Abstract

Photoacoustic imaging systems based on a Fabry Perot (FP) ultrasound sensor that is read-out by scanning a free-space laser beam over its surface can provide high resolution photoacoustic images. However, this type of free-space scanning usually requires a bulky 2-axis galvanometer based scanner that is not conducive to the realization of a lightweight compact imaging head. It is also unsuitable for endoscopic applications that may require complex and flexible access. To address these limitations, the use of a flexible, coherent fibre bundle to interrogate the FP sensor has been investigated. A laboratory set-up comprising an x-y scanner, a commercially available, 1.35 mm diameter, 18,000 core flexible fibre bundle with a custom-designed telecentric optical relay at its distal end was used. Measurements of the optical and acoustic performance of the FP sensor were made and compared to that obtained using a conventional free-space FP based scanner. Spatial variations in acoustic sensitivity were greater and the SNR lower with the fibre bundle implementation but high quality photoacoustic images could still be obtained. 3D images of phantoms and ex vivo tissues with a spatial resolution and fidelity consistent with a free-space scanner were acquired. By demonstrating the feasibility of interrogating the FP sensor with a flexible fibre bundle, this study advances the realization of compact hand-held clinical scanners and flexible endoscopic devices based on the FP sensing concept.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
All-optical photoacoustic imaging system using fiber ultrasound probe and hollow optical fiber bundle

Yusuke Miida and Yuji Matsuura
Opt. Express 21(19) 22023-22033 (2013)

Large area laser scanning optical resolution photoacoustic microscopy using a fibre optic sensor

Thomas J. Allen, Olumide Ogunlade, Edward Zhang, and Paul C. Beard
Biomed. Opt. Express 9(2) 650-660 (2018)

References

  • View by:
  • |
  • |
  • |

  1. P. Beard, “Biomedical photoacoustic imaging,” Interface Focus 1(4), 602–631 (2011).
    [Crossref]
  2. L. V. Wang and J. Yao, “A practical guide to photoacoustic tomography in the life sciences,” Nat. Methods 13(8), 627–638 (2016).
    [Crossref]
  3. A. A. Oraevsky and A. A. Karabutov, “Optoacoustic tomography,” Biomed. Photonics Handbook 34, 1–34 (2003).
    [Crossref]
  4. E. Zhang, J. Laufer, R. Pedley, and P. Beard, “In vivo high-resolution 3d photoacoustic imaging of superficial vascular anatomy,” Phys. Med. Biol. 54(4), 1035–1046 (2009).
    [Crossref]
  5. J. Laufer, D. Delpy, C. Elwell, and P. Beard, “Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and haemoglobin concentration,” Phys. Med. Biol. 52(1), 141–168 (2007).
    [Crossref]
  6. M.-L. Li, J.-T. Oh, X. Xie, G. Ku, W. Wang, C. Li, G. Lungu, G. Stoica, and L. V. Wang, “Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography,” Proc. IEEE 96(3), 481–489 (2008).
    [Crossref]
  7. T. J. Allen, P. C. Beard, A. Hall, A. P. Dhillon, and J. S. Owen, “Spectroscopic photoacoustic imaging of lipid-rich plaques in the human aorta in the 740 to 1400 nm wavelength range,” J. Biomed. Opt. 17(6), 061209 (2012).
    [Crossref]
  8. S. Sethuraman, J. H. Amirian, S. H. Litovsky, R. W. Smalling, and S. Y. Emelianov, “Spectroscopic intravascular photoacoustic imaging to differentiate atherosclerotic plaques,” Opt. Express 16(5), 3362–3367 (2008).
    [Crossref]
  9. E. Zhang, J. Laufer, and P. Beard, “Backward-mode multiwavelength photoacoustic scanner using a planar fabry-perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues,” Appl. Opt. 47(4), 561–577 (2008).
    [Crossref]
  10. J. G. Laufer, E. Z. Zhang, B. E. Treeby, B. T. Cox, P. C. Beard, P. Johnson, and B. Pedley, “In vivo preclinical photoacoustic imaging of tumor vasculature development and therapy,” J. Biomed. Opt. 17(5), 056016 (2012).
    [Crossref]
  11. A. P. Jathoul, J. Laufer, O. Ogunlade, B. Treeby, B. Cox, E. Zhang, P. Johnson, A. R. Pizzey, B. Philip, T. Marafioti, M. F. Lythgoe, R. B. Pedley, M. A. Pule, and P. Beard, “Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter,” Nat. Photonics 9(4), 239–246 (2015).
    [Crossref]
  12. O. Ogunlade, J. J. Connell, J. L. Huang, E. Zhang, M. F. Lythgoe, D. A. Long, and P. Beard, “In vivo three-dimensional photoacoustic imaging of the renal vasculature in preclinical rodent models,” Am. J. Physiol. Physiol. 314(6), F1145–F1153 (2018).
    [Crossref]
  13. A. A. Plumb, N. T. Huynh, J. Guggenheim, E. Zhang, and P. Beard, “Rapid volumetric photoacoustic tomographic imaging with a fabry-perot ultrasound sensor depicts peripheral arteries and microvascular vasomotor responses to thermal stimuli,” Eur. Radiol. 28(3), 1037–1045 (2018).
    [Crossref]
  14. R. Ansari, E. Z. Zhang, A. E. Desjardins, and P. C. Beard, “All-optical forward-viewing photoacoustic probe for high-resolution 3d endoscopy,” Light: Sci. Appl. 7(1), 75 (2018).
    [Crossref]
  15. D. Marques, J. Guggenheim, R. Ansari, E. Zhang, P. Beard, and P. Munro, “Modelling fabry-pérot etalons illuminated by focussed beams,” [Submitted to Optics Express] (2019).
  16. H. D. Ford and R. P. Tatam, “Characterization of optical fiber imaging bundles for swept-source optical coherence tomography,” Appl. Opt. 50(5), 627–640 (2011).
    [Crossref]
  17. P. C. Beard, F. Perennes, and T. N. Mills, “Transduction mechanisms of the fabry-perot polymer film sensing concept for wideband ultrasound detection,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 46(6), 1575–1582 (1999).
    [Crossref]
  18. B. E. Treeby, E. Z. Zhang, and B. T. Cox, “Photoacoustic tomography in absorbing acoustic media using time reversal,” Inverse Probl. 26(11), 115003 (2010).
    [Crossref]
  19. B. E. Treeby and B. T. Cox, “k-wave: Matlab toolbox for the simulation and reconstruction of photoacoustic wave fields,” J. Biomed. Opt. 15(2), 021314 (2010).
    [Crossref]
  20. H. Fox, “Calcification of the placenta,” BJOG 71(5), 759–766 (1964).
    [Crossref]
  21. S. M. Cooley, F. R. Reidy, E. E. Mooney, and F. M. McAuliffe, “Antenatal suspicion of ischemic placental disease and coexistence of maternal and fetal placental disease: analysis of over 500 cases,” Am. J. Obstet. Gynecol. 205(6), 576.e1–576.e6 (2011).
    [Crossref]
  22. R. Juškattis, T. Wilson, and T. Watson, “Real-time white light reflection confocal microscopy using a fibre-optic bundle,” Scanning 19(1), 15–19 (2006).
    [Crossref]

