Abstract

We demonstrated the power scaling of a passively Q-switched Pr3+:LiYF4 (YLF) laser at 523, 607, and 640 nm with a Co2+:MgAl2O4 (MALO) saturable absorber and analyzed the experimental results with a numerical simulation based on rate equations. A maximum pulse energy of 33.5 µJ was obtained with a pulse width of 30.9 ns and a repetition rate of 64.0 kHz at 640 nm. We demonstrated ultraviolet pulse generation at 261 and 320 nm by intracavity frequency doubling and obtained 63.3-ns pulses with a pulse energy of 7.0 µJ and a repetition rate of 64.6 kHz at 320 nm as well as 356-ns 261-nm pulses with a pulse energy of 0.2 µJ at a repetition rate of 82.0 kHz. To the best of our knowledge, a 261-nm pulse is the shortest wavelength laser directly generated from the intracavity second-harmonic generation of passively Q-switched lasers.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
InGaN diode pumped actively Q-switched intracavity frequency doubling Pr:LiYF4 261  nm laser

Junichiro Kojou, Ryo Abe, Ryosuke Kariyama, Hiroki Tanaka, Akira Sakurai, Yojiro Watanabe, and Fumihiko Kannari
Appl. Opt. 53(10) 2030-2036 (2014)

50-kHz, 50-ns UV pulse generation by diode-pumped frequency doubling Pr3+:YLF Q-switch laser with a Cr4+:YAG saturable absorber

Hiroki Tanaka, Ryosuke Kariyama, Kodai Iijima, and Fumihiko Kannari
Appl. Opt. 55(23) 6193-6198 (2016)

Saturation of 640-nm absorption in Cr4+:YAG for an InGaN laser diode pumped passively Q-switched Pr3+:YLF laser

Hiroki Tanaka, Ryosuke Kariyama, Kodai Iijima, Kenichi Hirosawa, and Fumihiko Kannari
Opt. Express 23(15) 19382-19395 (2015)

