Abstract

We present the first Bragg gratings fabricated in two, three and five rings undoped PMMA microstructured polymer optical fibres (mPOFs) with relative low cost 266 nm Nd:YAG laser in the 850 nm region. The fibers were connectorised with commercial ferrules for easy coupling with silica patch cables. Temperature, humidity and strain sensitivities are measured and also the impact of ring structure and the diameter of POF on the characterization measurements are studied for potential applications. We also analyzed the effect of the number of hexagonal rings structure in gratings fabrication, noticing that larger number of rings lead to more difficulties to obtain strong gratings, where we consider this performance due to the scattering effects. We demonstrate Bragg gratings fabrication in 5-rings structure mPOF after 6 min by using 266 nm Nd:YAG laser whereas no Bragg gratings have been fabricated so far using 325 nm He-Cd laser system. Up to 30 dB relative reflected power gratings are obtained in two rings mPOF, showing good time stability and promising results for undoped mPOF applications.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Polymer optical fiber Bragg grating inscription with a single Nd:YAG laser pulse

Luis Pereira, Rui Min, Xuehao Hu, Christophe Caucheteur, Ole Bang, Beatriz Ortega, Carlos Marques, Paulo Antunes, and João L. Pinto
Opt. Express 26(14) 18096-18104 (2018)

Fast and stable gratings inscription in POFs made of different materials with pulsed 248 nm KrF laser

C. A. F. Marques, R. Min, A. Leal Junior, P. Antunes, A. Fasano, G. Woyessa, K. Nielsen, H. K. Rasmussen, B. Ortega, and O. Bang
Opt. Express 26(2) 2013-2022 (2018)

Fabrication of tunable chirped mPOF Bragg gratings using a uniform phase mask

Rui Min, Beatriz Ortega, and Carlos Marques
Opt. Express 26(4) 4411-4420 (2018)

References

  • View by:
  • |
  • |
  • |

  1. D. J. Webb, “Fibre Bragg grating sensors in polymer optical fibres,” Meas. Sci. Technol. 26(9), 092004 (2015).
    [Crossref]
  2. W. Zhang, D. J. Webb, and G.-D. Peng, “Investigation into time response of polymer fiber Bragg grating based humidity sensors,” J. Lightwave Technol. 30(8), 1090–1096 (2012).
    [Crossref]
  3. G. Woyessa, K. Nielsen, A. Stefani, C. Markos, and O. Bang, “Temperature insensitive hysteresis free highly sensitive polymer optical fiber Bragg grating humidity sensor,” Opt. Express 24(2), 1206–1213 (2016).
    [Crossref]
  4. C. Marques, G.-D. Peng, and D. J. Webb, “Highly sensitive liquid level monitoring system utilizing polymer fiber Bragg gratings,” Opt. Express 23(5), 6058–6072 (2015).
    [Crossref]
  5. C. Broadway, G. Woyessa, O. Bang, P. Mégret, and C. Caucheteur, “An L-band ultrasonic probe using polymer optical fibre,” Photons Plus Ultrasound: Imaging and Sensing 2019. Vol. 10878. International Society for Optics and Photonics.
  6. K. Peters, “Polymer optical fiber sensors—A review,” Smart Mater. Struct. 20(1), 013002 (2011).
    [Crossref]
  7. J. Bonefacino, H. Y. Tam, T. S. Glen, X. Cheng, C. F. J. Pun, J. Wang, P. H. Lee, M. L. V. Tse, and S. T. Boles, “Ultra-fast polymer optical fibre Bragg grating inscription for medical devices,” Light: Sci. Appl. 7(3), 17161 (2018).
    [Crossref]
  8. Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” IEEE Photonics Technol. Lett. 11(3), 352–354 (1999).
    [Crossref]
  9. W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
    [Crossref]
  10. C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, W. Yuan, and O. Bang, “High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees,” Opt. Express 21(4), 4758–4765 (2013).
    [Crossref]
  11. G. Woyessa, A. Fasano, A. Stefani, C. Markos, K. Nielsen, H. K. Rasmussen, and O. Bang, “Single mode stepindex polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors,” Opt. Express 24(2), 1253–1260 (2016).
    [Crossref]
  12. G. Woyessa, A. Fasano, C. Markos, A. Stefani, H. K. Rasmussen, and O. Bang, “Zeonex microstructured polymer optical fiber: Fabrication friendly fibers for high temperature and humidity insensitive Bragg grating sensing,” Opt. Mater. Express 7(1), 286–295 (2017).
    [Crossref]
  13. G. Woyessa, J. K. M. Pedersen, A. Fasano, K. Nielsen, C. Markos, H. K. Rasmussen, and O. Bang, “Zeonex-PMMA microstructured polymer optical FBGs for simultaneous humidity and temperature sensing,” Opt. Lett. 42(6), 1161–1164 (2017).
    [Crossref]
  14. A. Lacraz, M. Polis, A. Theodosiou, C. Koutsides, and K. Kalli, “Femtosecond laser inscribed Bragg gratings in low loss CYTOP polymer optical fiber,” IEEE Photonics Technol. Lett. 27(7), 693–696 (2015).
    [Crossref]
  15. R. Min, B. Ortega, A. Leal-Junior, and C. Marques, “Fabrication and characterization of Bragg grating in CYTOP POF at 600-nm wavelength,” IEEE Sens. Lett. 2(3), 1–4 (2018).
    [Crossref]
  16. G. Woyessa, A. Fasano, C. Markos, H. K. Rasmussen, and O. Bang, “Low loss polycarbonate polymer optical fiber for high temperature FBG humidity sensing,” IEEE Photonics Technol. Lett. 29(7), 575–578 (2017).
    [Crossref]
  17. A. Fasano, G. Woyessa, P. Stajanca, C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, K. Krebber, and O. Bang, “Fabrication and characterization of polycarbonate microstructured polymer optical fibers for high-temperature-resistant fiber Bragg grating strain sensors,” Opt. Mater. Express 6(2), 649–659 (2016).
    [Crossref]
  18. R. Min, B. Ortega, and C. Marques, “Fabrication of tunable chirped mPOF Bragg gratings using a uniform phase mask,” Opt. Express 26(4), 4411–4420 (2018).
    [Crossref]
  19. R. Min, B. Ortega, C. Broadway, C. Caucheteur, G. Woyessa, O. Bang, P. Antunes, and C. Marques, “Hot water-assisted fabrication of chirped polymer optical fiber Bragg gratings,” Opt. Express 26(26), 34655–34664 (2018).
    [Crossref]
  20. X. Hu, C. F. J. Pun, H. Y. Tam, P. Mégret, and C. Caucheteur, “Tilted Bragg gratings in step-index polymer optical fiber,” Opt. Lett. 39(24), 6835–6838 (2014).
    [Crossref]
  21. L. Pereira, A. Pospori, P. Antunes, M. F. Domingues, S. Marques, O. Bang, D. J. Webb, and C. A. F. Marques, “Phase-shifted Bragg grating inscription in PMMA microstructured POF using 248-nm UV radiation,” J. Lightwave Technol. 35(23), 5176–5184 (2017).
    [Crossref]
  22. Y. Luo, Q. Zhang, H. Liu, and G. D. Peng, “Gratings fabrication in benzildimethylketal doped photosensitive polymer optical fibers using 355 nm nanosecond pulsed laser,” Opt. Lett. 35(5), 751–753 (2010).
    [Crossref]
  23. D. Sáez-Rodríguez, K. Nielsen, H. K. Rasmussen, O. Bang, and D. J. Webb, “Highly photosensitive polymethyl methacrylate microstructured polymer optical fiber with doped core,” Opt. Lett. 38(19), 3769–3772 (2013).
    [Crossref]
  24. J. Yu, X. Tao, and H. Tam, “Trans-4-stilbenemethanol-doped photosensitive polymer fibers and gratings,” Opt. Lett. 29(2), 156–158 (2004).
    [Crossref]
  25. X. Hu, G. Woyessa, D. Kinet, J. Janting, K. Nielsen, O. Bang, and C. Caucheteur, “BDK-doped core microstructured PMMA optical fiber for effective Bragg grating photo-inscription,” Opt. Lett. 42(11), 2209–2212 (2017).
    [Crossref]
  26. C. A. F. Marques, L. B. Bilro, N. J. Alberto, D. J. Webb, and R. N. Nogueira, “Narrow bandwidth Bragg gratings imprinted in polymer optical fibers for different spectral windows,” Opt. Commun. 307, 57–61 (2013).
    [Crossref]
  27. I.-L. Bundalo, K. Nielsen, C. Markos, and O. Bang, “Bragg grating writing in PMMA microstructured polymer optical fibers in less than 7 minutes,” Opt. Express 22(5), 5270–5276 (2014).
    [Crossref]
  28. R. Oliveira, L. Bilro, and R. Nogueira, “Bragg gratings in a few mode microstructured polymer optical fiber in less than 30 seconds,” Opt. Express 23(8), 10181–10187 (2015).
    [Crossref]
  29. L. Pereira, R. Min, X. Hu, C. Caucheteur, O. Bang, B. Ortega, C. Marques, P. Antunes, and J. L. Pinto, “Polymer optical fiber Bragg grating inscription with a single Nd: YAG laser pulse,” Opt. Express 26(14), 18096–18104 (2018).
    [Crossref]
  30. C. A. F. Marques, R. Min, A. Leal Junior, P. Antunes, A. Fasano, G. Woyessa, K. Nielsen, H. K. Rasmussen, B. Ortega, and O. Bang, “Fast and stable gratings inscription in POFs made of different materials with pulsed 248 nm KrF laser,” Opt. Express 26(2), 2013–2022 (2018).
    [Crossref]
  31. D. Sáez-Rodríguez, R. Min, B. Ortega, K. Nielsen, and D. J. Webb, “Passive and portable polymer optical fiber cleaver,” IEEE Photonics Technol. Lett. 28(24), 2834–2837 (2016).
    [Crossref]
  32. A. Stefani, K. Nielsen, H. K. Rasmussen, and O. Bang, “Cleaving of TOPAS and PMMA microstructured polymer optical fibers: Core-shift and statistical quality optimization,” Opt. Commun. 285(7), 1825–1833 (2012).
    [Crossref]
  33. I. L. Bundalo, K. Nielsen, and O. Bang, “Angle dependent Fiber Bragg grating inscription in microstructured polymer optical fibers,” Opt. Express 23(3), 3699–3707 (2015).
    [Crossref]
  34. R. Min, B. Ortega, X. Hu, C. Broadway, C. Caucheteur, C. F. Jeff Pun, H. Y. Tam, P. Antunes, and C. Marques, “Bragg gratings inscription in TS-doped PMMA POF by using 248-nm KrF pulses,” IEEE Photonics Technol. Lett. 30(18), 1609–1612 (2018).
    [Crossref]
  35. W. Yuan, A. Stefani, and O. Bang, “Tunable polymer Fiber Bragg Grating (FBG) inscription: Fabrication of dual-FBG temperature compensated polymer optical fiber strain sensors,” IEEE Photonics Technol. Lett. 24(5), 401–403 (2012).
    [Crossref]
  36. J. Janting, J. Pedersen, R. Inglev, G. Woyessa, K. Nielsen, and O. Bang, “Effects of Solvent Etching on PMMA Microstructured Optical Fiber Bragg Grating,” J. Lightwave Technol. 37(18), 4469–4479 (2019).
    [Crossref]
  37. A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High Sensitivity Polymer Optical Fiber-Bragg-Grating-Based Accelerometer,” IEEE Photonics Technol. Lett. 24(9), 763–765 (2012).
    [Crossref]
  38. A. Pospori, C. A. F. Marques, D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Thermal and chemical treatment of polymer optical fiber Bragg grating sensors for enhanced mechanical sensitivity,” Opt. Fiber Technol. 36, 68–74 (2017).
    [Crossref]

2019 (1)

2018 (7)

R. Min, B. Ortega, X. Hu, C. Broadway, C. Caucheteur, C. F. Jeff Pun, H. Y. Tam, P. Antunes, and C. Marques, “Bragg gratings inscription in TS-doped PMMA POF by using 248-nm KrF pulses,” IEEE Photonics Technol. Lett. 30(18), 1609–1612 (2018).
[Crossref]

L. Pereira, R. Min, X. Hu, C. Caucheteur, O. Bang, B. Ortega, C. Marques, P. Antunes, and J. L. Pinto, “Polymer optical fiber Bragg grating inscription with a single Nd: YAG laser pulse,” Opt. Express 26(14), 18096–18104 (2018).
[Crossref]

C. A. F. Marques, R. Min, A. Leal Junior, P. Antunes, A. Fasano, G. Woyessa, K. Nielsen, H. K. Rasmussen, B. Ortega, and O. Bang, “Fast and stable gratings inscription in POFs made of different materials with pulsed 248 nm KrF laser,” Opt. Express 26(2), 2013–2022 (2018).
[Crossref]

J. Bonefacino, H. Y. Tam, T. S. Glen, X. Cheng, C. F. J. Pun, J. Wang, P. H. Lee, M. L. V. Tse, and S. T. Boles, “Ultra-fast polymer optical fibre Bragg grating inscription for medical devices,” Light: Sci. Appl. 7(3), 17161 (2018).
[Crossref]

R. Min, B. Ortega, A. Leal-Junior, and C. Marques, “Fabrication and characterization of Bragg grating in CYTOP POF at 600-nm wavelength,” IEEE Sens. Lett. 2(3), 1–4 (2018).
[Crossref]

R. Min, B. Ortega, and C. Marques, “Fabrication of tunable chirped mPOF Bragg gratings using a uniform phase mask,” Opt. Express 26(4), 4411–4420 (2018).
[Crossref]

R. Min, B. Ortega, C. Broadway, C. Caucheteur, G. Woyessa, O. Bang, P. Antunes, and C. Marques, “Hot water-assisted fabrication of chirped polymer optical fiber Bragg gratings,” Opt. Express 26(26), 34655–34664 (2018).
[Crossref]

2017 (6)

L. Pereira, A. Pospori, P. Antunes, M. F. Domingues, S. Marques, O. Bang, D. J. Webb, and C. A. F. Marques, “Phase-shifted Bragg grating inscription in PMMA microstructured POF using 248-nm UV radiation,” J. Lightwave Technol. 35(23), 5176–5184 (2017).
[Crossref]

G. Woyessa, A. Fasano, C. Markos, H. K. Rasmussen, and O. Bang, “Low loss polycarbonate polymer optical fiber for high temperature FBG humidity sensing,” IEEE Photonics Technol. Lett. 29(7), 575–578 (2017).
[Crossref]

G. Woyessa, A. Fasano, C. Markos, A. Stefani, H. K. Rasmussen, and O. Bang, “Zeonex microstructured polymer optical fiber: Fabrication friendly fibers for high temperature and humidity insensitive Bragg grating sensing,” Opt. Mater. Express 7(1), 286–295 (2017).
[Crossref]

G. Woyessa, J. K. M. Pedersen, A. Fasano, K. Nielsen, C. Markos, H. K. Rasmussen, and O. Bang, “Zeonex-PMMA microstructured polymer optical FBGs for simultaneous humidity and temperature sensing,” Opt. Lett. 42(6), 1161–1164 (2017).
[Crossref]

X. Hu, G. Woyessa, D. Kinet, J. Janting, K. Nielsen, O. Bang, and C. Caucheteur, “BDK-doped core microstructured PMMA optical fiber for effective Bragg grating photo-inscription,” Opt. Lett. 42(11), 2209–2212 (2017).
[Crossref]

A. Pospori, C. A. F. Marques, D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Thermal and chemical treatment of polymer optical fiber Bragg grating sensors for enhanced mechanical sensitivity,” Opt. Fiber Technol. 36, 68–74 (2017).
[Crossref]

2016 (4)

2015 (5)

2014 (2)

2013 (3)

2012 (4)

A. Stefani, K. Nielsen, H. K. Rasmussen, and O. Bang, “Cleaving of TOPAS and PMMA microstructured polymer optical fibers: Core-shift and statistical quality optimization,” Opt. Commun. 285(7), 1825–1833 (2012).
[Crossref]

W. Yuan, A. Stefani, and O. Bang, “Tunable polymer Fiber Bragg Grating (FBG) inscription: Fabrication of dual-FBG temperature compensated polymer optical fiber strain sensors,” IEEE Photonics Technol. Lett. 24(5), 401–403 (2012).
[Crossref]

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High Sensitivity Polymer Optical Fiber-Bragg-Grating-Based Accelerometer,” IEEE Photonics Technol. Lett. 24(9), 763–765 (2012).
[Crossref]

W. Zhang, D. J. Webb, and G.-D. Peng, “Investigation into time response of polymer fiber Bragg grating based humidity sensors,” J. Lightwave Technol. 30(8), 1090–1096 (2012).
[Crossref]

2011 (2)

2010 (1)

2004 (1)

1999 (1)

Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” IEEE Photonics Technol. Lett. 11(3), 352–354 (1999).
[Crossref]

Alberto, N. J.

C. A. F. Marques, L. B. Bilro, N. J. Alberto, D. J. Webb, and R. N. Nogueira, “Narrow bandwidth Bragg gratings imprinted in polymer optical fibers for different spectral windows,” Opt. Commun. 307, 57–61 (2013).
[Crossref]

Andresen, S.

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High Sensitivity Polymer Optical Fiber-Bragg-Grating-Based Accelerometer,” IEEE Photonics Technol. Lett. 24(9), 763–765 (2012).
[Crossref]

Antunes, P.

Bang, O.

J. Janting, J. Pedersen, R. Inglev, G. Woyessa, K. Nielsen, and O. Bang, “Effects of Solvent Etching on PMMA Microstructured Optical Fiber Bragg Grating,” J. Lightwave Technol. 37(18), 4469–4479 (2019).
[Crossref]

L. Pereira, R. Min, X. Hu, C. Caucheteur, O. Bang, B. Ortega, C. Marques, P. Antunes, and J. L. Pinto, “Polymer optical fiber Bragg grating inscription with a single Nd: YAG laser pulse,” Opt. Express 26(14), 18096–18104 (2018).
[Crossref]

C. A. F. Marques, R. Min, A. Leal Junior, P. Antunes, A. Fasano, G. Woyessa, K. Nielsen, H. K. Rasmussen, B. Ortega, and O. Bang, “Fast and stable gratings inscription in POFs made of different materials with pulsed 248 nm KrF laser,” Opt. Express 26(2), 2013–2022 (2018).
[Crossref]

R. Min, B. Ortega, C. Broadway, C. Caucheteur, G. Woyessa, O. Bang, P. Antunes, and C. Marques, “Hot water-assisted fabrication of chirped polymer optical fiber Bragg gratings,” Opt. Express 26(26), 34655–34664 (2018).
[Crossref]

L. Pereira, A. Pospori, P. Antunes, M. F. Domingues, S. Marques, O. Bang, D. J. Webb, and C. A. F. Marques, “Phase-shifted Bragg grating inscription in PMMA microstructured POF using 248-nm UV radiation,” J. Lightwave Technol. 35(23), 5176–5184 (2017).
[Crossref]

A. Pospori, C. A. F. Marques, D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Thermal and chemical treatment of polymer optical fiber Bragg grating sensors for enhanced mechanical sensitivity,” Opt. Fiber Technol. 36, 68–74 (2017).
[Crossref]

G. Woyessa, A. Fasano, C. Markos, H. K. Rasmussen, and O. Bang, “Low loss polycarbonate polymer optical fiber for high temperature FBG humidity sensing,” IEEE Photonics Technol. Lett. 29(7), 575–578 (2017).
[Crossref]

G. Woyessa, J. K. M. Pedersen, A. Fasano, K. Nielsen, C. Markos, H. K. Rasmussen, and O. Bang, “Zeonex-PMMA microstructured polymer optical FBGs for simultaneous humidity and temperature sensing,” Opt. Lett. 42(6), 1161–1164 (2017).
[Crossref]

G. Woyessa, A. Fasano, C. Markos, A. Stefani, H. K. Rasmussen, and O. Bang, “Zeonex microstructured polymer optical fiber: Fabrication friendly fibers for high temperature and humidity insensitive Bragg grating sensing,” Opt. Mater. Express 7(1), 286–295 (2017).
[Crossref]

X. Hu, G. Woyessa, D. Kinet, J. Janting, K. Nielsen, O. Bang, and C. Caucheteur, “BDK-doped core microstructured PMMA optical fiber for effective Bragg grating photo-inscription,” Opt. Lett. 42(11), 2209–2212 (2017).
[Crossref]

G. Woyessa, K. Nielsen, A. Stefani, C. Markos, and O. Bang, “Temperature insensitive hysteresis free highly sensitive polymer optical fiber Bragg grating humidity sensor,” Opt. Express 24(2), 1206–1213 (2016).
[Crossref]

G. Woyessa, A. Fasano, A. Stefani, C. Markos, K. Nielsen, H. K. Rasmussen, and O. Bang, “Single mode stepindex polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors,” Opt. Express 24(2), 1253–1260 (2016).
[Crossref]

A. Fasano, G. Woyessa, P. Stajanca, C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, K. Krebber, and O. Bang, “Fabrication and characterization of polycarbonate microstructured polymer optical fibers for high-temperature-resistant fiber Bragg grating strain sensors,” Opt. Mater. Express 6(2), 649–659 (2016).
[Crossref]

I. L. Bundalo, K. Nielsen, and O. Bang, “Angle dependent Fiber Bragg grating inscription in microstructured polymer optical fibers,” Opt. Express 23(3), 3699–3707 (2015).
[Crossref]

I.-L. Bundalo, K. Nielsen, C. Markos, and O. Bang, “Bragg grating writing in PMMA microstructured polymer optical fibers in less than 7 minutes,” Opt. Express 22(5), 5270–5276 (2014).
[Crossref]

D. Sáez-Rodríguez, K. Nielsen, H. K. Rasmussen, O. Bang, and D. J. Webb, “Highly photosensitive polymethyl methacrylate microstructured polymer optical fiber with doped core,” Opt. Lett. 38(19), 3769–3772 (2013).
[Crossref]

C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, W. Yuan, and O. Bang, “High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees,” Opt. Express 21(4), 4758–4765 (2013).
[Crossref]

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High Sensitivity Polymer Optical Fiber-Bragg-Grating-Based Accelerometer,” IEEE Photonics Technol. Lett. 24(9), 763–765 (2012).
[Crossref]

W. Yuan, A. Stefani, and O. Bang, “Tunable polymer Fiber Bragg Grating (FBG) inscription: Fabrication of dual-FBG temperature compensated polymer optical fiber strain sensors,” IEEE Photonics Technol. Lett. 24(5), 401–403 (2012).
[Crossref]

A. Stefani, K. Nielsen, H. K. Rasmussen, and O. Bang, “Cleaving of TOPAS and PMMA microstructured polymer optical fibers: Core-shift and statistical quality optimization,” Opt. Commun. 285(7), 1825–1833 (2012).
[Crossref]

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
[Crossref]

C. Broadway, G. Woyessa, O. Bang, P. Mégret, and C. Caucheteur, “An L-band ultrasonic probe using polymer optical fibre,” Photons Plus Ultrasound: Imaging and Sensing 2019. Vol. 10878. International Society for Optics and Photonics.

Bilro, L.

Bilro, L. B.

C. A. F. Marques, L. B. Bilro, N. J. Alberto, D. J. Webb, and R. N. Nogueira, “Narrow bandwidth Bragg gratings imprinted in polymer optical fibers for different spectral windows,” Opt. Commun. 307, 57–61 (2013).
[Crossref]

Boles, S. T.

J. Bonefacino, H. Y. Tam, T. S. Glen, X. Cheng, C. F. J. Pun, J. Wang, P. H. Lee, M. L. V. Tse, and S. T. Boles, “Ultra-fast polymer optical fibre Bragg grating inscription for medical devices,” Light: Sci. Appl. 7(3), 17161 (2018).
[Crossref]

Bonefacino, J.

J. Bonefacino, H. Y. Tam, T. S. Glen, X. Cheng, C. F. J. Pun, J. Wang, P. H. Lee, M. L. V. Tse, and S. T. Boles, “Ultra-fast polymer optical fibre Bragg grating inscription for medical devices,” Light: Sci. Appl. 7(3), 17161 (2018).
[Crossref]

Broadway, C.

R. Min, B. Ortega, X. Hu, C. Broadway, C. Caucheteur, C. F. Jeff Pun, H. Y. Tam, P. Antunes, and C. Marques, “Bragg gratings inscription in TS-doped PMMA POF by using 248-nm KrF pulses,” IEEE Photonics Technol. Lett. 30(18), 1609–1612 (2018).
[Crossref]

R. Min, B. Ortega, C. Broadway, C. Caucheteur, G. Woyessa, O. Bang, P. Antunes, and C. Marques, “Hot water-assisted fabrication of chirped polymer optical fiber Bragg gratings,” Opt. Express 26(26), 34655–34664 (2018).
[Crossref]

C. Broadway, G. Woyessa, O. Bang, P. Mégret, and C. Caucheteur, “An L-band ultrasonic probe using polymer optical fibre,” Photons Plus Ultrasound: Imaging and Sensing 2019. Vol. 10878. International Society for Optics and Photonics.