2018 (3)

O. Ogunlade, J. J. Connell, J. L. Huang, E. Zhang, M. F. Lythgoe, D. A. Long, and P. Beard, “In vivo three-dimensional photoacoustic imaging of the renal vasculature in preclinical rodent models,” Am. J. Physiol. Physiol. 314(6), F1145–F1153 (2018).
[Crossref]

A. A. Plumb, N. T. Huynh, J. Guggenheim, E. Zhang, and P. Beard, “Rapid volumetric photoacoustic tomographic imaging with a fabry-perot ultrasound sensor depicts peripheral arteries and microvascular vasomotor responses to thermal stimuli,” Eur. Radiol. 28(3), 1037–1045 (2018).
[Crossref]

R. Ansari, E. Z. Zhang, A. E. Desjardins, and P. C. Beard, “All-optical forward-viewing photoacoustic probe for high-resolution 3d endoscopy,” Light: Sci. Appl. 7(1), 75 (2018).
[Crossref]

2016 (1)

L. V. Wang and J. Yao, “A practical guide to photoacoustic tomography in the life sciences,” Nat. Methods 13(8), 627–638 (2016).
[Crossref]

2015 (1)

A. P. Jathoul, J. Laufer, O. Ogunlade, B. Treeby, B. Cox, E. Zhang, P. Johnson, A. R. Pizzey, B. Philip, T. Marafioti, M. F. Lythgoe, R. B. Pedley, M. A. Pule, and P. Beard, “Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter,” Nat. Photonics 9(4), 239–246 (2015).
[Crossref]

2012 (2)

J. G. Laufer, E. Z. Zhang, B. E. Treeby, B. T. Cox, P. C. Beard, P. Johnson, and B. Pedley, “In vivo preclinical photoacoustic imaging of tumor vasculature development and therapy,” J. Biomed. Opt. 17(5), 056016 (2012).
[Crossref]

T. J. Allen, P. C. Beard, A. Hall, A. P. Dhillon, and J. S. Owen, “Spectroscopic photoacoustic imaging of lipid-rich plaques in the human aorta in the 740 to 1400 nm wavelength range,” J. Biomed. Opt. 17(6), 061209 (2012).
[Crossref]

2011 (3)

P. Beard, “Biomedical photoacoustic imaging,” Interface Focus 1(4), 602–631 (2011).
[Crossref]

H. D. Ford and R. P. Tatam, “Characterization of optical fiber imaging bundles for swept-source optical coherence tomography,” Appl. Opt. 50(5), 627–640 (2011).
[Crossref]

S. M. Cooley, F. R. Reidy, E. E. Mooney, and F. M. McAuliffe, “Antenatal suspicion of ischemic placental disease and coexistence of maternal and fetal placental disease: analysis of over 500 cases,” Am. J. Obstet. Gynecol. 205(6), 576.e1–576.e6 (2011).
[Crossref]

2010 (2)

B. E. Treeby, E. Z. Zhang, and B. T. Cox, “Photoacoustic tomography in absorbing acoustic media using time reversal,” Inverse Probl. 26(11), 115003 (2010).
[Crossref]

B. E. Treeby and B. T. Cox, “k-wave: Matlab toolbox for the simulation and reconstruction of photoacoustic wave fields,” J. Biomed. Opt. 15(2), 021314 (2010).
[Crossref]

2009 (1)

E. Zhang, J. Laufer, R. Pedley, and P. Beard, “In vivo high-resolution 3d photoacoustic imaging of superficial vascular anatomy,” Phys. Med. Biol. 54(4), 1035–1046 (2009).
[Crossref]

2008 (3)

2007 (1)

J. Laufer, D. Delpy, C. Elwell, and P. Beard, “Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and haemoglobin concentration,” Phys. Med. Biol. 52(1), 141–168 (2007).
[Crossref]

2006 (1)

R. Juškattis, T. Wilson, and T. Watson, “Real-time white light reflection confocal microscopy using a fibre-optic bundle,” Scanning 19(1), 15–19 (2006).
[Crossref]

2003 (1)

A. A. Oraevsky and A. A. Karabutov, “Optoacoustic tomography,” Biomed. Photonics Handbook 34, 1–34 (2003).
[Crossref]

1999 (1)

P. C. Beard, F. Perennes, and T. N. Mills, “Transduction mechanisms of the fabry-perot polymer film sensing concept for wideband ultrasound detection,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 46(6), 1575–1582 (1999).
[Crossref]

1964 (1)

H. Fox, “Calcification of the placenta,” BJOG 71(5), 759–766 (1964).
[Crossref]

Allen, T. J.

