Abstract

We propose a customizing method of a holographic optical element (HOE) by using a holographic printer, which extends the eye-box with high field of view (FOV) for a holographic augmented reality near-eye display (AR NED). The holographic printer setup to manufacture HOE is presented and a prototype of the AR NED is implemented. To make a simple AR NED system, we propose a total internal reflection holographic printing method using an index-matching optical frame. As a result, the eye-box of the AR NED is extended in both vertical and horizontal directions and FOV of 50° is achieved at the center of the eye-box. Through the simulations and the experimental results, the feasibility of the proposed method is verified.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optical see-through holographic near-eye-display with eyebox steering and depth of field control

Jae-Hyeung Park and Seong-Bok Kim
Opt. Express 26(21) 27076-27088 (2018)

On-axis near-eye display system based on directional scattering holographic waveguide and curved goggle

Jiasheng Xiao, Juan Liu, Zhenlv Lv, Xueliang Shi, and Jian Han
Opt. Express 27(2) 1683-1692 (2019)

Holographic near-eye display with continuously expanded eyebox using two-dimensional replication and angular spectrum wrapping

Myeong-Ho Choi, Yeon-Gyeong Ju, and Jae-Hyeung Park
Opt. Express 28(1) 533-547 (2020)

References

  • View by:
  • |
  • |
  • |

  1. J. Carmigniani, B. Furht, M. Anisette, P. Ceravolo, E. Damien, and M. Ivkovic, “Augmented reality technologies, systems and applications,” Multimedia Tools Appl. 51(1), 341–377 (2011).
    [Crossref]
  2. B. C. Kress and W. J. Cummings, “Towards the ultimate mixed reality experience: HoloLens display architecture choices,” Dig. Tech. Pap. - Soc. Inf. Disp. Int. Symp. 48(1), 127–131 (2017).
    [Crossref]
  3. Google, “Glass Enterprise Edition 2,” retrieved 2019.10, https://www.google.com/glass/tech-specs .
  4. Magic Leap Corporation, “Magic Leap One Creator Edition,” retrieved 2019.10, https://www.magicleap.com/magic-leap-one .
  5. E. Moon, M. Kim, J. Roh, H. Kim, and J. Hahn, “Holographic head-mounted display with RGB light emitting diode light source,” Opt. Express 22(6), 6526–6534 (2014).
    [Crossref]
  6. H.-J. Yeom, H.-J. Kim, S.-B. Kim, H. Zhang, B. Li, Y.-M. Ji, S.-H. Kim, and J.-H. Park, “3D holographic head mounted display using holographic optical elements with astigmatism aberration compensation,” Opt. Express 23(25), 32025–32034 (2015).
    [Crossref]
  7. Y.-H. Lee, K. Yin, and S.-T. Wu, “Reflective polarization volume gratings for high efficiency waveguide-coupling augmented reality displays,” Opt. Express 25(22), 27008–27014 (2017).
    [Crossref]
  8. Y. Takaki and N. Fujimoto, “Flexible retinal image formation by holographic Maxwellian-view display,” Opt. Express 26(18), 22985–22999 (2018).
    [Crossref]
  9. P. Sun, S. Chang, S. Liu, X. Tao, C. Wang, and Z. Zheng, “Holographic near-eye display system based on double-convergence light Gerchberg-Saxton algorithm,” Opt. Express 26(8), 10140–10151 (2018).
    [Crossref]
  10. J. S. Lee, Y. K. Kim, M. Y. Lee, and Y. H. Won, “Enhanced see-through near-eye display using time-division multiplexing of a Maxwellian-view and holographic display,” Opt. Express 27(2), 689–701 (2019).
    [Crossref]
  11. J. Xiao, J. Liu, Z. Lv, X. Shi, and J. Han, “On-axis near-eye display system based on directional scattering holographic waveguide and curved goggle,” Opt. Express 27(2), 1683–1692 (2019).
    [Crossref]
  12. S. Kazempourradi, E. Ulusoy, and H. Urey, “Full-color computational holographic near-eye display,” J. Inf. Disp. 20(2), 45–59 (2019).
    [Crossref]
  13. A. Maimone, A. Georgiou, and J. S. Kollin, “Holographic near-eye displays for virtual and augmented reality,” ACM Trans. Graph. 36(4), 1–16 (2017).
    [Crossref]
  14. C. Jang, K. Bang, G. Li, and B. Lee, “Holographic near-eye display with expanded eye-box,” ACM Trans. Graph. 37(6), 1–14 (2018).
    [Crossref]
  15. J. Kim, Y. Jeong, M. Stengel, K. Akşit, R. Albert, B. Boudaoud, T. Greer, J. Kim, W. Lopes, Z. Majercik, P. Shirley, J. Spjut, M. McGuire, and D. Luebke, “Foveated AR: dynamically-foveated augmented reality display,” ACM Trans. Graph. 38(4), 1–15 (2019).
    [Crossref]
  16. J.-H. Park and S.-B. Kim, “Optical see-through holographic near-eye-display with eyebox steering and depth of field control,” Opt. Express 26(21), 27076–27088 (2018).
    [Crossref]
  17. C. Jang, C. K. Lee, J. Jeong, G. Li, S. Lee, J. Yeom, K. Hong, and B. Lee, “Recent progress in see-through three-dimensional displays using holographic optical elements [Invited],” Appl. Opt. 55(3), A71–A85 (2016).
    [Crossref]
  18. M. Yamaguchi, N. Ohyama, and T. Honda, “Holographic three-dimensional printer: new method,” Appl. Opt. 31(2), 217–222 (1992).
    [Crossref]
  19. K. Hong, S.-g. Park, J. Yeom, J. Kim, N. Chen, K. Pyun, C. Choi, S. Kim, J. An, H.-S. Lee, U.-i. Chung, and B. Lee, “Resolution enhancement of holographic printer using a hogel overlapping method,” Opt. Express 21(12), 14047–14055 (2013).
    [Crossref]
  20. Y. Kim, E. Stoykova, H. Kang, S. Hong, J. Park, J. Park, and J. Hong, “Seamless full color holographic printing method based on spatial partitioning of SLM,” Opt. Express 23(1), 172–182 (2015).
    [Crossref]
  21. K. Wakunami, P.-Y. Hsieh, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, M. Okui, Y.-P. Huang, and K. Yamamoto, “Projection-type see-through holographic three-dimensional display,” Nat. Commun. 7(1), 12954 (2016).
    [Crossref]
  22. J.-Y. Wu and J. Kim, “Prescription AR: A Fully-customized prescription-embedded augmented reality display” https://arxiv.org/abs/1907.04353 (2019).
  23. H. Kim, C.-Y. Hwang, K.-S. Kim, J. Roh, W. Moon, S. Kim, B.-R. Lee, S. Oh, and J. Hahn, “Anamorphic optical transformation of an amplitude spatial light modulator to a complex spatial light modulator with square pixels,” Appl. Opt. 53(27), G139–G146 (2014).
    [Crossref]
  24. R. Ohtera, T. Horiuchi, and S. Tominaga, “Eye-gaze detection from monocular camera image using parametric template matching,” in Asian Conference on Computer Vision, (Springer, 2007), 708–717.
  25. J. E. Greivenkamp, J. Schwiegerling, J. M. Miller, and M. D. Mellinger, “Visual acuity modeling using optical raytracing of schematic eyes,” Am. J. Ophthalmol. 120(2), 227–240 (1995).
    [Crossref]
  26. J. W. Goodman, Introduction to Fourier Optics (Roberts and Company Publishers, 2005).
  27. J. Hahn, H. Kim, Y. Lim, G. Park, and B. Lee, “Wide viewing angle dynamic holographic stereogram with a curved array of spatial light modulators,” Opt. Express 16(16), 12372–12386 (2008).
    [Crossref]
  28. K. Matsushima and S. Nakahara, “Extremely high-definition full-parallax computer-generated hologram created by the polygon-based method,” Appl. Opt. 48(34), H54–H63 (2009).
    [Crossref]
  29. F. W. Campbell, “The depth of field of the human eye,” Opt. Acta 4(4), 157–164 (1957).
    [Crossref]
  30. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
    [Crossref]

2019 (4)

S. Kazempourradi, E. Ulusoy, and H. Urey, “Full-color computational holographic near-eye display,” J. Inf. Disp. 20(2), 45–59 (2019).
[Crossref]

J. Kim, Y. Jeong, M. Stengel, K. Akşit, R. Albert, B. Boudaoud, T. Greer, J. Kim, W. Lopes, Z. Majercik, P. Shirley, J. Spjut, M. McGuire, and D. Luebke, “Foveated AR: dynamically-foveated augmented reality display,” ACM Trans. Graph. 38(4), 1–15 (2019).
[Crossref]

J. S. Lee, Y. K. Kim, M. Y. Lee, and Y. H. Won, “Enhanced see-through near-eye display using time-division multiplexing of a Maxwellian-view and holographic display,” Opt. Express 27(2), 689–701 (2019).
[Crossref]