References

  • View by:
  • |
  • |
  • |

  1. A. Richter, E. Heumann, G. Huber, V. Ostroumov, and W. Seelert, “Power scaling of semiconductor laser pumped Praseodymium-lasers,” Opt. Express 15(8), 5172–5178 (2007).
    [Crossref]
  2. P. W. Metz, F. Reichert, F. Moglia, S. Müller, D. T. Marzahl, C. Kränkel, and G. Huber, “High-power red, orange, and green Pr3+:LiYF4 lasers,” Opt. Lett. 39(11), 3193–3196 (2014).
    [Crossref]
  3. P. W. Metz, K. Hasse, D. Parisi, N. O. Hansen, C. Kränkel, M. Tonelli, and G. Huber, “Continuous-wave Pr3+:BaY2F8 and Pr3+:LiYF4 in the cyan-blue spectral region,” Opt. Lett. 39(17), 5158–5161 (2014).
    [Crossref]
  4. K. Hashimoto and F. Kannari, “High-power GaN diode-pumped continuous wave Pr3+ -doped LiYF4 laser,” Opt. Lett. 32(17), 2493–2495 (2007).
    [Crossref]
  5. T. Gün, P. Metz, and G. Huber, “Power scaling of laser diode pumped Pr3+: LiYF4 cw lasers: efficient laser operation at 522.6 nm, 545.9 nm, 607.2 nm and 639.5 nm,” Opt. Lett. 36(6), 1002–1004 (2011).
    [Crossref]
  6. B. Qu, B. Xu, S. Luo, Y. Cheng, H. Xu, Z. Cai, P. Camy, J. L. Doualan, and R. Moncorgé, “InGaN-LD-pumped continuous-wave deep red laser at 670 nm in Pr3+:LiYF4 crystal,” IEEE Photonics Technol. Lett. 27(4), 333–335 (2015).
    [Crossref]
  7. H. Tanaka, S. Fujita, and F. Kannari, “High-power visibly emitting Pr3+:YLF laser end pumped by single-emitter or fiber-coupled GaN blue laser diodes,” Appl. Opt. 57(21), 5923–5928 (2018).
    [Crossref]
  8. A. Sottile and P. W. Metz, “Deep red diode-pumped Pr3+:KY3F10 continuous-wave laser,” Opt. Lett. 40(9), 1992–1995 (2015).
    [Crossref]
  9. M. Fibrich, H. Jelínková, J. Šulc, K. Nejezchleb, and V. Škoda, “Visible cw laser emission of GaN-diode pumped Pr:YAlO3 crystal,” Appl. Phys. B 97(2), 363–367 (2009).
    [Crossref]
  10. M. Fechner, F. Reichert, N. O. Hansen, K. Petermann, and G. Huber, “Crystal growth, spectroscopy, and diode pumped laser performance of Pr, Mg:SrAl12O19,” Appl. Phys. B 102(4), 731–735 (2011).
    [Crossref]
  11. H. Okamoto, K. Kasuga, I. Hara, and Y. Kubota, “Visible–NIR tunable Pr3+-doped fiber laser pumped by a GaN laser diode,” Opt. Express 17(22), 20227–20232 (2009).
    [Crossref]
  12. S. Masui, Y. Nakatsu, D. Kasahara, and S. Nagahama, “Recent improvement in nitride lasers,” Proc. SPIE 10104, 101041H (2017).
    [Crossref]
  13. R. Abe, J. Kojou, K. Masuda, and F. Kannari, “Cr4+-Doped Y3Al5O12 as a Saturable Absorber for a Q-Switched and Mode-Locked 639-nm Pr3+-Doped LiYF4 Laser,” Appl. Phys. Express 6(3), 032703 (2013).
    [Crossref]
  14. Z. Luo, D. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, J. Weng, S. Xu, C. Zhu, F. Wang, Z. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8(2), 1066–1072 (2016).
    [Crossref]
  15. M. Gaponenko, P. W. Metz, A. Härkönen, A. Heuer, T. Leinonen, M. Guina, T. Südmeyer, G. Huber, and C. Kränkel, “SESAM mode-locked red praseodymium laser,” Opt. Lett. 39(24), 6939–6941 (2014).
    [Crossref]
  16. K. Iijima, R. Kariyama, H. Tanaka, and F. Kannari, “Pr3+:YLF mode-locked laser at 640 nm directly pumped by InGaN-diode lasers,” Appl. Opt. 55(28), 7782–7787 (2016).
    [Crossref]
  17. S. Kajikawa, M. Yoshida, O. Ishii, M. Yamazaki, and Y. Fujimoto, “Visible Q-switched pulse laser oscillation in Pr-doped double-clad structured waterproof fluoride glass fiber with graphene,” Opt. Commun. 424(7), 13–16 (2018).
    [Crossref]
  18. H. Tanaka, K. Iijima, Y. Kiyota, and F. Kannari, “Power scaling, Q-switching and frequency conversion of Pr3+:YLF laser directly pumped by InGaN blue diode lasers,” in 2017 European Conference on Lasers and Electro-Optics and European Quantum Electronics Conference, (Optical Society of America, 2017), paper CA_1_5.
  19. H. Tanaka, R. Kariyama, K. Iijima, and F. Kannari, “50-kHz, 50-ns UV pulse generation by diode-pumped frequency doubling Pr3+:YLF Q-switch laser with a Cr4+:YAG saturable absorber,” Appl. Opt. 55(23), 6193–6198 (2016).
    [Crossref]
  20. K. V. Yumashev, “Saturable absorber Co2+:MgAl2O4 crystal for Q switching of 1.34-µm Nd3+:YAlO3 and 1.54-µm Er3+:glass lasers,” Appl. Opt. 38(30), 6343–6346 (1999).
    [Crossref]
  21. M. Demesh, D.-T. Marzahl, A. Yasukevich, V. Kisel, G. Huber, N. Kuleshov, and C. Kränkel, “Passively Q-switched Pr:YLF laser with a Co2+:MgAl2O4 saturable absorber,” Opt. Lett. 42(22), 4687–4690 (2017).
    [Crossref]
  22. H. Tanaka, “Trivalent Prasedymium-doped Yttrium Fluoride Visible Lasers Pumped by Gallium Nitride Series Laser Diodes,” PhD thesis, Keio University, Japan.
  23. W. A. Clarkson, “Thermal effects and their mitigation in end-pumped solid-state lasers,” J. Phys. D: Appl. Phys. 34(16), 2381–2395 (2001).
    [Crossref]
  24. H. Tanaka, R. Kariyama, K. Iijima, K. Hirosawa, and F. Kannari, “Saturation of 640-nm absorption in Cr4+:YAG for an InGaN laser diode pumped passively Q-switched Pr3+:YLF laser,” Opt. Express 23(15), 19382–19395 (2015).
    [Crossref]
  25. P. W. Metz, D.-T. Marzahl, G. Huber, and C. Kränkel, “Performance and wavelength tuning of green emitting terbium lasers,” Opt. Express 25(5), 5716–5724 (2017).
    [Crossref]

2018 (2)

