Abstract

Strongly squeezed light finds many important applications within the fields of quantum metrology, quantum communication and quantum computation. However, due to the bulkiness and complexity of most squeezed light sources of today, they are still not a standard tool in quantum optics labs. We have taken the first steps in realizing a compact, high-performance 1550 nm squeezing source based on commercially available fiber components combined with a free-space double-resonant parametric down-conversion source. The whole setup, including single-pass second-harmonic generation in a waveguide, fits on a 30 cm×45 cm breadboard and produces 9.3 dB of squeezing at a 5 MHz sideband-frequency. The setup is currently limited by phase noise, but further optimization and development should allow for a 19" sized turn-key squeezing source capable of delivering more than 10 dB of squeezing.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB

Moritz Mehmet, Stefan Ast, Tobias Eberle, Sebastian Steinlechner, Henning Vahlbruch, and Roman Schnabel
Opt. Express 19(25) 25763-25772 (2011)

Integrated source of broadband quadrature squeezed light

Ulrich B. Hoff, Bo M. Nielsen, and Ulrik L. Andersen
Opt. Express 23(9) 12013-12036 (2015)

Continuous-wave squeezed states of light via ‘up-down’ self-phase modulation

Amrit Pal Singh, Stefan Ast, Moritz Mehmet, Henning Vahlbruch, and Roman Schnabel
Opt. Express 27(16) 22408-22418 (2019)

References

  • View by:
  • |
  • |
  • |

  1. U. L. Andersen, T. Gehring, C. Marquardt, and G. Leuchs, “30 Years of Squeezed Light Generation,” Phys. Scr. 91(5), 053001 (2016).
    [Crossref]
  2. U. L. Andersen, J. S. Neergaard-Nielsen, P. van Loock, and A. Furusawa, “Hybrid discrete- and continuous-variable quantum information,” Nat. Phys. 11(9), 713–719 (2015).
    [Crossref]
  3. A. I. Lvovsky, “Squeezed light,” in Photonics Volume 1: Fundamentals of Photonics and Physics, D. Andrews, ed. (Wiley, 2015), pp. 121–164.
  4. C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84(2), 621–669 (2012).
    [Crossref]
  5. S. Pirandola, B. R. Bardhan, T. Gehring, C. Weedbrook, and S. Lloyd, “Advances in photonic quantum sensing,” Nat. Photonics 12(12), 724–733 (2018).
    [Crossref]
  6. R. Schnabel, N. Mavalvala, D. E. McClelland, and P. K. Lam, “Quantum metrology for gravitational wave astronomy,” Nat. Commun. 1(1), 121 (2010).
    [Crossref]
  7. The L. I. G. O. Scientific Collaboration, “A gravitational wave observatory operating beyond the quantum shot-noise limit,” Nat. Phys. 7(12), 962–965 (2011).
    [Crossref]
  8. The L. I. G. O. Scientific Collaboration, “Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light,” Nat. Photonics 7(8), 613–619 (2013).
    [Crossref]
  9. GEO600, “Gravitational-wave detectors begin third observation run,” url: http://www.geo600.org/1897380/gravitational-wave-detectors-begin-third-observation-run (2019).
  10. M. A. Taylor and W. P. Bowen, “Quantum metrology and its application in biology,” Phys. Rep. 615, 1–59 (2016).
    [Crossref]
  11. M. A. Taylor, J. Janousek, V. Daria, J. Knittel, B. Hage, H.-A. Bachor, and W. P. Bowen, “Biological measurement beyond the quantum limit,” Nat. Photonics 7(3), 229–233 (2013).
    [Crossref]
  12. M. A. Taylor, J. Janousek, V. Daria, J. Knittel, B. Hage, H.-A. Bachor, and W. P. Bowen, “Subdiffraction-Limited Quantum Imaging within a Living Cell,” Phys. Rev. X 4(1), 011017 (2014).
    [Crossref]
  13. L. S. Madsen, V. C. Usenko, M. Lassen, R. Filip, and U. L. Andersen, “Continuous variable quantum key distribution with modulated entangled states,” Nat. Commun. 3(1), 1083 (2012).
    [Crossref]
  14. T. Gehring, V. Handchen, J. Duhme, F. Furrer, T. Franz, C. Pacher, R. F. Werner, and R. Schnabel, “Implementation of continuous-variable quantum key distribution with composable and one-sided-device-independent security against coherent attacks,” Nat. Commun. 6(1), 8795 (2015).
    [Crossref]
  15. F. Furrer, T. Gehring, C. Schaffner, C. Pacher, R. Schnabel, and S. Wehner, “Continuous-variable protocol for oblivious transfer in the noisy-storage model,” Nat. Commun. 9(1), 1450 (2018).
    [Crossref]
  16. D. Gottesman, A. Kitaev, and J. Preskill, “Encoding a qubit in an oscillator,” Phys. Rev. A 64(1), 012310 (2001).
    [Crossref]
  17. N. C. Menicucci, “Fault-tolerant measurement-based quantum computing with continuous-variable cluster states,” Phys. Rev. Lett. 112(12), 120504 (2014).
    [Crossref]
  18. K. Marshall, C. S. Jacobsen, C. Schäfermeier, T. Gehring, C. Weedbrook, and U. L. Andersen, “Continuous-variable quantum computing on encrypted data,” Nat. Commun. 7(1), 13795 (2016).
    [Crossref]
  19. S. Yokoyama, R. Ukai, S. C. Armstrong, C. Sornphiphatphong, T. Kaji, S. Suzuki, J.-I. Yoshikawa, H. Yonezawa, N. C. Menicucci, and A. Furusawa, “Ultra-large-scale continuous-variable cluster states multiplexed in the time domain,” Nat. Photonics 7(12), 982–986 (2013).
    [Crossref]
  20. M. V. Larsen, X. Guo, C. R. Breum, J. S. Neergaard-Nielsen, and U. L. Andersen, “Deterministic generation of a two-dimensional cluster state for universal quantum computing,” arXiv e-prints arXiv:1906.08709 (2019).
  21. M. Chen, N. C. Menicucci, and O. Pfister, “Experimental realization of multipartite entanglement of 60 modes of a quantum optical frequency comb,” Phys. Rev. Lett. 112(12), 120505 (2014).
    [Crossref]
  22. H. Vahlbruch, M. Mehmet, K. Danzmann, and R. Schnabel, “Detection of 15 dB Squeezed States of Light and their Application for the Absolute Calibration of Photoelectric Quantum Efficiency,” Phys. Rev. Lett. 117(11), 110801 (2016).
    [Crossref]
  23. Y. Takeno, M. Yukawa, H. Yonezawa, and A. Furusawa, “Observation of -9 dB quadrature squeezing with improvement of phase stability in homodyne measurement,” Opt. Express 15(7), 4321–4327 (2007).
    [Crossref]
  24. T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Händchen, H. Vahlbruch, M. Mehmet, H. Müller-Ebhardt, and R. Schnabel, “Quantum Enhancement of the Zero-Area Sagnac Interferometer Topology for Gravitational Wave Detection,” Phys. Rev. Lett. 104(25), 251102 (2010).
    [Crossref]
  25. M. Mehmet, S. Ast, T. Eberle, S. Steinlechner, H. Vahlbruch, and R. Schnabel, “Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB,” Opt. Express 19(25), 25763–25772 (2011).
    [Crossref]
  26. S. Shi, Y. Wang, W. Yang, Y. Zheng, and K. Peng, “Detection and perfect fitting of 13.2 dB squeezed vacuum states by considering green-light-induced infrared absorption,” Opt. Lett. 43(21), 5411 (2018).
    [Crossref]
  27. A. Schönbeck, F. Thies, and R. Schnabel, “13 dB squeezed vacuum states at 1550 nm from 12 mW external pump power at 775 nm,” Opt. Lett. 43(1), 110–113 (2018).
    [Crossref]
  28. F. Mondain, T. Lunghi, A. Zavatta, É. Gouzien, F. Doutre, M. De Micheli, S. Tanzilli, and V. D’Auria, “Chip-based squeezing at a telecom wavelength,” Photonics Res. 7(7), A36–A39 (2019).
    [Crossref]
  29. N. Takanashi, T. Kashiwazaki, T. Kazama, K. Enbutsu, R. Kasahara, T. Umeki, and A. Furusawa, “Detection of 3-dB continuous-wave squeezing at 1.55 um from a fiber-coupled single-pass PPLN ridge waveguide,” arXiv p. 1906.09749 (2019).
  30. M. Stefszky, R. Ricken, C. Eigner, V. Quiring, H. Herrmann, and C. Silberhorn, “A waveguide cavity resonator source of squeezing,” Phys. Rev. Appl. 7(4), 044026 (2017).
    [Crossref]
  31. A. Dutt, S. Miller, K. Luke, J. Cardenas, A. L. Gaeta, P. Nussenzveig, and M. Lipson, “Tunable Squeezing Using Coupled Ring Resonators on a Silicon Nitride Chip,” Opt. Lett. 41(2), 223–226 (2016).
    [Crossref]
  32. V. D. Vaidya, B. Morrison, L. G. Helt, R. Shahrokhshahi, D. H. Mahler, M. J. Collins, K. Tan, J. Lavoie, A. Repingon, M. Menotti, N. Quesada, R. C. Pooser, A. E. Lita, T. Gerrits, S. W. Nam, and Z. Vernon, “Broadband quadrature-squeezed vacuum and nonclassical photon number correlations from a nanophotonic device,” arXiv e-prints arXiv:1904.07833 (2019).
  33. A. Otterpohl, F. Sedlmeir, G. Shafiee, T. Dirmeier, U. Vogl, G. Schunk, D. V. Strekalov, H. G. Schwefel, T. Gehring, U. L. Andersen, G. Leuchs, and C. Marquardt, “Squeezed vacuum states from a whispering gallery mode resonator,” arXiv p. 1905.07955 (2019).
  34. C. Peuntinger, B. Heim, C. R. Müller, C. Gabriel, C. Marquardt, and G. Leuchs, “Distribution of squeezed states through an atmospheric channel,” Phys. Rev. Lett. 113(6), 060502 (2014).
    [Crossref]
  35. H. Vahlbruch, A. Khalaidovski, N. Lastzka, C. Gräf, K. Danzmann, and R. Schnabel, “The GEO 600 squeezed light source,” Classical Quantum Gravity 27(8), 084027 (2010).
    [Crossref]
  36. A. Schönbeck, “Compact squeezed-light source at 1550 nm,” Ph.D. thesis, Fakultät für Mathematik, Informatik und Naturwissenschaften Fachbereich Physik der Universit ät Hamburg (2018).
  37. Y.-J. Wang, W.-H. Yang, Y.-H. Zheng, and K.-C. Peng, “A compact einstein–podolsky–rosen entangled light source,” Chin. Phys. B 24(7), 070303 (2015).
    [Crossref]
  38. H. Vahlbruch, S. Chelkowski, B. Hage, A. Franzen, K. Danzmann, and R. Schnabel, “Coherent control of vacuum squeezing in the gravitational-wave detection band,” Phys. Rev. Lett. 97(1), 011101 (2006).
    [Crossref]
  39. T. Aoki, G. Takahashi, and A. Furusawa, “Squeezing at 946nm with periodically poled ktiopo4,” Opt. Express 14(15), 6930–6935 (2006).
    [Crossref]

2019 (1)

F. Mondain, T. Lunghi, A. Zavatta, É. Gouzien, F. Doutre, M. De Micheli, S. Tanzilli, and V. D’Auria, “Chip-based squeezing at a telecom wavelength,” Photonics Res. 7(7), A36–A39 (2019).
[Crossref]

2018 (4)

S. Shi, Y. Wang, W. Yang, Y. Zheng, and K. Peng, “Detection and perfect fitting of 13.2 dB squeezed vacuum states by considering green-light-induced infrared absorption,” Opt. Lett. 43(21), 5411 (2018).
[Crossref]

A. Schönbeck, F. Thies, and R. Schnabel, “13 dB squeezed vacuum states at 1550 nm from 12 mW external pump power at 775 nm,” Opt. Lett. 43(1), 110–113 (2018).
[Crossref]

S. Pirandola, B. R. Bardhan, T. Gehring, C. Weedbrook, and S. Lloyd, “Advances in photonic quantum sensing,” Nat. Photonics 12(12), 724–733 (2018).
[Crossref]

F. Furrer, T. Gehring, C. Schaffner, C. Pacher, R. Schnabel, and S. Wehner, “Continuous-variable protocol for oblivious transfer in the noisy-storage model,” Nat. Commun. 9(1), 1450 (2018).
[Crossref]

2017 (1)

M. Stefszky, R. Ricken, C. Eigner, V. Quiring, H. Herrmann, and C. Silberhorn, “A waveguide cavity resonator source of squeezing,” Phys. Rev. Appl. 7(4), 044026 (2017).
[Crossref]

2016 (5)

A. Dutt, S. Miller, K. Luke, J. Cardenas, A. L. Gaeta, P. Nussenzveig, and M. Lipson, “Tunable Squeezing Using Coupled Ring Resonators on a Silicon Nitride Chip,” Opt. Lett. 41(2), 223–226 (2016).
[Crossref]

H. Vahlbruch, M. Mehmet, K. Danzmann, and R. Schnabel, “Detection of 15 dB Squeezed States of Light and their Application for the Absolute Calibration of Photoelectric Quantum Efficiency,” Phys. Rev. Lett. 117(11), 110801 (2016).
[Crossref]

K. Marshall, C. S. Jacobsen, C. Schäfermeier, T. Gehring, C. Weedbrook, and U. L. Andersen, “Continuous-variable quantum computing on encrypted data,” Nat. Commun. 7(1), 13795 (2016).
[Crossref]

U. L. Andersen, T. Gehring, C. Marquardt, and G. Leuchs, “30 Years of Squeezed Light Generation,” Phys. Scr. 91(5), 053001 (2016).
[Crossref]

M. A. Taylor and W. P. Bowen, “Quantum metrology and its application in biology,” Phys. Rep. 615, 1–59 (2016).
[Crossref]

2015 (3)

U. L. Andersen, J. S. Neergaard-Nielsen, P. van Loock, and A. Furusawa, “Hybrid discrete- and continuous-variable quantum information,” Nat. Phys. 11(9), 713–719 (2015).
[Crossref]

T. Gehring, V. Handchen, J. Duhme, F. Furrer, T. Franz, C. Pacher, R. F. Werner, and R. Schnabel, “Implementation of continuous-variable quantum key distribution with composable and one-sided-device-independent security against coherent attacks,” Nat. Commun. 6(1), 8795 (2015).
[Crossref]

Y.-J. