Abstract

In this work, we show a proof-of-principle benchtop single-photon light detection and ranging (LIDAR) depth imager at 2.3µm, utilizing superconducting nanowire single-photon detectors (SNSPDs). We fabricate and fiber-couple SNSPDs to exhibit enhanced photon counting performance in the mid-infrared. We present characterization results using an optical parametric oscillator source and deploy these detectors in a scanning LIDAR setup at 2.3µm wavelength. This demonstrates the viability of these detectors for future free-space photon counting applications in the mid-infrared where atmospheric absorption and background solar flux are low.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Microfiber-coupled superconducting nanowire single-photon detector for near-infrared wavelengths

Lixing You, Junjie Wu, Yingxin Xu, Xintong Hou, Wei Fang, Hao Li, Weijun Zhang, Lu Zhang, Xiaoyu Liu, Limin Tong, Zhen Wang, and Xiaoming Xie
Opt. Express 25(25) 31221-31229 (2017)

Quantum detector tomography of a time-multiplexed superconducting nanowire single-photon detector at telecom wavelengths

Chandra M. Natarajan, Lijian Zhang, Hendrik Coldenstrodt-Ronge, Gaia Donati, Sander N. Dorenbos, Val Zwiller, Ian A. Walmsley, and Robert H. Hadfield
Opt. Express 21(1) 893-902 (2013)

Multimode-fiber-coupled superconducting nanowire single-photon detectors with high detection efficiency and time resolution

Jin Chang, Iman Esmaeil Zadeh, Johannes W. N. Los, Julien Zichi, Andreas Fognini, Monique Gevers, Sander Dorenbos, Silvania F. Pereira, Paul Urbach, and Val Zwiller
Appl. Opt. 58(36) 9803-9807 (2019)

References

  • View by:
  • |
  • |
  • |

  1. M.-C. Amann, T. M. Bosch, M. Lescure, R. A. Myllylae, and M. Rioux, “Laser ranging: a critical review of unusual techniques for distance measurement,” Opt. Eng. 40(1), 10–20 (2001).
    [Crossref]
  2. G. S. Buller and A. Wallace, “Ranging and three-dimensional imaging using time-correlated single-photon counting and point-by-point acquisition,” IEEE J. Sel. Top. Quantum Electron. 13(4), 1006–1015 (2007).
    [Crossref]
  3. V. Kovaltchouk, G. Lolos, Z. Papandreou, and K. Wolbaum, “Comparison of a silicon photomultiplier to a traditional vacuum photomultiplier,” Nucl. Instrum. Methods Phys. Res., Sect. A 538(1-3), 408–415 (2005).
    [Crossref]
  4. M. Ghioni, A. Gulinatti, I. Rech, F. Zappa, and S. Cova, “Progress in silicon single-photon avalanche diodes,” IEEE J. Sel. Top. Quantum Electron. 13(4), 852–862 (2007).
    [Crossref]
  5. A. Y. Loudon, P. A. Hiskett, G. S. Buller, R. T. Carline, D. C. Herbert, W. Leong, and J. G. Rarity, “Enhancement of the infrared detection efficiency of silicon photon-counting avalanche photodiodes by use of silicon germanium absorbing layers,” Opt. Lett. 27(4), 219–221 (2002).
    [Crossref]
  6. F. Zappa, A. Tosi, and S. Cova, “InGaAs SPAD and electronics for low time jitter and low noise,” in Photon Counting Applications, Quantum Optics, and Quantum Cryptography, vol. 6583 (International Society for Optics and Photonics, 2007), p. 65830E.
  7. M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited review article: Single-photon sources and detectors,” Rev. Sci. Instrum. 82(7), 071101 (2011).
    [Crossref]
  8. B. Matveev, M. Aidaraliev, G. Gavrilov, N. Zotova, S. Karandashov, G. Sotnikova, N. Stus, G. Talalakin, N. Il’inskaya, and S. Aleksandrov, “Room temperature InAs photodiode–InGaAs led pairs for methane detection in the mid-IR,” Sens. Actuators, B 51(1-3), 233–237 (1998).
    [Crossref]
  9. M. B. Reine, “HgCdTe photodiodes for IR detection: A review,” in Photodetectors: Materials and Devices VI, vol. 4288 (International Society for Optics and Photonics, 2001), pp. 266–278.
  10. J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Room-temperature mid-infrared single-photon spectral imaging,” Nat. Photonics 6(11), 788–793 (2012).
    [Crossref]
  11. G. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
    [Crossref]
  12. F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
    [Crossref]
  13. H. Shibata, K. Shimizu, H. Takesue, and Y. Tokura, “Ultimate low system dark-count rate for superconducting nanowire single-photon detector,” Opt. Lett. 40(14), 3428–3431 (2015).
    [Crossref]
  14. B. Korzh, Q. Zhao, S. Frasca, J. Allmaras, T. Autry, E. Bersin, M. Colangelo, G. Crouch, A. Dane, T. Gerrits, F. Marsili, G. Moody, E. Ramirez, J. Rezac, M. Stevens, E. Wollman, D. Zhu, P. Hale, K. Silverman, R. Mirin, S. Nam, M. Shaw, and K. Berggren, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector,” arXiv preprint arXiv:1804.06839 (2018).
  15. F. Marsili, F. Bellei, F. Najafi, A. E. Dane, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Efficient single photon detection from 500 nm to 5 µm wavelength,” Nano Lett. 12(9), 4799–4804 (2012).
    [Crossref]
  16. V. Verma, A. Lita, B. Korzh, E. Wollman, M. Shaw, R. Mirin, and S. Nam, “Towards single-photon spectroscopy in the mid-infrared using superconducting nanowire single-photon detectors,” in Advanced Photon Counting Techniques XIII, vol. 10978 (International Society for Optics and Photonics, 2019), p. 109780N.
  17. L. Chen, D. Schwarzer, J. A. Lau, V. B. Verma, M. J. Stevens, F. Marsili, R. P. Mirin, S. W. Nam, and A. M. Wodtke, “Ultra-sensitive mid-infrared emission spectrometer with sub-ns temporal resolution,” Opt. Express 26(12), 14859–14868 (2018).
    [Crossref]
  18. R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3(12), 696–705 (2009).
    [Crossref]
  19. C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Technol. 25(6), 063001 (2012).
    [Crossref]
  20. M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett. 89(3), 031109 (2006).
    [Crossref]
  21. M. Shaw, F. Marsili, A. Beyer, J. Stern, G. Resta, P. Ravindran, S. Chang, J. Bardin, D. Russell, J. Gin, F. Patawaran, V. Verma, R. Mirin, S. Nam, and W. Farr, “Arrays of WSi superconducting nanowire single photon detectors for deep-space optical communications,” in 2015 Conference on Lasers and Electro-Optics (CLEO), (IEEE, 2015), pp, 1–2.
  22. A. McCarthy, N. J. Krichel, N. R. Gemmell, X. Ren, M. G. Tanner, S. N. Dorenbos, V. Zwiller, R. H. Hadfield, and G. S. Buller, “Kilometer-range, high resolution depth imaging via 1560 nm wavelength single-photon detection,” Opt. Express 21(7), 8904–8915 (2013).
    [Crossref]
  23. H. Zhou, Y. He, L. You, S. Chen, W. Zhang, J. Wu, Z. Wang, and X. Xie, “Few-photon imaging at 1550 nm using a low-timing-jitter superconducting nanowire single-photon detector,” Opt. Express 23(11), 14603–14611 (2015).
    [Crossref]
  24. J. Zhu, Y. Chen, L. Zhang, X. Jia, Z. Feng, G. Wu, X. Yan, J. Zhai, Y. Wu, Q. Chen, X. Zhou, Z. Wang, C. Zhang, L. Kang, J. Chen, and P. Wu, “Demonstration of measuring sea fog with an SNSPD-based lidar system,” Sci. Rep. 7(1), 15113 (2017).
    [Crossref]
  25. D. Salvoni, M. Ejrnaes, L. Parlato, A. Sannino, A. Boselli, G. Pepe, R. Cristiano, and X. Wang, “Lidar techniques for a SNSPD-based measurement,” in Journal of Physics: Conference Series, vol. 1182 (IOP Publishing, 2019), p. 012014.
  26. American Society for Testing and Materials. Committee G03 on Weathering and Durability, Standard tables for reference solar spectral irradiances: direct normal and hemispherical on 37° tilted surface (ASTM international, 2003).
  27. R. V. Kochanov, I. Gordon, L. Rothman, P. Wcisło, C. Hill, and J. Wilzewski, “Hitran application programming interface (hapi): A comprehensive approach to working with spectroscopic data,” J. Quant. Spectrosc. Radiat. Transfer 177, 15–30 (2016).
    [Crossref]
  28. S. Pellegrini, G. S. Buller, J. M. Smith, A. M. Wallace, and S. Cova, “Laser-based distance measurement using picosecond resolution time-correlated single-photon counting,” Meas. Sci. Technol. 11(6), 712–716 (2000).
    [Crossref]
  29. S. Prabhakar, T. Shields, A. Dada, M. Ebrahim, G. G. Taylor, D. Morozov, K. Erotokritou, S. Miki, M. Yabuno, H. Terai, C. Gawith, M. Kues, L. Caspani, R. H. Hadfield, and M. Clerici, “Two-photon quantum interference and entanglement at 2 µm,” arXiv preprint arXiv:1906.02082 (2019).
  30. A. Divochiy, M. Misiaszek, Y. Vakhtomin, P. Morozov, K. Smirnov, P. Zolotov, and P. Kolenderski, “Single photon detection system for visible and infrared spectrum range,” Opt. Lett. 43(24), 6085–6088 (2018).
    [Crossref]
  31. F. Marsili, V. Verma, M. Stevens, J. Stern, M. Shaw, A. Miller, D. Schwarzer, A. Wodtke, R. Mirin, and S. Nam, “Mid-infrared single-photon detection with tungsten silicide superconducting nanowires,” in CLEO: Science and Innovations, (Optical Society of America, 2013), pp. CTu1H–1.
  32. P. S. Kuo, “Using silica fiber coupling to extend superconducting nanowire single-photon detectors into the infrared,” OSA Continuum 1(4), 1260–1266 (2018).
    [Crossref]
  33. H. Shibata, K. Shimizu, H. Takesue, and Y. Tokura, “Superconducting nanowire single-photon detector with ultralow dark count rate using cold optical filters,” Appl. Phys. Express 6(7), 072801 (2013).
    [Crossref]
  34. F. Najafi, “Timing performance of superconducting nanowire single-photon detectors,” Ph.D. thesis, Massachusetts Institute of Technology, (2015).
  35. M. Sidorova, A. Semenov, H.-W. Húbers, I. Charaev, A. Kuzmin, S. Doerner, and M. Siegel, “Physical mechanisms of timing jitter in photon detection by current-carrying superconducting nanowires,” Phys. Rev. B 96(18), 184504 (2017).
    [Crossref]
  36. R. H. Hadfield and G. Johansson, Superconducting devices in quantum optics (Springer, 2016).
  37. S. Hernandez-Marin, A. M. Wallace, and G. J. Gibson, “Multilayered 3d lidar image construction using spatial models in a bayesian framework,” IEEE Trans. Pattern Anal. Mach. Intell. 30(6), 1028–1040 (2008).
    [Crossref]
  38. S. Hernandez-Marin, A. M. Wallace, and G. J. Gibson, “Bayesian analysis of lidar signals with multiple returns,” IEEE Trans. Pattern Anal. Mach. Intell. 29(12), 2170–2180 (2007).
    [Crossref]
  39. A. Banerjee, R. M. Heath, D. Morozov, D. Hemakumara, U. Nasti, I. Thayne, and R. H. Hadfield, “Optical properties of refractory metal based thin films,” Opt. Mater. Express 8(8), 2072–2088 (2018).
    [Crossref]
  40. A. M. Kowalevicz and F. Bucholtz, “Beam divergence from an smf-28 optical fiber,” Tech. rep., Naval Research Lab, Washington DC, (2006).
  41. S. Miki, T. Yamashita, H. Terai, and Z. Wang, “High performance fiber-coupled NbTiN superconducting nanowire single photon detectors with Gifford-McMahon cryocooler,” Opt. Express 21(8), 10208–10214 (2013).
    [Crossref]
  42. C. Zhang, W. Zhang, J. Huang, L. You, H. Li, C. lv, T. Sugihara, M. Watanabe, H. Zhou, Z. Wang, and X. Xie, “NbN superconducting nanowire single-photon detector with an active area of 300 µm-in-diameter,” AIP Adv. 9(7), 075214 (2019).
    [Crossref]
  43. V. Verma, F. Marsili, B. Baek, A. Lita, T. Gerrits, J. Stern, R. Mirin, and S. W. Nam, “55% system detection efficiency with self-aligned WSi superconducting nanowire single-photon detectors,” in 2012 Conference on Lasers and Electro-Optics (CLEO), (IEEE, 2012), pp. 1–2.
  44. W. Zhang, Q. Jia, L. You, X. Ou, H. Huang, L. Zhang, H. Li, Z. Wang, and X. Xie, “Saturating intrinsic detection efficiency of superconducting nanowire single-photon detectors via defect engineering,” Phys. Rev. Appl. 12(4), 044040 (2019).
    [Crossref]
  45. O. Romanovskii, “Airborne DIAL lidar gas analysis of the atmosphere by middle IR gas lasers: Numerical modeling,” Opt. Mem. Neural Networks 17(2), 131–137 (2008).
    [Crossref]
  46. L. You, X. Yang, Y. He, W. Zhang, D. Liu, W. Zhang, L. Zhang, L. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Adv. 3(7), 072135 (2013).
    [Crossref]
  47. J. R. Clem and K. K. Berggren, “Geometry-dependent critical currents in superconducting nanocircuits,” Phys. Rev. B 84(17), 174510 (2011).
    [Crossref]
  48. A. E. Lita, V. B. Verma, R. D. Horansky, J. M. Shainline, R. P. Mirin, and S. Nam, “Materials development for high efficiency superconducting nanowire single-photon detectors,” MRS Online Proc. Libr. Arch. 1807, 1–6 (2015).
    [Crossref]
  49. N. Calandri, Q.-Y. Zhao, D. Zhu, A. Dane, and K. K. Berggren, “Superconducting nanowire detector jitter limited by detector geometry,” Appl. Phys. Lett. 109(15), 152601 (2016).
    [Crossref]

2019 (2)

C. Zhang, W. Zhang, J. Huang, L. You, H. Li, C. lv, T. Sugihara, M. Watanabe, H. Zhou, Z. Wang, and X. Xie, “NbN superconducting nanowire single-photon detector with an active area of 300 µm-in-diameter,” AIP Adv. 9(7), 075214 (2019).
[Crossref]

W. Zhang, Q. Jia, L. You, X. Ou, H. Huang, L. Zhang, H. Li, Z. Wang, and X. Xie, “Saturating intrinsic detection efficiency of superconducting nanowire single-photon detectors via defect engineering,” Phys. Rev. Appl. 12(4), 044040 (2019).
[Crossref]

2018 (4)

2017 (2)

M. Sidorova, A. Semenov, H.-W. Húbers, I. Charaev, A. Kuzmin, S. Doerner, and M. Siegel, “Physical mechanisms of timing jitter in photon detection by current-carrying superconducting nanowires,” Phys. Rev. B 96(18), 184504 (2017).
[Crossref]

J. Zhu, Y. Chen, L. Zhang, X. Jia, Z. Feng, G. Wu, X. Yan, J. Zhai, Y. Wu, Q. Chen, X. Zhou, Z. Wang, C. Zhang, L. Kang, J. Chen, and P. Wu, “Demonstration of measuring sea fog with an SNSPD-based lidar system,” Sci. Rep. 7(1), 15113 (2017).
[Crossref]

2016 (2)

R. V. Kochanov, I. Gordon, L. Rothman, P. Wcisło, C. Hill, and J. Wilzewski, “Hitran application programming interface (hapi): A comprehensive approach to working with spectroscopic data,” J. Quant. Spectrosc. Radiat. Transfer 177, 15–30 (2016).
[Crossref]

N. Calandri, Q.-Y. Zhao, D. Zhu, A. Dane, and K. K. Berggren, “Superconducting nanowire detector jitter limited by detector geometry,” Appl. Phys. Lett. 109(15), 152601 (2016).
[Crossref]

2015 (3)

2013 (5)

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

A. McCarthy, N. J. Krichel, N. R. Gemmell, X. Ren, M. G. Tanner, S. N. Dorenbos, V. Zwiller, R. H. Hadfield, and G. S. Buller, “Kilometer-range, high resolution depth imaging via 1560 nm wavelength single-photon detection,” Opt. Express 21(7), 8904–8915 (2013).
[Crossref]

H. Shibata, K. Shimizu, H. Takesue, and Y. Tokura, “Superconducting nanowire single-photon detector with ultralow dark count rate using cold optical filters,” Appl. Phys. Express 6(7), 072801 (2013).
[Crossref]

L. You, X. Yang, Y. He, W. Zhang, D. Liu, W. Zhang, L. Zhang, L. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Adv. 3(7), 072135 (2013).
[Crossref]

S. Miki, T. Yamashita, H. Terai, and Z. Wang, “High performance fiber-coupled NbTiN superconducting nanowire single photon detectors with Gifford-McMahon cryocooler,” Opt. Express 21(8), 10208–10214 (2013).
[Crossref]

2012 (3)

F. Marsili, F. Bellei, F. Najafi, A. E. Dane, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Efficient single photon detection from 500 nm to 5 µm wavelength,” Nano Lett. 12(9), 4799–4804 (2012).
[Crossref]

C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Technol. 25(6), 063001 (2012).
[Crossref]

J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Room-temperature mid-infrared single-photon spectral imaging,” Nat. Photonics 6(11), 788–793 (2012).
[Crossref]

2011 (2)

M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited review article: Single-photon sources and detectors,” Rev. Sci. Instrum. 82(7), 071101 (2011).
[Crossref]

J. R. Clem and K. K. Berggren, “Geometry-dependent critical currents in superconducting nanocircuits,” Phys. Rev. B 84(17), 174510 (2011).
[Crossref]

2009 (1)

R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3(12), 696–705 (2009).
[Crossref]

2008 (2)

O. Romanovskii, “Airborne DIAL lidar gas analysis of the atmosphere by middle IR gas lasers: Numerical modeling,” Opt. Mem. Neural Networks 17(2), 131–137 (2008).
[Crossref]

S. Hernandez-Marin, A. M. Wallace, and G. J. Gibson, “Multilayered 3d lidar image construction using spatial models in a bayesian framework,” IEEE Trans. Pattern Anal. Mach. Intell. 30(6), 1028–1040 (2008).
[Crossref]

2007 (3)

S. Hernandez-Marin, A. M. Wallace, and G. J. Gibson, “Bayesian analysis of lidar signals with multiple returns,” IEEE Trans. Pattern Anal. Mach. Intell. 29(12), 2170–2180 (2007).
[Crossref]

G. S. Buller and A. Wallace, “Ranging and three-dimensional imaging using time-correlated single-photon counting and point-by-point acquisition,” IEEE J. Sel. Top. Quantum Electron. 13(4), 1006–1015 (2007).
[Crossref]

M. Ghioni, A. Gulinatti, I. Rech, F. Zappa, and S. Cova, “Progress in silicon single-photon avalanche diodes,” IEEE J. Sel. Top. Quantum Electron. 13(4), 852–862 (2007).
[Crossref]

2006 (1)

M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett. 89(3), 031109 (2006).
[Crossref]

2005 (1)

V. Kovaltchouk, G. Lolos, Z. Papandreou, and K. Wolbaum, “Comparison of a silicon photomultiplier to a traditional vacuum photomultiplier,” Nucl. Instrum. Methods Phys. Res., Sect. A 538(1-3), 408–415 (2005).
[Crossref]

2002 (1)

2001 (2)

G. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
[Crossref]

M.-C. Amann, T. M. Bosch, M. Lescure, R. A. Myllylae, and M. Rioux, “Laser ranging: a critical review of unusual techniques for distance measurement,” Opt. Eng. 40(1), 10–20 (2001).
[Crossref]

2000 (1)

S. Pellegrini, G. S. Buller, J. M. Smith, A. M. Wallace, and S. Cova, “Laser-based distance measurement using picosecond resolution time-correlated single-photon counting,” Meas. Sci. Technol. 11(6), 712–716 (2000).
[Crossref]

1998 (1)

B. Matveev, M. Aidaraliev, G. Gavrilov, N. Zotova, S. Karandashov, G. Sotnikova, N. Stus, G. Talalakin, N. Il’inskaya, and S. Aleksandrov, “Room temperature InAs photodiode–InGaAs led pairs for methane detection in the mid-IR,” Sens. Actuators, B 51(1-3), 233–237 (1998).
[Crossref]

Aidaraliev, M.

B. Matveev, M. Aidaraliev, G. Gavrilov, N. Zotova, S. Karandashov, G. Sotnikova, N. Stus, G. Talalakin, N. Il’inskaya, and S. Aleksandrov, “Room temperature InAs photodiode–InGaAs led pairs for methane detection in the mid-IR,” Sens. Actuators, B 51(1-3), 233–237 (1998).
[Crossref]

Aleksandrov, S.

B. Matveev, M. Aidaraliev, G. Gavrilov, N. Zotova, S. Karandashov, G. Sotnikova, N. Stus, G. Talalakin, N. Il’inskaya, and S. Aleksandrov, “Room temperature InAs photodiode–InGaAs led pairs for methane detection in the mid-IR,” Sens. Actuators, B 51(1-3), 233–237 (1998).
[Crossref]

Allmaras, J.

B. Korzh, Q. Zhao, S. Frasca, J. Allmaras, T. Autry, E. Bersin, M. Colangelo, G. Crouch, A. Dane, T. Gerrits, F. Marsili, G. Moody, E. Ramirez, J. Rezac, M. Stevens, E. Wollman, D. Zhu, P. Hale, K. Silverman, R. Mirin, S. Nam, M. Shaw, and K. Berggren, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector,” arXiv preprint arXiv:1804.06839 (2018).

Amann, M.-C.

M.-C. Amann, T. M. Bosch, M. Lescure, R. A. Myllylae, and M. Rioux, “Laser ranging: a critical review of unusual techniques for distance measurement,” Opt. Eng. 40(1), 10–20 (2001).
[Crossref]

Autry, T.

B. Korzh, Q. Zhao, S. Frasca, J. Allmaras, T. Autry, E. Bersin, M. Colangelo, G. Crouch, A. Dane, T. Gerrits, F. Marsili, G. Moody, E. Ramirez, J. Rezac, M. Stevens, E. Wollman, D. Zhu, P. Hale, K. Silverman, R. Mirin, S. Nam, M. Shaw, and K. Berggren, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector,” arXiv preprint arXiv:1804.06839 (2018).

Baek, B.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

V. Verma, F. Marsili, B. Baek, A. Lita, T. Gerrits, J. Stern, R. Mirin, and S. W. Nam, “55% system detection efficiency with self-aligned WSi superconducting nanowire single-photon detectors,” in 2012 Conference on Lasers and Electro-Optics (CLEO), (IEEE, 2012), pp. 1–2.

Banerjee, A.

Bardin, J.

M. Shaw, F. Marsili, A. Beyer, J. Stern, G. Resta, P. Ravindran, S. Chang, J. Bardin, D. Russell, J. Gin, F. Patawaran, V. Verma, R. Mirin, S. Nam, and W. Farr, “Arrays of WSi superconducting nanowire single photon detectors for deep-space optical communications,” in 2015 Conference on Lasers and Electro-Optics (CLEO), (IEEE, 2015), pp, 1–2.

Bellei, F.

F. Marsili, F. Bellei, F. Najafi, A. E. Dane, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Efficient single photon detection from 500 nm to 5 µm wavelength,” Nano Lett. 12(9), 4799–4804 (2012).
[Crossref]

Berggren, K.

B. Korzh, Q. Zhao, S. Frasca, J. Allmaras, T. Autry, E. Bersin, M. Colangelo, G. Crouch, A. Dane, T. Gerrits, F. Marsili, G. Moody, E. Ramirez, J. Rezac, M. Stevens, E. Wollman, D. Zhu, P. Hale, K. Silverman, R. Mirin, S. Nam, M. Shaw, and K. Berggren, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector,” arXiv preprint arXiv:1804.06839 (2018).

Berggren, K. K.

N. Calandri, Q.-Y. Zhao, D. Zhu, A. Dane, and K. K. Berggren, “Superconducting nanowire detector jitter limited by detector geometry,” Appl. Phys. Lett. 109(15), 152601 (2016).
[Crossref]

F. Marsili, F. Bellei, F. Najafi, A. E. Dane, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Efficient single photon detection from 500 nm to 5 µm wavelength,” Nano Lett. 12(9), 4799–4804 (2012).
[Crossref]

J. R. Clem and K. K. Berggren, “Geometry-dependent critical currents in superconducting nanocircuits,” Phys. Rev. B 84(17), 174510 (2011).
[Crossref]

Bersin, E.

B. Korzh, Q. Zhao, S. Frasca, J. Allmaras, T. Autry, E. Bersin, M. Colangelo, G. Crouch, A. Dane, T. Gerrits, F. Marsili, G. Moody, E. Ramirez, J. Rezac, M. Stevens, E. Wollman, D. Zhu, P. Hale, K. Silverman, R. Mirin, S. Nam, M. Shaw, and K. Berggren, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector,” arXiv preprint arXiv:1804.06839 (2018).

Beyer, A.

M. Shaw, F. Marsili, A. Beyer, J. Stern, G. Resta, P. Ravindran, S. Chang, J. Bardin, D. Russell, J. Gin, F. Patawaran, V. Verma, R. Mirin, S. Nam, and W. Farr, “Arrays of WSi superconducting nanowire single photon detectors for deep-space optical communications,” in 2015 Conference on Lasers and Electro-Optics (CLEO), (IEEE, 2015), pp, 1–2.

Bosch, T. M.

M.-C. Amann, T. M. Bosch, M. Lescure, R. A. Myllylae, and M. Rioux, “Laser ranging: a critical review of unusual techniques for distance measurement,” Opt. Eng. 40(1), 10–20 (2001).
[Crossref]

Boselli, A.

D. Salvoni, M. Ejrnaes, L. Parlato, A. Sannino, A. Boselli, G. Pepe, R. Cristiano, and X. Wang, “Lidar techniques for a SNSPD-based measurement,” in Journal of Physics: Conference Series, vol. 1182 (IOP Publishing, 2019), p. 012014.

Bucholtz, F.

A. M. Kowalevicz and F. Bucholtz, “Beam divergence from an smf-28 optical fiber,” Tech. rep., Naval Research Lab, Washington DC, (2006).

Buller, G. S.

A. McCarthy, N. J. Krichel, N. R. Gemmell, X. Ren, M. G. Tanner, S. N. Dorenbos, V. Zwiller, R. H. Hadfield, and G. S. Buller, “Kilometer-range, high resolution depth imaging via 1560 nm wavelength single-photon detection,” Opt. Express 21(7), 8904–8915 (2013).
[Crossref]

G. S. Buller and A. Wallace, “Ranging and three-dimensional imaging using time-correlated single-photon counting and point-by-point acquisition,” IEEE J. Sel. Top. Quantum Electron. 13(4), 1006–1015 (2007).
[Crossref]

A. Y. Loudon, P. A. Hiskett, G. S. Buller, R. T. Carline, D. C. Herbert, W. Leong, and J. G. Rarity, “Enhancement of the infrared detection efficiency of silicon photon-counting avalanche photodiodes by use of silicon germanium absorbing layers,” Opt. Lett. 27(4), 219–221 (2002).
[Crossref]

S. Pellegrini, G. S. Buller, J. M. Smith, A. M. Wallace, and S. Cova, “Laser-based distance measurement using picosecond resolution time-correlated single-photon counting,” Meas. Sci. Technol. 11(6), 712–716 (2000).
[Crossref]

Calandri, N.

N. Calandri, Q.-Y. Zhao, D. Zhu, A. Dane, and K. K. Berggren, “Superconducting nanowire detector jitter limited by detector geometry,” Appl. Phys. Lett. 109(15), 152601 (2016).
[Crossref]

Carline, R. T.

Caspani, L.

S. Prabhakar, T. Shields, A. Dada, M. Ebrahim, G. G. Taylor, D. Morozov, K. Erotokritou, S. Miki, M. Yabuno, H. Terai, C. Gawith, M. Kues, L. Caspani, R. H. Hadfield, and M. Clerici, “Two-photon quantum interference and entanglement at 2 µm,” arXiv preprint arXiv:1906.02082 (2019).

Chang, S.

M. Shaw, F. Marsili, A. Beyer, J. Stern, G. Resta, P. Ravindran, S. Chang, J. Bardin, D. Russell, J. Gin, F. Patawaran, V. Verma, R. Mirin, S. Nam, and W. Farr, “Arrays of WSi superconducting nanowire single photon detectors for deep-space optical communications,” in 2015 Conference on Lasers and Electro-Optics (CLEO), (IEEE, 2015), pp, 1–2.

Charaev, I.

M. Sidorova, A. Semenov, H.-W. Húbers, I. Charaev, A. Kuzmin, S. Doerner, and M. Siegel, “Physical mechanisms of timing jitter in photon detection by current-carrying superconducting nanowires,” Phys. Rev. B 96(18), 184504 (2017).
[Crossref]

Chen, J.

J. Zhu, Y. Chen, L. Zhang, X. Jia, Z. Feng, G. Wu, X. Yan, J. Zhai, Y. Wu, Q. Chen, X. Zhou, Z. Wang, C. Zhang, L. Kang, J. Chen, and P. Wu, “Demonstration of measuring sea fog with an SNSPD-based lidar system,” Sci. Rep. 7(1), 15113 (2017).
[Crossref]

Chen, L.

Chen, Q.

J. Zhu, Y. Chen, L. Zhang, X. Jia, Z. Feng, G. Wu, X. Yan, J. Zhai, Y. Wu, Q. Chen, X. Zhou, Z. Wang, C. Zhang, L. Kang, J. Chen, and P. Wu, “Demonstration of measuring sea fog with an SNSPD-based lidar system,” Sci. Rep. 7(1), 15113 (2017).
[Crossref]

Chen, S.

H. Zhou, Y. He, L. You, S. Chen, W. Zhang, J. Wu, Z. Wang, and X. Xie, “Few-photon imaging at 1550 nm using a low-timing-jitter superconducting nanowire single-photon detector,” Opt. Express 23(11), 14603–14611 (2015).
[Crossref]

L. You, X. Yang, Y. He, W. Zhang, D. Liu, W. Zhang, L. Zhang, L. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Adv. 3(7), 072135 (2013).
[Crossref]

Chen, Y.

J. Zhu, Y. Chen, L. Zhang, X. Jia, Z. Feng, G. Wu, X. Yan, J. Zhai, Y. Wu, Q. Chen, X. Zhou, Z. Wang, C. Zhang, L. Kang, J. Chen, and P. Wu, “Demonstration of measuring sea fog with an SNSPD-based lidar system,” Sci. Rep. 7(1), 15113 (2017).
[Crossref]

Chulkova, G.

G. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
[Crossref]

Clem, J. R.

J. R. Clem and K. K. Berggren, “Geometry-dependent critical currents in superconducting nanocircuits,” Phys. Rev. B 84(17), 174510 (2011).
[Crossref]

Clerici, M.

S. Prabhakar, T. Shields, A. Dada, M. Ebrahim, G. G. Taylor, D. Morozov, K. Erotokritou, S. Miki, M. Yabuno, H. Terai, C. Gawith, M. Kues, L. Caspani, R. H. Hadfield, and M. Clerici, “Two-photon quantum interference and entanglement at 2 µm,” arXiv preprint arXiv:1906.02082 (2019).

Colangelo, M.

B. Korzh, Q. Zhao, S. Frasca, J. Allmaras, T. Autry, E. Bersin, M. Colangelo, G. Crouch, A. Dane, T. Gerrits, F. Marsili, G. Moody, E. Ramirez, J. Rezac, M. Stevens, E. Wollman, D. Zhu, P. Hale, K. Silverman, R. Mirin, S. Nam, M. Shaw, and K. Berggren, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector,” arXiv preprint arXiv:1804.06839 (2018).

Cova, S.

M. Ghioni, A. Gulinatti, I. Rech, F. Zappa, and S. Cova, “Progress in silicon single-photon avalanche diodes,” IEEE J. Sel. Top. Quantum Electron. 13(4), 852–862 (2007).
[Crossref]

S. Pellegrini, G. S. Buller, J. M. Smith, A. M. Wallace, and S. Cova, “Laser-based distance measurement using picosecond resolution time-correlated single-photon counting,” Meas. Sci. Technol. 11(6), 712–716 (2000).
[Crossref]

F. Zappa, A. Tosi, and S. Cova, “InGaAs SPAD and electronics for low time jitter and low noise,” in Photon Counting Applications, Quantum Optics, and Quantum Cryptography, vol. 6583 (International Society for Optics and Photonics, 2007), p. 65830E.

Cristiano, R.

D. Salvoni, M. Ejrnaes, L. Parlato, A. Sannino, A. Boselli, G. Pepe, R. Cristiano, and X. Wang, “Lidar techniques for a SNSPD-based measurement,” in Journal of Physics: Conference Series, vol. 1182 (IOP Publishing, 2019), p. 012014.

Crouch, G.

B. Korzh, Q. Zhao, S. Frasca, J. Allmaras, T. Autry, E. Bersin, M. Colangelo, G. Crouch, A. Dane, T. Gerrits, F. Marsili, G. Moody, E. Ramirez, J. Rezac, M. Stevens, E. Wollman, D. Zhu, P. Hale, K. Silverman, R. Mirin, S. Nam, M. Shaw, and K. Berggren, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector,” arXiv preprint arXiv:1804.06839 (2018).

Dada, A.

S. Prabhakar, T. Shields, A. Dada, M. Ebrahim, G. G. Taylor, D. Morozov, K. Erotokritou, S. Miki, M. Yabuno, H. Terai, C. Gawith, M. Kues, L. Caspani, R. H. Hadfield, and M. Clerici, “Two-photon quantum interference and entanglement at 2 µm,” arXiv preprint arXiv:1906.02082 (2019).

Dam, J. S.

J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Room-temperature mid-infrared single-photon spectral imaging,” Nat. Photonics 6(11), 788–793 (2012).
[Crossref]

Dane, A.

N. Calandri, Q.-Y. Zhao, D. Zhu, A. Dane, and K. K. Berggren, “Superconducting nanowire detector jitter limited by detector geometry,” Appl. Phys. Lett. 109(15), 152601 (2016).
[Crossref]

B. Korzh, Q. Zhao, S. Frasca, J. Allmaras, T. Autry, E. Bersin, M. Colangelo, G. Crouch, A. Dane, T. Gerrits, F. Marsili, G. Moody, E. Ramirez, J. Rezac, M. Stevens, E. Wollman, D. Zhu, P. Hale, K. Silverman, R. Mirin, S. Nam, M. Shaw, and K. Berggren, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector,” arXiv preprint arXiv:1804.06839 (2018).

Dane, A. E.

F. Marsili, F. Bellei, F. Najafi, A. E. Dane, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Efficient single photon detection from 500 nm to 5 µm wavelength,” Nano Lett. 12(9), 4799–4804 (2012).
[Crossref]

Dauler, E. A.

F. Marsili, F. Bellei, F. Najafi, A. E. Dane, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Efficient single photon detection from 500 nm to 5 µm wavelength,” Nano Lett. 12(9), 4799–4804 (2012).
[Crossref]

Divochiy, A.

Doerner, S.

M. Sidorova, A. Semenov, H.-W. Húbers, I. Charaev, A. Kuzmin, S. Doerner, and M. Siegel, “Physical mechanisms of timing jitter in photon detection by current-carrying superconducting nanowires,” Phys. Rev. B 96(18), 184504 (2017).
[Crossref]

Dorenbos, S. N.

Dzardanov, A.

G. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
[Crossref]

Ebrahim, M.

S. Prabhakar, T. Shields, A. Dada, M. Ebrahim, G. G. Taylor, D. Morozov, K. Erotokritou, S. Miki, M. Yabuno, H. Terai, C. Gawith, M. Kues, L. Caspani, R. H. Hadfield, and M. Clerici, “Two-photon quantum interference and entanglement at 2 µm,” arXiv preprint arXiv:1906.02082 (2019).

Eisaman, M. D.

M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited review article: Single-photon sources and detectors,” Rev. Sci. Instrum. 82(7), 071101 (2011).
[Crossref]

Ejrnaes, M.

D. Salvoni, M. Ejrnaes, L. Parlato, A. Sannino, A. Boselli, G. Pepe, R. Cristiano, and X. Wang, “Lidar techniques for a SNSPD-based measurement,” in Journal of Physics: Conference Series, vol. 1182 (IOP Publishing, 2019), p. 012014.

Erotokritou, K.

S. Prabhakar, T. Shields, A. Dada, M. Ebrahim, G. G. Taylor, D. Morozov, K. Erotokritou, S. Miki, M. Yabuno, H. Terai, C. Gawith, M. Kues, L. Caspani, R. H. Hadfield, and M. Clerici, “Two-photon quantum interference and entanglement at 2 µm,” arXiv preprint arXiv:1906.02082 (2019).

Fan, J.

M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited review article: Single-photon sources and detectors,” Rev. Sci. Instrum. 82(7), 071101 (2011).
[Crossref]

Farr, W.

M. Shaw, F. Marsili, A. Beyer, J. Stern, G. Resta, P. Ravindran, S. Chang, J. Bardin, D. Russell, J. Gin, F. Patawaran, V. Verma, R. Mirin, S. Nam, and W. Farr, “Arrays of WSi superconducting nanowire single photon detectors for deep-space optical communications,” in 2015 Conference on Lasers and Electro-Optics (CLEO), (IEEE, 2015), pp, 1–2.

Feng, Z.

J. Zhu, Y. Chen, L. Zhang, X. Jia, Z. Feng, G. Wu, X. Yan, J. Zhai, Y. Wu, Q. Chen, X. Zhou, Z. Wang, C. Zhang, L. Kang, J. Chen, and P. Wu, “Demonstration of measuring sea fog with an SNSPD-based lidar system,” Sci. Rep. 7(1), 15113 (2017).
[Crossref]

Frasca, S.

B. Korzh, Q. Zhao, S. Frasca, J. Allmaras, T. Autry, E. Bersin, M. Colangelo, G. Crouch, A. Dane, T. Gerrits, F. Marsili, G. Moody, E. Ramirez, J. Rezac, M. Stevens, E. Wollman, D. Zhu, P. Hale, K. Silverman, R. Mirin, S. Nam, M. Shaw, and K. Berggren, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector,” arXiv preprint arXiv:1804.06839 (2018).

Gavrilov, G.

B. Matveev, M. Aidaraliev, G. Gavrilov, N. Zotova, S. Karandashov, G. Sotnikova, N. Stus, G. Talalakin, N. Il’inskaya, and S. Aleksandrov, “Room temperature InAs photodiode–InGaAs led pairs for methane detection in the mid-IR,” Sens. Actuators, B 51(1-3), 233–237 (1998).
[Crossref]

Gawith, C.

S. Prabhakar, T. Shields, A. Dada, M. Ebrahim, G. G. Taylor, D. Morozov, K. Erotokritou, S. Miki, M. Yabuno, H. Terai, C. Gawith, M. Kues, L. Caspani, R. H. Hadfield, and M. Clerici, “Two-photon quantum interference and entanglement at 2 µm,” arXiv preprint arXiv:1906.02082 (2019).

Gemmell, N. R.

Gerrits, T.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

V. Verma, F. Marsili, B. Baek, A. Lita, T. Gerrits, J. Stern, R. Mirin, and S. W. Nam, “55% system detection efficiency with self-aligned WSi superconducting nanowire single-photon detectors,” in 2012 Conference on Lasers and Electro-Optics (CLEO), (IEEE, 2012), pp. 1–2.

B. Korzh, Q. Zhao, S. Frasca, J. Allmaras, T. Autry, E. Bersin, M. Colangelo, G. Crouch, A. Dane, T. Gerrits, F. Marsili, G. Moody, E. Ramirez, J. Rezac, M. Stevens, E. Wollman, D. Zhu, P. Hale, K. Silverman, R. Mirin, S. Nam, M. Shaw, and K. Berggren, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector,” arXiv preprint arXiv:1804.06839 (2018).

Ghioni, M.

M. Ghioni, A. Gulinatti, I. Rech, F. Zappa, and S. Cova, “Progress in silicon single-photon avalanche diodes,” IEEE J. Sel. Top. Quantum Electron. 13(4), 852–862 (2007).
[Crossref]

Gibson, G. J.

S. Hernandez-Marin, A. M. Wallace, and G. J. Gibson, “Multilayered 3d lidar image construction using spatial models in a bayesian framework,” IEEE Trans. Pattern Anal. Mach. Intell. 30(6), 1028–1040 (2008).
[Crossref]

S. Hernandez-Marin, A. M. Wallace, and G. J. Gibson, “Bayesian analysis of lidar signals with multiple returns,” IEEE Trans. Pattern Anal. Mach. Intell. 29(12), 2170–2180 (2007).
[Crossref]

Gin, J.

M. Shaw, F. Marsili, A. Beyer, J. Stern, G. Resta, P. Ravindran, S. Chang, J. Bardin, D. Russell, J. Gin, F. Patawaran, V. Verma, R. Mirin, S. Nam, and W. Farr, “Arrays of WSi superconducting nanowire single photon detectors for deep-space optical communications,” in 2015 Conference on Lasers and Electro-Optics (CLEO), (IEEE, 2015), pp, 1–2.

Gol’tsman, G.

G. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
[Crossref]

Gordon, I.

R. V. Kochanov, I. Gordon, L. Rothman, P. Wcisło, C. Hill, and J. Wilzewski, “Hitran application programming interface (hapi): A comprehensive approach to working with spectroscopic data,” J. Quant. Spectrosc. Radiat. Transfer 177, 15–30 (2016).
[Crossref]

Gulinatti, A.

M. Ghioni, A. Gulinatti, I. Rech, F. Zappa, and S. Cova, “Progress in silicon single-photon avalanche diodes,” IEEE J. Sel. Top. Quantum Electron. 13(4), 852–862 (2007).
[Crossref]

Gupta, J. A.

M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett. 89(3), 031109 (2006).
[Crossref]

Hadfield, R. H.

A. Banerjee, R. M. Heath, D. Morozov, D. Hemakumara, U. Nasti, I. Thayne, and R. H. Hadfield, “Optical properties of refractory metal based thin films,” Opt. Mater. Express 8(8), 2072–2088 (2018).
[Crossref]

A. McCarthy, N. J. Krichel, N. R. Gemmell, X. Ren, M. G. Tanner, S. N. Dorenbos, V. Zwiller, R. H. Hadfield, and G. S. Buller, “Kilometer-range, high resolution depth imaging via 1560 nm wavelength single-photon detection,” Opt. Express 21(7), 8904–8915 (2013).
[Crossref]

C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Technol. 25(6), 063001 (2012).
[Crossref]

R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3(12), 696–705 (2009).
[Crossref]

M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett. 89(3), 031109 (2006).
[Crossref]

R. H. Hadfield and G. Johansson, Superconducting devices in quantum optics (Springer, 2016).

S. Prabhakar, T. Shields, A. Dada, M. Ebrahim, G. G. Taylor, D. Morozov, K. Erotokritou, S. Miki, M. Yabuno, H. Terai, C. Gawith, M. Kues, L. Caspani, R. H. Hadfield, and M. Clerici, “Two-photon quantum interference and entanglement at 2 µm,” arXiv preprint arXiv:1906.02082 (2019).

Hale, P.

B. Korzh, Q. Zhao, S. Frasca, J. Allmaras, T. Autry, E. Bersin, M. Colangelo, G. Crouch, A. Dane, T. Gerrits, F. Marsili, G. Moody, E. Ramirez, J. Rezac, M. Stevens, E. Wollman, D. Zhu, P. Hale, K. Silverman, R. Mirin, S. Nam, M. Shaw, and K. Berggren, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector,” arXiv preprint arXiv:1804.06839 (2018).

Harrington, S.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

He, Y.

H. Zhou, Y. He, L. You, S. Chen, W. Zhang, J. Wu, Z. Wang, and X. Xie, “Few-photon imaging at 1550 nm using a low-timing-jitter superconducting nanowire single-photon detector,” Opt. Express 23(11), 14603–14611 (2015).
[Crossref]

L. You, X. Yang, Y. He, W. Zhang, D. Liu, W. Zhang, L. Zhang, L. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Adv. 3(7), 072135 (2013).
[Crossref]

Heath, R. M.

Hemakumara, D.

Herbert, D. C.

Hernandez-Marin, S.

S. Hernandez-Marin, A. M. Wallace, and G. J. Gibson, “Multilayered 3d lidar image construction using spatial models in a bayesian framework,” IEEE Trans. Pattern Anal. Mach. Intell. 30(6), 1028–1040 (2008).
[Crossref]

S. Hernandez-Marin, A. M. Wallace, and G. J. Gibson, “Bayesian analysis of lidar signals with multiple returns,” IEEE Trans. Pattern Anal. Mach. Intell. 29(12), 2170–2180 (2007).
[Crossref]

Hill, C.

R. V. Kochanov, I. Gordon, L. Rothman, P. Wcisło, C. Hill, and J. Wilzewski, “Hitran application programming interface (hapi): A comprehensive approach to working with spectroscopic data,” J. Quant. Spectrosc. Radiat. Transfer 177, 15–30 (2016).
[Crossref]

Hiskett, P. A.

Horansky, R. D.

A. E. Lita, V. B. Verma, R. D. Horansky, J. M. Shainline, R. P. Mirin, and S. Nam, “Materials development for high efficiency superconducting nanowire single-photon detectors,” MRS Online Proc. Libr. Arch. 1807, 1–6 (2015).
[Crossref]

Huang, H.

W. Zhang, Q. Jia, L. You, X. Ou, H. Huang, L. Zhang, H. Li, Z. Wang, and X. Xie, “Saturating intrinsic detection efficiency of superconducting nanowire single-photon detectors via defect engineering,” Phys. Rev. Appl. 12(4), 044040 (2019).
[Crossref]

Huang, J.

C. Zhang, W. Zhang, J. Huang, L. You, H. Li, C. lv, T. Sugihara, M. Watanabe, H. Zhou, Z. Wang, and X. Xie, “NbN superconducting nanowire single-photon detector with an active area of 300 µm-in-diameter,” AIP Adv. 9(7), 075214 (2019).
[Crossref]

Húbers, H.-W.

M. Sidorova, A. Semenov, H.-W. Húbers, I. Charaev, A. Kuzmin, S. Doerner, and M. Siegel, “Physical mechanisms of timing jitter in photon detection by current-carrying superconducting nanowires,” Phys. Rev. B 96(18), 184504 (2017).
[Crossref]

Il’inskaya, N.

B. Matveev, M. Aidaraliev, G. Gavrilov, N. Zotova, S. Karandashov, G. Sotnikova, N. Stus, G. Talalakin, N. Il’inskaya, and S. Aleksandrov, “Room temperature InAs photodiode–InGaAs led pairs for methane detection in the mid-IR,” Sens. Actuators, B 51(1-3), 233–237 (1998).
[Crossref]

Jia, Q.

W. Zhang, Q. Jia, L. You, X. Ou, H. Huang, L. Zhang, H. Li, Z. Wang, and X. Xie, “Saturating intrinsic detection efficiency of superconducting nanowire single-photon detectors via defect engineering,” Phys. Rev. Appl. 12(4), 044040 (2019).
[Crossref]

Jia, X.

J. Zhu, Y. Chen, L. Zhang, X. Jia, Z. Feng, G. Wu, X. Yan, J. Zhai, Y. Wu, Q. Chen, X. Zhou, Z. Wang, C. Zhang, L. Kang, J. Chen, and P. Wu, “Demonstration of measuring sea fog with an SNSPD-based lidar system,” Sci. Rep. 7(1), 15113 (2017).
[Crossref]

Johansson, G.

R. H. Hadfield and G. Johansson, Superconducting devices in quantum optics (Springer, 2016).

Kang, L.

J. Zhu, Y. Chen, L. Zhang, X. Jia, Z. Feng, G. Wu, X. Yan, J. Zhai, Y. Wu, Q. Chen, X. Zhou, Z. Wang, C. Zhang, L. Kang, J. Chen, and P. Wu, “Demonstration of measuring sea fog with an SNSPD-based lidar system,” Sci. Rep. 7(1), 15113 (2017).
[Crossref]

Karandashov, S.

B. Matveev, M. Aidaraliev, G. Gavrilov, N. Zotova, S. Karandashov, G. Sotnikova, N. Stus, G. Talalakin, N. Il’inskaya, and S. Aleksandrov, “Room temperature InAs photodiode–InGaAs led pairs for methane detection in the mid-IR,” Sens. Actuators, B 51(1-3), 233–237 (1998).
[Crossref]

Kochanov, R. V.

R. V. Kochanov, I. Gordon, L. Rothman, P. Wcisło, C. Hill, and J. Wilzewski, “Hitran application programming interface (hapi): A comprehensive approach to working with spectroscopic data,” J. Quant. Spectrosc. Radiat. Transfer 177, 15–30 (2016).
[Crossref]

Kolenderski, P.

Korzh, B.

B. Korzh, Q. Zhao, S. Frasca, J. Allmaras, T. Autry, E. Bersin, M. Colangelo, G. Crouch, A. Dane, T. Gerrits, F. Marsili, G. Moody, E. Ramirez, J. Rezac, M. Stevens, E. Wollman, D. Zhu, P. Hale, K. Silverman, R. Mirin, S. Nam, M. Shaw, and K. Berggren, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector,” arXiv preprint arXiv:1804.06839 (2018).

V. Verma, A. Lita, B. Korzh, E. Wollman, M. Shaw, R. Mirin, and S. Nam, “Towards single-photon spectroscopy in the mid-infrared using superconducting nanowire single-photon detectors,” in Advanced Photon Counting Techniques XIII, vol. 10978 (International Society for Optics and Photonics, 2019), p. 109780N.

Kovaltchouk, V.

V. Kovaltchouk, G. Lolos, Z. Papandreou, and K. Wolbaum, “Comparison of a silicon photomultiplier to a traditional vacuum photomultiplier,” Nucl. Instrum. Methods Phys. Res., Sect. A 538(1-3), 408–415 (2005).
[Crossref]

Kowalevicz, A. M.

A. M. Kowalevicz and F. Bucholtz, “Beam divergence from an smf-28 optical fiber,” Tech. rep., Naval Research Lab, Washington DC, (2006).

Krichel, N. J.

Kues, M.

S. Prabhakar, T. Shields, A. Dada, M. Ebrahim, G. G. Taylor, D. Morozov, K. Erotokritou, S. Miki, M. Yabuno, H. Terai, C. Gawith, M. Kues, L. Caspani, R. H. Hadfield, and M. Clerici, “Two-photon quantum interference and entanglement at 2 µm,” arXiv preprint arXiv:1906.02082 (2019).

Kuo, P. S.

Kuzmin, A.

M. Sidorova, A. Semenov, H.-W. Húbers, I. Charaev, A. Kuzmin, S. Doerner, and M. Siegel, “Physical mechanisms of timing jitter in photon detection by current-carrying superconducting nanowires,” Phys. Rev. B 96(18), 184504 (2017).
[Crossref]

Lau, J. A.

Leong, W.

Lescure, M.

M.-C. Amann, T. M. Bosch, M. Lescure, R. A. Myllylae, and M. Rioux, “Laser ranging: a critical review of unusual techniques for distance measurement,” Opt. Eng. 40(1), 10–20 (2001).
[Crossref]

Li, H.

C. Zhang, W. Zhang, J. Huang, L. You, H. Li, C. lv, T. Sugihara, M. Watanabe, H. Zhou, Z. Wang, and X. Xie, “NbN superconducting nanowire single-photon detector with an active area of 300 µm-in-diameter,” AIP Adv. 9(7), 075214 (2019).
[Crossref]

W. Zhang, Q. Jia, L. You, X. Ou, H. Huang, L. Zhang, H. Li, Z. Wang, and X. Xie, “Saturating intrinsic detection efficiency of superconducting nanowire single-photon detectors via defect engineering,” Phys. Rev. Appl. 12(4), 044040 (2019).
[Crossref]

Lipatov, A.

G. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
[Crossref]

Lita, A.

V. Verma, F. Marsili, B. Baek, A. Lita, T. Gerrits, J. Stern, R. Mirin, and S. W. Nam, “55% system detection efficiency with self-aligned WSi superconducting nanowire single-photon detectors,” in 2012 Conference on Lasers and Electro-Optics (CLEO), (IEEE, 2012), pp. 1–2.

V. Verma, A. Lita, B. Korzh, E. Wollman, M. Shaw, R. Mirin, and S. Nam, “Towards single-photon spectroscopy in the mid-infrared using superconducting nanowire single-photon detectors,” in Advanced Photon Counting Techniques XIII, vol. 10978 (International Society for Optics and Photonics, 2019), p. 109780N.

Lita, A. E.

A. E. Lita, V. B. Verma, R. D. Horansky, J. M. Shainline, R. P. Mirin, and S. Nam, “Materials development for high efficiency superconducting nanowire single-photon detectors,” MRS Online Proc. Libr. Arch. 1807, 1–6 (2015).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Liu, D.

L. You, X. Yang, Y. He, W. Zhang, D. Liu, W. Zhang, L. Zhang, L. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Adv. 3(7), 072135 (2013).
[Crossref]

Liu, X.

L. You, X. Yang, Y. He, W. Zhang, D. Liu, W. Zhang, L. Zhang, L. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Adv. 3(7), 072135 (2013).
[Crossref]

Lolos, G.

V. Kovaltchouk, G. Lolos, Z. Papandreou, and K. Wolbaum, “Comparison of a silicon photomultiplier to a traditional vacuum photomultiplier,” Nucl. Instrum. Methods Phys. Res., Sect. A 538(1-3), 408–415 (2005).
[Crossref]

Loudon, A. Y.

lv, C.

C. Zhang, W. Zhang, J. Huang, L. You, H. Li, C. lv, T. Sugihara, M. Watanabe, H. Zhou, Z. Wang, and X. Xie, “NbN superconducting nanowire single-photon detector with an active area of 300 µm-in-diameter,” AIP Adv. 9(7), 075214 (2019).
[Crossref]

Marsili, F.

L. Chen, D. Schwarzer, J. A. Lau, V. B. Verma, M. J. Stevens, F. Marsili, R. P. Mirin, S. W. Nam, and A. M. Wodtke, “Ultra-sensitive mid-infrared emission spectrometer with sub-ns temporal resolution,” Opt. Express 26(12), 14859–14868 (2018).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

F. Marsili, F. Bellei, F. Najafi, A. E. Dane, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Efficient single photon detection from 500 nm to 5 µm wavelength,” Nano Lett. 12(9), 4799–4804 (2012).
[Crossref]

F. Marsili, V. Verma, M. Stevens, J. Stern, M. Shaw, A. Miller, D. Schwarzer, A. Wodtke, R. Mirin, and S. Nam, “Mid-infrared single-photon detection with tungsten silicide superconducting nanowires,” in CLEO: Science and Innovations, (Optical Society of America, 2013), pp. CTu1H–1.

M. Shaw, F. Marsili, A. Beyer, J. Stern, G. Resta, P. Ravindran, S. Chang, J. Bardin, D. Russell, J. Gin, F. Patawaran, V. Verma, R. Mirin, S. Nam, and W. Farr, “Arrays of WSi superconducting nanowire single photon detectors for deep-space optical communications,” in 2015 Conference on Lasers and Electro-Optics (CLEO), (IEEE, 2015), pp, 1–2.

B. Korzh, Q. Zhao, S. Frasca, J. Allmaras, T. Autry, E. Bersin, M. Colangelo, G. Crouch, A. Dane, T. Gerrits, F. Marsili, G. Moody, E. Ramirez, J. Rezac, M. Stevens, E. Wollman, D. Zhu, P. Hale, K. Silverman, R. Mirin, S. Nam, M. Shaw, and K. Berggren, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector,” arXiv preprint arXiv:1804.06839 (2018).

V. Verma, F. Marsili, B. Baek, A. Lita, T. Gerrits, J. Stern, R. Mirin, and S. W. Nam, “55% system detection efficiency with self-aligned WSi superconducting nanowire single-photon detectors,” in 2012 Conference on Lasers and Electro-Optics (CLEO), (IEEE, 2012), pp. 1–2.

Matveev, B.

B. Matveev, M. Aidaraliev, G. Gavrilov, N. Zotova, S. Karandashov, G. Sotnikova, N. Stus, G. Talalakin, N. Il’inskaya, and S. Aleksandrov, “Room temperature InAs photodiode–InGaAs led pairs for methane detection in the mid-IR,” Sens. Actuators, B 51(1-3), 233–237 (1998).
[Crossref]

McCarthy, A.

Migdall, A.

M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited review article: Single-photon sources and detectors,” Rev. Sci. Instrum. 82(7), 071101 (2011).
[Crossref]

Miki, S.

S. Miki, T. Yamashita, H. Terai, and Z. Wang, “High performance fiber-coupled NbTiN superconducting nanowire single photon detectors with Gifford-McMahon cryocooler,” Opt. Express 21(8), 10208–10214 (2013).
[Crossref]

S. Prabhakar, T. Shields, A. Dada, M. Ebrahim, G. G. Taylor, D. Morozov, K. Erotokritou, S. Miki, M. Yabuno, H. Terai, C. Gawith, M. Kues, L. Caspani, R. H. Hadfield, and M. Clerici, “Two-photon quantum interference and entanglement at 2 µm,” arXiv preprint arXiv:1906.02082 (2019).

Miller, A.

F. Marsili, V. Verma, M. Stevens, J. Stern, M. Shaw, A. Miller, D. Schwarzer, A. Wodtke, R. Mirin, and S. Nam, “Mid-infrared single-photon detection with tungsten silicide superconducting nanowires,” in CLEO: Science and Innovations, (Optical Society of America, 2013), pp. CTu1H–1.

Mirin, R.

F. Marsili, V. Verma, M. Stevens, J. Stern, M. Shaw, A. Miller, D. Schwarzer, A. Wodtke, R. Mirin, and S. Nam, “Mid-infrared single-photon detection with tungsten silicide superconducting nanowires,” in CLEO: Science and Innovations, (Optical Society of America, 2013), pp. CTu1H–1.

V. Verma, A. Lita, B. Korzh, E. Wollman, M. Shaw, R. Mirin, and S. Nam, “Towards single-photon spectroscopy in the mid-infrared using superconducting nanowire single-photon detectors,” in Advanced Photon Counting Techniques XIII, vol. 10978 (International Society for Optics and Photonics, 2019), p. 109780N.

M. Shaw, F. Marsili, A. Beyer, J. Stern, G. Resta, P. Ravindran, S. Chang, J. Bardin, D. Russell, J. Gin, F. Patawaran, V. Verma, R. Mirin, S. Nam, and W. Farr, “Arrays of WSi superconducting nanowire single photon detectors for deep-space optical communications,” in 2015 Conference on Lasers and Electro-Optics (CLEO), (IEEE, 2015), pp, 1–2.

B. Korzh, Q. Zhao, S. Frasca, J. Allmaras, T. Autry, E. Bersin, M. Colangelo, G. Crouch, A. Dane, T. Gerrits, F. Marsili, G. Moody, E. Ramirez, J. Rezac, M. Stevens, E. Wollman, D. Zhu, P. Hale, K. Silverman, R. Mirin, S. Nam, M. Shaw, and K. Berggren, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector,” arXiv preprint arXiv:1804.06839 (2018).

V. Verma, F. Marsili, B. Baek, A. Lita, T. Gerrits, J. Stern, R. Mirin, and S. W. Nam, “55% system detection efficiency with self-aligned WSi superconducting nanowire single-photon detectors,” in 2012 Conference on Lasers and Electro-Optics (CLEO), (IEEE, 2012), pp. 1–2.

Mirin, R. P.

L. Chen, D. Schwarzer, J. A. Lau, V. B. Verma, M. J. Stevens, F. Marsili, R. P. Mirin, S. W. Nam, and A. M. Wodtke, “Ultra-sensitive mid-infrared emission spectrometer with sub-ns temporal resolution,” Opt. Express 26(12), 14859–14868 (2018).
[Crossref]

A. E. Lita, V. B. Verma, R. D. Horansky, J. M. Shainline, R. P. Mirin, and S. Nam, “Materials development for high efficiency superconducting nanowire single-photon detectors,” MRS Online Proc. Libr. Arch. 1807, 1–6 (2015).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett. 89(3), 031109 (2006).
[Crossref]

Misiaszek, M.

Molnar, R. J.

F. Marsili, F. Bellei, F. Najafi, A. E. Dane, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Efficient single photon detection from 500 nm to 5 µm wavelength,” Nano Lett. 12(9), 4799–4804 (2012).
[Crossref]

Moody, G.

B. Korzh, Q. Zhao, S. Frasca, J. Allmaras, T. Autry, E. Bersin, M. Colangelo, G. Crouch, A. Dane, T. Gerrits, F. Marsili, G. Moody, E. Ramirez, J. Rezac, M. Stevens, E. Wollman, D. Zhu, P. Hale, K. Silverman, R. Mirin, S. Nam, M. Shaw, and K. Berggren, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector,” arXiv preprint arXiv:1804.06839 (2018).

Morozov, D.

A. Banerjee, R. M. Heath, D. Morozov, D. Hemakumara, U. Nasti, I. Thayne, and R. H. Hadfield, “Optical properties of refractory metal based thin films,” Opt. Mater. Express 8(8), 2072–2088 (2018).
[Crossref]

S. Prabhakar, T. Shields, A. Dada, M. Ebrahim, G. G. Taylor, D. Morozov, K. Erotokritou, S. Miki, M. Yabuno, H. Terai, C. Gawith, M. Kues, L. Caspani, R. H. Hadfield, and M. Clerici, “Two-photon quantum interference and entanglement at 2 µm,” arXiv preprint arXiv:1906.02082 (2019).

Morozov, P.

Myllylae, R. A.

M.-C. Amann, T. M. Bosch, M. Lescure, R. A. Myllylae, and M. Rioux, “Laser ranging: a critical review of unusual techniques for distance measurement,” Opt. Eng. 40(1), 10–20 (2001).
[Crossref]

Najafi, F.

F. Marsili, F. Bellei, F. Najafi, A. E. Dane, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Efficient single photon detection from 500 nm to 5 µm wavelength,” Nano Lett. 12(9), 4799–4804 (2012).
[Crossref]

F. Najafi, “Timing performance of superconducting nanowire single-photon detectors,” Ph.D. thesis, Massachusetts Institute of Technology, (2015).

Nam, S.

A. E. Lita, V. B. Verma, R. D. Horansky, J. M. Shainline, R. P. Mirin, and S. Nam, “Materials development for high efficiency superconducting nanowire single-photon detectors,” MRS Online Proc. Libr. Arch. 1807, 1–6 (2015).
[Crossref]

V. Verma, A. Lita, B. Korzh, E. Wollman, M. Shaw, R. Mirin, and S. Nam, “Towards single-photon spectroscopy in the mid-infrared using superconducting nanowire single-photon detectors,” in Advanced Photon Counting Techniques XIII, vol. 10978 (International Society for Optics and Photonics, 2019), p. 109780N.

F. Marsili, V. Verma, M. Stevens, J. Stern, M. Shaw, A. Miller, D. Schwarzer, A. Wodtke, R. Mirin, and S. Nam, “Mid-infrared single-photon detection with tungsten silicide superconducting nanowires,” in CLEO: Science and Innovations, (Optical Society of America, 2013), pp. CTu1H–1.

B. Korzh, Q. Zhao, S. Frasca, J. Allmaras, T. Autry, E. Bersin, M. Colangelo, G. Crouch, A. Dane, T. Gerrits, F. Marsili, G. Moody, E. Ramirez, J. Rezac, M. Stevens, E. Wollman, D. Zhu, P. Hale, K. Silverman, R. Mirin, S. Nam, M. Shaw, and K. Berggren, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector,” arXiv preprint arXiv:1804.06839 (2018).

M. Shaw, F. Marsili, A. Beyer, J. Stern, G. Resta, P. Ravindran, S. Chang, J. Bardin, D. Russell, J. Gin, F. Patawaran, V. Verma, R. Mirin, S. Nam, and W. Farr, “Arrays of WSi superconducting nanowire single photon detectors for deep-space optical communications,” in 2015 Conference on Lasers and Electro-Optics (CLEO), (IEEE, 2015), pp, 1–2.

Nam, S. W.

L. Chen, D. Schwarzer, J. A. Lau, V. B. Verma, M. J. Stevens, F. Marsili, R. P. Mirin, S. W. Nam, and A. M. Wodtke, “Ultra-sensitive mid-infrared emission spectrometer with sub-ns temporal resolution,” Opt. Express 26(12), 14859–14868 (2018).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett. 89(3), 031109 (2006).
[Crossref]

V. Verma, F. Marsili, B. Baek, A. Lita, T. Gerrits, J. Stern, R. Mirin, and S. W. Nam, “55% system detection efficiency with self-aligned WSi superconducting nanowire single-photon detectors,” in 2012 Conference on Lasers and Electro-Optics (CLEO), (IEEE, 2012), pp. 1–2.

Nasti, U.

Natarajan, C. M.

C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Technol. 25(6), 063001 (2012).
[Crossref]

Okunev, O.

G. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
[Crossref]

Ou, X.

W. Zhang, Q. Jia, L. You, X. Ou, H. Huang, L. Zhang, H. Li, Z. Wang, and X. Xie, “Saturating intrinsic detection efficiency of superconducting nanowire single-photon detectors via defect engineering,” Phys. Rev. Appl. 12(4), 044040 (2019).
[Crossref]

Papandreou, Z.

V. Kovaltchouk, G. Lolos, Z. Papandreou, and K. Wolbaum, “Comparison of a silicon photomultiplier to a traditional vacuum photomultiplier,” Nucl. Instrum. Methods Phys. Res., Sect. A 538(1-3), 408–415 (2005).
[Crossref]

Parlato, L.

D. Salvoni, M. Ejrnaes, L. Parlato, A. Sannino, A. Boselli, G. Pepe, R. Cristiano, and X. Wang, “Lidar techniques for a SNSPD-based measurement,” in Journal of Physics: Conference Series, vol. 1182 (IOP Publishing, 2019), p. 012014.

Patawaran, F.

M. Shaw, F. Marsili, A. Beyer, J. Stern, G. Resta, P. Ravindran, S. Chang, J. Bardin, D. Russell, J. Gin, F. Patawaran, V. Verma, R. Mirin, S. Nam, and W. Farr, “Arrays of WSi superconducting nanowire single photon detectors for deep-space optical communications,” in 2015 Conference on Lasers and Electro-Optics (CLEO), (IEEE, 2015), pp, 1–2.

Pedersen, C.

J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Room-temperature mid-infrared single-photon spectral imaging,” Nat. Photonics 6(11), 788–793 (2012).
[Crossref]

Pellegrini, S.

S. Pellegrini, G. S. Buller, J. M. Smith, A. M. Wallace, and S. Cova, “Laser-based distance measurement using picosecond resolution time-correlated single-photon counting,” Meas. Sci. Technol. 11(6), 712–716 (2000).
[Crossref]

Pepe, G.

D. Salvoni, M. Ejrnaes, L. Parlato, A. Sannino, A. Boselli, G. Pepe, R. Cristiano, and X. Wang, “Lidar techniques for a SNSPD-based measurement,” in Journal of Physics: Conference Series, vol. 1182 (IOP Publishing, 2019), p. 012014.

Polyakov, S. V.

M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited review article: Single-photon sources and detectors,” Rev. Sci. Instrum. 82(7), 071101 (2011).
[Crossref]

Prabhakar, S.

S. Prabhakar, T. Shields, A. Dada, M. Ebrahim, G. G. Taylor, D. Morozov, K. Erotokritou, S. Miki, M. Yabuno, H. Terai, C. Gawith, M. Kues, L. Caspani, R. H. Hadfield, and M. Clerici, “Two-photon quantum interference and entanglement at 2 µm,” arXiv preprint arXiv:1906.02082 (2019).

Ramirez, E.

B. Korzh, Q. Zhao, S. Frasca, J. Allmaras, T. Autry, E. Bersin, M. Colangelo, G. Crouch, A. Dane, T. Gerrits, F. Marsili, G. Moody, E. Ramirez, J. Rezac, M. Stevens, E. Wollman, D. Zhu, P. Hale, K. Silverman, R. Mirin, S. Nam, M. Shaw, and K. Berggren, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector,” arXiv preprint arXiv:1804.06839 (2018).

Rarity, J. G.

Ravindran, P.

M. Shaw, F. Marsili, A. Beyer, J. Stern, G. Resta, P. Ravindran, S. Chang, J. Bardin, D. Russell, J. Gin, F. Patawaran, V. Verma, R. Mirin, S. Nam, and W. Farr, “Arrays of WSi superconducting nanowire single photon detectors for deep-space optical communications,” in 2015 Conference on Lasers and Electro-Optics (CLEO), (IEEE, 2015), pp, 1–2.

Rech, I.

M. Ghioni, A. Gulinatti, I. Rech, F. Zappa, and S. Cova, “Progress in silicon single-photon avalanche diodes,” IEEE J. Sel. Top. Quantum Electron. 13(4), 852–862 (2007).
[Crossref]

Reine, M. B.

M. B. Reine, “HgCdTe photodiodes for IR detection: A review,” in Photodetectors: Materials and Devices VI, vol. 4288 (International Society for Optics and Photonics, 2001), pp. 266–278.

Ren, X.

Resta, G.

M. Shaw, F. Marsili, A. Beyer, J. Stern, G. Resta, P. Ravindran, S. Chang, J. Bardin, D. Russell, J. Gin, F. Patawaran, V. Verma, R. Mirin, S. Nam, and W. Farr, “Arrays of WSi superconducting nanowire single photon detectors for deep-space optical communications,” in 2015 Conference on Lasers and Electro-Optics (CLEO), (IEEE, 2015), pp, 1–2.

Rezac, J.

B. Korzh, Q. Zhao, S. Frasca, J. Allmaras, T. Autry, E. Bersin, M. Colangelo, G. Crouch, A. Dane, T. Gerrits, F. Marsili, G. Moody, E. Ramirez, J. Rezac, M. Stevens, E. Wollman, D. Zhu, P. Hale, K. Silverman, R. Mirin, S. Nam, M. Shaw, and K. Berggren, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector,” arXiv preprint arXiv:1804.06839 (2018).

Rioux, M.

M.-C. Amann, T. M. Bosch, M. Lescure, R. A. Myllylae, and M. Rioux, “Laser ranging: a critical review of unusual techniques for distance measurement,” Opt. Eng. 40(1), 10–20 (2001).
[Crossref]

Romanovskii, O.

O. Romanovskii, “Airborne DIAL lidar gas analysis of the atmosphere by middle IR gas lasers: Numerical modeling,” Opt. Mem. Neural Networks 17(2), 131–137 (2008).
[Crossref]

Rothman, L.

R. V. Kochanov, I. Gordon, L. Rothman, P. Wcisło, C. Hill, and J. Wilzewski, “Hitran application programming interface (hapi): A comprehensive approach to working with spectroscopic data,” J. Quant. Spectrosc. Radiat. Transfer 177, 15–30 (2016).
[Crossref]

Russell, D.

M. Shaw, F. Marsili, A. Beyer, J. Stern, G. Resta, P. Ravindran, S. Chang, J. Bardin, D. Russell, J. Gin, F. Patawaran, V. Verma, R. Mirin, S. Nam, and W. Farr, “Arrays of WSi superconducting nanowire single photon detectors for deep-space optical communications,” in 2015 Conference on Lasers and Electro-Optics (CLEO), (IEEE, 2015), pp, 1–2.

Salvoni, D.

D. Salvoni, M. Ejrnaes, L. Parlato, A. Sannino, A. Boselli, G. Pepe, R. Cristiano, and X. Wang, “Lidar techniques for a SNSPD-based measurement,” in Journal of Physics: Conference Series, vol. 1182 (IOP Publishing, 2019), p. 012014.

Sannino, A.

D. Salvoni, M. Ejrnaes, L. Parlato, A. Sannino, A. Boselli, G. Pepe, R. Cristiano, and X. Wang, “Lidar techniques for a SNSPD-based measurement,” in Journal of Physics: Conference Series, vol. 1182 (IOP Publishing, 2019), p. 012014.

Schwall, R. E.

M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett. 89(3), 031109 (2006).
[Crossref]

Schwarzer, D.

L. Chen, D. Schwarzer, J. A. Lau, V. B. Verma, M. J. Stevens, F. Marsili, R. P. Mirin, S. W. Nam, and A. M. Wodtke, “Ultra-sensitive mid-infrared emission spectrometer with sub-ns temporal resolution,” Opt. Express 26(12), 14859–14868 (2018).
[Crossref]

F. Marsili, V. Verma, M. Stevens, J. Stern, M. Shaw, A. Miller, D. Schwarzer, A. Wodtke, R. Mirin, and S. Nam, “Mid-infrared single-photon detection with tungsten silicide superconducting nanowires,” in CLEO: Science and Innovations, (Optical Society of America, 2013), pp. CTu1H–1.

Semenov, A.

M. Sidorova, A. Semenov, H.-W. Húbers, I. Charaev, A. Kuzmin, S. Doerner, and M. Siegel, “Physical mechanisms of timing jitter in photon detection by current-carrying superconducting nanowires,” Phys. Rev. B 96(18), 184504 (2017).
[Crossref]

G. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
[Crossref]

Shainline, J. M.

A. E. Lita, V. B. Verma, R. D. Horansky, J. M. Shainline, R. P. Mirin, and S. Nam, “Materials development for high efficiency superconducting nanowire single-photon detectors,” MRS Online Proc. Libr. Arch. 1807, 1–6 (2015).
[Crossref]

Shaw, M.

V. Verma, A. Lita, B. Korzh, E. Wollman, M. Shaw, R. Mirin, and S. Nam, “Towards single-photon spectroscopy in the mid-infrared using superconducting nanowire single-photon detectors,” in Advanced Photon Counting Techniques XIII, vol. 10978 (International Society for Optics and Photonics, 2019), p. 109780N.

F. Marsili, V. Verma, M. Stevens, J. Stern, M. Shaw, A. Miller, D. Schwarzer, A. Wodtke, R. Mirin, and S. Nam, “Mid-infrared single-photon detection with tungsten silicide superconducting nanowires,” in CLEO: Science and Innovations, (Optical Society of America, 2013), pp. CTu1H–1.

M. Shaw, F. Marsili, A. Beyer, J. Stern, G. Resta, P. Ravindran, S. Chang, J. Bardin, D. Russell, J. Gin, F. Patawaran, V. Verma, R. Mirin, S. Nam, and W. Farr, “Arrays of WSi superconducting nanowire single photon detectors for deep-space optical communications,” in 2015 Conference on Lasers and Electro-Optics (CLEO), (IEEE, 2015), pp, 1–2.

B. Korzh, Q. Zhao, S. Frasca, J. Allmaras, T. Autry, E. Bersin, M. Colangelo, G. Crouch, A. Dane, T. Gerrits, F. Marsili, G. Moody, E. Ramirez, J. Rezac, M. Stevens, E. Wollman, D. Zhu, P. Hale, K. Silverman, R. Mirin, S. Nam, M. Shaw, and K. Berggren, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector,” arXiv preprint arXiv:1804.06839 (2018).

Shaw, M. D.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Shibata, H.

H. Shibata, K. Shimizu, H. Takesue, and Y. Tokura, “Ultimate low system dark-count rate for superconducting nanowire single-photon detector,” Opt. Lett. 40(14), 3428–3431 (2015).
[Crossref]

H. Shibata, K. Shimizu, H. Takesue, and Y. Tokura, “Superconducting nanowire single-photon detector with ultralow dark count rate using cold optical filters,” Appl. Phys. Express 6(7), 072801 (2013).
[Crossref]

Shields, T.

S. Prabhakar, T. Shields, A. Dada, M. Ebrahim, G. G. Taylor, D. Morozov, K. Erotokritou, S. Miki, M. Yabuno, H. Terai, C. Gawith, M. Kues, L. Caspani, R. H. Hadfield, and M. Clerici, “Two-photon quantum interference and entanglement at 2 µm,” arXiv preprint arXiv:1906.02082 (2019).

Shimizu, K.

H. Shibata, K. Shimizu, H. Takesue, and Y. Tokura, “Ultimate low system dark-count rate for superconducting nanowire single-photon detector,” Opt. Lett. 40(14), 3428–3431 (2015).
[Crossref]

H. Shibata, K. Shimizu, H. Takesue, and Y. Tokura, “Superconducting nanowire single-photon detector with ultralow dark count rate using cold optical filters,” Appl. Phys. Express 6(7), 072801 (2013).
[Crossref]

Sidorova, M.

M. Sidorova, A. Semenov, H.-W. Húbers, I. Charaev, A. Kuzmin, S. Doerner, and M. Siegel, “Physical mechanisms of timing jitter in photon detection by current-carrying superconducting nanowires,” Phys. Rev. B 96(18), 184504 (2017).
[Crossref]

Siegel, M.

M. Sidorova, A. Semenov, H.-W. Húbers, I. Charaev, A. Kuzmin, S. Doerner, and M. Siegel, “Physical mechanisms of timing jitter in photon detection by current-carrying superconducting nanowires,” Phys. Rev. B 96(18), 184504 (2017).
[Crossref]

Silverman, K.

B. Korzh, Q. Zhao, S. Frasca, J. Allmaras, T. Autry, E. Bersin, M. Colangelo, G. Crouch, A. Dane, T. Gerrits, F. Marsili, G. Moody, E. Ramirez, J. Rezac, M. Stevens, E. Wollman, D. Zhu, P. Hale, K. Silverman, R. Mirin, S. Nam, M. Shaw, and K. Berggren, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector,” arXiv preprint arXiv:1804.06839 (2018).

Smirnov, K.

A. Divochiy, M. Misiaszek, Y. Vakhtomin, P. Morozov, K. Smirnov, P. Zolotov, and P. Kolenderski, “Single photon detection system for visible and infrared spectrum range,” Opt. Lett. 43(24), 6085–6088 (2018).
[Crossref]

G. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
[Crossref]

Smith, J. M.

S. Pellegrini, G. S. Buller, J. M. Smith, A. M. Wallace, and S. Cova, “Laser-based distance measurement using picosecond resolution time-correlated single-photon counting,” Meas. Sci. Technol. 11(6), 712–716 (2000).
[Crossref]

Sobolewski, R.

G. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
[Crossref]

Sotnikova, G.

B. Matveev, M. Aidaraliev, G. Gavrilov, N. Zotova, S. Karandashov, G. Sotnikova, N. Stus, G. Talalakin, N. Il’inskaya, and S. Aleksandrov, “Room temperature InAs photodiode–InGaAs led pairs for methane detection in the mid-IR,” Sens. Actuators, B 51(1-3), 233–237 (1998).
[Crossref]

Stern, J.

F. Marsili, V. Verma, M. Stevens, J. Stern, M. Shaw, A. Miller, D. Schwarzer, A. Wodtke, R. Mirin, and S. Nam, “Mid-infrared single-photon detection with tungsten silicide superconducting nanowires,” in CLEO: Science and Innovations, (Optical Society of America, 2013), pp. CTu1H–1.

M. Shaw, F. Marsili, A. Beyer, J. Stern, G. Resta, P. Ravindran, S. Chang, J. Bardin, D. Russell, J. Gin, F. Patawaran, V. Verma, R. Mirin, S. Nam, and W. Farr, “Arrays of WSi superconducting nanowire single photon detectors for deep-space optical communications,” in 2015 Conference on Lasers and Electro-Optics (CLEO), (IEEE, 2015), pp, 1–2.

V. Verma, F. Marsili, B. Baek, A. Lita, T. Gerrits, J. Stern, R. Mirin, and S. W. Nam, “55% system detection efficiency with self-aligned WSi superconducting nanowire single-photon detectors,” in 2012 Conference on Lasers and Electro-Optics (CLEO), (IEEE, 2012), pp. 1–2.

Stern, J. A.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Stevens, M.

B. Korzh, Q. Zhao, S. Frasca, J. Allmaras, T. Autry, E. Bersin, M. Colangelo, G. Crouch, A. Dane, T. Gerrits, F. Marsili, G. Moody, E. Ramirez, J. Rezac, M. Stevens, E. Wollman, D. Zhu, P. Hale, K. Silverman, R. Mirin, S. Nam, M. Shaw, and K. Berggren, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector,” arXiv preprint arXiv:1804.06839 (2018).

F. Marsili, V. Verma, M. Stevens, J. Stern, M. Shaw, A. Miller, D. Schwarzer, A. Wodtke, R. Mirin, and S. Nam, “Mid-infrared single-photon detection with tungsten silicide superconducting nanowires,” in CLEO: Science and Innovations, (Optical Society of America, 2013), pp. CTu1H–1.

Stevens, M. J.

L. Chen, D. Schwarzer, J. A. Lau, V. B. Verma, M. J. Stevens, F. Marsili, R. P. Mirin, S. W. Nam, and A. M. Wodtke, “Ultra-sensitive mid-infrared emission spectrometer with sub-ns temporal resolution,” Opt. Express 26(12), 14859–14868 (2018).
[Crossref]

M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett. 89(3), 031109 (2006).
[Crossref]

Stus, N.

B. Matveev, M. Aidaraliev, G. Gavrilov, N. Zotova, S. Karandashov, G. Sotnikova, N. Stus, G. Talalakin, N. Il’inskaya, and S. Aleksandrov, “Room temperature InAs photodiode–InGaAs led pairs for methane detection in the mid-IR,” Sens. Actuators, B 51(1-3), 233–237 (1998).
[Crossref]

Sugihara, T.

C. Zhang, W. Zhang, J. Huang, L. You, H. Li, C. lv, T. Sugihara, M. Watanabe, H. Zhou, Z. Wang, and X. Xie, “NbN superconducting nanowire single-photon detector with an active area of 300 µm-in-diameter,” AIP Adv. 9(7), 075214 (2019).
[Crossref]

Takesue, H.

H. Shibata, K. Shimizu, H. Takesue, and Y. Tokura, “Ultimate low system dark-count rate for superconducting nanowire single-photon detector,” Opt. Lett. 40(14), 3428–3431 (2015).
[Crossref]

H. Shibata, K. Shimizu, H. Takesue, and Y. Tokura, “Superconducting nanowire single-photon detector with ultralow dark count rate using cold optical filters,” Appl. Phys. Express 6(7), 072801 (2013).
[Crossref]

Talalakin, G.

B. Matveev, M. Aidaraliev, G. Gavrilov, N. Zotova, S. Karandashov, G. Sotnikova, N. Stus, G. Talalakin, N. Il’inskaya, and S. Aleksandrov, “Room temperature InAs photodiode–InGaAs led pairs for methane detection in the mid-IR,” Sens. Actuators, B 51(1-3), 233–237 (1998).
[Crossref]

Tanner, M. G.

Taylor, G. G.

S. Prabhakar, T. Shields, A. Dada, M. Ebrahim, G. G. Taylor, D. Morozov, K. Erotokritou, S. Miki, M. Yabuno, H. Terai, C. Gawith, M. Kues, L. Caspani, R. H. Hadfield, and M. Clerici, “Two-photon quantum interference and entanglement at 2 µm,” arXiv preprint arXiv:1906.02082 (2019).

Terai, H.

S. Miki, T. Yamashita, H. Terai, and Z. Wang, “High performance fiber-coupled NbTiN superconducting nanowire single photon detectors with Gifford-McMahon cryocooler,” Opt. Express 21(8), 10208–10214 (2013).
[Crossref]

S. Prabhakar, T. Shields, A. Dada, M. Ebrahim, G. G. Taylor, D. Morozov, K. Erotokritou, S. Miki, M. Yabuno, H. Terai, C. Gawith, M. Kues, L. Caspani, R. H. Hadfield, and M. Clerici, “Two-photon quantum interference and entanglement at 2 µm,” arXiv preprint arXiv:1906.02082 (2019).

Thayne, I.

Tidemand-Lichtenberg, P.

J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Room-temperature mid-infrared single-photon spectral imaging,” Nat. Photonics 6(11), 788–793 (2012).
[Crossref]

Tokura, Y.

H. Shibata, K. Shimizu, H. Takesue, and Y. Tokura, “Ultimate low system dark-count rate for superconducting nanowire single-photon detector,” Opt. Lett. 40(14), 3428–3431 (2015).
[Crossref]

H. Shibata, K. Shimizu, H. Takesue, and Y. Tokura, “Superconducting nanowire single-photon detector with ultralow dark count rate using cold optical filters,” Appl. Phys. Express 6(7), 072801 (2013).
[Crossref]

Tosi, A.

F. Zappa, A. Tosi, and S. Cova, “InGaAs SPAD and electronics for low time jitter and low noise,” in Photon Counting Applications, Quantum Optics, and Quantum Cryptography, vol. 6583 (International Society for Optics and Photonics, 2007), p. 65830E.

Vakhtomin, Y.

Vayshenker, I.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Verma, V.

V. Verma, F. Marsili, B. Baek, A. Lita, T. Gerrits, J. Stern, R. Mirin, and S. W. Nam, “55% system detection efficiency with self-aligned WSi superconducting nanowire single-photon detectors,” in 2012 Conference on Lasers and Electro-Optics (CLEO), (IEEE, 2012), pp. 1–2.

M. Shaw, F. Marsili, A. Beyer, J. Stern, G. Resta, P. Ravindran, S. Chang, J. Bardin, D. Russell, J. Gin, F. Patawaran, V. Verma, R. Mirin, S. Nam, and W. Farr, “Arrays of WSi superconducting nanowire single photon detectors for deep-space optical communications,” in 2015 Conference on Lasers and Electro-Optics (CLEO), (IEEE, 2015), pp, 1–2.

F. Marsili, V. Verma, M. Stevens, J. Stern, M. Shaw, A. Miller, D. Schwarzer, A. Wodtke, R. Mirin, and S. Nam, “Mid-infrared single-photon detection with tungsten silicide superconducting nanowires,” in CLEO: Science and Innovations, (Optical Society of America, 2013), pp. CTu1H–1.

V. Verma, A. Lita, B. Korzh, E. Wollman, M. Shaw, R. Mirin, and S. Nam, “Towards single-photon spectroscopy in the mid-infrared using superconducting nanowire single-photon detectors,” in Advanced Photon Counting Techniques XIII, vol. 10978 (International Society for Optics and Photonics, 2019), p. 109780N.

Verma, V. B.

L. Chen, D. Schwarzer, J. A. Lau, V. B. Verma, M. J. Stevens, F. Marsili, R. P. Mirin, S. W. Nam, and A. M. Wodtke, “Ultra-sensitive mid-infrared emission spectrometer with sub-ns temporal resolution,” Opt. Express 26(12), 14859–14868 (2018).
[Crossref]

A. E. Lita, V. B. Verma, R. D. Horansky, J. M. Shainline, R. P. Mirin, and S. Nam, “Materials development for high efficiency superconducting nanowire single-photon detectors,” MRS Online Proc. Libr. Arch. 1807, 1–6 (2015).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Voronov, B.

G. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
[Crossref]

Wallace, A.

G. S. Buller and A. Wallace, “Ranging and three-dimensional imaging using time-correlated single-photon counting and point-by-point acquisition,” IEEE J. Sel. Top. Quantum Electron. 13(4), 1006–1015 (2007).
[Crossref]

Wallace, A. M.

S. Hernandez-Marin, A. M. Wallace, and G. J. Gibson, “Multilayered 3d lidar image construction using spatial models in a bayesian framework,” IEEE Trans. Pattern Anal. Mach. Intell. 30(6), 1028–1040 (2008).
[Crossref]

S. Hernandez-Marin, A. M. Wallace, and G. J. Gibson, “Bayesian analysis of lidar signals with multiple returns,” IEEE Trans. Pattern Anal. Mach. Intell. 29(12), 2170–2180 (2007).
[Crossref]

S. Pellegrini, G. S. Buller, J. M. Smith, A. M. Wallace, and S. Cova, “Laser-based distance measurement using picosecond resolution time-correlated single-photon counting,” Meas. Sci. Technol. 11(6), 712–716 (2000).
[Crossref]

Wang, X.

D. Salvoni, M. Ejrnaes, L. Parlato, A. Sannino, A. Boselli, G. Pepe, R. Cristiano, and X. Wang, “Lidar techniques for a SNSPD-based measurement,” in Journal of Physics: Conference Series, vol. 1182 (IOP Publishing, 2019), p. 012014.

Wang, Z.

C. Zhang, W. Zhang, J. Huang, L. You, H. Li, C. lv, T. Sugihara, M. Watanabe, H. Zhou, Z. Wang, and X. Xie, “NbN superconducting nanowire single-photon detector with an active area of 300 µm-in-diameter,” AIP Adv. 9(7), 075214 (2019).
[Crossref]

W. Zhang, Q. Jia, L. You, X. Ou, H. Huang, L. Zhang, H. Li, Z. Wang, and X. Xie, “Saturating intrinsic detection efficiency of superconducting nanowire single-photon detectors via defect engineering,” Phys. Rev. Appl. 12(4), 044040 (2019).
[Crossref]

J. Zhu, Y. Chen, L. Zhang, X. Jia, Z. Feng, G. Wu, X. Yan, J. Zhai, Y. Wu, Q. Chen, X. Zhou, Z. Wang, C. Zhang, L. Kang, J. Chen, and P. Wu, “Demonstration of measuring sea fog with an SNSPD-based lidar system,” Sci. Rep. 7(1), 15113 (2017).
[Crossref]

H. Zhou, Y. He, L. You, S. Chen, W. Zhang, J. Wu, Z. Wang, and X. Xie, “Few-photon imaging at 1550 nm using a low-timing-jitter superconducting nanowire single-photon detector,” Opt. Express 23(11), 14603–14611 (2015).
[Crossref]

L. You, X. Yang, Y. He, W. Zhang, D. Liu, W. Zhang, L. Zhang, L. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Adv. 3(7), 072135 (2013).
[Crossref]

S. Miki, T. Yamashita, H. Terai, and Z. Wang, “High performance fiber-coupled NbTiN superconducting nanowire single photon detectors with Gifford-McMahon cryocooler,” Opt. Express 21(8), 10208–10214 (2013).
[Crossref]

Watanabe, M.

C. Zhang, W. Zhang, J. Huang, L. You, H. Li, C. lv, T. Sugihara, M. Watanabe, H. Zhou, Z. Wang, and X. Xie, “NbN superconducting nanowire single-photon detector with an active area of 300 µm-in-diameter,” AIP Adv. 9(7), 075214 (2019).
[Crossref]

Wcislo, P.

R. V. Kochanov, I. Gordon, L. Rothman, P. Wcisło, C. Hill, and J. Wilzewski, “Hitran application programming interface (hapi): A comprehensive approach to working with spectroscopic data,” J. Quant. Spectrosc. Radiat. Transfer 177, 15–30 (2016).
[Crossref]

Williams, C.

G. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
[Crossref]

Wilzewski, J.

R. V. Kochanov, I. Gordon, L. Rothman, P. Wcisło, C. Hill, and J. Wilzewski, “Hitran application programming interface (hapi): A comprehensive approach to working with spectroscopic data,” J. Quant. Spectrosc. Radiat. Transfer 177, 15–30 (2016).
[Crossref]

Wodtke, A.

F. Marsili, V. Verma, M. Stevens, J. Stern, M. Shaw, A. Miller, D. Schwarzer, A. Wodtke, R. Mirin, and S. Nam, “Mid-infrared single-photon detection with tungsten silicide superconducting nanowires,” in CLEO: Science and Innovations, (Optical Society of America, 2013), pp. CTu1H–1.

Wodtke, A. M.

Wolbaum, K.

V. Kovaltchouk, G. Lolos, Z. Papandreou, and K. Wolbaum, “Comparison of a silicon photomultiplier to a traditional vacuum photomultiplier,” Nucl. Instrum. Methods Phys. Res., Sect. A 538(1-3), 408–415 (2005).
[Crossref]

Wollman, E.

V. Verma, A. Lita, B. Korzh, E. Wollman, M. Shaw, R. Mirin, and S. Nam, “Towards single-photon spectroscopy in the mid-infrared using superconducting nanowire single-photon detectors,” in Advanced Photon Counting Techniques XIII, vol. 10978 (International Society for Optics and Photonics, 2019), p. 109780N.

B. Korzh, Q. Zhao, S. Frasca, J. Allmaras, T. Autry, E. Bersin, M. Colangelo, G. Crouch, A. Dane, T. Gerrits, F. Marsili, G. Moody, E. Ramirez, J. Rezac, M. Stevens, E. Wollman, D. Zhu, P. Hale, K. Silverman, R. Mirin, S. Nam, M. Shaw, and K. Berggren, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector,” arXiv preprint arXiv:1804.06839 (2018).

Wu, G.

J. Zhu, Y. Chen, L. Zhang, X. Jia, Z. Feng, G. Wu, X. Yan, J. Zhai, Y. Wu, Q. Chen, X. Zhou, Z. Wang, C. Zhang, L. Kang, J. Chen, and P. Wu, “Demonstration of measuring sea fog with an SNSPD-based lidar system,” Sci. Rep. 7(1), 15113 (2017).
[Crossref]

Wu, J.

Wu, P.

J. Zhu, Y. Chen, L. Zhang, X. Jia, Z. Feng, G. Wu, X. Yan, J. Zhai, Y. Wu, Q. Chen, X. Zhou, Z. Wang, C. Zhang, L. Kang, J. Chen, and P. Wu, “Demonstration of measuring sea fog with an SNSPD-based lidar system,” Sci. Rep. 7(1), 15113 (2017).
[Crossref]

Wu, Y.

J. Zhu, Y. Chen, L. Zhang, X. Jia, Z. Feng, G. Wu, X. Yan, J. Zhai, Y. Wu, Q. Chen, X. Zhou, Z. Wang, C. Zhang, L. Kang, J. Chen, and P. Wu, “Demonstration of measuring sea fog with an SNSPD-based lidar system,” Sci. Rep. 7(1), 15113 (2017).
[Crossref]

Xie, X.

W. Zhang, Q. Jia, L. You, X. Ou, H. Huang, L. Zhang, H. Li, Z. Wang, and X. Xie, “Saturating intrinsic detection efficiency of superconducting nanowire single-photon detectors via defect engineering,” Phys. Rev. Appl. 12(4), 044040 (2019).
[Crossref]

C. Zhang, W. Zhang, J. Huang, L. You, H. Li, C. lv, T. Sugihara, M. Watanabe, H. Zhou, Z. Wang, and X. Xie, “NbN superconducting nanowire single-photon detector with an active area of 300 µm-in-diameter,” AIP Adv. 9(7), 075214 (2019).
[Crossref]

H. Zhou, Y. He, L. You, S. Chen, W. Zhang, J. Wu, Z. Wang, and X. Xie, “Few-photon imaging at 1550 nm using a low-timing-jitter superconducting nanowire single-photon detector,” Opt. Express 23(11), 14603–14611 (2015).
[Crossref]

L. You, X. Yang, Y. He, W. Zhang, D. Liu, W. Zhang, L. Zhang, L. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Adv. 3(7), 072135 (2013).
[Crossref]

Yabuno, M.

S. Prabhakar, T. Shields, A. Dada, M. Ebrahim, G. G. Taylor, D. Morozov, K. Erotokritou, S. Miki, M. Yabuno, H. Terai, C. Gawith, M. Kues, L. Caspani, R. H. Hadfield, and M. Clerici, “Two-photon quantum interference and entanglement at 2 µm,” arXiv preprint arXiv:1906.02082 (2019).

Yamashita, T.

Yan, X.

J. Zhu, Y. Chen, L. Zhang, X. Jia, Z. Feng, G. Wu, X. Yan, J. Zhai, Y. Wu, Q. Chen, X. Zhou, Z. Wang, C. Zhang, L. Kang, J. Chen, and P. Wu, “Demonstration of measuring sea fog with an SNSPD-based lidar system,” Sci. Rep. 7(1), 15113 (2017).
[Crossref]

Yang, X.

L. You, X. Yang, Y. He, W. Zhang, D. Liu, W. Zhang, L. Zhang, L. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Adv. 3(7), 072135 (2013).
[Crossref]

You, L.

C. Zhang, W. Zhang, J. Huang, L. You, H. Li, C. lv, T. Sugihara, M. Watanabe, H. Zhou, Z. Wang, and X. Xie, “NbN superconducting nanowire single-photon detector with an active area of 300 µm-in-diameter,” AIP Adv. 9(7), 075214 (2019).
[Crossref]

W. Zhang, Q. Jia, L. You, X. Ou, H. Huang, L. Zhang, H. Li, Z. Wang, and X. Xie, “Saturating intrinsic detection efficiency of superconducting nanowire single-photon detectors via defect engineering,” Phys. Rev. Appl. 12(4), 044040 (2019).
[Crossref]

H. Zhou, Y. He, L. You, S. Chen, W. Zhang, J. Wu, Z. Wang, and X. Xie, “Few-photon imaging at 1550 nm using a low-timing-jitter superconducting nanowire single-photon detector,” Opt. Express 23(11), 14603–14611 (2015).
[Crossref]

L. You, X. Yang, Y. He, W. Zhang, D. Liu, W. Zhang, L. Zhang, L. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Adv. 3(7), 072135 (2013).
[Crossref]

Zappa, F.

M. Ghioni, A. Gulinatti, I. Rech, F. Zappa, and S. Cova, “Progress in silicon single-photon avalanche diodes,” IEEE J. Sel. Top. Quantum Electron. 13(4), 852–862 (2007).
[Crossref]

F. Zappa, A. Tosi, and S. Cova, “InGaAs SPAD and electronics for low time jitter and low noise,” in Photon Counting Applications, Quantum Optics, and Quantum Cryptography, vol. 6583 (International Society for Optics and Photonics, 2007), p. 65830E.

Zhai, J.

J. Zhu, Y. Chen, L. Zhang, X. Jia, Z. Feng, G. Wu, X. Yan, J. Zhai, Y. Wu, Q. Chen, X. Zhou, Z. Wang, C. Zhang, L. Kang, J. Chen, and P. Wu, “Demonstration of measuring sea fog with an SNSPD-based lidar system,” Sci. Rep. 7(1), 15113 (2017).
[Crossref]

Zhang, C.

C. Zhang, W. Zhang, J. Huang, L. You, H. Li, C. lv, T. Sugihara, M. Watanabe, H. Zhou, Z. Wang, and X. Xie, “NbN superconducting nanowire single-photon detector with an active area of 300 µm-in-diameter,” AIP Adv. 9(7), 075214 (2019).
[Crossref]

J. Zhu, Y. Chen, L. Zhang, X. Jia, Z. Feng, G. Wu, X. Yan, J. Zhai, Y. Wu, Q. Chen, X. Zhou, Z. Wang, C. Zhang, L. Kang, J. Chen, and P. Wu, “Demonstration of measuring sea fog with an SNSPD-based lidar system,” Sci. Rep. 7(1), 15113 (2017).
[Crossref]

Zhang, L.

W. Zhang, Q. Jia, L. You, X. Ou, H. Huang, L. Zhang, H. Li, Z. Wang, and X. Xie, “Saturating intrinsic detection efficiency of superconducting nanowire single-photon detectors via defect engineering,” Phys. Rev. Appl. 12(4), 044040 (2019).
[Crossref]

J. Zhu, Y. Chen, L. Zhang, X. Jia, Z. Feng, G. Wu, X. Yan, J. Zhai, Y. Wu, Q. Chen, X. Zhou, Z. Wang, C. Zhang, L. Kang, J. Chen, and P. Wu, “Demonstration of measuring sea fog with an SNSPD-based lidar system,” Sci. Rep. 7(1), 15113 (2017).
[Crossref]

L. You, X. Yang, Y. He, W. Zhang, D. Liu, W. Zhang, L. Zhang, L. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Adv. 3(7), 072135 (2013).
[Crossref]

L. You, X. Yang, Y. He, W. Zhang, D. Liu, W. Zhang, L. Zhang, L. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Adv. 3(7), 072135 (2013).
[Crossref]

Zhang, W.

W. Zhang, Q. Jia, L. You, X. Ou, H. Huang, L. Zhang, H. Li, Z. Wang, and X. Xie, “Saturating intrinsic detection efficiency of superconducting nanowire single-photon detectors via defect engineering,” Phys. Rev. Appl. 12(4), 044040 (2019).
[Crossref]

C. Zhang, W. Zhang, J. Huang, L. You, H. Li, C. lv, T. Sugihara, M. Watanabe, H. Zhou, Z. Wang, and X. Xie, “NbN superconducting nanowire single-photon detector with an active area of 300 µm-in-diameter,” AIP Adv. 9(7), 075214 (2019).
[Crossref]

H. Zhou, Y. He, L. You, S. Chen, W. Zhang, J. Wu, Z. Wang, and X. Xie, “Few-photon imaging at 1550 nm using a low-timing-jitter superconducting nanowire single-photon detector,” Opt. Express 23(11), 14603–14611 (2015).
[Crossref]

L. You, X. Yang, Y. He, W. Zhang, D. Liu, W. Zhang, L. Zhang, L. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Adv. 3(7), 072135 (2013).
[Crossref]

L. You, X. Yang, Y. He, W. Zhang, D. Liu, W. Zhang, L. Zhang, L. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Adv. 3(7), 072135 (2013).
[Crossref]

Zhao, Q.

B. Korzh, Q. Zhao, S. Frasca, J. Allmaras, T. Autry, E. Bersin, M. Colangelo, G. Crouch, A. Dane, T. Gerrits, F. Marsili, G. Moody, E. Ramirez, J. Rezac, M. Stevens, E. Wollman, D. Zhu, P. Hale, K. Silverman, R. Mirin, S. Nam, M. Shaw, and K. Berggren, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector,” arXiv preprint arXiv:1804.06839 (2018).

Zhao, Q.-Y.

N. Calandri, Q.-Y. Zhao, D. Zhu, A. Dane, and K. K. Berggren, “Superconducting nanowire detector jitter limited by detector geometry,” Appl. Phys. Lett. 109(15), 152601 (2016).
[Crossref]

Zhou, H.

C. Zhang, W. Zhang, J. Huang, L. You, H. Li, C. lv, T. Sugihara, M. Watanabe, H. Zhou, Z. Wang, and X. Xie, “NbN superconducting nanowire single-photon detector with an active area of 300 µm-in-diameter,” AIP Adv. 9(7), 075214 (2019).
[Crossref]

H. Zhou, Y. He, L. You, S. Chen, W. Zhang, J. Wu, Z. Wang, and X. Xie, “Few-photon imaging at 1550 nm using a low-timing-jitter superconducting nanowire single-photon detector,” Opt. Express 23(11), 14603–14611 (2015).
[Crossref]

Zhou, X.

J. Zhu, Y. Chen, L. Zhang, X. Jia, Z. Feng, G. Wu, X. Yan, J. Zhai, Y. Wu, Q. Chen, X. Zhou, Z. Wang, C. Zhang, L. Kang, J. Chen, and P. Wu, “Demonstration of measuring sea fog with an SNSPD-based lidar system,” Sci. Rep. 7(1), 15113 (2017).
[Crossref]

Zhu, D.

N. Calandri, Q.-Y. Zhao, D. Zhu, A. Dane, and K. K. Berggren, “Superconducting nanowire detector jitter limited by detector geometry,” Appl. Phys. Lett. 109(15), 152601 (2016).
[Crossref]

B. Korzh, Q. Zhao, S. Frasca, J. Allmaras, T. Autry, E. Bersin, M. Colangelo, G. Crouch, A. Dane, T. Gerrits, F. Marsili, G. Moody, E. Ramirez, J. Rezac, M. Stevens, E. Wollman, D. Zhu, P. Hale, K. Silverman, R. Mirin, S. Nam, M. Shaw, and K. Berggren, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector,” arXiv preprint arXiv:1804.06839 (2018).

Zhu, J.

J. Zhu, Y. Chen, L. Zhang, X. Jia, Z. Feng, G. Wu, X. Yan, J. Zhai, Y. Wu, Q. Chen, X. Zhou, Z. Wang, C. Zhang, L. Kang, J. Chen, and P. Wu, “Demonstration of measuring sea fog with an SNSPD-based lidar system,” Sci. Rep. 7(1), 15113 (2017).
[Crossref]

Zolotov, P.

Zotova, N.

B. Matveev, M. Aidaraliev, G. Gavrilov, N. Zotova, S. Karandashov, G. Sotnikova, N. Stus, G. Talalakin, N. Il’inskaya, and S. Aleksandrov, “Room temperature InAs photodiode–InGaAs led pairs for methane detection in the mid-IR,” Sens. Actuators, B 51(1-3), 233–237 (1998).
[Crossref]

Zwiller, V.

AIP Adv. (2)

C. Zhang, W. Zhang, J. Huang, L. You, H. Li, C. lv, T. Sugihara, M. Watanabe, H. Zhou, Z. Wang, and X. Xie, “NbN superconducting nanowire single-photon detector with an active area of 300 µm-in-diameter,” AIP Adv. 9(7), 075214 (2019).
[Crossref]

L. You, X. Yang, Y. He, W. Zhang, D. Liu, W. Zhang, L. Zhang, L. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Adv. 3(7), 072135 (2013).
[Crossref]

Appl. Phys. Express (1)

H. Shibata, K. Shimizu, H. Takesue, and Y. Tokura, “Superconducting nanowire single-photon detector with ultralow dark count rate using cold optical filters,” Appl. Phys. Express 6(7), 072801 (2013).
[Crossref]

Appl. Phys. Lett. (3)

G. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
[Crossref]

M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett. 89(3), 031109 (2006).
[Crossref]

N. Calandri, Q.-Y. Zhao, D. Zhu, A. Dane, and K. K. Berggren, “Superconducting nanowire detector jitter limited by detector geometry,” Appl. Phys. Lett. 109(15), 152601 (2016).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

M. Ghioni, A. Gulinatti, I. Rech, F. Zappa, and S. Cova, “Progress in silicon single-photon avalanche diodes,” IEEE J. Sel. Top. Quantum Electron. 13(4), 852–862 (2007).
[Crossref]

G. S. Buller and A. Wallace, “Ranging and three-dimensional imaging using time-correlated single-photon counting and point-by-point acquisition,” IEEE J. Sel. Top. Quantum Electron. 13(4), 1006–1015 (2007).
[Crossref]

IEEE Trans. Pattern Anal. Mach. Intell. (2)

S. Hernandez-Marin, A. M. Wallace, and G. J. Gibson, “Multilayered 3d lidar image construction using spatial models in a bayesian framework,” IEEE Trans. Pattern Anal. Mach. Intell. 30(6), 1028–1040 (2008).
[Crossref]

S. Hernandez-Marin, A. M. Wallace, and G. J. Gibson, “Bayesian analysis of lidar signals with multiple returns,” IEEE Trans. Pattern Anal. Mach. Intell. 29(12), 2170–2180 (2007).
[Crossref]

J. Quant. Spectrosc. Radiat. Transfer (1)

R. V. Kochanov, I. Gordon, L. Rothman, P. Wcisło, C. Hill, and J. Wilzewski, “Hitran application programming interface (hapi): A comprehensive approach to working with spectroscopic data,” J. Quant. Spectrosc. Radiat. Transfer 177, 15–30 (2016).
[Crossref]

Meas. Sci. Technol. (1)

S. Pellegrini, G. S. Buller, J. M. Smith, A. M. Wallace, and S. Cova, “Laser-based distance measurement using picosecond resolution time-correlated single-photon counting,” Meas. Sci. Technol. 11(6), 712–716 (2000).
[Crossref]

MRS Online Proc. Libr. Arch. (1)

A. E. Lita, V. B. Verma, R. D. Horansky, J. M. Shainline, R. P. Mirin, and S. Nam, “Materials development for high efficiency superconducting nanowire single-photon detectors,” MRS Online Proc. Libr. Arch. 1807, 1–6 (2015).
[Crossref]

Nano Lett. (1)

F. Marsili, F. Bellei, F. Najafi, A. E. Dane, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Efficient single photon detection from 500 nm to 5 µm wavelength,” Nano Lett. 12(9), 4799–4804 (2012).
[Crossref]

Nat. Photonics (3)

R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3(12), 696–705 (2009).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Room-temperature mid-infrared single-photon spectral imaging,” Nat. Photonics 6(11), 788–793 (2012).
[Crossref]

Nucl. Instrum. Methods Phys. Res., Sect. A (1)

V. Kovaltchouk, G. Lolos, Z. Papandreou, and K. Wolbaum, “Comparison of a silicon photomultiplier to a traditional vacuum photomultiplier,” Nucl. Instrum. Methods Phys. Res., Sect. A 538(1-3), 408–415 (2005).
[Crossref]

Opt. Eng. (1)

M.-C. Amann, T. M. Bosch, M. Lescure, R. A. Myllylae, and M. Rioux, “Laser ranging: a critical review of unusual techniques for distance measurement,” Opt. Eng. 40(1), 10–20 (2001).
[Crossref]

Opt. Express (4)

Opt. Lett. (3)

Opt. Mater. Express (1)

Opt. Mem. Neural Networks (1)

O. Romanovskii, “Airborne DIAL lidar gas analysis of the atmosphere by middle IR gas lasers: Numerical modeling,” Opt. Mem. Neural Networks 17(2), 131–137 (2008).
[Crossref]

OSA Continuum (1)

Phys. Rev. Appl. (1)

W. Zhang, Q. Jia, L. You, X. Ou, H. Huang, L. Zhang, H. Li, Z. Wang, and X. Xie, “Saturating intrinsic detection efficiency of superconducting nanowire single-photon detectors via defect engineering,” Phys. Rev. Appl. 12(4), 044040 (2019).
[Crossref]

Phys. Rev. B (2)

M. Sidorova, A. Semenov, H.-W. Húbers, I. Charaev, A. Kuzmin, S. Doerner, and M. Siegel, “Physical mechanisms of timing jitter in photon detection by current-carrying superconducting nanowires,” Phys. Rev. B 96(18), 184504 (2017).
[Crossref]

J. R. Clem and K. K. Berggren, “Geometry-dependent critical currents in superconducting nanocircuits,” Phys. Rev. B 84(17), 174510 (2011).
[Crossref]

Rev. Sci. Instrum. (1)

M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited review article: Single-photon sources and detectors,” Rev. Sci. Instrum. 82(7), 071101 (2011).
[Crossref]

Sci. Rep. (1)

J. Zhu, Y. Chen, L. Zhang, X. Jia, Z. Feng, G. Wu, X. Yan, J. Zhai, Y. Wu, Q. Chen, X. Zhou, Z. Wang, C. Zhang, L. Kang, J. Chen, and P. Wu, “Demonstration of measuring sea fog with an SNSPD-based lidar system,” Sci. Rep. 7(1), 15113 (2017).
[Crossref]

Sens. Actuators, B (1)

B. Matveev, M. Aidaraliev, G. Gavrilov, N. Zotova, S. Karandashov, G. Sotnikova, N. Stus, G. Talalakin, N. Il’inskaya, and S. Aleksandrov, “Room temperature InAs photodiode–InGaAs led pairs for methane detection in the mid-IR,” Sens. Actuators, B 51(1-3), 233–237 (1998).
[Crossref]

Supercond. Sci. Technol. (1)

C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Technol. 25(6), 063001 (2012).
[Crossref]

Other (13)

M. Shaw, F. Marsili, A. Beyer, J. Stern, G. Resta, P. Ravindran, S. Chang, J. Bardin, D. Russell, J. Gin, F. Patawaran, V. Verma, R. Mirin, S. Nam, and W. Farr, “Arrays of WSi superconducting nanowire single photon detectors for deep-space optical communications,” in 2015 Conference on Lasers and Electro-Optics (CLEO), (IEEE, 2015), pp, 1–2.

V. Verma, A. Lita, B. Korzh, E. Wollman, M. Shaw, R. Mirin, and S. Nam, “Towards single-photon spectroscopy in the mid-infrared using superconducting nanowire single-photon detectors,” in Advanced Photon Counting Techniques XIII, vol. 10978 (International Society for Optics and Photonics, 2019), p. 109780N.

B. Korzh, Q. Zhao, S. Frasca, J. Allmaras, T. Autry, E. Bersin, M. Colangelo, G. Crouch, A. Dane, T. Gerrits, F. Marsili, G. Moody, E. Ramirez, J. Rezac, M. Stevens, E. Wollman, D. Zhu, P. Hale, K. Silverman, R. Mirin, S. Nam, M. Shaw, and K. Berggren, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector,” arXiv preprint arXiv:1804.06839 (2018).

M. B. Reine, “HgCdTe photodiodes for IR detection: A review,” in Photodetectors: Materials and Devices VI, vol. 4288 (International Society for Optics and Photonics, 2001), pp. 266–278.

F. Zappa, A. Tosi, and S. Cova, “InGaAs SPAD and electronics for low time jitter and low noise,” in Photon Counting Applications, Quantum Optics, and Quantum Cryptography, vol. 6583 (International Society for Optics and Photonics, 2007), p. 65830E.

D. Salvoni, M. Ejrnaes, L. Parlato, A. Sannino, A. Boselli, G. Pepe, R. Cristiano, and X. Wang, “Lidar techniques for a SNSPD-based measurement,” in Journal of Physics: Conference Series, vol. 1182 (IOP Publishing, 2019), p. 012014.

American Society for Testing and Materials. Committee G03 on Weathering and Durability, Standard tables for reference solar spectral irradiances: direct normal and hemispherical on 37° tilted surface (ASTM international, 2003).

S. Prabhakar, T. Shields, A. Dada, M. Ebrahim, G. G. Taylor, D. Morozov, K. Erotokritou, S. Miki, M. Yabuno, H. Terai, C. Gawith, M. Kues, L. Caspani, R. H. Hadfield, and M. Clerici, “Two-photon quantum interference and entanglement at 2 µm,” arXiv preprint arXiv:1906.02082 (2019).

R. H. Hadfield and G. Johansson, Superconducting devices in quantum optics (Springer, 2016).

F. Najafi, “Timing performance of superconducting nanowire single-photon detectors,” Ph.D. thesis, Massachusetts Institute of Technology, (2015).

V. Verma, F. Marsili, B. Baek, A. Lita, T. Gerrits, J. Stern, R. Mirin, and S. W. Nam, “55% system detection efficiency with self-aligned WSi superconducting nanowire single-photon detectors,” in 2012 Conference on Lasers and Electro-Optics (CLEO), (IEEE, 2012), pp. 1–2.

F. Marsili, V. Verma, M. Stevens, J. Stern, M. Shaw, A. Miller, D. Schwarzer, A. Wodtke, R. Mirin, and S. Nam, “Mid-infrared single-photon detection with tungsten silicide superconducting nanowires,” in CLEO: Science and Innovations, (Optical Society of America, 2013), pp. CTu1H–1.

A. M. Kowalevicz and F. Bucholtz, “Beam divergence from an smf-28 optical fiber,” Tech. rep., Naval Research Lab, Washington DC, (2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Solar irradiance and atmospheric absorption. The red line shows the solar irradiance variation (left y-axis) with wavelength and the blue shows the combined absorption spectra of the most common molecules in the earth’s atmosphere - H$_{2}$O, CO$_{2}$, O$_{2}$ and Ozone (right y-axis). The absorption is presented in dB per meter at 1 atmosphere and 296K temperature. The saturation at the top of the scale indicates 100% absorption for that wavelength. The solar data is from ASTM [26] and the spectral line data from HITRAN 2016 [27]. The highlighted region spans the 2 to 2.5µm range and shows a window of low absorption and lower background irradiance when compared to shorter wavelengths.
Fig. 2.
Fig. 2. a): Simulation of the absorption in the SNSPD cavity design. b): Schematic of the device design showing the nanowire (green) embedded in the optical stack. The device is optically fiber-coupled from the underside of the device (bottom of figure). c): Photo showing the mounted device and the fiber aligned through the underside of the device.
Fig. 3.
Fig. 3. a) Photon count rate (red) and dark count rate (blue) for 2.3µm wavelength photons incident on the device at 2.5K. The early onset of the DCR before the exponential increase as the current approaches the critical current is caused by black body radiation coupling into the fiber from room temperature. b) Calculated system detection efficiency (SDE) against bias current. For these devices at an operating temperature of 2.5K we do not observe the characteristic plateau associated with saturation of the internal detection efficiency. The relatively low overall SDE observed is discussed in section 5.
Fig. 4.
Fig. 4. a): Results from two cardboard squares separated by 40mm and co-illuminated with a 2mm beam. The data is fitted with a double Gaussian function to determine the peak positions. The integration time was 10s for this measurement. Below 4cm separation the two peaks become difficult to distinguish. b): Instrument response function of the entire LIDAR setup described in section 4 showing a system timing jitter of 280ps FWHM fitted with a Gaussian function. Blue dots show data points and the red line is the fit.
Fig. 5.
Fig. 5. LIDAR schematic. The OPO provides a sync pulse which is fed into a fast photodetector (Thorlabs DET08CFC) to provide the sync signal (START) for the HydraHarp TCSPC module. The idler pulse travels through the free-space filtering system described in the text (seen at the top of the figure) and is then directed through the central hole of an off-axis parabolic (OAP) mirror with a 3.2mm through hole to the target. An aperture before this hole controls the beam size. Once reflected from the target (LEGO figure) returns are collected and focussed into fiber with two OAP mirrors and a plano-convex lens and then delivered to the SNSPD. Electrical response signals from the SNSPD are then amplified and sent to the TCSPC to provide the STOP signal. SM2000 fiber is shown in yellow, electrical connections in black. Arrows indicate free-space transmission with red being output and blue the target returns.
Fig. 6.
Fig. 6. a) Photos of LEGO Big Ben model on motorized stages scanning in X and Y. The main photo shows the target as viewed by the LIDAR apparatus and the inset shows the depth profile from the side. b) LIDAR depth image acquired with a 1s integration time per pixel. The whole area of the model has not been scanned. Key features such as the raised clock face (3mm depth from next surface), holes in the model and curved cutout of the moving stage can be easily picked out. The scale bar shows depth in mm.

Metrics