Bundalo, I. L.

Bundalo, I.-L.

Caucheteur, C.

Cheng, X.

J. Bonefacino, H. Y. Tam, T. S. Glen, X. Cheng, C. F. J. Pun, J. Wang, P. H. Lee, M. L. V. Tse, and S. T. Boles, “Ultra-fast polymer optical fibre Bragg grating inscription for medical devices,” Light: Sci. Appl. 7(3), 17161 (2018).
[Crossref]

Chu, P. L.

Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” IEEE Photonics Technol. Lett. 11(3), 352–354 (1999).
[Crossref]

Domingues, M. F.

Fasano, A.

C. A. F. Marques, R. Min, A. Leal Junior, P. Antunes, A. Fasano, G. Woyessa, K. Nielsen, H. K. Rasmussen, B. Ortega, and O. Bang, “Fast and stable gratings inscription in POFs made of different materials with pulsed 248 nm KrF laser,” Opt. Express 26(2), 2013–2022 (2018).
[Crossref]

G. Woyessa, A. Fasano, C. Markos, H. K. Rasmussen, and O. Bang, “Low loss polycarbonate polymer optical fiber for high temperature FBG humidity sensing,” IEEE Photonics Technol. Lett. 29(7), 575–578 (2017).
[Crossref]

G. Woyessa, J. K. M. Pedersen, A. Fasano, K. Nielsen, C. Markos, H. K. Rasmussen, and O. Bang, “Zeonex-PMMA microstructured polymer optical FBGs for simultaneous humidity and temperature sensing,” Opt. Lett. 42(6), 1161–1164 (2017).
[Crossref]

G. Woyessa, A. Fasano, C. Markos, A. Stefani, H. K. Rasmussen, and O. Bang, “Zeonex microstructured polymer optical fiber: Fabrication friendly fibers for high temperature and humidity insensitive Bragg grating sensing,” Opt. Mater. Express 7(1), 286–295 (2017).
[Crossref]

G. Woyessa, A. Fasano, A. Stefani, C. Markos, K. Nielsen, H. K. Rasmussen, and O. Bang, “Single mode stepindex polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors,” Opt. Express 24(2), 1253–1260 (2016).
[Crossref]

A. Fasano, G. Woyessa, P. Stajanca, C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, K. Krebber, and O. Bang, “Fabrication and characterization of polycarbonate microstructured polymer optical fibers for high-temperature-resistant fiber Bragg grating strain sensors,” Opt. Mater. Express 6(2), 649–659 (2016).
[Crossref]

Glen, T. S.

J. Bonefacino, H. Y. Tam, T. S. Glen, X. Cheng, C. F. J. Pun, J. Wang, P. H. Lee, M. L. V. Tse, and S. T. Boles, “Ultra-fast polymer optical fibre Bragg grating inscription for medical devices,” Light: Sci. Appl. 7(3), 17161 (2018).
[Crossref]

Herholdt-Rasmussen, N.

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High Sensitivity Polymer Optical Fiber-Bragg-Grating-Based Accelerometer,” IEEE Photonics Technol. Lett. 24(9), 763–765 (2012).
[Crossref]

Hu, X.

Inglev, R.

Janting, J.

Jeff Pun, C. F.

R. Min, B. Ortega, X. Hu, C. Broadway, C. Caucheteur, C. F. Jeff Pun, H. Y. Tam, P. Antunes, and C. Marques, “Bragg gratings inscription in TS-doped PMMA POF by using 248-nm KrF pulses,” IEEE Photonics Technol. Lett. 30(18), 1609–1612 (2018).
[Crossref]

Kalli, K.

A. Lacraz, M. Polis, A. Theodosiou, C. Koutsides, and K. Kalli, “Femtosecond laser inscribed Bragg gratings in low loss CYTOP polymer optical fiber,” IEEE Photonics Technol. Lett. 27(7), 693–696 (2015).
[Crossref]

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
[Crossref]

Khan, L.

Kinet, D.

Koutsides, C.

A. Lacraz, M. Polis, A. Theodosiou, C. Koutsides, and K. Kalli, “Femtosecond laser inscribed Bragg gratings in low loss CYTOP polymer optical fiber,” IEEE Photonics Technol. Lett. 27(7), 693–696 (2015).
[Crossref]

Krebber, K.

Lacraz, A.

A. Lacraz, M. Polis, A. Theodosiou, C. Koutsides, and K. Kalli, “Femtosecond laser inscribed Bragg gratings in low loss CYTOP polymer optical fiber,” IEEE Photonics Technol. Lett. 27(7), 693–696 (2015).
[Crossref]

Leal Junior, A.

Leal-Junior, A.

R. Min, B. Ortega, A. Leal-Junior, and C. Marques, “Fabrication and characterization of Bragg grating in CYTOP POF at 600-nm wavelength,” IEEE Sens. Lett. 2(3), 1–4 (2018).
[Crossref]

Lee, P. H.

J. Bonefacino, H. Y. Tam, T. S. Glen, X. Cheng, C. F. J. Pun, J. Wang, P. H. Lee, M. L. V. Tse, and S. T. Boles, “Ultra-fast polymer optical fibre Bragg grating inscription for medical devices,” Light: Sci. Appl. 7(3), 17161 (2018).
[Crossref]

Liu, H.

Luo, Y.

Markos, C.

G. Woyessa, A. Fasano, C. Markos, H. K. Rasmussen, and O. Bang, “Low loss polycarbonate polymer optical fiber for high temperature FBG humidity sensing,” IEEE Photonics Technol. Lett. 29(7), 575–578 (2017).
[Crossref]

G. Woyessa, J. K. M. Pedersen, A. Fasano, K. Nielsen, C. Markos, H. K. Rasmussen, and O. Bang, “Zeonex-PMMA microstructured polymer optical FBGs for simultaneous humidity and temperature sensing,” Opt. Lett. 42(6), 1161–1164 (2017).
[Crossref]

G. Woyessa, A. Fasano, C. Markos, A. Stefani, H. K. Rasmussen, and O. Bang, “Zeonex microstructured polymer optical fiber: Fabrication friendly fibers for high temperature and humidity insensitive Bragg grating sensing,” Opt. Mater. Express 7(1), 286–295 (2017).
[Crossref]

G. Woyessa, A. Fasano, A. Stefani, C. Markos, K. Nielsen, H. K. Rasmussen, and O. Bang, “Single mode stepindex polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors,” Opt. Express 24(2), 1253–1260 (2016).
[Crossref]

G. Woyessa, K. Nielsen, A. Stefani, C. Markos, and O. Bang, “Temperature insensitive hysteresis free highly sensitive polymer optical fiber Bragg grating humidity sensor,” Opt. Express 24(2), 1206–1213 (2016).
[Crossref]

A. Fasano, G. Woyessa, P. Stajanca, C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, K. Krebber, and O. Bang, “Fabrication and characterization of polycarbonate microstructured polymer optical fibers for high-temperature-resistant fiber Bragg grating strain sensors,” Opt. Mater. Express 6(2), 649–659 (2016).
[Crossref]

I.-L. Bundalo, K. Nielsen, C. Markos, and O. Bang, “Bragg grating writing in PMMA microstructured polymer optical fibers in less than 7 minutes,” Opt. Express 22(5), 5270–5276 (2014).
[Crossref]

C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, W. Yuan, and O. Bang, “High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees,” Opt. Express 21(4), 4758–4765 (2013).
[Crossref]

Marques, C.

Marques, C. A. F.

C. A. F. Marques, R. Min, A. Leal Junior, P. Antunes, A. Fasano, G. Woyessa, K. Nielsen, H. K. Rasmussen, B. Ortega, and O. Bang, “Fast and stable gratings inscription in POFs made of different materials with pulsed 248 nm KrF laser,” Opt. Express 26(2), 2013–2022 (2018).
[Crossref]

L. Pereira, A. Pospori, P. Antunes, M. F. Domingues, S. Marques, O. Bang, D. J. Webb, and C. A. F. Marques, “Phase-shifted Bragg grating inscription in PMMA microstructured POF using 248-nm UV radiation,” J. Lightwave Technol. 35(23), 5176–5184 (2017).
[Crossref]

A. Pospori, C. A. F. Marques, D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Thermal and chemical treatment of polymer optical fiber Bragg grating sensors for enhanced mechanical sensitivity,” Opt. Fiber Technol. 36, 68–74 (2017).
[Crossref]

C. A. F. Marques, L. B. Bilro, N. J. Alberto, D. J. Webb, and R. N. Nogueira, “Narrow bandwidth Bragg gratings imprinted in polymer optical fibers for different spectral windows,” Opt. Commun. 307, 57–61 (2013).
[Crossref]

Marques, S.

Mégret, P.

X. Hu, C. F. J. Pun, H. Y. Tam, P. Mégret, and C. Caucheteur, “Tilted Bragg gratings in step-index polymer optical fiber,” Opt. Lett. 39(24), 6835–6838 (2014).
[Crossref]

C. Broadway, G. Woyessa, O. Bang, P. Mégret, and C. Caucheteur, “An L-band ultrasonic probe using polymer optical fibre,” Photons Plus Ultrasound: Imaging and Sensing 2019. Vol. 10878. International Society for Optics and Photonics.

Min, R.

R. Min, B. Ortega, A. Leal-Junior, and C. Marques, “Fabrication and characterization of Bragg grating in CYTOP POF at 600-nm wavelength,” IEEE Sens. Lett. 2(3), 1–4 (2018).
[Crossref]

R. Min, B. Ortega, X. Hu, C. Broadway, C. Caucheteur, C. F. Jeff Pun, H. Y. Tam, P. Antunes, and C. Marques, “Bragg gratings inscription in TS-doped PMMA POF by using 248-nm KrF pulses,” IEEE Photonics Technol. Lett. 30(18), 1609–1612 (2018).
[Crossref]

R. Min, B. Ortega, C. Broadway, C. Caucheteur, G. Woyessa, O. Bang, P. Antunes, and C. Marques, “Hot water-assisted fabrication of chirped polymer optical fiber Bragg gratings,” Opt. Express 26(26), 34655–34664 (2018).
[Crossref]

C. A. F. Marques, R. Min, A. Leal Junior, P. Antunes, A. Fasano, G. Woyessa, K. Nielsen, H. K. Rasmussen, B. Ortega, and O. Bang, “Fast and stable gratings inscription in POFs made of different materials with pulsed 248 nm KrF laser,” Opt. Express 26(2), 2013–2022 (2018).
[Crossref]

L. Pereira, R. Min, X. Hu, C. Caucheteur, O. Bang, B. Ortega, C. Marques, P. Antunes, and J. L. Pinto, “Polymer optical fiber Bragg grating inscription with a single Nd: YAG laser pulse,” Opt. Express 26(14), 18096–18104 (2018).
[Crossref]

R. Min, B. Ortega, and C. Marques, “Fabrication of tunable chirped mPOF Bragg gratings using a uniform phase mask,” Opt. Express 26(4), 4411–4420 (2018).
[Crossref]

D. Sáez-Rodríguez, R. Min, B. Ortega, K. Nielsen, and D. J. Webb, “Passive and portable polymer optical fiber cleaver,” IEEE Photonics Technol. Lett. 28(24), 2834–2837 (2016).
[Crossref]

Nielsen, K.

J. Janting, J. Pedersen, R. Inglev, G. Woyessa, K. Nielsen, and O. Bang, “Effects of Solvent Etching on PMMA Microstructured Optical Fiber Bragg Grating,” J. Lightwave Technol. 37(18), 4469–4479 (2019).
[Crossref]

C. A. F. Marques, R. Min, A. Leal Junior, P. Antunes, A. Fasano, G. Woyessa, K. Nielsen, H. K. Rasmussen, B. Ortega, and O. Bang, “Fast and stable gratings inscription in POFs made of different materials with pulsed 248 nm KrF laser,” Opt. Express 26(2), 2013–2022 (2018).
[Crossref]

X. Hu, G. Woyessa, D. Kinet, J. Janting, K. Nielsen, O. Bang, and C. Caucheteur, “BDK-doped core microstructured PMMA optical fiber for effective Bragg grating photo-inscription,” Opt. Lett. 42(11), 2209–2212 (2017).
[Crossref]

A. Pospori, C. A. F. Marques, D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Thermal and chemical treatment of polymer optical fiber Bragg grating sensors for enhanced mechanical sensitivity,” Opt. Fiber Technol. 36, 68–74 (2017).
[Crossref]

G. Woyessa, J. K. M. Pedersen, A. Fasano, K. Nielsen, C. Markos, H. K. Rasmussen, and O. Bang, “Zeonex-PMMA microstructured polymer optical FBGs for simultaneous humidity and temperature sensing,” Opt. Lett. 42(6), 1161–1164 (2017).
[Crossref]

G. Woyessa, A. Fasano, A. Stefani, C. Markos, K. Nielsen, H. K. Rasmussen, and O. Bang, “Single mode stepindex polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors,” Opt. Express 24(2), 1253–1260 (2016).
[Crossref]

G. Woyessa, K. Nielsen, A. Stefani, C. Markos, and O. Bang, “Temperature insensitive hysteresis free highly sensitive polymer optical fiber Bragg grating humidity sensor,” Opt. Express 24(2), 1206–1213 (2016).
[Crossref]

A. Fasano, G. Woyessa, P. Stajanca, C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, K. Krebber, and O. Bang, “Fabrication and characterization of polycarbonate microstructured polymer optical fibers for high-temperature-resistant fiber Bragg grating strain sensors,” Opt. Mater. Express 6(2), 649–659 (2016).
[Crossref]

D. Sáez-Rodríguez, R. Min, B. Ortega, K. Nielsen, and D. J. Webb, “Passive and portable polymer optical fiber cleaver,” IEEE Photonics Technol. Lett. 28(24), 2834–2837 (2016).
[Crossref]

I. L. Bundalo, K. Nielsen, and O. Bang, “Angle dependent Fiber Bragg grating inscription in microstructured polymer optical fibers,” Opt. Express 23(3), 3699–3707 (2015).
[Crossref]

I.-L. Bundalo, K. Nielsen, C. Markos, and O. Bang, “Bragg grating writing in PMMA microstructured polymer optical fibers in less than 7 minutes,” Opt. Express 22(5), 5270–5276 (2014).
[Crossref]

D. Sáez-Rodríguez, K. Nielsen, H. K. Rasmussen, O. Bang, and D. J. Webb, “Highly photosensitive polymethyl methacrylate microstructured polymer optical fiber with doped core,” Opt. Lett. 38(19), 3769–3772 (2013).
[Crossref]

C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, W. Yuan, and O. Bang, “High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees,” Opt. Express 21(4), 4758–4765 (2013).
[Crossref]

A. Stefani, K. Nielsen, H. K. Rasmussen, and O. Bang, “Cleaving of TOPAS and PMMA microstructured polymer optical fibers: Core-shift and statistical quality optimization,” Opt. Commun. 285(7), 1825–1833 (2012).
[Crossref]

Nogueira, R.

Nogueira, R. N.

C. A. F. Marques, L. B. Bilro, N. J. Alberto, D. J. Webb, and R. N. Nogueira, “Narrow bandwidth Bragg gratings imprinted in polymer optical fibers for different spectral windows,” Opt. Commun. 307, 57–61 (2013).
[Crossref]

Oliveira, R.

Ortega, B.

R. Min, B. Ortega, and C. Marques, “Fabrication of tunable chirped mPOF Bragg gratings using a uniform phase mask,” Opt. Express 26(4), 4411–4420 (2018).
[Crossref]

C. A. F. Marques, R. Min, A. Leal Junior, P. Antunes, A. Fasano, G. Woyessa, K. Nielsen, H. K. Rasmussen, B. Ortega, and O. Bang, “Fast and stable gratings inscription in POFs made of different materials with pulsed 248 nm KrF laser,” Opt. Express 26(2), 2013–2022 (2018).
[Crossref]

L. Pereira, R. Min, X. Hu, C. Caucheteur, O. Bang, B. Ortega, C. Marques, P. Antunes, and J. L. Pinto, “Polymer optical fiber Bragg grating inscription with a single Nd: YAG laser pulse,” Opt. Express 26(14), 18096–18104 (2018).
[Crossref]

R. Min, B. Ortega, X. Hu, C. Broadway, C. Caucheteur, C. F. Jeff Pun, H. Y. Tam, P. Antunes, and C. Marques, “Bragg gratings inscription in TS-doped PMMA POF by using 248-nm KrF pulses,” IEEE Photonics Technol. Lett. 30(18), 1609–1612 (2018).
[Crossref]

R. Min, B. Ortega, A. Leal-Junior, and C. Marques, “Fabrication and characterization of Bragg grating in CYTOP POF at 600-nm wavelength,” IEEE Sens. Lett. 2(3), 1–4 (2018).
[Crossref]

R. Min, B. Ortega, C. Broadway, C. Caucheteur, G. Woyessa, O. Bang, P. Antunes, and C. Marques, “Hot water-assisted fabrication of chirped polymer optical fiber Bragg gratings,” Opt. Express 26(26), 34655–34664 (2018).
[Crossref]

D. Sáez-Rodríguez, R. Min, B. Ortega, K. Nielsen, and D. J. Webb, “Passive and portable polymer optical fiber cleaver,” IEEE Photonics Technol. Lett. 28(24), 2834–2837 (2016).
[Crossref]

Pedersen, J.

Pedersen, J. K. M.

Peng, G. D.

Y. Luo, Q. Zhang, H. Liu, and G. D. Peng, “Gratings fabrication in benzildimethylketal doped photosensitive polymer optical fibers using 355 nm nanosecond pulsed laser,” Opt. Lett. 35(5), 751–753 (2010).
[Crossref]

Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” IEEE Photonics Technol. Lett. 11(3), 352–354 (1999).
[Crossref]

Peng, G.-D.

Pereira, L.

Peters, K.

K. Peters, “Polymer optical fiber sensors—A review,” Smart Mater. Struct. 20(1), 013002 (2011).
[Crossref]

Pinto, J. L.

Polis, M.

A. Lacraz, M. Polis, A. Theodosiou, C. Koutsides, and K. Kalli, “Femtosecond laser inscribed Bragg gratings in low loss CYTOP polymer optical fiber,” IEEE Photonics Technol. Lett. 27(7), 693–696 (2015).
[Crossref]

Pospori, A.

A. Pospori, C. A. F. Marques, D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Thermal and chemical treatment of polymer optical fiber Bragg grating sensors for enhanced mechanical sensitivity,” Opt. Fiber Technol. 36, 68–74 (2017).
[Crossref]

L. Pereira, A. Pospori, P. Antunes, M. F. Domingues, S. Marques, O. Bang, D. J. Webb, and C. A. F. Marques, “Phase-shifted Bragg grating inscription in PMMA microstructured POF using 248-nm UV radiation,” J. Lightwave Technol. 35(23), 5176–5184 (2017).
[Crossref]

Pun, C. F. J.

J. Bonefacino, H. Y. Tam, T. S. Glen, X. Cheng, C. F. J. Pun, J. Wang, P. H. Lee, M. L. V. Tse, and S. T. Boles, “Ultra-fast polymer optical fibre Bragg grating inscription for medical devices,” Light: Sci. Appl. 7(3), 17161 (2018).
[Crossref]

X. Hu, C. F. J. Pun, H. Y. Tam, P. Mégret, and C. Caucheteur, “Tilted Bragg gratings in step-index polymer optical fiber,” Opt. Lett. 39(24), 6835–6838 (2014).
[Crossref]

Rasmussen, H. K.

C. A. F. Marques, R. Min, A. Leal Junior, P. Antunes, A. Fasano, G. Woyessa, K. Nielsen, H. K. Rasmussen, B. Ortega, and O. Bang, “Fast and stable gratings inscription in POFs made of different materials with pulsed 248 nm KrF laser,” Opt. Express 26(2), 2013–2022 (2018).
[Crossref]

G. Woyessa, A. Fasano, C. Markos, H. K. Rasmussen, and O. Bang, “Low loss polycarbonate polymer optical fiber for high temperature FBG humidity sensing,” IEEE Photonics Technol. Lett. 29(7), 575–578 (2017).
[Crossref]

G. Woyessa, J. K. M. Pedersen, A. Fasano, K. Nielsen, C. Markos, H. K. Rasmussen, and O. Bang, “Zeonex-PMMA microstructured polymer optical FBGs for simultaneous humidity and temperature sensing,” Opt. Lett. 42(6), 1161–1164 (2017).
[Crossref]

G. Woyessa, A. Fasano, C. Markos, A. Stefani, H. K. Rasmussen, and O. Bang, “Zeonex microstructured polymer optical fiber: Fabrication friendly fibers for high temperature and humidity insensitive Bragg grating sensing,” Opt. Mater. Express 7(1), 286–295 (2017).
[Crossref]

G. Woyessa, A. Fasano, A. Stefani, C. Markos, K. Nielsen, H. K. Rasmussen, and O. Bang, “Single mode stepindex polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors,” Opt. Express 24(2), 1253–1260 (2016).
[Crossref]

A. Fasano, G. Woyessa, P. Stajanca, C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, K. Krebber, and O. Bang, “Fabrication and characterization of polycarbonate microstructured polymer optical fibers for high-temperature-resistant fiber Bragg grating strain sensors,” Opt. Mater. Express 6(2), 649–659 (2016).
[Crossref]

C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, W. Yuan, and O. Bang, “High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees,” Opt. Express 21(4), 4758–4765 (2013).
[Crossref]

D. Sáez-Rodríguez, K. Nielsen, H. K. Rasmussen, O. Bang, and D. J. Webb, “Highly photosensitive polymethyl methacrylate microstructured polymer optical fiber with doped core,” Opt. Lett. 38(19), 3769–3772 (2013).
[Crossref]

A. Stefani, K. Nielsen, H. K. Rasmussen, and O. Bang, “Cleaving of TOPAS and PMMA microstructured polymer optical fibers: Core-shift and statistical quality optimization,” Opt. Commun. 285(7), 1825–1833 (2012).
[Crossref]

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
[Crossref]

Sáez-Rodríguez, D.

A. Pospori, C. A. F. Marques, D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Thermal and chemical treatment of polymer optical fiber Bragg grating sensors for enhanced mechanical sensitivity,” Opt. Fiber Technol. 36, 68–74 (2017).
[Crossref]

D. Sáez-Rodríguez, R. Min, B. Ortega, K. Nielsen, and D. J. Webb, “Passive and portable polymer optical fiber cleaver,” IEEE Photonics Technol. Lett. 28(24), 2834–2837 (2016).
[Crossref]

D. Sáez-Rodríguez, K. Nielsen, H. K. Rasmussen, O. Bang, and D. J. Webb, “Highly photosensitive polymethyl methacrylate microstructured polymer optical fiber with doped core,” Opt. Lett. 38(19), 3769–3772 (2013).
[Crossref]

Stajanca, P.

Stefani, A.

G. Woyessa, A. Fasano, C. Markos, A. Stefani, H. K. Rasmussen, and O. Bang, “Zeonex microstructured polymer optical fiber: Fabrication friendly fibers for high temperature and humidity insensitive Bragg grating sensing,” Opt. Mater. Express 7(1), 286–295 (2017).
[Crossref]

G. Woyessa, K. Nielsen, A. Stefani, C. Markos, and O. Bang, “Temperature insensitive hysteresis free highly sensitive polymer optical fiber Bragg grating humidity sensor,” Opt. Express 24(2), 1206–1213 (2016).
[Crossref]

G. Woyessa, A. Fasano, A. Stefani, C. Markos, K. Nielsen, H. K. Rasmussen, and O. Bang, “Single mode stepindex polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors,” Opt. Express 24(2), 1253–1260 (2016).
[Crossref]

A. Fasano, G. Woyessa, P. Stajanca, C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, K. Krebber, and O. Bang, “Fabrication and characterization of polycarbonate microstructured polymer optical fibers for high-temperature-resistant fiber Bragg grating strain sensors,” Opt. Mater. Express 6(2), 649–659 (2016).
[Crossref]

C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, W. Yuan, and O. Bang, “High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees,” Opt. Express 21(4), 4758–4765 (2013).
[Crossref]

W. Yuan, A. Stefani, and O. Bang, “Tunable polymer Fiber Bragg Grating (FBG) inscription: Fabrication of dual-FBG temperature compensated polymer optical fiber strain sensors,” IEEE Photonics Technol. Lett. 24(5), 401–403 (2012).
[Crossref]

A. Stefani, K. Nielsen, H. K. Rasmussen, and O. Bang, “Cleaving of TOPAS and PMMA microstructured polymer optical fibers: Core-shift and statistical quality optimization,” Opt. Commun. 285(7), 1825–1833 (2012).
[Crossref]

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High Sensitivity Polymer Optical Fiber-Bragg-Grating-Based Accelerometer,” IEEE Photonics Technol. Lett. 24(9), 763–765 (2012).
[Crossref]

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
[Crossref]

Tam, H.

Tam, H. Y.

R. Min, B. Ortega, X. Hu, C. Broadway, C. Caucheteur, C. F. Jeff Pun, H. Y. Tam, P. Antunes, and C. Marques, “Bragg gratings inscription in TS-doped PMMA POF by using 248-nm KrF pulses,” IEEE Photonics Technol. Lett. 30(18), 1609–1612 (2018).
[Crossref]

J. Bonefacino, H. Y. Tam, T. S. Glen, X. Cheng, C. F. J. Pun, J. Wang, P. H. Lee, M. L. V. Tse, and S. T. Boles, “Ultra-fast polymer optical fibre Bragg grating inscription for medical devices,” Light: Sci. Appl. 7(3), 17161 (2018).
[Crossref]

X. Hu, C. F. J. Pun, H. Y. Tam, P. Mégret, and C. Caucheteur, “Tilted Bragg gratings in step-index polymer optical fiber,” Opt. Lett. 39(24), 6835–6838 (2014).
[Crossref]

Tao, X.

Theodosiou, A.

A. Lacraz, M. Polis, A. Theodosiou, C. Koutsides, and K. Kalli, “Femtosecond laser inscribed Bragg gratings in low loss CYTOP polymer optical fiber,” IEEE Photonics Technol. Lett. 27(7), 693–696 (2015).
[Crossref]

Tse, M. L. V.

J. Bonefacino, H. Y. Tam, T. S. Glen, X. Cheng, C. F. J. Pun, J. Wang, P. H. Lee, M. L. V. Tse, and S. T. Boles, “Ultra-fast polymer optical fibre Bragg grating inscription for medical devices,” Light: Sci. Appl. 7(3), 17161 (2018).
[Crossref]

Wang, J.

J. Bonefacino, H. Y. Tam, T. S. Glen, X. Cheng, C. F. J. Pun, J. Wang, P. H. Lee, M. L. V. Tse, and S. T. Boles, “Ultra-fast polymer optical fibre Bragg grating inscription for medical devices,” Light: Sci. Appl. 7(3), 17161 (2018).
[Crossref]

Webb, D. J.

A. Pospori, C. A. F. Marques, D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Thermal and chemical treatment of polymer optical fiber Bragg grating sensors for enhanced mechanical sensitivity,” Opt. Fiber Technol. 36, 68–74 (2017).
[Crossref]

L. Pereira, A. Pospori, P. Antunes, M. F. Domingues, S. Marques, O. Bang, D. J. Webb, and C. A. F. Marques, “Phase-shifted Bragg grating inscription in PMMA microstructured POF using 248-nm UV radiation,” J. Lightwave Technol. 35(23), 5176–5184 (2017).
[Crossref]

D. Sáez-Rodríguez, R. Min, B. Ortega, K. Nielsen, and D. J. Webb, “Passive and portable polymer optical fiber cleaver,” IEEE Photonics Technol. Lett. 28(24), 2834–2837 (2016).
[Crossref]

D. J. Webb, “Fibre Bragg grating sensors in polymer optical fibres,” Meas. Sci. Technol. 26(9), 092004 (2015).
[Crossref]

C. Marques, G.-D. Peng, and D. J. Webb, “Highly sensitive liquid level monitoring system utilizing polymer fiber Bragg gratings,” Opt. Express 23(5), 6058–6072 (2015).
[Crossref]

C. A. F. Marques, L. B. Bilro, N. J. Alberto, D. J. Webb, and R. N. Nogueira, “Narrow bandwidth Bragg gratings imprinted in polymer optical fibers for different spectral windows,” Opt. Commun. 307, 57–61 (2013).
[Crossref]

D. Sáez-Rodríguez, K. Nielsen, H. K. Rasmussen, O. Bang, and D. J. Webb, “Highly photosensitive polymethyl methacrylate microstructured polymer optical fiber with doped core,” Opt. Lett. 38(19), 3769–3772 (2013).
[Crossref]

W. Zhang, D. J. Webb, and G.-D. Peng, “Investigation into time response of polymer fiber Bragg grating based humidity sensors,” J. Lightwave Technol. 30(8), 1090–1096 (2012).
[Crossref]

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
[Crossref]

Woyessa, G.

J. Janting, J. Pedersen, R. Inglev, G. Woyessa, K. Nielsen, and O. Bang, “Effects of Solvent Etching on PMMA Microstructured Optical Fiber Bragg Grating,” J. Lightwave Technol. 37(18), 4469–4479 (2019).
[Crossref]

C. A. F. Marques, R. Min, A. Leal Junior, P. Antunes, A. Fasano, G. Woyessa, K. Nielsen, H. K. Rasmussen, B. Ortega, and O. Bang, “Fast and stable gratings inscription in POFs made of different materials with pulsed 248 nm KrF laser,” Opt. Express 26(2), 2013–2022 (2018).
[Crossref]

R. Min, B. Ortega, C. Broadway, C. Caucheteur, G. Woyessa, O. Bang, P. Antunes, and C. Marques, “Hot water-assisted fabrication of chirped polymer optical fiber Bragg gratings,” Opt. Express 26(26), 34655–34664 (2018).
[Crossref]

G. Woyessa, A. Fasano, C. Markos, H. K. Rasmussen, and O. Bang, “Low loss polycarbonate polymer optical fiber for high temperature FBG humidity sensing,” IEEE Photonics Technol. Lett. 29(7), 575–578 (2017).
[Crossref]

G. Woyessa, J. K. M. Pedersen, A. Fasano, K. Nielsen, C. Markos, H. K. Rasmussen, and O. Bang, “Zeonex-PMMA microstructured polymer optical FBGs for simultaneous humidity and temperature sensing,” Opt. Lett. 42(6), 1161–1164 (2017).
[Crossref]

G. Woyessa, A. Fasano, C. Markos, A. Stefani, H. K. Rasmussen, and O. Bang, “Zeonex microstructured polymer optical fiber: Fabrication friendly fibers for high temperature and humidity insensitive Bragg grating sensing,” Opt. Mater. Express 7(1), 286–295 (2017).
[Crossref]

X. Hu, G. Woyessa, D. Kinet, J. Janting, K. Nielsen, O. Bang, and C. Caucheteur, “BDK-doped core microstructured PMMA optical fiber for effective Bragg grating photo-inscription,” Opt. Lett. 42(11), 2209–2212 (2017).
[Crossref]

G. Woyessa, A. Fasano, A. Stefani, C. Markos, K. Nielsen, H. K. Rasmussen, and O. Bang, “Single mode stepindex polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors,” Opt. Express 24(2), 1253–1260 (2016).
[Crossref]

G. Woyessa, K. Nielsen, A. Stefani, C. Markos, and O. Bang, “Temperature insensitive hysteresis free highly sensitive polymer optical fiber Bragg grating humidity sensor,” Opt. Express 24(2), 1206–1213 (2016).
[Crossref]

A. Fasano, G. Woyessa, P. Stajanca, C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, K. Krebber, and O. Bang, “Fabrication and characterization of polycarbonate microstructured polymer optical fibers for high-temperature-resistant fiber Bragg grating strain sensors,” Opt. Mater. Express 6(2), 649–659 (2016).
[Crossref]

C. Broadway, G. Woyessa, O. Bang, P. Mégret, and C. Caucheteur, “An L-band ultrasonic probe using polymer optical fibre,” Photons Plus Ultrasound: Imaging and Sensing 2019. Vol. 10878. International Society for Optics and Photonics.

Wu, B.

Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” IEEE Photonics Technol. Lett. 11(3), 352–354 (1999).
[Crossref]

Xiong, Z.

Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” IEEE Photonics Technol. Lett. 11(3), 352–354 (1999).
[Crossref]

Yu, J.

Yuan, W.

C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, W. Yuan, and O. Bang, “High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees,” Opt. Express 21(4), 4758–4765 (2013).
[Crossref]

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High Sensitivity Polymer Optical Fiber-Bragg-Grating-Based Accelerometer,” IEEE Photonics Technol. Lett. 24(9), 763–765 (2012).
[Crossref]

W. Yuan, A. Stefani, and O. Bang, “Tunable polymer Fiber Bragg Grating (FBG) inscription: Fabrication of dual-FBG temperature compensated polymer optical fiber strain sensors,” IEEE Photonics Technol. Lett. 24(5), 401–403 (2012).
[Crossref]

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
[Crossref]

Zhang, Q.

Zhang, W.

IEEE Photonics Technol. Lett. (7)

Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” IEEE Photonics Technol. Lett. 11(3), 352–354 (1999).
[Crossref]

A. Lacraz, M. Polis, A. Theodosiou, C. Koutsides, and K. Kalli, “Femtosecond laser inscribed Bragg gratings in low loss CYTOP polymer optical fiber,” IEEE Photonics Technol. Lett. 27(7), 693–696 (2015).
[Crossref]

G. Woyessa, A. Fasano, C. Markos, H. K. Rasmussen, and O. Bang, “Low loss polycarbonate polymer optical fiber for high temperature FBG humidity sensing,” IEEE Photonics Technol. Lett. 29(7), 575–578 (2017).
[Crossref]

D. Sáez-Rodríguez, R. Min, B. Ortega, K. Nielsen, and D. J. Webb, “Passive and portable polymer optical fiber cleaver,” IEEE Photonics Technol. Lett. 28(24), 2834–2837 (2016).
[Crossref]

R. Min, B. Ortega, X. Hu, C. Broadway, C. Caucheteur, C. F. Jeff Pun, H. Y. Tam, P. Antunes, and C. Marques, “Bragg gratings inscription in TS-doped PMMA POF by using 248-nm KrF pulses,” IEEE Photonics Technol. Lett. 30(18), 1609–1612 (2018).
[Crossref]

W. Yuan, A. Stefani, and O. Bang, “Tunable polymer Fiber Bragg Grating (FBG) inscription: Fabrication of dual-FBG temperature compensated polymer optical fiber strain sensors,” IEEE Photonics Technol. Lett. 24(5), 401–403 (2012).
[Crossref]

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High Sensitivity Polymer Optical Fiber-Bragg-Grating-Based Accelerometer,” IEEE Photonics Technol. Lett. 24(9), 763–765 (2012).
[Crossref]

IEEE Sens. Lett. (1)

R. Min, B. Ortega, A. Leal-Junior, and C. Marques, “Fabrication and characterization of Bragg grating in CYTOP POF at 600-nm wavelength,” IEEE Sens. Lett. 2(3), 1–4 (2018).
[Crossref]

J. Lightwave Technol. (3)

Light: Sci. Appl. (1)

J. Bonefacino, H. Y. Tam, T. S. Glen, X. Cheng, C. F. J. Pun, J. Wang, P. H. Lee, M. L. V. Tse, and S. T. Boles, “Ultra-fast polymer optical fibre Bragg grating inscription for medical devices,” Light: Sci. Appl. 7(3), 17161 (2018).
[Crossref]

Meas. Sci. Technol. (1)

D. J. Webb, “Fibre Bragg grating sensors in polymer optical fibres,” Meas. Sci. Technol. 26(9), 092004 (2015).
[Crossref]

Opt. Commun. (2)

C. A. F. Marques, L. B. Bilro, N. J. Alberto, D. J. Webb, and R. N. Nogueira, “Narrow bandwidth Bragg gratings imprinted in polymer optical fibers for different spectral windows,” Opt. Commun. 307, 57–61 (2013).
[Crossref]

A. Stefani, K. Nielsen, H. K. Rasmussen, and O. Bang, “Cleaving of TOPAS and PMMA microstructured polymer optical fibers: Core-shift and statistical quality optimization,” Opt. Commun. 285(7), 1825–1833 (2012).
[Crossref]

Opt. Express (12)

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
[Crossref]

C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, W. Yuan, and O. Bang, “High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees,” Opt. Express 21(4), 4758–4765 (2013).
[Crossref]

C. A. F. Marques, R. Min, A. Leal Junior, P. Antunes, A. Fasano, G. Woyessa, K. Nielsen, H. K. Rasmussen, B. Ortega, and O. Bang, “Fast and stable gratings inscription in POFs made of different materials with pulsed 248 nm KrF laser,” Opt. Express 26(2), 2013–2022 (2018).
[Crossref]

R. Min, B. Ortega, and C. Marques, “Fabrication of tunable chirped mPOF Bragg gratings using a uniform phase mask,” Opt. Express 26(4), 4411–4420 (2018).
[Crossref]

L. Pereira, R. Min, X. Hu, C. Caucheteur, O. Bang, B. Ortega, C. Marques, P. Antunes, and J. L. Pinto, “Polymer optical fiber Bragg grating inscription with a single Nd: YAG laser pulse,” Opt. Express 26(14), 18096–18104 (2018).
[Crossref]

R. Min, B. Ortega, C. Broadway, C. Caucheteur, G. Woyessa, O. Bang, P. Antunes, and C. Marques, “Hot water-assisted fabrication of chirped polymer optical fiber Bragg gratings,” Opt. Express 26(26), 34655–34664 (2018).
[Crossref]

I. L. Bundalo, K. Nielsen, and O. Bang, “Angle dependent Fiber Bragg grating inscription in microstructured polymer optical fibers,” Opt. Express 23(3), 3699–3707 (2015).
[Crossref]

C. Marques, G.-D. Peng, and D. J. Webb, “Highly sensitive liquid level monitoring system utilizing polymer fiber Bragg gratings,” Opt. Express 23(5), 6058–6072 (2015).
[Crossref]

R. Oliveira, L. Bilro, and R. Nogueira, “Bragg gratings in a few mode microstructured polymer optical fiber in less than 30 seconds,” Opt. Express 23(8), 10181–10187 (2015).
[Crossref]

G. Woyessa, K. Nielsen, A. Stefani, C. Markos, and O. Bang, “Temperature insensitive hysteresis free highly sensitive polymer optical fiber Bragg grating humidity sensor,” Opt. Express 24(2), 1206–1213 (2016).
[Crossref]

G. Woyessa, A. Fasano, A. Stefani, C. Markos, K. Nielsen, H. K. Rasmussen, and O. Bang, “Single mode stepindex polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors,” Opt. Express 24(2), 1253–1260 (2016).
[Crossref]

I.-L. Bundalo, K. Nielsen, C. Markos, and O. Bang, “Bragg grating writing in PMMA microstructured polymer optical fibers in less than 7 minutes,” Opt. Express 22(5), 5270–5276 (2014).
[Crossref]

Opt. Fiber Technol. (1)

A. Pospori, C. A. F. Marques, D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Thermal and chemical treatment of polymer optical fiber Bragg grating sensors for enhanced mechanical sensitivity,” Opt. Fiber Technol. 36, 68–74 (2017).
[Crossref]

Opt. Lett. (6)

Opt. Mater. Express (2)

Smart Mater. Struct. (1)

K. Peters, “Polymer optical fiber sensors—A review,” Smart Mater. Struct. 20(1), 013002 (2011).
[Crossref]

Other (1)

C. Broadway, G. Woyessa, O. Bang, P. Mégret, and C. Caucheteur, “An L-band ultrasonic probe using polymer optical fibre,” Photons Plus Ultrasound: Imaging and Sensing 2019. Vol. 10878. International Society for Optics and Photonics.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. End face of the different mPOF structures: (a) 2-rings, (b) 3-rings and (c) 5-rings. Insets: cross section of the microstructured region.
Fig. 2.
Fig. 2. Microscope images of the different mPOFs: (a) 2-rings, (b) 3-rings and (c) 5-rings.
Fig. 3.
Fig. 3. Commercial ferrule connection technology for mPOF.
Fig. 4.
Fig. 4. Experimental setup for POFBG inscription using 266 nm Nd:YAG laser.
Fig. 5.
Fig. 5. Reflected spectral power of the Bragg grating in different mPOFs: (a) 2-rings, (b) 3-rings and (c) 5-rings. Insets in (a) and (b): transmission measurements.
Fig. 6.
Fig. 6. Bragg grating devices in different PMMA mPOFs: (a) irradiation time, (b) reflected power.
Fig. 7.
Fig. 7. Reflected peak power of grating inscribed into two, three and five rings mPOF over time.
Fig. 8.
Fig. 8. Reflected power evolution for 2-rings mPOF: (a) during inscription and (b) during 30 days after inscription (Inset: reflected power spectra of the POFBG just after the inscription and after 30 days).
Fig. 9.
Fig. 9. POFBG central wavelength under different temperatures.
Fig. 10.
Fig. 10. Central wavelength of the gratings under different strain levels.
Fig. 11.
Fig. 11. Wavelength and humidity monitoring during time for different mPOFs: a) 2-rings mPOF, b) 3-rings mPOF and c) 5-rings mPOF (Inset: Wavelength vs Humidity).

Metrics