J. Xiao, J. Liu, Z. Lv, X. Shi, and J. Han, “On-axis near-eye display system based on directional scattering holographic waveguide and curved goggle,” Opt. Express 27(2), 1683–1692 (2019).
[Crossref]

2018 (4)

2017 (3)

A. Maimone, A. Georgiou, and J. S. Kollin, “Holographic near-eye displays for virtual and augmented reality,” ACM Trans. Graph. 36(4), 1–16 (2017).
[Crossref]

B. C. Kress and W. J. Cummings, “Towards the ultimate mixed reality experience: HoloLens display architecture choices,” Dig. Tech. Pap. - Soc. Inf. Disp. Int. Symp. 48(1), 127–131 (2017).
[Crossref]

Y.-H. Lee, K. Yin, and S.-T. Wu, “Reflective polarization volume gratings for high efficiency waveguide-coupling augmented reality displays,” Opt. Express 25(22), 27008–27014 (2017).
[Crossref]

2016 (2)

C. Jang, C. K. Lee, J. Jeong, G. Li, S. Lee, J. Yeom, K. Hong, and B. Lee, “Recent progress in see-through three-dimensional displays using holographic optical elements [Invited],” Appl. Opt. 55(3), A71–A85 (2016).
[Crossref]

K. Wakunami, P.-Y. Hsieh, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, M. Okui, Y.-P. Huang, and K. Yamamoto, “Projection-type see-through holographic three-dimensional display,” Nat. Commun. 7(1), 12954 (2016).
[Crossref]

2015 (2)

2014 (2)

2013 (1)

2011 (1)

J. Carmigniani, B. Furht, M. Anisette, P. Ceravolo, E. Damien, and M. Ivkovic, “Augmented reality technologies, systems and applications,” Multimedia Tools Appl. 51(1), 341–377 (2011).
[Crossref]

2009 (1)

2008 (1)

1995 (1)

J. E. Greivenkamp, J. Schwiegerling, J. M. Miller, and M. D. Mellinger, “Visual acuity modeling using optical raytracing of schematic eyes,” Am. J. Ophthalmol. 120(2), 227–240 (1995).
[Crossref]

1992 (1)

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
[Crossref]

1957 (1)

F. W. Campbell, “The depth of field of the human eye,” Opt. Acta 4(4), 157–164 (1957).
[Crossref]

Aksit, K.

J. Kim, Y. Jeong, M. Stengel, K. Akşit, R. Albert, B. Boudaoud, T. Greer, J. Kim, W. Lopes, Z. Majercik, P. Shirley, J. Spjut, M. McGuire, and D. Luebke, “Foveated AR: dynamically-foveated augmented reality display,” ACM Trans. Graph. 38(4), 1–15 (2019).
[Crossref]

Albert, R.

J. Kim, Y. Jeong, M. Stengel, K. Akşit, R. Albert, B. Boudaoud, T. Greer, J. Kim, W. Lopes, Z. Majercik, P. Shirley, J. Spjut, M. McGuire, and D. Luebke, “Foveated AR: dynamically-foveated augmented reality display,” ACM Trans. Graph. 38(4), 1–15 (2019).
[Crossref]

An, J.

Anisette, M.

J. Carmigniani, B. Furht, M. Anisette, P. Ceravolo, E. Damien, and M. Ivkovic, “Augmented reality technologies, systems and applications,” Multimedia Tools Appl. 51(1), 341–377 (2011).
[Crossref]

Bang, K.

C. Jang, K. Bang, G. Li, and B. Lee, “Holographic near-eye display with expanded eye-box,” ACM Trans. Graph. 37(6), 1–14 (2018).
[Crossref]

Boudaoud, B.

J. Kim, Y. Jeong, M. Stengel, K. Akşit, R. Albert, B. Boudaoud, T. Greer, J. Kim, W. Lopes, Z. Majercik, P. Shirley, J. Spjut, M. McGuire, and D. Luebke, “Foveated AR: dynamically-foveated augmented reality display,” ACM Trans. Graph. 38(4), 1–15 (2019).
[Crossref]

Campbell, F. W.

F. W. Campbell, “The depth of field of the human eye,” Opt. Acta 4(4), 157–164 (1957).
[Crossref]

Carmigniani, J.

J. Carmigniani, B. Furht, M. Anisette, P. Ceravolo, E. Damien, and M. Ivkovic, “Augmented reality technologies, systems and applications,” Multimedia Tools Appl. 51(1), 341–377 (2011).
[Crossref]

Ceravolo, P.