T. J. Allen, P. C. Beard, A. Hall, A. P. Dhillon, and J. S. Owen, “Spectroscopic photoacoustic imaging of lipid-rich plaques in the human aorta in the 740 to 1400 nm wavelength range,” J. Biomed. Opt. 17(6), 061209 (2012).
[Crossref]

Amirian, J. H.

Ansari, R.

R. Ansari, E. Z. Zhang, A. E. Desjardins, and P. C. Beard, “All-optical forward-viewing photoacoustic probe for high-resolution 3d endoscopy,” Light: Sci. Appl. 7(1), 75 (2018).
[Crossref]

D. Marques, J. Guggenheim, R. Ansari, E. Zhang, P. Beard, and P. Munro, “Modelling fabry-pérot etalons illuminated by focussed beams,” [Submitted to Optics Express] (2019).

Beard, P.

A. A. Plumb, N. T. Huynh, J. Guggenheim, E. Zhang, and P. Beard, “Rapid volumetric photoacoustic tomographic imaging with a fabry-perot ultrasound sensor depicts peripheral arteries and microvascular vasomotor responses to thermal stimuli,” Eur. Radiol. 28(3), 1037–1045 (2018).
[Crossref]

O. Ogunlade, J. J. Connell, J. L. Huang, E. Zhang, M. F. Lythgoe, D. A. Long, and P. Beard, “In vivo three-dimensional photoacoustic imaging of the renal vasculature in preclinical rodent models,” Am. J. Physiol. Physiol. 314(6), F1145–F1153 (2018).
[Crossref]

A. P. Jathoul, J. Laufer, O. Ogunlade, B. Treeby, B. Cox, E. Zhang, P. Johnson, A. R. Pizzey, B. Philip, T. Marafioti, M. F. Lythgoe, R. B. Pedley, M. A. Pule, and P. Beard, “Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter,” Nat. Photonics 9(4), 239–246 (2015).
[Crossref]

P. Beard, “Biomedical photoacoustic imaging,” Interface Focus 1(4), 602–631 (2011).
[Crossref]

E. Zhang, J. Laufer, R. Pedley, and P. Beard, “In vivo high-resolution 3d photoacoustic imaging of superficial vascular anatomy,” Phys. Med. Biol. 54(4), 1035–1046 (2009).
[Crossref]

E. Zhang, J. Laufer, and P. Beard, “Backward-mode multiwavelength photoacoustic scanner using a planar fabry-perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues,” Appl. Opt. 47(4), 561–577 (2008).
[Crossref]

J. Laufer, D. Delpy, C. Elwell, and P. Beard, “Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and haemoglobin concentration,” Phys. Med. Biol. 52(1), 141–168 (2007).
[Crossref]

D. Marques, J. Guggenheim, R. Ansari, E. Zhang, P. Beard, and P. Munro, “Modelling fabry-pérot etalons illuminated by focussed beams,” [Submitted to Optics Express] (2019).

Beard, P. C.

R. Ansari, E. Z. Zhang, A. E. Desjardins, and P. C. Beard, “All-optical forward-viewing photoacoustic probe for high-resolution 3d endoscopy,” Light: Sci. Appl. 7(1), 75 (2018).
[Crossref]

J. G. Laufer, E. Z. Zhang, B. E. Treeby, B. T. Cox, P. C. Beard, P. Johnson, and B. Pedley, “In vivo preclinical photoacoustic imaging of tumor vasculature development and therapy,” J. Biomed. Opt. 17(5), 056016 (2012).
[Crossref]

T. J. Allen, P. C. Beard, A. Hall, A. P. Dhillon, and J. S. Owen, “Spectroscopic photoacoustic imaging of lipid-rich plaques in the human aorta in the 740 to 1400 nm wavelength range,” J. Biomed. Opt. 17(6), 061209 (2012).
[Crossref]

P. C. Beard, F. Perennes, and T. N. Mills, “Transduction mechanisms of the fabry-perot polymer film sensing concept for wideband ultrasound detection,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 46(6), 1575–1582 (1999).
[Crossref]

Connell, J. J.

O. Ogunlade, J. J. Connell, J. L. Huang, E. Zhang, M. F. Lythgoe, D. A. Long, and P. Beard, “In vivo three-dimensional photoacoustic imaging of the renal vasculature in preclinical rodent models,” Am. J. Physiol. Physiol. 314(6), F1145–F1153 (2018).
[Crossref]

Cooley, S. M.

S. M. Cooley, F. R. Reidy, E. E. Mooney, and F. M. McAuliffe, “Antenatal suspicion of ischemic placental disease and coexistence of maternal and fetal placental disease: analysis of over 500 cases,” Am. J. Obstet. Gynecol. 205(6), 576.e1–576.e6 (2011).
[Crossref]

Cox, B.

A. P. Jathoul, J. Laufer, O. Ogunlade, B. Treeby, B. Cox, E. Zhang, P. Johnson, A. R. Pizzey, B. Philip, T. Marafioti, M. F. Lythgoe, R. B. Pedley, M. A. Pule, and P. Beard, “Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter,” Nat. Photonics 9(4), 239–246 (2015).
[Crossref]

Cox, B. T.

J. G. Laufer, E. Z. Zhang, B. E. Treeby, B. T. Cox, P. C. Beard, P. Johnson, and B. Pedley, “In vivo preclinical photoacoustic imaging of tumor vasculature development and therapy,” J. Biomed. Opt. 17(5), 056016 (2012).
[Crossref]

B. E. Treeby, E. Z. Zhang, and B. T. Cox, “Photoacoustic tomography in absorbing acoustic media using time reversal,” Inverse Probl. 26(11), 115003 (2010).
[Crossref]

B. E. Treeby and B. T. Cox, “k-wave: Matlab toolbox for the simulation and reconstruction of photoacoustic wave fields,” J. Biomed. Opt. 15(2), 021314 (2010).
[Crossref]

Delpy, D.

J. Laufer, D. Delpy, C. Elwell, and P. Beard, “Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and haemoglobin concentration,” Phys. Med. Biol. 52(1), 141–168 (2007).
[Crossref]

Desjardins, A. E.

R. Ansari, E. Z. Zhang, A. E. Desjardins, and P. C. Beard, “All-optical forward-viewing photoacoustic probe for high-resolution 3d endoscopy,” Light: Sci. Appl. 7(1), 75 (2018).
[Crossref]

Dhillon, A. P.

T. J. Allen, P. C. Beard, A. Hall, A. P. Dhillon, and J. S. Owen, “Spectroscopic photoacoustic imaging of lipid-rich plaques in the human aorta in the 740 to 1400 nm wavelength range,” J. Biomed. Opt. 17(6), 061209 (2012).
[Crossref]

Elwell, C.

J. Laufer, D. Delpy, C. Elwell, and P. Beard, “Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and haemoglobin concentration,” Phys. Med. Biol. 52(1), 141–168 (2007).
[Crossref]

Emelianov, S. Y.

Ford, H. D.

Fox, H.

H. Fox, “Calcification of the placenta,” BJOG 71(5), 759–766 (1964).
[Crossref]

Guggenheim, J.

A. A. Plumb, N. T. Huynh, J. Guggenheim, E. Zhang, and P. Beard, “Rapid volumetric photoacoustic tomographic imaging with a fabry-perot ultrasound sensor depicts peripheral arteries and microvascular vasomotor responses to thermal stimuli,” Eur. Radiol. 28(3), 1037–1045 (2018).
[Crossref]

D. Marques, J. Guggenheim, R. Ansari, E. Zhang, P. Beard, and P. Munro, “Modelling fabry-pérot etalons illuminated by focussed beams,” [Submitted to Optics Express] (2019).

Hall, A.

T. J. Allen, P. C. Beard, A. Hall, A. P. Dhillon, and J. S. Owen, “Spectroscopic photoacoustic imaging of lipid-rich plaques in the human aorta in the 740 to 1400 nm wavelength range,” J. Biomed. Opt. 17(6), 061209 (2012).
[Crossref]

Huang, J. L.

O. Ogunlade, J. J. Connell, J. L. Huang, E. Zhang, M. F. Lythgoe, D. A. Long, and P. Beard, “In vivo three-dimensional photoacoustic imaging of the renal vasculature in preclinical rodent models,” Am. J. Physiol. Physiol. 314(6), F1145–F1153 (2018).
[Crossref]

Huynh, N. T.

A. A. Plumb, N. T. Huynh, J. Guggenheim, E. Zhang, and P. Beard, “Rapid volumetric photoacoustic tomographic imaging with a fabry-perot ultrasound sensor depicts peripheral arteries and microvascular vasomotor responses to thermal stimuli,” Eur. Radiol. 28(3), 1037–1045 (2018).
[Crossref]

Jathoul, A. P.

A. P. Jathoul, J. Laufer, O. Ogunlade, B. Treeby, B. Cox, E. Zhang, P. Johnson, A. R. Pizzey, B. Philip, T. Marafioti, M. F. Lythgoe, R. B. Pedley, M. A. Pule, and P. Beard, “Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter,” Nat. Photonics 9(4), 239–246 (2015).
[Crossref]

Johnson, P.

A. P. Jathoul, J. Laufer, O. Ogunlade, B. Treeby, B. Cox, E. Zhang, P. Johnson, A. R. Pizzey, B. Philip, T. Marafioti, M. F. Lythgoe, R. B. Pedley, M. A. Pule, and P. Beard, “Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter,” Nat. Photonics 9(4), 239–246 (2015).
[Crossref]

J. G. Laufer, E. Z. Zhang, B. E. Treeby, B. T. Cox, P. C. Beard, P. Johnson, and B. Pedley, “In vivo preclinical photoacoustic imaging of tumor vasculature development and therapy,” J. Biomed. Opt. 17(5), 056016 (2012).
[Crossref]

Juškattis, R.

R. Juškattis, T. Wilson, and T. Watson, “Real-time white light reflection confocal microscopy using a fibre-optic bundle,” Scanning 19(1), 15–19 (2006).
[Crossref]

Karabutov, A. A.

A. A. Oraevsky and A. A. Karabutov, “Optoacoustic tomography,” Biomed. Photonics Handbook 34, 1–34 (2003).
[Crossref]

Ku, G.

M.-L. Li, J.-T. Oh, X. Xie, G. Ku, W. Wang, C. Li, G. Lungu, G. Stoica, and L. V. Wang, “Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography,” Proc. IEEE 96(3), 481–489 (2008).
[Crossref]

Laufer, J.

A. P. Jathoul, J. Laufer, O. Ogunlade, B. Treeby, B. Cox, E. Zhang, P. Johnson, A. R. Pizzey, B. Philip, T. Marafioti, M. F. Lythgoe, R. B. Pedley, M. A. Pule, and P. Beard, “Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter,” Nat. Photonics 9(4), 239–246 (2015).
[Crossref]

E. Zhang, J. Laufer, R. Pedley, and P. Beard, “In vivo high-resolution 3d photoacoustic imaging of superficial vascular anatomy,” Phys. Med. Biol. 54(4), 1035–1046 (2009).
[Crossref]

E. Zhang, J. Laufer, and P. Beard, “Backward-mode multiwavelength photoacoustic scanner using a planar fabry-perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues,” Appl. Opt. 47(4), 561–577 (2008).
[Crossref]

J. Laufer, D. Delpy, C. Elwell, and P. Beard, “Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and haemoglobin concentration,” Phys. Med. Biol. 52(1), 141–168 (2007).
[Crossref]

Laufer, J. G.

J. G. Laufer, E. Z. Zhang, B. E. Treeby, B. T. Cox, P. C. Beard, P. Johnson, and B. Pedley, “In vivo preclinical photoacoustic imaging of tumor vasculature development and therapy,” J. Biomed. Opt. 17(5), 056016 (2012).
[Crossref]

Li, C.

M.-L. Li, J.-T. Oh, X. Xie, G. Ku, W. Wang, C. Li, G. Lungu, G. Stoica, and L. V. Wang, “Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography,” Proc. IEEE 96(3), 481–489 (2008).
[Crossref]

Li, M.-L.

M.-L. Li, J.-T. Oh, X. Xie, G. Ku, W. Wang, C. Li, G. Lungu, G. Stoica, and L. V. Wang, “Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography,” Proc. IEEE 96(3), 481–489 (2008).
[Crossref]

Litovsky, S. H.

Long, D. A.

O. Ogunlade, J. J. Connell, J. L. Huang, E. Zhang, M. F. Lythgoe, D. A. Long, and P. Beard, “In vivo three-dimensional photoacoustic imaging of the renal vasculature in preclinical rodent models,” Am. J. Physiol. Physiol. 314(6), F1145–F1153 (2018).
[Crossref]

Lungu, G.

M.-L. Li, J.-T. Oh, X. Xie, G. Ku, W. Wang, C. Li, G. Lungu, G. Stoica, and L. V. Wang, “Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography,” Proc. IEEE 96(3), 481–489 (2008).
[Crossref]

Lythgoe, M. F.

O. Ogunlade, J. J. Connell, J. L. Huang, E. Zhang, M. F. Lythgoe, D. A. Long, and P. Beard, “In vivo three-dimensional photoacoustic imaging of the renal vasculature in preclinical rodent models,” Am. J. Physiol. Physiol. 314(6), F1145–F1153 (2018).
[Crossref]

A. P. Jathoul, J. Laufer, O. Ogunlade, B. Treeby, B. Cox, E. Zhang, P. Johnson, A. R. Pizzey, B. Philip, T. Marafioti, M. F. Lythgoe, R. B. Pedley, M. A. Pule, and P. Beard, “Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter,” Nat. Photonics 9(4), 239–246 (2015).
[Crossref]

Marafioti, T.

A. P. Jathoul, J. Laufer, O. Ogunlade, B. Treeby, B. Cox, E. Zhang, P. Johnson, A. R. Pizzey, B. Philip, T. Marafioti, M. F. Lythgoe, R. B. Pedley, M. A. Pule, and P. Beard, “Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter,” Nat. Photonics 9(4), 239–246 (2015).
[Crossref]

Marques, D.

D. Marques, J. Guggenheim, R. Ansari, E. Zhang, P. Beard, and P. Munro, “Modelling fabry-pérot etalons illuminated by focussed beams,” [Submitted to Optics Express] (2019).

McAuliffe, F. M.

S. M. Cooley, F. R. Reidy, E. E. Mooney, and F. M. McAuliffe, “Antenatal suspicion of ischemic placental disease and coexistence of maternal and fetal placental disease: analysis of over 500 cases,” Am. J. Obstet. Gynecol. 205(6), 576.e1–576.e6 (2011).
[Crossref]

Mills, T. N.

P. C. Beard, F. Perennes, and T. N. Mills, “Transduction mechanisms of the fabry-perot polymer film sensing concept for wideband ultrasound detection,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 46(6), 1575–1582 (1999).
[Crossref]

Mooney, E. E.

S. M. Cooley, F. R. Reidy, E. E. Mooney, and F. M. McAuliffe, “Antenatal suspicion of ischemic placental disease and coexistence of maternal and fetal placental disease: analysis of over 500 cases,” Am. J. Obstet. Gynecol. 205(6), 576.e1–576.e6 (2011).
[Crossref]

Munro, P.

D. Marques, J. Guggenheim, R. Ansari, E. Zhang, P. Beard, and P. Munro, “Modelling fabry-pérot etalons illuminated by focussed beams,” [Submitted to Optics Express] (2019).

Ogunlade, O.

O. Ogunlade, J. J. Connell, J. L. Huang, E. Zhang, M. F. Lythgoe, D. A. Long, and P. Beard, “In vivo three-dimensional photoacoustic imaging of the renal vasculature in preclinical rodent models,” Am. J. Physiol. Physiol. 314(6), F1145–F1153 (2018).
[Crossref]

A. P. Jathoul, J. Laufer, O. Ogunlade, B. Treeby, B. Cox, E. Zhang, P. Johnson, A. R. Pizzey, B. Philip, T. Marafioti, M. F. Lythgoe, R. B. Pedley, M. A. Pule, and P. Beard, “Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter,” Nat. Photonics 9(4), 239–246 (2015).
[Crossref]

Oh, J.-T.

M.-L. Li, J.-T. Oh, X. Xie, G. Ku, W. Wang, C. Li, G. Lungu, G. Stoica, and L. V. Wang, “Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography,” Proc. IEEE 96(3), 481–489 (2008).
[Crossref]

Oraevsky, A. A.

A. A. Oraevsky and A. A. Karabutov, “Optoacoustic tomography,” Biomed. Photonics Handbook 34, 1–34 (2003).
[Crossref]

Owen, J. S.

T. J. Allen, P. C. Beard, A. Hall, A. P. Dhillon, and J. S. Owen, “Spectroscopic photoacoustic imaging of lipid-rich plaques in the human aorta in the 740 to 1400 nm wavelength range,” J. Biomed. Opt. 17(6), 061209 (2012).
[Crossref]

Pedley, B.

J. G. Laufer, E. Z. Zhang, B. E. Treeby, B. T. Cox, P. C. Beard, P. Johnson, and B. Pedley, “In vivo preclinical photoacoustic imaging of tumor vasculature development and therapy,” J. Biomed. Opt. 17(5), 056016 (2012).
[Crossref]

Pedley, R.

E. Zhang, J. Laufer, R. Pedley, and P. Beard, “In vivo high-resolution 3d photoacoustic imaging of superficial vascular anatomy,” Phys. Med. Biol. 54(4), 1035–1046 (2009).
[Crossref]

Pedley, R. B.

A. P. Jathoul, J. Laufer, O. Ogunlade, B. Treeby, B. Cox, E. Zhang, P. Johnson, A. R. Pizzey, B. Philip, T. Marafioti, M. F. Lythgoe, R. B. Pedley, M. A. Pule, and P. Beard, “Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter,” Nat. Photonics 9(4), 239–246 (2015).
[Crossref]

Perennes, F.

P. C. Beard, F. Perennes, and T. N. Mills, “Transduction mechanisms of the fabry-perot polymer film sensing concept for wideband ultrasound detection,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 46(6), 1575–1582 (1999).
[Crossref]

Philip, B.

A. P. Jathoul, J. Laufer, O. Ogunlade, B. Treeby, B. Cox, E. Zhang, P. Johnson, A. R. Pizzey, B. Philip, T. Marafioti, M. F. Lythgoe, R. B. Pedley, M. A. Pule, and P. Beard, “Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter,” Nat. Photonics 9(4), 239–246 (2015).
[Crossref]

Pizzey, A. R.

A. P. Jathoul, J. Laufer, O. Ogunlade, B. Treeby, B. Cox, E. Zhang, P. Johnson, A. R. Pizzey, B. Philip, T. Marafioti, M. F. Lythgoe, R. B. Pedley, M. A. Pule, and P. Beard, “Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter,” Nat. Photonics 9(4), 239–246 (2015).
[Crossref]

Plumb, A. A.

A. A. Plumb, N. T. Huynh, J. Guggenheim, E. Zhang, and P. Beard, “Rapid volumetric photoacoustic tomographic imaging with a fabry-perot ultrasound sensor depicts peripheral arteries and microvascular vasomotor responses to thermal stimuli,” Eur. Radiol. 28(3), 1037–1045 (2018).
[Crossref]

Pule, M. A.

A. P. Jathoul, J. Laufer, O. Ogunlade, B. Treeby, B. Cox, E. Zhang, P. Johnson, A. R. Pizzey, B. Philip, T. Marafioti, M. F. Lythgoe, R. B. Pedley, M. A. Pule, and P. Beard, “Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter,” Nat. Photonics 9(4), 239–246 (2015).
[Crossref]

Reidy, F. R.

S. M. Cooley, F. R. Reidy, E. E. Mooney, and F. M. McAuliffe, “Antenatal suspicion of ischemic placental disease and coexistence of maternal and fetal placental disease: analysis of over 500 cases,” Am. J. Obstet. Gynecol. 205(6), 576.e1–576.e6 (2011).
[Crossref]

Sethuraman, S.

Smalling, R. W.

Stoica, G.

M.-L. Li, J.-T. Oh, X. Xie, G. Ku, W. Wang, C. Li, G. Lungu, G. Stoica, and L. V. Wang, “Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography,” Proc. IEEE 96(3), 481–489 (2008).
[Crossref]

Tatam, R. P.

Treeby, B.

A. P. Jathoul, J. Laufer, O. Ogunlade, B. Treeby, B. Cox, E. Zhang, P. Johnson, A. R. Pizzey, B. Philip, T. Marafioti, M. F. Lythgoe, R. B. Pedley, M. A. Pule, and P. Beard, “Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter,” Nat. Photonics 9(4), 239–246 (2015).
[Crossref]

Treeby, B. E.

J. G. Laufer, E. Z. Zhang, B. E. Treeby, B. T. Cox, P. C. Beard, P. Johnson, and B. Pedley, “In vivo preclinical photoacoustic imaging of tumor vasculature development and therapy,” J. Biomed. Opt. 17(5), 056016 (2012).
[Crossref]

B. E. Treeby, E. Z. Zhang, and B. T. Cox, “Photoacoustic tomography in absorbing acoustic media using time reversal,” Inverse Probl. 26(11), 115003 (2010).
[Crossref]

B. E. Treeby and B. T. Cox, “k-wave: Matlab toolbox for the simulation and reconstruction of photoacoustic wave fields,” J. Biomed. Opt. 15(2), 021314 (2010).
[Crossref]

Wang, L. V.

L. V. Wang and J. Yao, “A practical guide to photoacoustic tomography in the life sciences,” Nat. Methods 13(8), 627–638 (2016).
[Crossref]

M.-L. Li, J.-T. Oh, X. Xie, G. Ku, W. Wang, C. Li, G. Lungu, G. Stoica, and L. V. Wang, “Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography,” Proc. IEEE 96(3), 481–489 (2008).
[Crossref]

Wang, W.

M.-L. Li, J.-T. Oh, X. Xie, G. Ku, W. Wang, C. Li, G. Lungu, G. Stoica, and L. V. Wang, “Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography,” Proc. IEEE 96(3), 481–489 (2008).
[Crossref]

Watson, T.

R. Juškattis, T. Wilson, and T. Watson, “Real-time white light reflection confocal microscopy using a fibre-optic bundle,” Scanning 19(1), 15–19 (2006).
[Crossref]

Wilson, T.

R. Juškattis, T. Wilson, and T. Watson, “Real-time white light reflection confocal microscopy using a fibre-optic bundle,” Scanning 19(1), 15–19 (2006).
[Crossref]

Xie, X.

M.-L. Li, J.-T. Oh, X. Xie, G. Ku, W. Wang, C. Li, G. Lungu, G. Stoica, and L. V. Wang, “Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography,” Proc. IEEE 96(3), 481–489 (2008).
[Crossref]

Yao, J.

L. V. Wang and J. Yao, “A practical guide to photoacoustic tomography in the life sciences,” Nat. Methods 13(8), 627–638 (2016).
[Crossref]

Zhang, E.

O. Ogunlade, J. J. Connell, J. L. Huang, E. Zhang, M. F. Lythgoe, D. A. Long, and P. Beard, “In vivo three-dimensional photoacoustic imaging of the renal vasculature in preclinical rodent models,” Am. J. Physiol. Physiol. 314(6), F1145–F1153 (2018).
[Crossref]

A. A. Plumb, N. T. Huynh, J. Guggenheim, E. Zhang, and P. Beard, “Rapid volumetric photoacoustic tomographic imaging with a fabry-perot ultrasound sensor depicts peripheral arteries and microvascular vasomotor responses to thermal stimuli,” Eur. Radiol. 28(3), 1037–1045 (2018).
[Crossref]

A. P. Jathoul, J. Laufer, O. Ogunlade, B. Treeby, B. Cox, E. Zhang, P. Johnson, A. R. Pizzey, B. Philip, T. Marafioti, M. F. Lythgoe, R. B. Pedley, M. A. Pule, and P. Beard, “Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter,” Nat. Photonics 9(4), 239–246 (2015).
[Crossref]

E. Zhang, J. Laufer, R. Pedley, and P. Beard, “In vivo high-resolution 3d photoacoustic imaging of superficial vascular anatomy,” Phys. Med. Biol. 54(4), 1035–1046 (2009).
[Crossref]

E. Zhang, J. Laufer, and P. Beard, “Backward-mode multiwavelength photoacoustic scanner using a planar fabry-perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues,” Appl. Opt. 47(4), 561–577 (2008).
[Crossref]

D. Marques, J. Guggenheim, R. Ansari, E. Zhang, P. Beard, and P. Munro, “Modelling fabry-pérot etalons illuminated by focussed beams,” [Submitted to Optics Express] (2019).

Zhang, E. Z.

R. Ansari, E. Z. Zhang, A. E. Desjardins, and P. C. Beard, “All-optical forward-viewing photoacoustic probe for high-resolution 3d endoscopy,” Light: Sci. Appl. 7(1), 75 (2018).
[Crossref]

J. G. Laufer, E. Z. Zhang, B. E. Treeby, B. T. Cox, P. C. Beard, P. Johnson, and B. Pedley, “In vivo preclinical photoacoustic imaging of tumor vasculature development and therapy,” J. Biomed. Opt. 17(5), 056016 (2012).
[Crossref]

B. E. Treeby, E. Z. Zhang, and B. T. Cox, “Photoacoustic tomography in absorbing acoustic media using time reversal,” Inverse Probl. 26(11), 115003 (2010).
[Crossref]

Am. J. Obstet. Gynecol. (1)

S. M. Cooley, F. R. Reidy, E. E. Mooney, and F. M. McAuliffe, “Antenatal suspicion of ischemic placental disease and coexistence of maternal and fetal placental disease: analysis of over 500 cases,” Am. J. Obstet. Gynecol. 205(6), 576.e1–576.e6 (2011).
[Crossref]

Am. J. Physiol. Physiol. (1)

O. Ogunlade, J. J. Connell, J. L. Huang, E. Zhang, M. F. Lythgoe, D. A. Long, and P. Beard, “In vivo three-dimensional photoacoustic imaging of the renal vasculature in preclinical rodent models,” Am. J. Physiol. Physiol. 314(6), F1145–F1153 (2018).
[Crossref]

Appl. Opt. (2)

Biomed. Photonics Handbook (1)

A. A. Oraevsky and A. A. Karabutov, “Optoacoustic tomography,” Biomed. Photonics Handbook 34, 1–34 (2003).
[Crossref]

BJOG (1)

H. Fox, “Calcification of the placenta,” BJOG 71(5), 759–766 (1964).
[Crossref]

Eur. Radiol. (1)

A. A. Plumb, N. T. Huynh, J. Guggenheim, E. Zhang, and P. Beard, “Rapid volumetric photoacoustic tomographic imaging with a fabry-perot ultrasound sensor depicts peripheral arteries and microvascular vasomotor responses to thermal stimuli,” Eur. Radiol. 28(3), 1037–1045 (2018).
[Crossref]

IEEE Trans. Ultrason., Ferroelect., Freq. Contr. (1)

P. C. Beard, F. Perennes, and T. N. Mills, “Transduction mechanisms of the fabry-perot polymer film sensing concept for wideband ultrasound detection,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 46(6), 1575–1582 (1999).
[Crossref]

Interface Focus (1)

P. Beard, “Biomedical photoacoustic imaging,” Interface Focus 1(4), 602–631 (2011).
[Crossref]

Inverse Probl. (1)

B. E. Treeby, E. Z. Zhang, and B. T. Cox, “Photoacoustic tomography in absorbing acoustic media using time reversal,” Inverse Probl. 26(11), 115003 (2010).
[Crossref]

J. Biomed. Opt. (3)

B. E. Treeby and B. T. Cox, “k-wave: Matlab toolbox for the simulation and reconstruction of photoacoustic wave fields,” J. Biomed. Opt. 15(2), 021314 (2010).
[Crossref]

T. J. Allen, P. C. Beard, A. Hall, A. P. Dhillon, and J. S. Owen, “Spectroscopic photoacoustic imaging of lipid-rich plaques in the human aorta in the 740 to 1400 nm wavelength range,” J. Biomed. Opt. 17(6), 061209 (2012).
[Crossref]

J. G. Laufer, E. Z. Zhang, B. E. Treeby, B. T. Cox, P. C. Beard, P. Johnson, and B. Pedley, “In vivo preclinical photoacoustic imaging of tumor vasculature development and therapy,” J. Biomed. Opt. 17(5), 056016 (2012).
[Crossref]

Light: Sci. Appl. (1)

R. Ansari, E. Z. Zhang, A. E. Desjardins, and P. C. Beard, “All-optical forward-viewing photoacoustic probe for high-resolution 3d endoscopy,” Light: Sci. Appl. 7(1), 75 (2018).
[Crossref]

Nat. Methods (1)

L. V. Wang and J. Yao, “A practical guide to photoacoustic tomography in the life sciences,” Nat. Methods 13(8), 627–638 (2016).
[Crossref]

Nat. Photonics (1)

A. P. Jathoul, J. Laufer, O. Ogunlade, B. Treeby, B. Cox, E. Zhang, P. Johnson, A. R. Pizzey, B. Philip, T. Marafioti, M. F. Lythgoe, R. B. Pedley, M. A. Pule, and P. Beard, “Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter,” Nat. Photonics 9(4), 239–246 (2015).
[Crossref]

Opt. Express (1)

Phys. Med. Biol. (2)

E. Zhang, J. Laufer, R. Pedley, and P. Beard, “In vivo high-resolution 3d photoacoustic imaging of superficial vascular anatomy,” Phys. Med. Biol. 54(4), 1035–1046 (2009).
[Crossref]

J. Laufer, D. Delpy, C. Elwell, and P. Beard, “Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and haemoglobin concentration,” Phys. Med. Biol. 52(1), 141–168 (2007).
[Crossref]

Proc. IEEE (1)

M.-L. Li, J.-T. Oh, X. Xie, G. Ku, W. Wang, C. Li, G. Lungu, G. Stoica, and L. V. Wang, “Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography,” Proc. IEEE 96(3), 481–489 (2008).
[Crossref]

Scanning (1)

R. Juškattis, T. Wilson, and T. Watson, “Real-time white light reflection confocal microscopy using a fibre-optic bundle,” Scanning 19(1), 15–19 (2006).
[Crossref]

Other (1)

D. Marques, J. Guggenheim, R. Ansari, E. Zhang, P. Beard, and P. Munro, “Modelling fabry-pérot etalons illuminated by focussed beams,” [Submitted to Optics Express] (2019).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Experimental set-up illustrating the interrogation of the FP sensor using a flexible fibre bundle and telecentric lens relay system comprising $\mathrm {L_{1}}$ and $\mathrm {L_{2}}$.
Fig. 2.
Fig. 2. Relative round-trip coupling efficiency. (a) Scanned image of the fibre bundle using the set-up shown in Fig. 1. The greyscale intensity represents the measured photodiode voltage, $\mathrm {V_{dc}}$, and provides a measure of the relative round-trip coupling efficiency of the system. (b) Histogram of data in (a) ($\mathrm {V_{dc}}$ corresponds to the core centres) and that acquired from an identical scan of the same FP sensor over the same area and number of spatial points (18,000) using the free space FP scanner. The vertical axis in (b) represents the number of spatial points of value $\mathrm {V_{dc}}$ expressed as a percentage of the total number of points scanned (18,000).
Fig. 3.
Fig. 3. Interferometer transfer function (ITF) of the FP sensor interrogated by a single core of the fibre bundle (orange) and its Lorentzian fit (gray). The ITF of the same sensor interrogated by a free-space beam is also shown (blue) for comparison.
Fig. 4.
Fig. 4. Histograms of (a) signal, (b) noise and (c) signal-to-noise ratio (SNR) for fibre bundle and free-space interrogated FP sensor configurations. In both cases the FP sensor was interrogated at 18,000 different points over a circular area of 10 mm diameter. The vertical axes represents the number of spatial points expressed as a percentage of the total number of points scanned (18,000).
Fig. 5.
Fig. 5. Spatial resolution of the fibre bundle FP sensor imaging system. (a) Reconstructed PA image showing ribbon cross-sections at different depths. (b) Lateral and (c) axial profiles through the ribbon feature identified by the dotted red rectangle in (a), respectively. (d) A contour plot showing the lateral spatial resolution in the x-z plane.
Fig. 6.
Fig. 6. PA images (6 mm aperture) of arbitrary shaped phantoms. Top panel: widefield microscope images of a synthetic hair knot and leaf skeleton phantom coated in India ink. Middle and lower panels: reconstructed PA images of the phantoms shown as maximum intensity projected along the x-y and x-z planes.
Fig. 7.
Fig. 7. PA images (10 mm aperture) of an ex vivo duck chorioallantoic membrane (CAM) where microvasculature is clearly visualized. The images are-coded according to the depth and maximum intensity projected along the x-y and x-z planes. Laser excitation wavelength: 590 nm, fluence: 18 mJ cm−2.
Fig. 8.
Fig. 8. PA images (10 mm aperture) acquired at three locations on an ex vivo term normal human placenta. Top panel: widefield microscope images from the fetal side of the placenta where chorionic (fetal) vessels are visualised. Middle and lower panels: 3D PA images of the same area as top panel,-coded according to the depth and maximum intensity projected along the x-y and x-z planes. Locations marked by letter v and c indicate areas where sub-surface chorionic vessels and calcium deposits are visualized, respectively. Laser excitation wavelength: 590 nm, fluence : 18 mJ cm−2.
Fig. 9.
Fig. 9. (left) Ray diagram illustrating the relationship between angle of the wedge and angles at which the fibre bundle endface is polished and tilted to suppress the detection of Fresnel reflections. (right) Histogram plot shows RMS noise floor of the FP sensing elements before (blue) and after (orange) angle polishing and wedging of the bundle endfaces. The noise was measured by scanning 3,000 cores in the centre of the bundle with 20 MHz detection bandwidth.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

tan γ = B E B O A B B O ( n 1 ) tan α ( n 1 ) , o r γ α ( n 1 )
θ = δ + γ α α n + α ( n 1 ) α ( n 1 / n )

Metrics