lester, B. J.

A. M. Kaufman, B. J. Lester, C. M. Reynolds, M. L. Wall, M. Foss-Feig, K. R. A. Hazzard, A. M. Rey, and C. A. Regal, “Two-particle quantum interference in tunnel-coupled optical tweezers,” Science 345(6194), 306–309 (2014).
[Crossref]

Lettow, R.

J. Hwang, M. Pototschnig, R. Lettow, G. Zumofen, A. Renn, S. Götzinger, and V. Sandoghdar, “A single-molecule optical transistor,” Nature 460(7251), 76–80 (2009).
[Crossref]

Leuchs, G.

Li, N.

Liang, Q.-Y.

T. Peyronel, O. Firstenberg, Q.-Y. Liang, S. Hofferberth, A. V. Gorshkov, T. Pohl, M. D. Lukin, and V. Vuletić, “Quantum nonlinear optics with single photons enabled by strongly interacting atoms,” Nature 488(7409), 57–60 (2012).
[Crossref]

Liew, T. C. H.

M. K. Tey, G. Maslennikov, T. C. H. Liew, S. A. Aljunid, F. Huber, B. Chng, Z. Chen, V. Scarani, and C. Kurtsiefer, “Interfacing light and single atoms with a lens,” New J. Phys. 11(4), 043011 (2009).
[Crossref]

Liscidini, M.

A. Eckstein, G. Boucher, A. Lemaître, P. Filloux, I. Favero, G. Leo, J. E. Sipe, M. Liscidini, and S. Ducci, “High-resolution spectral characterization of two photon states via classical measurements,” Laser & Photonics Rev. 8(5), L76–L80 (2014).
[Crossref]

Lu, Y. J.

Z. Y. Ou and Y. J. Lu, “Cavity enhanced spontaneous parametric down-conversion for the prolongation of correlation time between conjugate photons,” Phys. Rev. Lett. 83(13), 2556–2559 (1999).
[Crossref]

Lukin, M. D.

J. Perczel, J. Borregaard, D. E. Chang, H. Pichler, S. F. Yelin, P. Zoller, and M. D. Lukin, “Topological quantum optics in two-dimensional atomic arrays,” Phys. Rev. Lett. 119(2), 023603 (2017).
[Crossref]

W. Chen, K. M. Beck, R. Bücker, M. Gullans, M. D. Lukin, H. Tanji-Suzuki, and V. Vuletić, “All-optical switch and transistor gated by one stored photon,” Science 341(6147), 768–770 (2013).
[Crossref]

T. Peyronel, O. Firstenberg, Q.-Y. Liang, S. Hofferberth, A. V. Gorshkov, T. Pohl, M. D. Lukin, and V. Vuletić, “Quantum nonlinear optics with single photons enabled by strongly interacting atoms,” Nature 488(7409), 57–60 (2012).
[Crossref]

D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3(11), 807–812 (2007).
[Crossref]

Luo, K.-H.

K.-H. Luo, H. Herrmann, S. Krapick, B. Brecht, R. Ricken, V. Quiring, H. Suche, W. Sohler, and C. Silberhorn, “Direct generation of genuine single-longitudinal-mode narrowband photon pairs,” New J. Phys. 17(7), 073039 (2015).
[Crossref]

Lvovsky, A.

P. Palittapongarnpim, A. MacRae, and A. Lvovsky, “Note: A monolithic filter cavity for experiments in quantum optics,” Rev. Sci. Instrum. 83(6), 066101 (2012).
[Crossref]

MacRae, A.

P. Palittapongarnpim, A. MacRae, and A. Lvovsky, “Note: A monolithic filter cavity for experiments in quantum optics,” Rev. Sci. Instrum. 83(6), 066101 (2012).
[Crossref]

Macrì, T.

H. Labuhn, D. Barredo, S. Ravets, S. de Léséleuc, T. Macrì, T. Lahaye, and A. Browaeys, “Tunable two-dimensional arrays of single rydberg atoms for realizing quantum ising models,” Nature 534(7609), 667–670 (2016).
[Crossref]

Mandel, L.

C. K. Hong and L. Mandel, “Theory of parametric frequency down conversion of light,” Phys. Rev. A 31(4), 2409–2418 (1985).
[Crossref]

Marquardt, C.

Maslennikov, G.

M. K. Tey, G. Maslennikov, T. C. H. Liew, S. A. Aljunid, F. Huber, B. Chng, Z. Chen, V. Scarani, and C. Kurtsiefer, “Interfacing light and single atoms with a lens,” New J. Phys. 11(4), 043011 (2009).
[Crossref]

Massa, F.

A. Moqanaki, F. Massa, and P. Walther, “Novel single-mode narrow-band photon source of high brightness tuned to cesium d2 line,” APL Photonics 4(9), 090804 (2019).
[Crossref]

Mazzera, M.

A. Seri, A. Lenhard, D. Rieländer, M. Gündoğan, P. M. Ledingham, M. Mazzera, and H. de Riedmatten, “Quantum correlations between single telecom photons and a multimode on-demand solid-state quantum memory,” Phys. Rev. X 7(2), 021028 (2017).
[Crossref]

D. Rieländer, K. Kutluer, P. M. Ledingham, M. Gündoğan, J. Fekete, M. Mazzera, and H. de Riedmatten, “Quantum storage of heralded single photons in a praseodymium-doped crystal,” Phys. Rev. Lett. 112(4), 040504 (2014).
[Crossref]

Mitchell, M. W.

N. Bruno, L. C. Bianchet, V. Prakash, N. Li, N. Alves, and M. W. Mitchell, “Maltese cross coupling to individual cold atoms in free space,” Opt. Express 27(21), 31042–31052 (2019).
[Crossref]

F. Wolfgramm, C. Vitelli, F. A. Beduini, N. Godbout, and M. W. Mitchell, “Entanglement-enhanced probing of a delicate material system,” Nat. Photonics 7(1), 28–32 (2013).
[Crossref]

F. Wolfgramm, Y. A. de Icaza Astiz, F. A. Beduini, A. Cere, and M. W. Mitchell, “Atom-resonant heralded single photons by interaction-free measurement,” Phys. Rev. Lett. 106(5), 053602 (2011).
[Crossref]

C. Schuck, F. Rohde, N. Piro, M. Almendros, J. Huwer, M. W. Mitchell, M. Hennrich, A. Haase, F. Dubin, and J. Eschner, “Resonant interaction of a single atom with single photons from a down-conversion source,” Phys. Rev. A 81(1), 011802 (2010).
[Crossref]

A. Haase, N. Piro, J. Eschner, and M. W. Mitchell, “Tunable narrowband entangled photon pair source for resonant single-photon single-atom interaction,” Opt. Lett. 34(1), 55–57 (2009).
[Crossref]

F. Wolfgramm, X. Xing, A. Cerè, A. Predojević, A. M. Steinberg, and M. W. Mitchell, “Bright filter-free source of indistinguishable photon pairs,” Opt. Express 16(22), 18145–18151 (2008).
[Crossref]

M. W. Mitchell, C. I. Hancox, and R. Y. Chiao, “Dynamics of atom-mediated photon-photon scattering,” Phys. Rev. A 62(4), 043819 (2000).
[Crossref]

A. Predojević and M. W. Mitchell, Engineering the Atom-Photon Interaction: Controlling Fundamental Processes with Photons, Atoms and Solids, Nano-Optics and Nanophotonics (Springer International Publishing, 2015).

Moqanaki, A.

A. Moqanaki, F. Massa, and P. Walther, “Novel single-mode narrow-band photon source of high brightness tuned to cesium d2 line,” APL Photonics 4(9), 090804 (2019).
[Crossref]

Müller, P.

A. Lenhard, M. Bock, C. Becher, S. Kucera, J. Brito, P. Eich, P. Müller, and J. Eschner, “Telecom-heralded single-photon absorption by a single atom,” Phys. Rev. A 92(6), 063827 (2015).
[Crossref]

Nabors, C. D.

Nikolova, A.

M. Rambach, A. Nikolova, T. J. Weinhold, and A. G. White, “Sub-megahertz linewidth single photon source,” APL Photonics 1(9), 096101 (2016).
[Crossref]

Oberparleiter, M.

M. Oberparleiter and H. Weinfurter, “Cavity-enhanced generation of polarization-entangled photon pairs,” Opt. Commun. 183(1-4), 133–137 (2000).
[Crossref]

Osorio, C. I.

E. Pomarico, B. Sanguinetti, C. I. Osorio, H. Herrmann, and R. T. Thew, “Engineering integrated pure narrow-band photon sources,” New J. Phys. 14(3), 033008 (2012).
[Crossref]

Ou, Z. Y.

Z. Y. Ou and Y. J. Lu, “Cavity enhanced spontaneous parametric down-conversion for the prolongation of correlation time between conjugate photons,” Phys. Rev. Lett. 83(13), 2556–2559 (1999).
[Crossref]

Oulton, R. F.

P. Kolchin, R. F. Oulton, and X. Zhang, “Nonlinear quantum optics in a waveguide: Distinct single photons strongly interacting at the single atom level,” Phys. Rev. Lett. 106(11), 113601 (2011).
[Crossref]

Padgett, M.

A. Henderson, M. Padgett, F. Colville, J. Zhang, and M. Dunn, “Doubly-resonant optical parametric oscillators: tuning behaviour and stability requirements,” Opt. Commun. 119(1-2), 256–264 (1995).
[Crossref]

Palittapongarnpim, P.

P. Palittapongarnpim, A. MacRae, and A. Lvovsky, “Note: A monolithic filter cavity for experiments in quantum optics,” Rev. Sci. Instrum. 83(6), 066101 (2012).
[Crossref]

Pan, G.-S.

H. Zhang, X.-M. Jin, J. Yang, H.-N. Dai, S.-J. Yang, T.-M. Zhao, J. Rui, Y. He, X. Jiang, F. Yang, G.-S. Pan, Z.-S. Yuan, Y. Deng, Z.-B. Chen, X.-H. Bao, S. Chen, B. Zhao, and J.-W. Pan, “Preparation and storage of frequency-uncorrelated entangled photons from cavity-enhanced spontaneous parametric downconversion,” Nat. Photonics 5(10), 628–632 (2011).
[Crossref]

Pan, J.-W.

H. Zhang, X.-M. Jin, J. Yang, H.-N. Dai, S.-J. Yang, T.-M. Zhao, J. Rui, Y. He, X. Jiang, F. Yang, G.-S. Pan, Z.-S. Yuan, Y. Deng, Z.-B. Chen, X.-H. Bao, S. Chen, B. Zhao, and J.-W. Pan, “Preparation and storage of frequency-uncorrelated entangled photons from cavity-enhanced spontaneous parametric downconversion,” Nat. Photonics 5(10), 628–632 (2011).
[Crossref]

X.-H. Bao, Y. Qian, J. Yang, H. Zhang, Z.-B. Chen, T. Yang, and J.-W. Pan, “Generation of narrow-band polarization-entangled photon pairs for atomic quantum memories,” Phys. Rev. Lett. 101(19), 190501 (2008).
[Crossref]

Paudel, U.

Perczel, J.

J. Perczel, J. Borregaard, D. E. Chang, H. Pichler, S. F. Yelin, P. Zoller, and M. D. Lukin, “Topological quantum optics in two-dimensional atomic arrays,” Phys. Rev. Lett. 119(2), 023603 (2017).
[Crossref]

Peyronel, T.

T. Peyronel, O. Firstenberg, Q.-Y. Liang, S. Hofferberth, A. V. Gorshkov, T. Pohl, M. D. Lukin, and V. Vuletić, “Quantum nonlinear optics with single photons enabled by strongly interacting atoms,” Nature 488(7409), 57–60 (2012).
[Crossref]

Pichler, H.

J. Perczel, J. Borregaard, D. E. Chang, H. Pichler, S. F. Yelin, P. Zoller, and M. D. Lukin, “Topological quantum optics in two-dimensional atomic arrays,” Phys. Rev. Lett. 119(2), 023603 (2017).
[Crossref]

Piro, N.

N. Piro, F. Rohde, C. Schuck, M. Almendros, J. Huwer, J. Ghosh, A. Haase, M. Hennrich, F. Dubin, and J. Eschner, “Heralded single-photon absorption by a single atom,” Nat. Phys. 7(1), 17–20 (2011).
[Crossref]

C. Schuck, F. Rohde, N. Piro, M. Almendros, J. Huwer, M. W. Mitchell, M. Hennrich, A. Haase, F. Dubin, and J. Eschner, “Resonant interaction of a single atom with single photons from a down-conversion source,” Phys. Rev. A 81(1), 011802 (2010).
[Crossref]

A. Haase, N. Piro, J. Eschner, and M. W. Mitchell, “Tunable narrowband entangled photon pair source for resonant single-photon single-atom interaction,” Opt. Lett. 34(1), 55–57 (2009).
[Crossref]

Pohl, T.

T. Peyronel, O. Firstenberg, Q.-Y. Liang, S. Hofferberth, A. V. Gorshkov, T. Pohl, M. D. Lukin, and V. Vuletić, “Quantum nonlinear optics with single photons enabled by strongly interacting atoms,” Nature 488(7409), 57–60 (2012).
[Crossref]

Pomarico, E.

E. Pomarico, B. Sanguinetti, C. I. Osorio, H. Herrmann, and R. T. Thew, “Engineering integrated pure narrow-band photon sources,” New J. Phys. 14(3), 033008 (2012).
[Crossref]

Pototschnig, M.

J. Hwang, M. Pototschnig, R. Lettow, G. Zumofen, A. Renn, S. Götzinger, and V. Sandoghdar, “A single-molecule optical transistor,” Nature 460(7251), 76–80 (2009).
[Crossref]

Prakash, V.

Predojevic, A.

F. Wolfgramm, X. Xing, A. Cerè, A. Predojević, A. M. Steinberg, and M. W. Mitchell, “Bright filter-free source of indistinguishable photon pairs,” Opt. Express 16(22), 18145–18151 (2008).
[Crossref]

A. Predojević and M. W. Mitchell, Engineering the Atom-Photon Interaction: Controlling Fundamental Processes with Photons, Atoms and Solids, Nano-Optics and Nanophotonics (Springer International Publishing, 2015).

Protsenko, I.

N. Schlosser, G. Reymond, I. Protsenko, and P. Grangier, “Sub-poissonian loading of single atoms in a microscopic dipole trap,” Nature 411(6841), 1024–1027 (2001).
[Crossref]

Purcell, E. M.

E. M. Purcell, “Proceedings of the american physical society,” Phys. Rev. 69, 681 (1946).

Qian, Y.

X.-H. Bao, Y. Qian, J. Yang, H. Zhang, Z.-B. Chen, T. Yang, and J.-W. Pan, “Generation of narrow-band polarization-entangled photon pairs for atomic quantum memories,” Phys. Rev. Lett. 101(19), 190501 (2008).
[Crossref]

Quiring, V.

K.-H. Luo, H. Herrmann, S. Krapick, B. Brecht, R. Ricken, V. Quiring, H. Suche, W. Sohler, and C. Silberhorn, “Direct generation of genuine single-longitudinal-mode narrowband photon pairs,” New J. Phys. 17(7), 073039 (2015).
[Crossref]

Rambach, M.

M. Rambach, A. Nikolova, T. J. Weinhold, and A. G. White, “Sub-megahertz linewidth single photon source,” APL Photonics 1(9), 096101 (2016).
[Crossref]

Rauschenbeutel, A.

J. Volz, M. Scheucher, C. Junge, and A. Rauschenbeutel, “Nonlinear phase shift for single fibre-guided photons interacting with a single resonator-enhanced atom,” Nat. Photonics 8(12), 965–970 (2014).
[Crossref]

Ravets, S.

H. Labuhn, D. Barredo, S. Ravets, S. de Léséleuc, T. Macrì, T. Lahaye, and A. Browaeys, “Tunable two-dimensional arrays of single rydberg atoms for realizing quantum ising models,” Nature 534(7609), 667–670 (2016).
[Crossref]

Regal, C. A.

A. M. Kaufman, B. J. Lester, C. M. Reynolds, M. L. Wall, M. Foss-Feig, K. R. A. Hazzard, A. M. Rey, and C. A. Regal, “Two-particle quantum interference in tunnel-coupled optical tweezers,” Science 345(6194), 306–309 (2014).
[Crossref]

Rempe, G.

M. Hennrich, A. Kuhn, and G. Rempe, “Transition from antibunching to bunching in cavity qed,” Phys. Rev. Lett. 94(5), 053604 (2005).
[Crossref]

Renn, A.

J. Hwang, M. Pototschnig, R. Lettow, G. Zumofen, A. Renn, S. Götzinger, and V. Sandoghdar, “A single-molecule optical transistor,” Nature 460(7251), 76–80 (2009).
[Crossref]

Rey, A. M.

A. M. Kaufman, B. J. Lester, C. M. Reynolds, M. L. Wall, M. Foss-Feig, K. R. A. Hazzard, A. M. Rey, and C. A. Regal, “Two-particle quantum interference in tunnel-coupled optical tweezers,” Science 345(6194), 306–309 (2014).
[Crossref]

Reymond, G.

N. Schlosser, G. Reymond, I. Protsenko, and P. Grangier, “Sub-poissonian loading of single atoms in a microscopic dipole trap,” Nature 411(6841), 1024–1027 (2001).
[Crossref]

Reynolds, C. M.

A. M. Kaufman, B. J. Lester, C. M. Reynolds, M. L. Wall, M. Foss-Feig, K. R. A. Hazzard, A. M. Rey, and C. A. Regal, “Two-particle quantum interference in tunnel-coupled optical tweezers,” Science 345(6194), 306–309 (2014).
[Crossref]

Ricken, R.

K.-H. Luo, H. Herrmann, S. Krapick, B. Brecht, R. Ricken, V. Quiring, H. Suche, W. Sohler, and C. Silberhorn, “Direct generation of genuine single-longitudinal-mode narrowband photon pairs,” New J. Phys. 17(7), 073039 (2015).
[Crossref]

Rieländer, D.

A. Seri, A. Lenhard, D. Rieländer, M. Gündoğan, P. M. Ledingham, M. Mazzera, and H. de Riedmatten, “Quantum correlations between single telecom photons and a multimode on-demand solid-state quantum memory,” Phys. Rev. X 7(2), 021028 (2017).
[Crossref]

D. Rieländer, K. Kutluer, P. M. Ledingham, M. Gündoğan, J. Fekete, M. Mazzera, and H. de Riedmatten, “Quantum storage of heralded single photons in a praseodymium-doped crystal,” Phys. Rev. Lett. 112(4), 040504 (2014).
[Crossref]

J. Fekete, D. Rieländer, M. Cristiani, and H. de Riedmatten, “Ultranarrow-band photon-pair source compatible with solid state quantum memories and telecommunication networks,” Phys. Rev. Lett. 110(22), 220502 (2013).
[Crossref]

Robins, N. P.

B. M. Sparkes, J. Bernu, M. Hosseini, J. Geng, Q. Glorieux, P. A. Altin, P. K. Lam, N. P. Robins, and B. C. Buchler, “Gradient echo memory in an ultra-high optical depth cold atomic ensemble,” New J. Phys. 15(8), 085027 (2013).
[Crossref]

Rodriguez-Benavides, S.

Y. Jeronimo-Moreno, S. Rodriguez-Benavides, and A. B. U’ Ren, “Theory of cavity-enhanced spontaneous parametric downconversion,” Laser Phys. 20(5), 1221–1233 (2010).
[Crossref]

Rohde, F.

N. Piro, F. Rohde, C. Schuck, M. Almendros, J. Huwer, J. Ghosh, A. Haase, M. Hennrich, F. Dubin, and J. Eschner, “Heralded single-photon absorption by a single atom,” Nat. Phys. 7(1), 17–20 (2011).
[Crossref]

C. Schuck, F. Rohde, N. Piro, M. Almendros, J. Huwer, M. W. Mitchell, M. Hennrich, A. Haase, F. Dubin, and J. Eschner, “Resonant interaction of a single atom with single photons from a down-conversion source,” Phys. Rev. A 81(1), 011802 (2010).
[Crossref]

Roulet, A.

A. Roulet, H. N. Le, and V. Scarani, “Two photons on an atomic beam splitter: Nonlinear scattering and induced correlations,” Phys. Rev. A 93(3), 033838 (2016).
[Crossref]

Rui, J.

H. Zhang, X.-M. Jin, J. Yang, H.-N. Dai, S.-J. Yang, T.-M. Zhao, J. Rui, Y. He, X. Jiang, F. Yang, G.-S. Pan, Z.-S. Yuan, Y. Deng, Z.-B. Chen, X.-H. Bao, S. Chen, B. Zhao, and J.-W. Pan, “Preparation and storage of frequency-uncorrelated entangled photons from cavity-enhanced spontaneous parametric downconversion,” Nat. Photonics 5(10), 628–632 (2011).
[Crossref]

Ruostekoski, J.

S. Jennewein, M. Besbes, N. J. Schilder, S. D. Jenkins, C. Sauvan, J. Ruostekoski, J.-J. Greffet, Y. R. P. Sortais, and A. Browaeys, “Coherent scattering of near-resonant light by a dense microscopic cold atomic cloud,” Phys. Rev. Lett. 116(23), 233601 (2016).
[Crossref]

Sandoghdar, V.

J. Hwang, M. Pototschnig, R. Lettow, G. Zumofen, A. Renn, S. Götzinger, and V. Sandoghdar, “A single-molecule optical transistor,” Nature 460(7251), 76–80 (2009).
[Crossref]

G. Wrigge, I. Gerhardt, J. Hwang, G. Zumofen, and V. Sandoghdar, “Efficient coupling of photons to a single molecule and the observation of its resonance fluorescence,” Nat. Phys. 4(1), 60–66 (2008).
[Crossref]

Sangouard, N.

C. Clausen, N. Sangouard, and M. Drewsen, “Analysis of a photon number resolving detector based on fluorescence readout of an ion coulomb crystal quantum memory inside an optical cavity,” New J. Phys. 15(2), 025021 (2013).
[Crossref]

C. Clausen, I. Usmani, F. Bussières, N. Sangouard, M. Afzelius, H. de Riedmatten, and N. Gisin, “Quantum storage of photonic entanglement in a crystal,” Nature 469(7331), 508–511 (2011).
[Crossref]

Sanguinetti, B.

E. Pomarico, B. Sanguinetti, C. I. Osorio, H. Herrmann, and R. T. Thew, “Engineering integrated pure narrow-band photon sources,” New J. Phys. 14(3), 033008 (2012).
[Crossref]

Sauvan, C.

S. Jennewein, M. Besbes, N. J. Schilder, S. D. Jenkins, C. Sauvan, J. Ruostekoski, J.-J. Greffet, Y. R. P. Sortais, and A. Browaeys, “Coherent scattering of near-resonant light by a dense microscopic cold atomic cloud,” Phys. Rev. Lett. 116(23), 233601 (2016).
[Crossref]

Scarani, V.

A. Roulet, H. N. Le, and V. Scarani, “Two photons on an atomic beam splitter: Nonlinear scattering and induced correlations,” Phys. Rev. A 93(3), 033838 (2016).
[Crossref]

M. K. Tey, G. Maslennikov, T. C. H. Liew, S. A. Aljunid, F. Huber, B. Chng, Z. Chen, V. Scarani, and C. Kurtsiefer, “Interfacing light and single atoms with a lens,” New J. Phys. 11(4), 043011 (2009).
[Crossref]

Scheucher, M.

J. Volz, M. Scheucher, C. Junge, and A. Rauschenbeutel, “Nonlinear phase shift for single fibre-guided photons interacting with a single resonator-enhanced atom,” Nat. Photonics 8(12), 965–970 (2014).
[Crossref]

Schilder, N. J.

S. Jennewein, M. Besbes, N. J. Schilder, S. D. Jenkins, C. Sauvan, J. Ruostekoski, J.-J. Greffet, Y. R. P. Sortais, and A. Browaeys, “Coherent scattering of near-resonant light by a dense microscopic cold atomic cloud,” Phys. Rev. Lett. 116(23), 233601 (2016).
[Crossref]

Schlosser, N.

N. Schlosser, G. Reymond, I. Protsenko, and P. Grangier, “Sub-poissonian loading of single atoms in a microscopic dipole trap,” Nature 411(6841), 1024–1027 (2001).
[Crossref]

Scholz, M.

M. Scholz, L. Koch, and O. Benson, “Analytical treatment of spectral properties and signal − idler intensity correlations for a double-resonant optical parametric oscillator far below threshold,” Opt. Commun. 282(17), 3518–3523 (2009).
[Crossref]

U. Herzog, M. Scholz, and O. Benson, “Theory of biphoton generation in a single-resonant optical parametric oscillator far below threshold,” Phys. Rev. A 77(2), 023826 (2008).
[Crossref]

M. Scholz, F. Wolfgramm, U. Herzog, and O. Benson, “Narrow-band single photons from a single-resonant optical parametric oscillator far below threshold,” Appl. Phys. Lett. 91(19), 191104 (2007).
[Crossref]

Schuck, C.

N. Piro, F. Rohde, C. Schuck, M. Almendros, J. Huwer, J. Ghosh, A. Haase, M. Hennrich, F. Dubin, and J. Eschner, “Heralded single-photon absorption by a single atom,” Nat. Phys. 7(1), 17–20 (2011).
[Crossref]

C. Schuck, F. Rohde, N. Piro, M. Almendros, J. Huwer, M. W. Mitchell, M. Hennrich, A. Haase, F. Dubin, and J. Eschner, “Resonant interaction of a single atom with single photons from a down-conversion source,” Phys. Rev. A 81(1), 011802 (2010).
[Crossref]

Schunk, G.

Schwefel, H. G. L.

Sedlmeir, F.

Seri, A.

A. Seri, A. Lenhard, D. Rieländer, M. Gündoğan, P. M. Ledingham, M. Mazzera, and H. de Riedmatten, “Quantum correlations between single telecom photons and a multimode on-demand solid-state quantum memory,” Phys. Rev. X 7(2), 021028 (2017).
[Crossref]

Shi, B.-S.

F.-Y. Wang, B.-S. Shi, and G.-C. Guo, “Generation of narrow-band photon pairs for quantum memory,” Opt. Commun. 283(14), 2974–2977 (2010).
[Crossref]

Silberhorn, C.

K.-H. Luo, H. Herrmann, S. Krapick, B. Brecht, R. Ricken, V. Quiring, H. Suche, W. Sohler, and C. Silberhorn, “Direct generation of genuine single-longitudinal-mode narrowband photon pairs,” New J. Phys. 17(7), 073039 (2015).
[Crossref]

Simon, C.

H. de Riedmatten, M. Afzelius, M. U. Staudt, C. Simon, and N. Gisin, “A solid-state light–matter interface at the single-photon level,” Nature 456(7223), 773–777 (2008).
[Crossref]

Sipe, J. E.

A. Eckstein, G. Boucher, A. Lemaître, P. Filloux, I. Favero, G. Leo, J. E. Sipe, M. Liscidini, and S. Ducci, “High-resolution spectral characterization of two photon states via classical measurements,” Laser & Photonics Rev. 8(5), L76–L80 (2014).
[Crossref]

Sohler, W.

K.-H. Luo, H. Herrmann, S. Krapick, B. Brecht, R. Ricken, V. Quiring, H. Suche, W. Sohler, and C. Silberhorn, “Direct generation of genuine single-longitudinal-mode narrowband photon pairs,” New J. Phys. 17(7), 073039 (2015).
[Crossref]

Sondermann, M.

M. Sondermann and G. Leuchs, “Light–matter interaction in free space,” J. Mod. Opt. 60(1), 36–42 (2013).
[Crossref]

Sørensen, A. S.

D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3(11), 807–812 (2007).
[Crossref]

Sortais, Y. R. P.

S. Jennewein, M. Besbes, N. J. Schilder, S. D. Jenkins, C. Sauvan, J. Ruostekoski, J.-J. Greffet, Y. R. P. Sortais, and A. Browaeys, “Coherent scattering of near-resonant light by a dense microscopic cold atomic cloud,” Phys. Rev. Lett. 116(23), 233601 (2016).
[Crossref]

Sparkes, B. M.

B. M. Sparkes, J. Bernu, M. Hosseini, J. Geng, Q. Glorieux, P. A. Altin, P. K. Lam, N. P. Robins, and B. C. Buchler, “Gradient echo memory in an ultra-high optical depth cold atomic ensemble,” New J. Phys. 15(8), 085027 (2013).
[Crossref]

Sprenger, B.

A. Ahlrichs, C. Berkemeier, B. Sprenger, and O. Benson, “A monolithic polarization-independent frequency-filter system for filtering of photon pairs,” Appl. Phys. Lett. 103(24), 241110 (2013).
[Crossref]

Staudt, M. U.

H. de Riedmatten, M. Afzelius, M. U. Staudt, C. Simon, and N. Gisin, “A solid-state light–matter interface at the single-photon level,” Nature 456(7223), 773–777 (2008).
[Crossref]

Steel, D. G.

Steinberg, A. M.

Steiner, M.

Y.-S. Chin, M. Steiner, and C. Kurtsiefer, “Nonlinear photon-atom coupling with 4pi microscopy,” Nat. Commun. 8(1), 1200 (2017).
[Crossref]

Strekalov, D. V.

Suche, H.

K.-H. Luo, H. Herrmann, S. Krapick, B. Brecht, R. Ricken, V. Quiring, H. Suche, W. Sohler, and C. Silberhorn, “Direct generation of genuine single-longitudinal-mode narrowband photon pairs,” New J. Phys. 17(7), 073039 (2015).
[Crossref]

Takaoka, E.

Tanji-Suzuki, H.

W. Chen, K. M. Beck, R. Bücker, M. Gullans, M. D. Lukin, H. Tanji-Suzuki, and V. Vuletić, “All-optical switch and transistor gated by one stored photon,” Science 341(6147), 768–770 (2013).
[Crossref]

Tey, M. K.

M. K. Tey, G. Maslennikov, T. C. H. Liew, S. A. Aljunid, F. Huber, B. Chng, Z. Chen, V. Scarani, and C. Kurtsiefer, “Interfacing light and single atoms with a lens,” New J. Phys. 11(4), 043011 (2009).
[Crossref]

Thew, R. T.

E. Pomarico, B. Sanguinetti, C. I. Osorio, H. Herrmann, and R. T. Thew, “Engineering integrated pure narrow-band photon sources,” New J. Phys. 14(3), 033008 (2012).
[Crossref]

Tsai, P.-J.

P.-J. Tsai and Y.-C. Chen, “Ultrabright, narrow-band photon-pair source for atomic quantum memories,” Quantum Sci. Technol. 3(3), 034005 (2018).
[Crossref]

P.-J. Tsai, Y.-F. Hsiao, and Y.-C. Chen, “Quantum storage and manipulation of heralded single photons in atomic quantum memories,” arXiv preprint arXiv:1907.05555 (2019).

U’ Ren, A. B.

Y. Jeronimo-Moreno, S. Rodriguez-Benavides, and A. B. U’ Ren, “Theory of cavity-enhanced spontaneous parametric downconversion,” Laser Phys. 20(5), 1221–1233 (2010).
[Crossref]

Usmani, I.

C. Clausen, I. Usmani, F. Bussières, N. Sangouard, M. Afzelius, H. de Riedmatten, and N. Gisin, “Quantum storage of photonic entanglement in a crystal,” Nature 469(7331), 508–511 (2011).
[Crossref]

Vitelli, C.

F. Wolfgramm, C. Vitelli, F. A. Beduini, N. Godbout, and M. W. Mitchell, “Entanglement-enhanced probing of a delicate material system,” Nat. Photonics 7(1), 28–32 (2013).
[Crossref]

Vogl, U.

Volz, J.

J. Volz, M. Scheucher, C. Junge, and A. Rauschenbeutel, “Nonlinear phase shift for single fibre-guided photons interacting with a single resonator-enhanced atom,” Nat. Photonics 8(12), 965–970 (2014).
[Crossref]

Vuletic, V.

W. Chen, K. M. Beck, R. Bücker, M. Gullans, M. D. Lukin, H. Tanji-Suzuki, and V. Vuletić, “All-optical switch and transistor gated by one stored photon,” Science 341(6147), 768–770 (2013).
[Crossref]

T. Peyronel, O. Firstenberg, Q.-Y. Liang, S. Hofferberth, A. V. Gorshkov, T. Pohl, M. D. Lukin, and V. Vuletić, “Quantum nonlinear optics with single photons enabled by strongly interacting atoms,” Nature 488(7409), 57–60 (2012).
[Crossref]

Wall, M. L.

A. M. Kaufman, B. J. Lester, C. M. Reynolds, M. L. Wall, M. Foss-Feig, K. R. A. Hazzard, A. M. Rey, and C. A. Regal, “Two-particle quantum interference in tunnel-coupled optical tweezers,” Science 345(6194), 306–309 (2014).
[Crossref]

Walmsley, I. A.

W. P. Grice and I. A. Walmsley, “Spectral information and distinguishability in type-II down-conversion with a broadband pump,” Phys. Rev. A 56(2), 1627–1634 (1997).
[Crossref]

Walther, P.

A. Moqanaki, F. Massa, and P. Walther, “Novel single-mode narrow-band photon source of high brightness tuned to cesium d2 line,” APL Photonics 4(9), 090804 (2019).
[Crossref]

Wang, F.-Y.

F.-Y. Wang, B.-S. Shi, and G.-C. Guo, “Generation of narrow-band photon pairs for quantum memory,” Opt. Commun. 283(14), 2974–2977 (2010).
[Crossref]

Weinfurter, H.

M. Oberparleiter and H. Weinfurter, “Cavity-enhanced generation of polarization-entangled photon pairs,” Opt. Commun. 183(1-4), 133–137 (2000).
[Crossref]

Weinhold, T. J.

M. Rambach, A. Nikolova, T. J. Weinhold, and A. G. White, “Sub-megahertz linewidth single photon source,” APL Photonics 1(9), 096101 (2016).
[Crossref]

White, A. G.

M. Rambach, A. Nikolova, T. J. Weinhold, and A. G. White, “Sub-megahertz linewidth single photon source,” APL Photonics 1(9), 096101 (2016).
[Crossref]

Wolfgramm, F.

F. Wolfgramm, C. Vitelli, F. A. Beduini, N. Godbout, and M. W. Mitchell, “Entanglement-enhanced probing of a delicate material system,” Nat. Photonics 7(1), 28–32 (2013).
[Crossref]

F. Wolfgramm, Y. A. de Icaza Astiz, F. A. Beduini, A. Cere, and M. W. Mitchell, “Atom-resonant heralded single photons by interaction-free measurement,” Phys. Rev. Lett. 106(5), 053602 (2011).
[Crossref]

F. Wolfgramm, X. Xing, A. Cerè, A. Predojević, A. M. Steinberg, and M. W. Mitchell, “Bright filter-free source of indistinguishable photon pairs,” Opt. Express 16(22), 18145–18151 (2008).
[Crossref]

M. Scholz, F. Wolfgramm, U. Herzog, and O. Benson, “Narrow-band single photons from a single-resonant optical parametric oscillator far below threshold,” Appl. Phys. Lett. 91(19), 191104 (2007).
[Crossref]

F. Wolfgramm, “Atomic quantum metrology with narrowband entangled and squeezed states of light,” PhD dissertation, UPC - Universitat Politecnica de Catalunya (2012).

Wong, J. J.

Wrigge, G.

G. Wrigge, I. Gerhardt, J. Hwang, G. Zumofen, and V. Sandoghdar, “Efficient coupling of photons to a single molecule and the observation of its resonance fluorescence,” Nat. Phys. 4(1), 60–66 (2008).
[Crossref]

Xing, X.

Yakes, M.

Yamamoto, Y.

S. E. Harris and Y. Yamamoto, “Photon switching by quantum interference,” Phys. Rev. Lett. 81(17), 3611–3614 (1998).
[Crossref]

Yang, F.

H. Zhang, X.-M. Jin, J. Yang, H.-N. Dai, S.-J. Yang, T.-M. Zhao, J. Rui, Y. He, X. Jiang, F. Yang, G.-S. Pan, Z.-S. Yuan, Y. Deng, Z.-B. Chen, X.-H. Bao, S. Chen, B. Zhao, and J.-W. Pan, “Preparation and storage of frequency-uncorrelated entangled photons from cavity-enhanced spontaneous parametric downconversion,” Nat. Photonics 5(10), 628–632 (2011).
[Crossref]

Yang, J.

H. Zhang, X.-M. Jin, J. Yang, H.-N. Dai, S.-J. Yang, T.-M. Zhao, J. Rui, Y. He, X. Jiang, F. Yang, G.-S. Pan, Z.-S. Yuan, Y. Deng, Z.-B. Chen, X.-H. Bao, S. Chen, B. Zhao, and J.-W. Pan, “Preparation and storage of frequency-uncorrelated entangled photons from cavity-enhanced spontaneous parametric downconversion,” Nat. Photonics 5(10), 628–632 (2011).
[Crossref]

X.-H. Bao, Y. Qian, J. Yang, H. Zhang, Z.-B. Chen, T. Yang, and J.-W. Pan, “Generation of narrow-band polarization-entangled photon pairs for atomic quantum memories,” Phys. Rev. Lett. 101(19), 190501 (2008).
[Crossref]

Yang, S.-J.

H. Zhang, X.-M. Jin, J. Yang, H.-N. Dai, S.-J. Yang, T.-M. Zhao, J. Rui, Y. He, X. Jiang, F. Yang, G.-S. Pan, Z.-S. Yuan, Y. Deng, Z.-B. Chen, X.-H. Bao, S. Chen, B. Zhao, and J.-W. Pan, “Preparation and storage of frequency-uncorrelated entangled photons from cavity-enhanced spontaneous parametric downconversion,” Nat. Photonics 5(10), 628–632 (2011).
[Crossref]

Yang, T.

X.-H. Bao, Y. Qian, J. Yang, H. Zhang, Z.-B. Chen, T. Yang, and J.-W. Pan, “Generation of narrow-band polarization-entangled photon pairs for atomic quantum memories,” Phys. Rev. Lett. 101(19), 190501 (2008).
[Crossref]

Yelin, S. F.

J. Perczel, J. Borregaard, D. E. Chang, H. Pichler, S. F. Yelin, P. Zoller, and M. D. Lukin, “Topological quantum optics in two-dimensional atomic arrays,” Phys. Rev. Lett. 119(2), 023603 (2017).
[Crossref]

Yin, G. Y.

C.-S. Chuu, G. Y. Yin, and S. E. Harris, “A miniature ultrabright source of temporally long, narrowband biphotons,” Appl. Phys. Lett. 101(5), 051108 (2012).
[Crossref]

Yuan, Z.-S.

H. Zhang, X.-M. Jin, J. Yang, H.-N. Dai, S.-J. Yang, T.-M. Zhao, J. Rui, Y. He, X. Jiang, F. Yang, G.-S. Pan, Z.-S. Yuan, Y. Deng, Z.-B. Chen, X.-H. Bao, S. Chen, B. Zhao, and J.-W. Pan, “Preparation and storage of frequency-uncorrelated entangled photons from cavity-enhanced spontaneous parametric downconversion,” Nat. Photonics 5(10), 628–632 (2011).
[Crossref]

Zhang, H.

H. Zhang, X.-M. Jin, J. Yang, H.-N. Dai, S.-J. Yang, T.-M. Zhao, J. Rui, Y. He, X. Jiang, F. Yang, G.-S. Pan, Z.-S. Yuan, Y. Deng, Z.-B. Chen, X.-H. Bao, S. Chen, B. Zhao, and J.-W. Pan, “Preparation and storage of frequency-uncorrelated entangled photons from cavity-enhanced spontaneous parametric downconversion,” Nat. Photonics 5(10), 628–632 (2011).
[Crossref]

X.-H. Bao, Y. Qian, J. Yang, H. Zhang, Z.-B. Chen, T. Yang, and J.-W. Pan, “Generation of narrow-band polarization-entangled photon pairs for atomic quantum memories,” Phys. Rev. Lett. 101(19), 190501 (2008).
[Crossref]

Zhang, J.

A. Henderson, M. Padgett, F. Colville, J. Zhang, and M. Dunn, “Doubly-resonant optical parametric oscillators: tuning behaviour and stability requirements,” Opt. Commun. 119(1-2), 256–264 (1995).
[Crossref]

Zhang, X.

P. Kolchin, R. F. Oulton, and X. Zhang, “Nonlinear quantum optics in a waveguide: Distinct single photons strongly interacting at the single atom level,” Phys. Rev. Lett. 106(11), 113601 (2011).
[Crossref]

Zhao, B.

H. Zhang, X.-M. Jin, J. Yang, H.-N. Dai, S.-J. Yang, T.-M. Zhao, J. Rui, Y. He, X. Jiang, F. Yang, G.-S. Pan, Z.-S. Yuan, Y. Deng, Z.-B. Chen, X.-H. Bao, S. Chen, B. Zhao, and J.-W. Pan, “Preparation and storage of frequency-uncorrelated entangled photons from cavity-enhanced spontaneous parametric downconversion,” Nat. Photonics 5(10), 628–632 (2011).
[Crossref]

Zhao, T.-M.

H. Zhang, X.-M. Jin, J. Yang, H.-N. Dai, S.-J. Yang, T.-M. Zhao, J. Rui, Y. He, X. Jiang, F. Yang, G.-S. Pan, Z.-S. Yuan, Y. Deng, Z.-B. Chen, X.-H. Bao, S. Chen, B. Zhao, and J.-W. Pan, “Preparation and storage of frequency-uncorrelated entangled photons from cavity-enhanced spontaneous parametric downconversion,” Nat. Photonics 5(10), 628–632 (2011).
[Crossref]

Zoller, P.

J. Perczel, J. Borregaard, D. E. Chang, H. Pichler, S. F. Yelin, P. Zoller, and M. D. Lukin, “Topological quantum optics in two-dimensional atomic arrays,” Phys. Rev. Lett. 119(2), 023603 (2017).
[Crossref]

Zumofen, G.

J. Hwang, M. Pototschnig, R. Lettow, G. Zumofen, A. Renn, S. Götzinger, and V. Sandoghdar, “A single-molecule optical transistor,” Nature 460(7251), 76–80 (2009).
[Crossref]

G. Wrigge, I. Gerhardt, J. Hwang, G. Zumofen, and V. Sandoghdar, “Efficient coupling of photons to a single molecule and the observation of its resonance fluorescence,” Nat. Phys. 4(1), 60–66 (2008).
[Crossref]

APL Photonics (2)

M. Rambach, A. Nikolova, T. J. Weinhold, and A. G. White, “Sub-megahertz linewidth single photon source,” APL Photonics 1(9), 096101 (2016).
[Crossref]

A. Moqanaki, F. Massa, and P. Walther, “Novel single-mode narrow-band photon source of high brightness tuned to cesium d2 line,” APL Photonics 4(9), 090804 (2019).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

C.-S. Chuu, G. Y. Yin, and S. E. Harris, “A miniature ultrabright source of temporally long, narrowband biphotons,” Appl. Phys. Lett. 101(5), 051108 (2012).
[Crossref]

A. Ahlrichs and O. Benson, “Bright source of indistinguishable photons based on cavity-enhanced parametric down-conversion utilizing the cluster effect,” Appl. Phys. Lett. 108(2), 021111 (2016).
[Crossref]

M. Scholz, F. Wolfgramm, U. Herzog, and O. Benson, “Narrow-band single photons from a single-resonant optical parametric oscillator far below threshold,” Appl. Phys. Lett. 91(19), 191104 (2007).
[Crossref]

A. Ahlrichs, C. Berkemeier, B. Sprenger, and O. Benson, “A monolithic polarization-independent frequency-filter system for filtering of photon pairs,” Appl. Phys. Lett. 103(24), 241110 (2013).
[Crossref]

J. Mod. Opt. (1)

M. Sondermann and G. Leuchs, “Light–matter interaction in free space,” J. Mod. Opt. 60(1), 36–42 (2013).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser & Photonics Rev. (1)

A. Eckstein, G. Boucher, A. Lemaître, P. Filloux, I. Favero, G. Leo, J. E. Sipe, M. Liscidini, and S. Ducci, “High-resolution spectral characterization of two photon states via classical measurements,” Laser & Photonics Rev. 8(5), L76–L80 (2014).
[Crossref]

Laser Phys. (1)

Y. Jeronimo-Moreno, S. Rodriguez-Benavides, and A. B. U’ Ren, “Theory of cavity-enhanced spontaneous parametric downconversion,” Laser Phys. 20(5), 1221–1233 (2010).
[Crossref]

Nat. Commun. (1)

Y.-S. Chin, M. Steiner, and C. Kurtsiefer, “Nonlinear photon-atom coupling with 4pi microscopy,” Nat. Commun. 8(1), 1200 (2017).
[Crossref]

Nat. Photonics (3)

J. Volz, M. Scheucher, C. Junge, and A. Rauschenbeutel, “Nonlinear phase shift for single fibre-guided photons interacting with a single resonator-enhanced atom,” Nat. Photonics 8(12), 965–970 (2014).
[Crossref]

H. Zhang, X.-M. Jin, J. Yang, H.-N. Dai, S.-J. Yang, T.-M. Zhao, J. Rui, Y. He, X. Jiang, F. Yang, G.-S. Pan, Z.-S. Yuan, Y. Deng, Z.-B. Chen, X.-H. Bao, S. Chen, B. Zhao, and J.-W. Pan, “Preparation and storage of frequency-uncorrelated entangled photons from cavity-enhanced spontaneous parametric downconversion,” Nat. Photonics 5(10), 628–632 (2011).
[Crossref]

F. Wolfgramm, C. Vitelli, F. A. Beduini, N. Godbout, and M. W. Mitchell, “Entanglement-enhanced probing of a delicate material system,” Nat. Photonics 7(1), 28–32 (2013).
[Crossref]

Nat. Phys. (3)

N. Piro, F. Rohde, C. Schuck, M. Almendros, J. Huwer, J. Ghosh, A. Haase, M. Hennrich, F. Dubin, and J. Eschner, “Heralded single-photon absorption by a single atom,” Nat. Phys. 7(1), 17–20 (2011).
[Crossref]

G. Wrigge, I. Gerhardt, J. Hwang, G. Zumofen, and V. Sandoghdar, “Efficient coupling of photons to a single molecule and the observation of its resonance fluorescence,” Nat. Phys. 4(1), 60–66 (2008).
[Crossref]

D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3(11), 807–812 (2007).
[Crossref]

Nature (6)

J. Hwang, M. Pototschnig, R. Lettow, G. Zumofen, A. Renn, S. Götzinger, and V. Sandoghdar, “A single-molecule optical transistor,” Nature 460(7251), 76–80 (2009).
[Crossref]

T. Peyronel, O. Firstenberg, Q.-Y. Liang, S. Hofferberth, A. V. Gorshkov, T. Pohl, M. D. Lukin, and V. Vuletić, “Quantum nonlinear optics with single photons enabled by strongly interacting atoms,” Nature 488(7409), 57–60 (2012).
[Crossref]

H. de Riedmatten, M. Afzelius, M. U. Staudt, C. Simon, and N. Gisin, “A solid-state light–matter interface at the single-photon level,” Nature 456(7223), 773–777 (2008).
[Crossref]

N. Schlosser, G. Reymond, I. Protsenko, and P. Grangier, “Sub-poissonian loading of single atoms in a microscopic dipole trap,” Nature 411(6841), 1024–1027 (2001).
[Crossref]

C. Clausen, I. Usmani, F. Bussières, N. Sangouard, M. Afzelius, H. de Riedmatten, and N. Gisin, “Quantum storage of photonic entanglement in a crystal,” Nature 469(7331), 508–511 (2011).
[Crossref]

H. Labuhn, D. Barredo, S. Ravets, S. de Léséleuc, T. Macrì, T. Lahaye, and A. Browaeys, “Tunable two-dimensional arrays of single rydberg atoms for realizing quantum ising models,” Nature 534(7609), 667–670 (2016).
[Crossref]

New J. Phys. (5)

K.-H. Luo, H. Herrmann, S. Krapick, B. Brecht, R. Ricken, V. Quiring, H. Suche, W. Sohler, and C. Silberhorn, “Direct generation of genuine single-longitudinal-mode narrowband photon pairs,” New J. Phys. 17(7), 073039 (2015).
[Crossref]

E. Pomarico, B. Sanguinetti, C. I. Osorio, H. Herrmann, and R. T. Thew, “Engineering integrated pure narrow-band photon sources,” New J. Phys. 14(3), 033008 (2012).
[Crossref]

M. K. Tey, G. Maslennikov, T. C. H. Liew, S. A. Aljunid, F. Huber, B. Chng, Z. Chen, V. Scarani, and C. Kurtsiefer, “Interfacing light and single atoms with a lens,” New J. Phys. 11(4), 043011 (2009).
[Crossref]

B. M. Sparkes, J. Bernu, M. Hosseini, J. Geng, Q. Glorieux, P. A. Altin, P. K. Lam, N. P. Robins, and B. C. Buchler, “Gradient echo memory in an ultra-high optical depth cold atomic ensemble,” New J. Phys. 15(8), 085027 (2013).
[Crossref]

C. Clausen, N. Sangouard, and M. Drewsen, “Analysis of a photon number resolving detector based on fluorescence readout of an ion coulomb crystal quantum memory inside an optical cavity,” New J. Phys. 15(2), 025021 (2013).
[Crossref]

Opt. Commun. (4)

M. Oberparleiter and H. Weinfurter, “Cavity-enhanced generation of polarization-entangled photon pairs,” Opt. Commun. 183(1-4), 133–137 (2000).
[Crossref]

F.-Y. Wang, B.-S. Shi, and G.-C. Guo, “Generation of narrow-band photon pairs for quantum memory,” Opt. Commun. 283(14), 2974–2977 (2010).
[Crossref]

M. Scholz, L. Koch, and O. Benson, “Analytical treatment of spectral properties and signal − idler intensity correlations for a double-resonant optical parametric oscillator far below threshold,” Opt. Commun. 282(17), 3518–3523 (2009).
[Crossref]

A. Henderson, M. Padgett, F. Colville, J. Zhang, and M. Dunn, “Doubly-resonant optical parametric oscillators: tuning behaviour and stability requirements,” Opt. Commun. 119(1-2), 256–264 (1995).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Optica (1)

Phys. Rev. (1)

E. M. Purcell, “Proceedings of the american physical society,” Phys. Rev. 69, 681 (1946).

Phys. Rev. A (8)

C. Schuck, F. Rohde, N. Piro, M. Almendros, J. Huwer, M. W. Mitchell, M. Hennrich, A. Haase, F. Dubin, and J. Eschner, “Resonant interaction of a single atom with single photons from a down-conversion source,” Phys. Rev. A 81(1), 011802 (2010).
[Crossref]

A. Lenhard, M. Bock, C. Becher, S. Kucera, J. Brito, P. Eich, P. Müller, and J. Eschner, “Telecom-heralded single-photon absorption by a single atom,” Phys. Rev. A 92(6), 063827 (2015).
[Crossref]

U. Herzog, M. Scholz, and O. Benson, “Theory of biphoton generation in a single-resonant optical parametric oscillator far below threshold,” Phys. Rev. A 77(2), 023826 (2008).
[Crossref]

A. Roulet, H. N. Le, and V. Scarani, “Two photons on an atomic beam splitter: Nonlinear scattering and induced correlations,” Phys. Rev. A 93(3), 033838 (2016).
[Crossref]

P. Kochan and H. J. Carmichael, “Photon-statistics dependence of single-atom absorption,” Phys. Rev. A 50(2), 1700–1709 (1994).
[Crossref]

C. K. Hong and L. Mandel, “Theory of parametric frequency down conversion of light,” Phys. Rev. A 31(4), 2409–2418 (1985).
[Crossref]

W. P. Grice and I. A. Walmsley, “Spectral information and distinguishability in type-II down-conversion with a broadband pump,” Phys. Rev. A 56(2), 1627–1634 (1997).
[Crossref]

M. W. Mitchell, C. I. Hancox, and R. Y. Chiao, “Dynamics of atom-mediated photon-photon scattering,” Phys. Rev. A 62(4), 043819 (2000).
[Crossref]

Phys. Rev. Lett. (11)

J. Perczel, J. Borregaard, D. E. Chang, H. Pichler, S. F. Yelin, P. Zoller, and M. D. Lukin, “Topological quantum optics in two-dimensional atomic arrays,” Phys. Rev. Lett. 119(2), 023603 (2017).
[Crossref]

P. Kolchin, R. F. Oulton, and X. Zhang, “Nonlinear quantum optics in a waveguide: Distinct single photons strongly interacting at the single atom level,” Phys. Rev. Lett. 106(11), 113601 (2011).
[Crossref]

S. E. Harris and Y. Yamamoto, “Photon switching by quantum interference,” Phys. Rev. Lett. 81(17), 3611–3614 (1998).
[Crossref]

S. E. Harris and L. V. Hau, “Nonlinear optics at low light levels,” Phys. Rev. Lett. 82(23), 4611–4614 (1999).
[Crossref]

F. Wolfgramm, Y. A. de Icaza Astiz, F. A. Beduini, A. Cere, and M. W. Mitchell, “Atom-resonant heralded single photons by interaction-free measurement,” Phys. Rev. Lett. 106(5), 053602 (2011).
[Crossref]

J. Fekete, D. Rieländer, M. Cristiani, and H. de Riedmatten, “Ultranarrow-band photon-pair source compatible with solid state quantum memories and telecommunication networks,” Phys. Rev. Lett. 110(22), 220502 (2013).
[Crossref]

D. Rieländer, K. Kutluer, P. M. Ledingham, M. Gündoğan, J. Fekete, M. Mazzera, and H. de Riedmatten, “Quantum storage of heralded single photons in a praseodymium-doped crystal,” Phys. Rev. Lett. 112(4), 040504 (2014).
[Crossref]

S. Jennewein, M. Besbes, N. J. Schilder, S. D. Jenkins, C. Sauvan, J. Ruostekoski, J.-J. Greffet, Y. R. P. Sortais, and A. Browaeys, “Coherent scattering of near-resonant light by a dense microscopic cold atomic cloud,” Phys. Rev. Lett. 116(23), 233601 (2016).
[Crossref]

X.-H. Bao, Y. Qian, J. Yang, H. Zhang, Z.-B. Chen, T. Yang, and J.-W. Pan, “Generation of narrow-band polarization-entangled photon pairs for atomic quantum memories,” Phys. Rev. Lett. 101(19), 190501 (2008).
[Crossref]

M. Hennrich, A. Kuhn, and G. Rempe, “Transition from antibunching to bunching in cavity qed,” Phys. Rev. Lett. 94(5), 053604 (2005).
[Crossref]

Z. Y. Ou and Y. J. Lu, “Cavity enhanced spontaneous parametric down-conversion for the prolongation of correlation time between conjugate photons,” Phys. Rev. Lett. 83(13), 2556–2559 (1999).
[Crossref]

Phys. Rev. X (1)

A. Seri, A. Lenhard, D. Rieländer, M. Gündoğan, P. M. Ledingham, M. Mazzera, and H. de Riedmatten, “Quantum correlations between single telecom photons and a multimode on-demand solid-state quantum memory,” Phys. Rev. X 7(2), 021028 (2017).
[Crossref]

Quantum Sci. Technol. (1)

P.-J. Tsai and Y.-C. Chen, “Ultrabright, narrow-band photon-pair source for atomic quantum memories,” Quantum Sci. Technol. 3(3), 034005 (2018).
[Crossref]

Rev. Sci. Instrum. (1)

P. Palittapongarnpim, A. MacRae, and A. Lvovsky, “Note: A monolithic filter cavity for experiments in quantum optics,” Rev. Sci. Instrum. 83(6), 066101 (2012).
[Crossref]

Science (2)

W. Chen, K. M. Beck, R. Bücker, M. Gullans, M. D. Lukin, H. Tanji-Suzuki, and V. Vuletić, “All-optical switch and transistor gated by one stored photon,” Science 341(6147), 768–770 (2013).
[Crossref]

A. M. Kaufman, B. J. Lester, C. M. Reynolds, M. L. Wall, M. Foss-Feig, K. R. A. Hazzard, A. M. Rey, and C. A. Regal, “Two-particle quantum interference in tunnel-coupled optical tweezers,” Science 345(6194), 306–309 (2014).
[Crossref]

Other (3)

P.-J. Tsai, Y.-F. Hsiao, and Y.-C. Chen, “Quantum storage and manipulation of heralded single photons in atomic quantum memories,” arXiv preprint arXiv:1907.05555 (2019).

A. Predojević and M. W. Mitchell, Engineering the Atom-Photon Interaction: Controlling Fundamental Processes with Photons, Atoms and Solids, Nano-Optics and Nanophotonics (Springer International Publishing, 2015).

F. Wolfgramm, “Atomic quantum metrology with narrowband entangled and squeezed states of light,” PhD dissertation, UPC - Universitat Politecnica de Catalunya (2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Schematic of lasers and CE-SPDC source. (a) Laser systems. A distributed Bragg reflector at 795 nm, locked to a transition of the $^{87}$ Rb D1 line, is upconverted by second harmonic generation (SHG). The undepleted 795 nm light is frequency shifted with an acousto-optic modulator (AOM) and used to lock the CE-SPDC cavity. An external-cavity diode laser at 397 nm is stabilized relative to the 795 nm second harmonic by a beat-note lock. (b) Narrowband pair source, consisting of a bow-tie cavity containing an SPDC crystal (PPKTP), pumped by the ECDL and a tuning crystal (KTP). While operating in the SPDC regime, the locking beam enters the cavity through the out-coupling mirror (M4) and co-propagates with pump, signal and idler. Transmission of the locking beam through M2 and detection on PD2 is used to stabilize the cavity length. The chopper blocks the locking beam when the photons are collected. Signal and idler photons are split based on polarization. For measurements with the DFG, the direction of the locking beam is changed such that the transmission detected on PD3 is used to stabilize the cavity. Light to seed the DFG process is sent to the crystal via M4 and PD1 is used to measure the idler generated from DFG. PBS: polarizing beamsplitter, $\lambda /2$ : half-wave plate, $\lambda /4$ : quarter-wave plate, PD: photodetector.
Fig. 2.
Fig. 2. Illustration of frequencies employed in the CE-SPDC source. Scenario shown achieves the configuration: $\nu _{s}$ tuned to the (light-shifted) $F=2 \rightarrow F'=1$ transition and $\nu _{i}$ tuned to the (light-shifted) $F=2 \rightarrow F'=2$ transition of the $^{87}\textrm {Rb}$ D1 line. Top graph (“atoms”) shows the saturated absorption spectrum (in blue) with light-shifted transitions shown below the horizontal axis in green. Middle section (“lasers”) shows frequency relationships among frequencies described in the text. Frequency separations are not to scale. Lower section (“cavity”) shows cavity spectrum including signal (red) and idler (orange) modes. The $\Delta \textrm {FSR}$ and $\gamma$ are exaggerated for clarity.
Fig. 3.
Fig. 3. Measurement of one cluster of CE-SPDC emission by DFG. Graph shows generated idler power ( $P_i$ ) as a function of the change in the input seed frequency ( $\Delta \nu _{\textrm{seed}}$ ) for fixed cavity length and pump frequency. The brightest peak at $\Delta \nu _{\textrm{seed}}=0$ is due to the simultaneous resonance of $\nu _{\textrm{seed}}$ and $\nu _{i} = \nu _{p} - \nu _{\textrm {seed}}$ whereas other peaks at $\Delta \nu _{\textrm {seed}} = \pm \, \textrm {FSR}_{\textrm{s}}, \pm 2 \, \textrm {FSR}_{\textrm{s}}, \ldots$ have decreasing brightness according to the mismatch in resonance with the corresponding idler modes at $\pm \, \textrm{FSR}_{\textrm{i}}, \pm 2 \, \textrm{FSR}_{\textrm {i}}, \ldots$ A second set of peaks, intermediate between DFG peaks and of roughly constant amplitude, appear to be due to a small coupling of the seed beam to a higher transverse mode, and are unrelated to DFG. Background level of $P_i \approx 0.008$ is due to imperfect blocking of the pump light.
Fig. 4.
Fig. 4. Theoretical two photon JSI from CE-SPDC. The blue solid lines of unequal height show the function $|\phi (\omega _s,\omega _p-\omega _s)|^{2}$ as a function of $\omega _s$ for a constant $\omega _p$ . Black thick line shows the phase matching efficiency with the crystal tuned such that the degenerate modes, i.e., $\omega _i=\omega _s=\omega _p/2$ , are brightest. Red lines of equal height show $|T_s(\omega _s)|^{2}$ , the transmission of the FP filter. Graphs are plotted for the measured parameters of the bow-tie cavity, FP cavity and phase-matching bandwidth described in the text. Left graph shows the several clusters allowed by phase matching, with the FP cavity set to pass only the central cluster. Right graph shows closeup of the central cluster, with the FP cavity set to pass only the central line.
Fig. 5.
Fig. 5. FP filter assembly. (a) The FP filter consisting of one concave mirror, an annular spacer, and a plano mirror in face-to-face contact is housed in a (b) hollowed aluminum block and cemented around the edges with epoxy. (c) Vertical cross section of the filter assembly: aluminum box and heat sink are shown in grey, the Peltier element in red, the mirrors and spacer in shades of blue and the insulator in orange.
Fig. 6.
Fig. 6. Theoretical two photon JSI from CE-SPDC after the FP filter. Graphs as in Fig. 4, but $|\phi _{\textrm {filt}}(\omega _s, \omega _p-\omega _s)|^{2}$ is shown. This describes the JSI when the filter, described in subsection 3.3, is placed in the signal arm and no filter in the idler arm (so that $|T_i|$ = 1 ). The contribution of unwanted photons is 2.3 $\%$ within a window ±1 nm when the filter is set to transmit the brightest mode from the CE-SPDC.
Fig. 7.
Fig. 7. Measurement of the signal-idler cross correlation. We plot the un-normalised cross correlation function $G_{s,i}^{(2)}(\tau )$ . (a) Signal-idler coincidence time distribution from the CE-SPDC source. The interference between the multimode components results in a comb of peaks separated by the cavity round-trip time $T_\textrm {cav} \approx$ 2 ns, clearly resolved by the 1/625 ps TDC time resolution. (b) The same distribution measured on CE-SPDC output with FP filter on the signal channel. Absence of oscillations indicates absence of emission on modes spaced by less than 1/625 ps = 1.6 GHz.
Fig. 8.
Fig. 8. Singles detection of signal photons as FP filter resonance is scanned. The CE-SPDC is pumped with 4 mW and tuned such that, in the brightest cluster, signal photons are resonant to the $F=2$ to $F'=1$ transition of $^{87}$ Rb. The signal photons are passed through the FP filter and a Rb vapor cell and detected with an APD. Filter temperature is scanned in steps with 4 s acquisition at each temperature. Red filled region shows observed singles with the vapor cell at room temperature. Due to the 39.4 GHz FSR of the filter cavity, the three clusters within the SPDC bandwidth are visible in this scan of width $\approx$ 21 GHz (see text). Blue curve shows singles with the vapor cell at 90 °C. The modes from the brightest cluster are blocked by atomic absorption, with the singles count dropping to the background level. In contrast, the other two clusters are unaffected.
Fig. 9.
Fig. 9. Atomic vapor spectra acquired with CE-SPDC photons. Black curves show measured transmission of a weak laser through a heated, natural-abundance vapor cell. Violet curves show saturated absorption spectrum (right axes) with another cell for reference. Red disks and blue triangles show signal and idler transmission, respectively, through the heated cell. Each data point corresponds to an acquisition time of 12 s at 4 mW pump power, which yielded roughly 20,000 detections in transparent regions of the spectrum. The CE-SPDC photons were tuned as described in subsection 2.2 and filtered to single-mode as described in section 4. When possible, $\nu _{s}$ was stabilized to a feature of the saturated absorption spectrum, while $\nu _{i}$ was stabilized to (a) $\nu _{s} +$ 250 MHz or (b) $\nu _{s} -$ 170 MHz. At the edges of the spectrum $\nu _{s}$ was not actively stabilized, and horizontal error bars indicate the uncertainty in the estimated frequency of the lock light and consequently the signal/idler photons. Poisson distributed noise in the detected photons would contribute vertical error bars smaller than the symbols and are not shown.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

| ψ = d ω s d ω i ϕ ( ω s , ω i ) a ^ s ( ω s ) a ^ i ( ω i ) | 0 .
| ϕ ( ω s , ω i ) | 2 δ ( ω p ω i ω s ) sinc 2 ( Δ k L 2 ) | A s ( ω s ) | 2 | A i ( ω i ) | 2 ,
| A ϵ ( ω ) | 2 [ 1 + ( 2 F π ) 2 sin 2 ( ω 2 FSR ϵ ) ] 1 ,
Δ ν cluster = FSR s FSR i | Δ FSR | .
2 M + 1 = γ 4 π | Δ FSR | = FSR mean F | Δ FSR | .
| ϕ filt ( ω s , ω i ) | 2 = | ϕ ( ω s , ω i ) | 2 | T s ( ω s ) | 2 | T i ( ω i ) | 2 ,
| T ( ω ) | 2 T max 2 [ 1 + ( 2 F FP π ) 2 sin 2 ( ω 2 FSR FP ) ] 1 .
g s , i ( 2 ) ( τ ) E s ( t + τ ) E i ( t ) E i ( t ) E s ( t + τ ) E i ( t ) E i ( t ) E s ( t + τ ) E s ( t + τ ) ,
g s , i ( 2 ) ( τ ) { exp [ 1 2 γ s τ ] τ > 0 exp [ 1 2 γ i τ ] τ < 0 ,

Metrics