J. Carmigniani, B. Furht, M. Anisette, P. Ceravolo, E. Damien, and M. Ivkovic, “Augmented reality technologies, systems and applications,” Multimedia Tools Appl. 51(1), 341–377 (2011).
[Crossref]

Chang, S.

Chen, N.

Choi, C.

Chung, U.-i.

Cummings, W. J.

B. C. Kress and W. J. Cummings, “Towards the ultimate mixed reality experience: HoloLens display architecture choices,” Dig. Tech. Pap. - Soc. Inf. Disp. Int. Symp. 48(1), 127–131 (2017).
[Crossref]

Damien, E.

J. Carmigniani, B. Furht, M. Anisette, P. Ceravolo, E. Damien, and M. Ivkovic, “Augmented reality technologies, systems and applications,” Multimedia Tools Appl. 51(1), 341–377 (2011).
[Crossref]

Fujimoto, N.

Furht, B.

J. Carmigniani, B. Furht, M. Anisette, P. Ceravolo, E. Damien, and M. Ivkovic, “Augmented reality technologies, systems and applications,” Multimedia Tools Appl. 51(1), 341–377 (2011).
[Crossref]

Georgiou, A.

A. Maimone, A. Georgiou, and J. S. Kollin, “Holographic near-eye displays for virtual and augmented reality,” ACM Trans. Graph. 36(4), 1–16 (2017).
[Crossref]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (Roberts and Company Publishers, 2005).

Greer, T.

J. Kim, Y. Jeong, M. Stengel, K. Akşit, R. Albert, B. Boudaoud, T. Greer, J. Kim, W. Lopes, Z. Majercik, P. Shirley, J. Spjut, M. McGuire, and D. Luebke, “Foveated AR: dynamically-foveated augmented reality display,” ACM Trans. Graph. 38(4), 1–15 (2019).
[Crossref]

Greivenkamp, J. E.

J. E. Greivenkamp, J. Schwiegerling, J. M. Miller, and M. D. Mellinger, “Visual acuity modeling using optical raytracing of schematic eyes,” Am. J. Ophthalmol. 120(2), 227–240 (1995).
[Crossref]

Hahn, J.

Han, J.

Honda, T.

Hong, J.

Hong, K.

Hong, S.

Horiuchi, T.

R. Ohtera, T. Horiuchi, and S. Tominaga, “Eye-gaze detection from monocular camera image using parametric template matching,” in Asian Conference on Computer Vision, (Springer, 2007), 708–717.

Hsieh, P.-Y.

K. Wakunami, P.-Y. Hsieh, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, M. Okui, Y.-P. Huang, and K. Yamamoto, “Projection-type see-through holographic three-dimensional display,” Nat. Commun. 7(1), 12954 (2016).
[Crossref]

Huang, Y.-P.

K. Wakunami, P.-Y. Hsieh, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, M. Okui, Y.-P. Huang, and K. Yamamoto, “Projection-type see-through holographic three-dimensional display,” Nat. Commun. 7(1), 12954 (2016).
[Crossref]

Hwang, C.-Y.

Ichihashi, Y.

K. Wakunami, P.-Y. Hsieh, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, M. Okui, Y.-P. Huang, and K. Yamamoto, “Projection-type see-through holographic three-dimensional display,” Nat. Commun. 7(1), 12954 (2016).
[Crossref]

Ivkovic, M.

J. Carmigniani, B. Furht, M. Anisette, P. Ceravolo, E. Damien, and M. Ivkovic, “Augmented reality technologies, systems and applications,” Multimedia Tools Appl. 51(1), 341–377 (2011).
[Crossref]

Jang, C.

Jeong, J.

Jeong, Y.

J. Kim, Y. Jeong, M. Stengel, K. Akşit, R. Albert, B. Boudaoud, T. Greer, J. Kim, W. Lopes, Z. Majercik, P. Shirley, J. Spjut, M. McGuire, and D. Luebke, “Foveated AR: dynamically-foveated augmented reality display,” ACM Trans. Graph. 38(4), 1–15 (2019).
[Crossref]

Ji, Y.-M.

Kang, H.

Kazempourradi, S.

S. Kazempourradi, E. Ulusoy, and H. Urey, “Full-color computational holographic near-eye display,” J. Inf. Disp. 20(2), 45–59 (2019).
[Crossref]

Kim, H.

Kim, H.-J.

Kim, J.

J. Kim, Y. Jeong, M. Stengel, K. Akşit, R. Albert, B. Boudaoud, T. Greer, J. Kim, W. Lopes, Z. Majercik, P. Shirley, J. Spjut, M. McGuire, and D. Luebke, “Foveated AR: dynamically-foveated augmented reality display,” ACM Trans. Graph. 38(4), 1–15 (2019).
[Crossref]

J. Kim, Y. Jeong, M. Stengel, K. Akşit, R. Albert, B. Boudaoud, T. Greer, J. Kim, W. Lopes, Z. Majercik, P. Shirley, J. Spjut, M. McGuire, and D. Luebke, “Foveated AR: dynamically-foveated augmented reality display,” ACM Trans. Graph. 38(4), 1–15 (2019).
[Crossref]

K. Hong, S.-g. Park, J. Yeom, J. Kim, N. Chen, K. Pyun, C. Choi, S. Kim, J. An, H.-S. Lee, U.-i. Chung, and B. Lee, “Resolution enhancement of holographic printer using a hogel overlapping method,” Opt. Express 21(12), 14047–14055 (2013).
[Crossref]

J.-Y. Wu and J. Kim, “Prescription AR: A Fully-customized prescription-embedded augmented reality display” https://arxiv.org/abs/1907.04353 (2019).

Kim, K.-S.

Kim, M.

Kim, S.

Kim, S.-B.

Kim, S.-H.

Kim, Y.

Kim, Y. K.

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
[Crossref]

Kollin, J. S.

A. Maimone, A. Georgiou, and J. S. Kollin, “Holographic near-eye displays for virtual and augmented reality,” ACM Trans. Graph. 36(4), 1–16 (2017).
[Crossref]

Kress, B. C.

B. C. Kress and W. J. Cummings, “Towards the ultimate mixed reality experience: HoloLens display architecture choices,” Dig. Tech. Pap. - Soc. Inf. Disp. Int. Symp. 48(1), 127–131 (2017).
[Crossref]

Lee, B.

Lee, B.-R.

Lee, C. K.

Lee, H.-S.

Lee, J. S.

Lee, M. Y.

Lee, S.

Lee, Y.-H.

Li, B.

Li, G.

Lim, Y.

Liu, J.

Liu, S.

Lopes, W.

J. Kim, Y. Jeong, M. Stengel, K. Akşit, R. Albert, B. Boudaoud, T. Greer, J. Kim, W. Lopes, Z. Majercik, P. Shirley, J. Spjut, M. McGuire, and D. Luebke, “Foveated AR: dynamically-foveated augmented reality display,” ACM Trans. Graph. 38(4), 1–15 (2019).
[Crossref]

Luebke, D.

J. Kim, Y. Jeong, M. Stengel, K. Akşit, R. Albert, B. Boudaoud, T. Greer, J. Kim, W. Lopes, Z. Majercik, P. Shirley, J. Spjut, M. McGuire, and D. Luebke, “Foveated AR: dynamically-foveated augmented reality display,” ACM Trans. Graph. 38(4), 1–15 (2019).
[Crossref]

Lv, Z.

Maimone, A.

A. Maimone, A. Georgiou, and J. S. Kollin, “Holographic near-eye displays for virtual and augmented reality,” ACM Trans. Graph. 36(4), 1–16 (2017).
[Crossref]

Majercik, Z.

J. Kim, Y. Jeong, M. Stengel, K. Akşit, R. Albert, B. Boudaoud, T. Greer, J. Kim, W. Lopes, Z. Majercik, P. Shirley, J. Spjut, M. McGuire, and D. Luebke, “Foveated AR: dynamically-foveated augmented reality display,” ACM Trans. Graph. 38(4), 1–15 (2019).
[Crossref]

Matsushima, K.

McGuire, M.

J. Kim, Y. Jeong, M. Stengel, K. Akşit, R. Albert, B. Boudaoud, T. Greer, J. Kim, W. Lopes, Z. Majercik, P. Shirley, J. Spjut, M. McGuire, and D. Luebke, “Foveated AR: dynamically-foveated augmented reality display,” ACM Trans. Graph. 38(4), 1–15 (2019).
[Crossref]

Mellinger, M. D.

J. E. Greivenkamp, J. Schwiegerling, J. M. Miller, and M. D. Mellinger, “Visual acuity modeling using optical raytracing of schematic eyes,” Am. J. Ophthalmol. 120(2), 227–240 (1995).
[Crossref]

Miller, J. M.

J. E. Greivenkamp, J. Schwiegerling, J. M. Miller, and M. D. Mellinger, “Visual acuity modeling using optical raytracing of schematic eyes,” Am. J. Ophthalmol. 120(2), 227–240 (1995).
[Crossref]

Moon, E.

Moon, W.

Nakahara, S.

Oh, S.

Ohtera, R.

R. Ohtera, T. Horiuchi, and S. Tominaga, “Eye-gaze detection from monocular camera image using parametric template matching,” in Asian Conference on Computer Vision, (Springer, 2007), 708–717.

Ohyama, N.

Oi, R.

K. Wakunami, P.-Y. Hsieh, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, M. Okui, Y.-P. Huang, and K. Yamamoto, “Projection-type see-through holographic three-dimensional display,” Nat. Commun. 7(1), 12954 (2016).
[Crossref]

Okui, M.

K. Wakunami, P.-Y. Hsieh, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, M. Okui, Y.-P. Huang, and K. Yamamoto, “Projection-type see-through holographic three-dimensional display,” Nat. Commun. 7(1), 12954 (2016).
[Crossref]

Park, G.

Park, J.

Park, J.-H.

Park, S.-g.

Pyun, K.

Roh, J.

Sasaki, H.

K. Wakunami, P.-Y. Hsieh, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, M. Okui, Y.-P. Huang, and K. Yamamoto, “Projection-type see-through holographic three-dimensional display,” Nat. Commun. 7(1), 12954 (2016).
[Crossref]

Schwiegerling, J.

J. E. Greivenkamp, J. Schwiegerling, J. M. Miller, and M. D. Mellinger, “Visual acuity modeling using optical raytracing of schematic eyes,” Am. J. Ophthalmol. 120(2), 227–240 (1995).
[Crossref]

Senoh, T.

K. Wakunami, P.-Y. Hsieh, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, M. Okui, Y.-P. Huang, and K. Yamamoto, “Projection-type see-through holographic three-dimensional display,” Nat. Commun. 7(1), 12954 (2016).
[Crossref]

Shi, X.

Shirley, P.

J. Kim, Y. Jeong, M. Stengel, K. Akşit, R. Albert, B. Boudaoud, T. Greer, J. Kim, W. Lopes, Z. Majercik, P. Shirley, J. Spjut, M. McGuire, and D. Luebke, “Foveated AR: dynamically-foveated augmented reality display,” ACM Trans. Graph. 38(4), 1–15 (2019).
[Crossref]

Spjut, J.

J. Kim, Y. Jeong, M. Stengel, K. Akşit, R. Albert, B. Boudaoud, T. Greer, J. Kim, W. Lopes, Z. Majercik, P. Shirley, J. Spjut, M. McGuire, and D. Luebke, “Foveated AR: dynamically-foveated augmented reality display,” ACM Trans. Graph. 38(4), 1–15 (2019).
[Crossref]

Stengel, M.

J. Kim, Y. Jeong, M. Stengel, K. Akşit, R. Albert, B. Boudaoud, T. Greer, J. Kim, W. Lopes, Z. Majercik, P. Shirley, J. Spjut, M. McGuire, and D. Luebke, “Foveated AR: dynamically-foveated augmented reality display,” ACM Trans. Graph. 38(4), 1–15 (2019).
[Crossref]

Stoykova, E.

Sun, P.

Takaki, Y.

Tao, X.

Tominaga, S.

R. Ohtera, T. Horiuchi, and S. Tominaga, “Eye-gaze detection from monocular camera image using parametric template matching,” in Asian Conference on Computer Vision, (Springer, 2007), 708–717.

Ulusoy, E.

S. Kazempourradi, E. Ulusoy, and H. Urey, “Full-color computational holographic near-eye display,” J. Inf. Disp. 20(2), 45–59 (2019).
[Crossref]

Urey, H.

S. Kazempourradi, E. Ulusoy, and H. Urey, “Full-color computational holographic near-eye display,” J. Inf. Disp. 20(2), 45–59 (2019).
[Crossref]

Wakunami, K.

K. Wakunami, P.-Y. Hsieh, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, M. Okui, Y.-P. Huang, and K. Yamamoto, “Projection-type see-through holographic three-dimensional display,” Nat. Commun. 7(1), 12954 (2016).
[Crossref]

Wang, C.

Won, Y. H.

Wu, J.-Y.

J.-Y. Wu and J. Kim, “Prescription AR: A Fully-customized prescription-embedded augmented reality display” https://arxiv.org/abs/1907.04353 (2019).

Wu, S.-T.

Xiao, J.

Yamaguchi, M.

Yamamoto, K.

K. Wakunami, P.-Y. Hsieh, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, M. Okui, Y.-P. Huang, and K. Yamamoto, “Projection-type see-through holographic three-dimensional display,” Nat. Commun. 7(1), 12954 (2016).
[Crossref]

Yeom, H.-J.

Yeom, J.

Yin, K.

Zhang, H.

Zheng, Z.