H. Tanaka, S. Fujita, and F. Kannari, “High-power visibly emitting Pr3+:YLF laser end pumped by single-emitter or fiber-coupled GaN blue laser diodes,” Appl. Opt. 57(21), 5923–5928 (2018).
[Crossref]

S. Kajikawa, M. Yoshida, O. Ishii, M. Yamazaki, and Y. Fujimoto, “Visible Q-switched pulse laser oscillation in Pr-doped double-clad structured waterproof fluoride glass fiber with graphene,” Opt. Commun. 424(7), 13–16 (2018).
[Crossref]

2017 (3)

2016 (3)

2015 (3)

2014 (3)

2013 (1)

R. Abe, J. Kojou, K. Masuda, and F. Kannari, “Cr4+-Doped Y3Al5O12 as a Saturable Absorber for a Q-Switched and Mode-Locked 639-nm Pr3+-Doped LiYF4 Laser,” Appl. Phys. Express 6(3), 032703 (2013).
[Crossref]

2011 (2)

T. Gün, P. Metz, and G. Huber, “Power scaling of laser diode pumped Pr3+: LiYF4 cw lasers: efficient laser operation at 522.6 nm, 545.9 nm, 607.2 nm and 639.5 nm,” Opt. Lett. 36(6), 1002–1004 (2011).
[Crossref]

M. Fechner, F. Reichert, N. O. Hansen, K. Petermann, and G. Huber, “Crystal growth, spectroscopy, and diode pumped laser performance of Pr, Mg:SrAl12O19,” Appl. Phys. B 102(4), 731–735 (2011).
[Crossref]

2009 (2)

H. Okamoto, K. Kasuga, I. Hara, and Y. Kubota, “Visible–NIR tunable Pr3+-doped fiber laser pumped by a GaN laser diode,” Opt. Express 17(22), 20227–20232 (2009).
[Crossref]

M. Fibrich, H. Jelínková, J. Šulc, K. Nejezchleb, and V. Škoda, “Visible cw laser emission of GaN-diode pumped Pr:YAlO3 crystal,” Appl. Phys. B 97(2), 363–367 (2009).
[Crossref]

2007 (2)

2001 (1)

W. A. Clarkson, “Thermal effects and their mitigation in end-pumped solid-state lasers,” J. Phys. D: Appl. Phys. 34(16), 2381–2395 (2001).
[Crossref]

1999 (1)

Abe, R.

R. Abe, J. Kojou, K. Masuda, and F. Kannari, “Cr4+-Doped Y3Al5O12 as a Saturable Absorber for a Q-Switched and Mode-Locked 639-nm Pr3+-Doped LiYF4 Laser,” Appl. Phys. Express 6(3), 032703 (2013).
[Crossref]

Cai, Z.

Z. Luo, D. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, J. Weng, S. Xu, C. Zhu, F. Wang, Z. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8(2), 1066–1072 (2016).
[Crossref]

B. Qu, B. Xu, S. Luo, Y. Cheng, H. Xu, Z. Cai, P. Camy, J. L. Doualan, and R. Moncorgé, “InGaN-LD-pumped continuous-wave deep red laser at 670 nm in Pr3+:LiYF4 crystal,” IEEE Photonics Technol. Lett. 27(4), 333–335 (2015).
[Crossref]

Camy, P.

B. Qu, B. Xu, S. Luo, Y. Cheng, H. Xu, Z. Cai, P. Camy, J. L. Doualan, and R. Moncorgé, “InGaN-LD-pumped continuous-wave deep red laser at 670 nm in Pr3+:LiYF4 crystal,” IEEE Photonics Technol. Lett. 27(4), 333–335 (2015).
[Crossref]

Cheng, Y.

B. Qu, B. Xu, S. Luo, Y. Cheng, H. Xu, Z. Cai, P. Camy, J. L. Doualan, and R. Moncorgé, “InGaN-LD-pumped continuous-wave deep red laser at 670 nm in Pr3+:LiYF4 crystal,” IEEE Photonics Technol. Lett. 27(4), 333–335 (2015).
[Crossref]

Clarkson, W. A.

W. A. Clarkson, “Thermal effects and their mitigation in end-pumped solid-state lasers,” J. Phys. D: Appl. Phys. 34(16), 2381–2395 (2001).
[Crossref]

Demesh, M.

Doualan, J. L.

B. Qu, B. Xu, S. Luo, Y. Cheng, H. Xu, Z. Cai, P. Camy, J. L. Doualan, and R. Moncorgé, “InGaN-LD-pumped continuous-wave deep red laser at 670 nm in Pr3+:LiYF4 crystal,” IEEE Photonics Technol. Lett. 27(4), 333–335 (2015).
[Crossref]

Fechner, M.

M. Fechner, F. Reichert, N. O. Hansen, K. Petermann, and G. Huber, “Crystal growth, spectroscopy, and diode pumped laser performance of Pr, Mg:SrAl12O19,” Appl. Phys. B 102(4), 731–735 (2011).
[Crossref]

Fibrich, M.

M. Fibrich, H. Jelínková, J. Šulc, K. Nejezchleb, and V. Škoda, “Visible cw laser emission of GaN-diode pumped Pr:YAlO3 crystal,” Appl. Phys. B 97(2), 363–367 (2009).
[Crossref]

Fujimoto, Y.

S. Kajikawa, M. Yoshida, O. Ishii, M. Yamazaki, and Y. Fujimoto, “Visible Q-switched pulse laser oscillation in Pr-doped double-clad structured waterproof fluoride glass fiber with graphene,” Opt. Commun. 424(7), 13–16 (2018).
[Crossref]

Fujita, S.

Gaponenko, M.

Guina, M.

Gün, T.

Hansen, N. O.

P. W. Metz, K. Hasse, D. Parisi, N. O. Hansen, C. Kränkel, M. Tonelli, and G. Huber, “Continuous-wave Pr3+:BaY2F8 and Pr3+:LiYF4 in the cyan-blue spectral region,” Opt. Lett. 39(17), 5158–5161 (2014).
[Crossref]

M. Fechner, F. Reichert, N. O. Hansen, K. Petermann, and G. Huber, “Crystal growth, spectroscopy, and diode pumped laser performance of Pr, Mg:SrAl12O19,” Appl. Phys. B 102(4), 731–735 (2011).
[Crossref]

Hara, I.

Härkönen, A.

Hashimoto, K.

Hasse, K.

Heuer, A.

Heumann, E.

Hirosawa, K.

Huber, G.

M. Demesh, D.-T. Marzahl, A. Yasukevich, V. Kisel, G. Huber, N. Kuleshov, and C. Kränkel, “Passively Q-switched Pr:YLF laser with a Co2+:MgAl2O4 saturable absorber,” Opt. Lett. 42(22), 4687–4690 (2017).
[Crossref]

P. W. Metz, D.-T. Marzahl, G. Huber, and C. Kränkel, “Performance and wavelength tuning of green emitting terbium lasers,” Opt. Express 25(5), 5716–5724 (2017).
[Crossref]

P. W. Metz, K. Hasse, D. Parisi, N. O. Hansen, C. Kränkel, M. Tonelli, and G. Huber, “Continuous-wave Pr3+:BaY2F8 and Pr3+:LiYF4 in the cyan-blue spectral region,” Opt. Lett. 39(17), 5158–5161 (2014).
[Crossref]

M. Gaponenko, P. W. Metz, A. Härkönen, A. Heuer, T. Leinonen, M. Guina, T. Südmeyer, G. Huber, and C. Kränkel, “SESAM mode-locked red praseodymium laser,” Opt. Lett. 39(24), 6939–6941 (2014).
[Crossref]

P. W. Metz, F. Reichert, F. Moglia, S. Müller, D. T. Marzahl, C. Kränkel, and G. Huber, “High-power red, orange, and green Pr3+:LiYF4 lasers,” Opt. Lett. 39(11), 3193–3196 (2014).
[Crossref]

T. Gün, P. Metz, and G. Huber, “Power scaling of laser diode pumped Pr3+: LiYF4 cw lasers: efficient laser operation at 522.6 nm, 545.9 nm, 607.2 nm and 639.5 nm,” Opt. Lett. 36(6), 1002–1004 (2011).
[Crossref]

M. Fechner, F. Reichert, N. O. Hansen, K. Petermann, and G. Huber, “Crystal growth, spectroscopy, and diode pumped laser performance of Pr, Mg:SrAl12O19,” Appl. Phys. B 102(4), 731–735 (2011).
[Crossref]

A. Richter, E. Heumann, G. Huber, V. Ostroumov, and W. Seelert, “Power scaling of semiconductor laser pumped Praseodymium-lasers,” Opt. Express 15(8), 5172–5178 (2007).
[Crossref]

Iijima, K.

Ishii, O.

S. Kajikawa, M. Yoshida, O. Ishii, M. Yamazaki, and Y. Fujimoto, “Visible Q-switched pulse laser oscillation in Pr-doped double-clad structured waterproof fluoride glass fiber with graphene,” Opt. Commun. 424(7), 13–16 (2018).
[Crossref]

Jelínková, H.

M. Fibrich, H. Jelínková, J. Šulc, K. Nejezchleb, and V. Škoda, “Visible cw laser emission of GaN-diode pumped Pr:YAlO3 crystal,” Appl. Phys. B 97(2), 363–367 (2009).
[Crossref]

Kajikawa, S.

S. Kajikawa, M. Yoshida, O. Ishii, M. Yamazaki, and Y. Fujimoto, “Visible Q-switched pulse laser oscillation in Pr-doped double-clad structured waterproof fluoride glass fiber with graphene,” Opt. Commun. 424(7), 13–16 (2018).
[Crossref]

Kannari, F.

H. Tanaka, S. Fujita, and F. Kannari, “High-power visibly emitting Pr3+:YLF laser end pumped by single-emitter or fiber-coupled GaN blue laser diodes,” Appl. Opt. 57(21), 5923–5928 (2018).
[Crossref]

H. Tanaka, R. Kariyama, K. Iijima, and F. Kannari, “50-kHz, 50-ns UV pulse generation by diode-pumped frequency doubling Pr3+:YLF Q-switch laser with a Cr4+:YAG saturable absorber,” Appl. Opt. 55(23), 6193–6198 (2016).
[Crossref]

K. Iijima, R. Kariyama, H. Tanaka, and F. Kannari, “Pr3+:YLF mode-locked laser at 640 nm directly pumped by InGaN-diode lasers,” Appl. Opt. 55(28), 7782–7787 (2016).
[Crossref]

H. Tanaka, R. Kariyama, K. Iijima, K. Hirosawa, and F. Kannari, “Saturation of 640-nm absorption in Cr4+:YAG for an InGaN laser diode pumped passively Q-switched Pr3+:YLF laser,” Opt. Express 23(15), 19382–19395 (2015).
[Crossref]

R. Abe, J. Kojou, K. Masuda, and F. Kannari, “Cr4+-Doped Y3Al5O12 as a Saturable Absorber for a Q-Switched and Mode-Locked 639-nm Pr3+-Doped LiYF4 Laser,” Appl. Phys. Express 6(3), 032703 (2013).
[Crossref]

K. Hashimoto and F. Kannari, “High-power GaN diode-pumped continuous wave Pr3+ -doped LiYF4 laser,” Opt. Lett. 32(17), 2493–2495 (2007).
[Crossref]

H. Tanaka, K. Iijima, Y. Kiyota, and F. Kannari, “Power scaling, Q-switching and frequency conversion of Pr3+:YLF laser directly pumped by InGaN blue diode lasers,” in 2017 European Conference on Lasers and Electro-Optics and European Quantum Electronics Conference, (Optical Society of America, 2017), paper CA_1_5.

Kariyama, R.

Kasahara, D.

S. Masui, Y. Nakatsu, D. Kasahara, and S. Nagahama, “Recent improvement in nitride lasers,” Proc. SPIE 10104, 101041H (2017).
[Crossref]

Kasuga, K.

Kisel, V.

Kiyota, Y.

H. Tanaka, K. Iijima, Y. Kiyota, and F. Kannari, “Power scaling, Q-switching and frequency conversion of Pr3+:YLF laser directly pumped by InGaN blue diode lasers,” in 2017 European Conference on Lasers and Electro-Optics and European Quantum Electronics Conference, (Optical Society of America, 2017), paper CA_1_5.

Kojou, J.

R. Abe, J. Kojou, K. Masuda, and F. Kannari, “Cr4+-Doped Y3Al5O12 as a Saturable Absorber for a Q-Switched and Mode-Locked 639-nm Pr3+-Doped LiYF4 Laser,” Appl. Phys. Express 6(3), 032703 (2013).
[Crossref]

Kränkel, C.

Kubota, Y.

Kuleshov, N.

Leinonen, T.

Luo, S.

B. Qu, B. Xu, S. Luo, Y. Cheng, H. Xu, Z. Cai, P. Camy, J. L. Doualan, and R. Moncorgé, “InGaN-LD-pumped continuous-wave deep red laser at 670 nm in Pr3+:LiYF4 crystal,” IEEE Photonics Technol. Lett. 27(4), 333–335 (2015).
[Crossref]

Luo, Z.

Z. Luo, D. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, J. Weng, S. Xu, C. Zhu, F. Wang, Z. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8(2), 1066–1072 (2016).
[Crossref]

Marzahl, D. T.

Marzahl, D.-T.

Masuda, K.

R. Abe, J. Kojou, K. Masuda, and F. Kannari, “Cr4+-Doped Y3Al5O12 as a Saturable Absorber for a Q-Switched and Mode-Locked 639-nm Pr3+-Doped LiYF4 Laser,” Appl. Phys. Express 6(3), 032703 (2013).
[Crossref]

Masui, S.

S. Masui, Y. Nakatsu, D. Kasahara, and S. Nagahama, “Recent improvement in nitride lasers,” Proc. SPIE 10104, 101041H (2017).
[Crossref]

Metz, P.

Metz, P. W.

Moglia, F.

Moncorgé, R.

B. Qu, B. Xu, S. Luo, Y. Cheng, H. Xu, Z. Cai, P. Camy, J. L. Doualan, and R. Moncorgé, “InGaN-LD-pumped continuous-wave deep red laser at 670 nm in Pr3+:LiYF4 crystal,” IEEE Photonics Technol. Lett. 27(4), 333–335 (2015).
[Crossref]

Müller, S.

Nagahama, S.

S. Masui, Y. Nakatsu, D. Kasahara, and S. Nagahama, “Recent improvement in nitride lasers,” Proc. SPIE 10104, 101041H (2017).
[Crossref]

Nakatsu, Y.

S. Masui, Y. Nakatsu, D. Kasahara, and S. Nagahama, “Recent improvement in nitride lasers,” Proc. SPIE 10104, 101041H (2017).
[Crossref]

Nejezchleb, K.

M. Fibrich, H. Jelínková, J. Šulc, K. Nejezchleb, and V. Škoda, “Visible cw laser emission of GaN-diode pumped Pr:YAlO3 crystal,” Appl. Phys. B 97(2), 363–367 (2009).
[Crossref]

Okamoto, H.

Ostroumov, V.

Parisi, D.

Peng, J.

Z. Luo, D. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, J. Weng, S. Xu, C. Zhu, F. Wang, Z. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8(2), 1066–1072 (2016).
[Crossref]

Petermann, K.

M. Fechner, F. Reichert, N. O. Hansen, K. Petermann, and G. Huber, “Crystal growth, spectroscopy, and diode pumped laser performance of Pr, Mg:SrAl12O19,” Appl. Phys. B 102(4), 731–735 (2011).
[Crossref]

Qu, B.

B. Qu, B. Xu, S. Luo, Y. Cheng, H. Xu, Z. Cai, P. Camy, J. L. Doualan, and R. Moncorgé, “InGaN-LD-pumped continuous-wave deep red laser at 670 nm in Pr3+:LiYF4 crystal,” IEEE Photonics Technol. Lett. 27(4), 333–335 (2015).
[Crossref]

Reichert, F.

P. W. Metz, F. Reichert, F. Moglia, S. Müller, D. T. Marzahl, C. Kränkel, and G. Huber, “High-power red, orange, and green Pr3+:LiYF4 lasers,” Opt. Lett. 39(11), 3193–3196 (2014).
[Crossref]

M. Fechner, F. Reichert, N. O. Hansen, K. Petermann, and G. Huber, “Crystal growth, spectroscopy, and diode pumped laser performance of Pr, Mg:SrAl12O19,” Appl. Phys. B 102(4), 731–735 (2011).
[Crossref]

Richter, A.

Seelert, W.

Škoda, V.

M. Fibrich, H. Jelínková, J. Šulc, K. Nejezchleb, and V. Škoda, “Visible cw laser emission of GaN-diode pumped Pr:YAlO3 crystal,” Appl. Phys. B 97(2), 363–367 (2009).
[Crossref]

Sottile, A.

Südmeyer, T.

Šulc, J.

M. Fibrich, H. Jelínková, J. Šulc, K. Nejezchleb, and V. Škoda, “Visible cw laser emission of GaN-diode pumped Pr:YAlO3 crystal,” Appl. Phys. B 97(2), 363–367 (2009).
[Crossref]

Sun, Z.

Z. Luo, D. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, J. Weng, S. Xu, C. Zhu, F. Wang, Z. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8(2), 1066–1072 (2016).
[Crossref]

Tanaka, H.

Tonelli, M.

Wang, F.

Z. Luo, D. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, J. Weng, S. Xu, C. Zhu, F. Wang, Z. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8(2), 1066–1072 (2016).
[Crossref]

Weng, J.

Z. Luo, D. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, J. Weng, S. Xu, C. Zhu, F. Wang, Z. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8(2), 1066–1072 (2016).
[Crossref]

Wu, D.

Z. Luo, D. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, J. Weng, S. Xu, C. Zhu, F. Wang, Z. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8(2), 1066–1072 (2016).
[Crossref]

Xu, B.

Z. Luo, D. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, J. Weng, S. Xu, C. Zhu, F. Wang, Z. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8(2), 1066–1072 (2016).
[Crossref]

B. Qu, B. Xu, S. Luo, Y. Cheng, H. Xu, Z. Cai, P. Camy, J. L. Doualan, and R. Moncorgé, “InGaN-LD-pumped continuous-wave deep red laser at 670 nm in Pr3+:LiYF4 crystal,” IEEE Photonics Technol. Lett. 27(4), 333–335 (2015).
[Crossref]

Xu, H.

Z. Luo, D. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, J. Weng, S. Xu, C. Zhu, F. Wang, Z. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8(2), 1066–1072 (2016).
[Crossref]

B. Qu, B. Xu, S. Luo, Y. Cheng, H. Xu, Z. Cai, P. Camy, J. L. Doualan, and R. Moncorgé, “InGaN-LD-pumped continuous-wave deep red laser at 670 nm in Pr3+:LiYF4 crystal,” IEEE Photonics Technol. Lett. 27(4), 333–335 (2015).
[Crossref]

Xu, S.

Z. Luo, D. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, J. Weng, S. Xu, C. Zhu, F. Wang, Z. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8(2), 1066–1072 (2016).
[Crossref]

Yamazaki, M.

S. Kajikawa, M. Yoshida, O. Ishii, M. Yamazaki, and Y. Fujimoto, “Visible Q-switched pulse laser oscillation in Pr-doped double-clad structured waterproof fluoride glass fiber with graphene,” Opt. Commun. 424(7), 13–16 (2018).
[Crossref]

Yasukevich, A.

Yoshida, M.

S. Kajikawa, M. Yoshida, O. Ishii, M. Yamazaki, and Y. Fujimoto, “Visible Q-switched pulse laser oscillation in Pr-doped double-clad structured waterproof fluoride glass fiber with graphene,” Opt. Commun. 424(7), 13–16 (2018).
[Crossref]

Yumashev, K. V.

Zhang, H.

Z. Luo, D. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, J. Weng, S. Xu, C. Zhu, F. Wang, Z. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8(2), 1066–1072 (2016).
[Crossref]

Zhu, C.

Z. Luo, D. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, J. Weng, S. Xu, C. Zhu, F. Wang, Z. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8(2), 1066–1072 (2016).
[Crossref]

Appl. Opt. (4)

Appl. Phys. B (2)

M. Fibrich, H. Jelínková, J. Šulc, K. Nejezchleb, and V. Škoda, “Visible cw laser emission of GaN-diode pumped Pr:YAlO3 crystal,” Appl. Phys. B 97(2), 363–367 (2009).
[Crossref]

M. Fechner, F. Reichert, N. O. Hansen, K. Petermann, and G. Huber, “Crystal growth, spectroscopy, and diode pumped laser performance of Pr, Mg:SrAl12O19,” Appl. Phys. B 102(4), 731–735 (2011).
[Crossref]

Appl. Phys. Express (1)

R. Abe, J. Kojou, K. Masuda, and F. Kannari, “Cr4+-Doped Y3Al5O12 as a Saturable Absorber for a Q-Switched and Mode-Locked 639-nm Pr3+-Doped LiYF4 Laser,” Appl. Phys. Express 6(3), 032703 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (1)

B. Qu, B. Xu, S. Luo, Y. Cheng, H. Xu, Z. Cai, P. Camy, J. L. Doualan, and R. Moncorgé, “InGaN-LD-pumped continuous-wave deep red laser at 670 nm in Pr3+:LiYF4 crystal,” IEEE Photonics Technol. Lett. 27(4), 333–335 (2015).
[Crossref]

J. Phys. D: Appl. Phys. (1)

W. A. Clarkson, “Thermal effects and their mitigation in end-pumped solid-state lasers,” J. Phys. D: Appl. Phys. 34(16), 2381–2395 (2001).
[Crossref]

Nanoscale (1)

Z. Luo, D. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, J. Weng, S. Xu, C. Zhu, F. Wang, Z. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8(2), 1066–1072 (2016).
[Crossref]

Opt. Commun. (1)

S. Kajikawa, M. Yoshida, O. Ishii, M. Yamazaki, and Y. Fujimoto, “Visible Q-switched pulse laser oscillation in Pr-doped double-clad structured waterproof fluoride glass fiber with graphene,” Opt. Commun. 424(7), 13–16 (2018).
[Crossref]

Opt. Express (4)

Opt. Lett. (7)

Proc. SPIE (1)

S. Masui, Y. Nakatsu, D. Kasahara, and S. Nagahama, “Recent improvement in nitride lasers,” Proc. SPIE 10104, 101041H (2017).
[Crossref]

Other (2)

H. Tanaka, K. Iijima, Y. Kiyota, and F. Kannari, “Power scaling, Q-switching and frequency conversion of Pr3+:YLF laser directly pumped by InGaN blue diode lasers,” in 2017 European Conference on Lasers and Electro-Optics and European Quantum Electronics Conference, (Optical Society of America, 2017), paper CA_1_5.

H. Tanaka, “Trivalent Prasedymium-doped Yttrium Fluoride Visible Lasers Pumped by Gallium Nitride Series Laser Diodes,” PhD thesis, Keio University, Japan.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Experimental setup of a diode-pumped Pr3+:YLF laser Q-switched by a Co2+:MALO saturable absorber.
Fig. 2.
Fig. 2. (a) Average power, (b) pulse width, and (c) repetition frequency of passively Q-switched Pr3+:YLF laser with Co2+:MALO (SA2) and output coupler of 9.1% at 640 nm as a function of absorbed pump power. Dashed lines are results of numerical simulation.
Fig. 3.
Fig. 3. (a) Average power, (b) pulse width, and (c) repetition frequency of passively Q-switched Pr3+:YLF laser with Co2+:MALO (SA2) and output coupler of 11.4% at 607 nm as a function of absorbed pump power. Dashed lines are results of numerical simulations with two different ESA cross sections.
Fig. 4.
Fig. 4. (a) Average power, (b) pulse width, and (c) repetition frequency of passively Q-switched Pr3+:YLF laser with Co2+:MALO (SA2) and output coupler of 2.7% at 523 nm as a function of absorbed pump power.
Fig. 5.
Fig. 5. Experimental setup of intracavity frequency doubling a diode-pumped Pr3+:YLF laser passively Q-switched by a Co2+:MALO saturable absorber.
Fig. 6.
Fig. 6. (a) Average power, (b) pulse width, and (c) repetition frequency of UV pulse at 320 nm as a function of absorbed pump power. Dashed lines are results of numerical simulation.
Fig. 7.
Fig. 7. (a) Average power, (b) pulse width, and (c) repetition frequency of UV pulse at 261 nm as a function of absorbed pump power.
Fig. 8.
Fig. 8. Pulse train of passively Q-switched Pr3+:YLF laser with Co2+:MALO (Sample 2) (a) OC-SA : 3 mm, ${w_{SA}}$: 63×60 µm2 (b) OC-SA : 6 mm, ${w_{SA}}$: 65×61 µm2 (c) OC-SA : 9 mm, ${w_{SA}}$: 69×64 µm2
Fig. 9.
Fig. 9. Pulse train of passively Q-switched Pr3+:YLF laser with Cr4+:YAG (a) OC-SA : 3 mm, ${w_{SA}}$: 63×06 µm2 (b) OC-SA : 30 mm, ${w_{SA}}$: 115×112 µm2 (c) OC-SA : 40 mm, ${w_{SA}}$: 143×142 µm2

Tables (5)

Tables Icon

Table 1. Saturation characteristics of Co2+:MALO at 523, 607, and 640 nm

Tables Icon

Table 2. Summary of characteristics of passively Q-switched Pr3+:YLF laser with Co2+:MALO at 523, 607, and 640 nm

Tables Icon

Table 3. Parameters and values used in rate equations of passively Q-switched Pr3+:YLF laser with Co2+:MALO saturable absorber

Tables Icon

Table 4. Parameters and values used in rate equations of intracavity frequency doubling of passively Q-switched Pr3+:YLF laser with Co2+:MALO saturable absorber

Tables Icon

Table 5. Summary of characteristics of UV pulses at 261 and 320 nm

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

d ϕ d t = c ϕ l c { σ s t Δ N l g σ g s n g s l S A σ e s ( n t o t n g s ) l S A } ϕ τ c + S
d Δ N d t = c ϕ σ s t Δ N Δ N τ f + N t o t Δ N N t o t η Q η S t η m P a b s h ν L V
d n g s d t = σ g s c ϕ n g s A g A S A + n t o t n g s τ S A .
d ϕ d t = c ϕ l c { σ s t Δ N l g σ g s n g s l S A σ e s ( n t o t n g s ) l S A } ϕ τ c + S c 2 2 l c γ S H G h ν ω A N L ϕ 2 .
γ S H G = 2 ω 2 d e f f 2 l N L C k π n N L 3 c 3 ε 0 h ( B , ξ ) .

Metrics