ACM Trans. Graph. (3)

A. Maimone, A. Georgiou, and J. S. Kollin, “Holographic near-eye displays for virtual and augmented reality,” ACM Trans. Graph. 36(4), 1–16 (2017).
[Crossref]

C. Jang, K. Bang, G. Li, and B. Lee, “Holographic near-eye display with expanded eye-box,” ACM Trans. Graph. 37(6), 1–14 (2018).
[Crossref]

J. Kim, Y. Jeong, M. Stengel, K. Akşit, R. Albert, B. Boudaoud, T. Greer, J. Kim, W. Lopes, Z. Majercik, P. Shirley, J. Spjut, M. McGuire, and D. Luebke, “Foveated AR: dynamically-foveated augmented reality display,” ACM Trans. Graph. 38(4), 1–15 (2019).
[Crossref]

Am. J. Ophthalmol. (1)

J. E. Greivenkamp, J. Schwiegerling, J. M. Miller, and M. D. Mellinger, “Visual acuity modeling using optical raytracing of schematic eyes,” Am. J. Ophthalmol. 120(2), 227–240 (1995).
[Crossref]

Appl. Opt. (4)

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
[Crossref]

Dig. Tech. Pap. - Soc. Inf. Disp. Int. Symp. (1)

B. C. Kress and W. J. Cummings, “Towards the ultimate mixed reality experience: HoloLens display architecture choices,” Dig. Tech. Pap. - Soc. Inf. Disp. Int. Symp. 48(1), 127–131 (2017).
[Crossref]

J. Inf. Disp. (1)

S. Kazempourradi, E. Ulusoy, and H. Urey, “Full-color computational holographic near-eye display,” J. Inf. Disp. 20(2), 45–59 (2019).
[Crossref]

Multimedia Tools Appl. (1)

J. Carmigniani, B. Furht, M. Anisette, P. Ceravolo, E. Damien, and M. Ivkovic, “Augmented reality technologies, systems and applications,” Multimedia Tools Appl. 51(1), 341–377 (2011).
[Crossref]

Nat. Commun. (1)

K. Wakunami, P.-Y. Hsieh, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, M. Okui, Y.-P. Huang, and K. Yamamoto, “Projection-type see-through holographic three-dimensional display,” Nat. Commun. 7(1), 12954 (2016).
[Crossref]

Opt. Acta (1)

F. W. Campbell, “The depth of field of the human eye,” Opt. Acta 4(4), 157–164 (1957).
[Crossref]

Opt. Express (11)

J. Hahn, H. Kim, Y. Lim, G. Park, and B. Lee, “Wide viewing angle dynamic holographic stereogram with a curved array of spatial light modulators,” Opt. Express 16(16), 12372–12386 (2008).
[Crossref]

E. Moon, M. Kim, J. Roh, H. Kim, and J. Hahn, “Holographic head-mounted display with RGB light emitting diode light source,” Opt. Express 22(6), 6526–6534 (2014).
[Crossref]

H.-J. Yeom, H.-J. Kim, S.-B. Kim, H. Zhang, B. Li, Y.-M. Ji, S.-H. Kim, and J.-H. Park, “3D holographic head mounted display using holographic optical elements with astigmatism aberration compensation,” Opt. Express 23(25), 32025–32034 (2015).
[Crossref]

Y.-H. Lee, K. Yin, and S.-T. Wu, “Reflective polarization volume gratings for high efficiency waveguide-coupling augmented reality displays,” Opt. Express 25(22), 27008–27014 (2017).
[Crossref]

Y. Takaki and N. Fujimoto, “Flexible retinal image formation by holographic Maxwellian-view display,” Opt. Express 26(18), 22985–22999 (2018).
[Crossref]

P. Sun, S. Chang, S. Liu, X. Tao, C. Wang, and Z. Zheng, “Holographic near-eye display system based on double-convergence light Gerchberg-Saxton algorithm,” Opt. Express 26(8), 10140–10151 (2018).
[Crossref]

J. S. Lee, Y. K. Kim, M. Y. Lee, and Y. H. Won, “Enhanced see-through near-eye display using time-division multiplexing of a Maxwellian-view and holographic display,” Opt. Express 27(2), 689–701 (2019).
[Crossref]

J. Xiao, J. Liu, Z. Lv, X. Shi, and J. Han, “On-axis near-eye display system based on directional scattering holographic waveguide and curved goggle,” Opt. Express 27(2), 1683–1692 (2019).
[Crossref]

K. Hong, S.-g. Park, J. Yeom, J. Kim, N. Chen, K. Pyun, C. Choi, S. Kim, J. An, H.-S. Lee, U.-i. Chung, and B. Lee, “Resolution enhancement of holographic printer using a hogel overlapping method,” Opt. Express 21(12), 14047–14055 (2013).
[Crossref]

Y. Kim, E. Stoykova, H. Kang, S. Hong, J. Park, J. Park, and J. Hong, “Seamless full color holographic printing method based on spatial partitioning of SLM,” Opt. Express 23(1), 172–182 (2015).
[Crossref]

J.-H. Park and S.-B. Kim, “Optical see-through holographic near-eye-display with eyebox steering and depth of field control,” Opt. Express 26(21), 27076–27088 (2018).
[Crossref]

Other (5)

Google, “Glass Enterprise Edition 2,” retrieved 2019.10, https://www.google.com/glass/tech-specs .

Magic Leap Corporation, “Magic Leap One Creator Edition,” retrieved 2019.10, https://www.magicleap.com/magic-leap-one .

J. W. Goodman, Introduction to Fourier Optics (Roberts and Company Publishers, 2005).

J.-Y. Wu and J. Kim, “Prescription AR: A Fully-customized prescription-embedded augmented reality display” https://arxiv.org/abs/1907.04353 (2019).

R. Ohtera, T. Horiuchi, and S. Tominaga, “Eye-gaze detection from monocular camera image using parametric template matching,” in Asian Conference on Computer Vision, (Springer, 2007), 708–717.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1. Concept diagram of holographic printer.
Fig. 2.
Fig. 2. Concept diagram of the proposed method: HOEs (a) with a conventional recording setup and (b) proposed method using a holographic printer. (c) The HOE can extend eye-box into both vertical and horizontal directions considering the facial structure or eye size of the users.
Fig. 3.
Fig. 3. Design parameters for customizing an optical combiner HOE with extended eye-box.
Fig. 4.
Fig. 4. The design process of CGH for customizing HOE.
Fig. 5.
Fig. 5. The configuration of the holographic printer and the designed optical frame.
Fig. 6.
Fig. 6. The detailed experimental setup of the holographic printer.
Fig. 7.
Fig. 7. The recording cycle of the holographic printer. After the shutter is closed, the SLM displays the image of next hogel and the stage starts moving. When the stage is placed on right position, there is a short time interval for stabilization and the shutter is opened and closed rapidly.
Fig. 8.
Fig. 8. The limitations to be considered in designing HOE. The maximum angle of HOE is limited by sampling theory (θsampling). It is determined by a pixel pitch of a hogel and recording wavelength, according to the Nyquist sampling theory. The hogel is generated by the last lens of the signal path and its maximum spatial frequency must be smaller than the diffraction limit of the lens.
Fig. 9.
Fig. 9. (a) Implemented prototype of AR NED and (b) configuration of displaying hologram image. The red box is an enlarged diagram of HOE, which describes Bragg condition after TIR of the incident wavefront.
Fig. 10.
Fig. 10. The experimental results of inspecting HOE: (a) five focal points reproduced on 1 mm grid target with 4 mm intervals, (b) the CCD camera and linear stage to measure the size of focal points according to the distance from HOE and (c) the captured results by translating linear stage from 28 mm to 33 mm away from HOE with 1 mm interval.
Fig. 11.
Fig. 11. (a) Experimental setup of the holographic AR NED, (b) the diagonal FOV at the center eye-box, and (c) camera-captured hologram images according to pupil position. The white diagrams present an extended eye-box and current pupil position of the picture. The background scene of the laboratory can be seen through the AR NED.
Fig. 12.
Fig. 12. Vignetting from mismatched focal point of HOE: (a) simulation (left) and experimental (right) result of pupil position where vignetting begins and (b) when translated by 1 mm behind the position. The number “3” starts to disappear due to the vignetting effect.
Fig. 13.
Fig. 13. The simulated result of diffraction efficiency according to the reference beam and HOE: (a) schematic diagram of simulated condition and (b) simulated result. The diffraction efficiency of TE polarization is over 90% in the range and the diffraction efficiency of TM polarization drops to zero as θ goes to zero.

Tables (2)

Tables Icon

Table 1. Numerical values of design parameters of HOE

Tables Icon

Table 2. The specifications of printing HOE

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

f max = 1 2 Δ x .
θ s a m p l i n g = sin 1 ( λ 2 Δ x ) .
θ d e s i g n = tan 1 ( ( D h / D h 2 2 ) 2 + ( D w / D w 2 2 + D p ) 2 f e ) .
f d i f f = 1 2 Δ x min = N A λ ,

Metrics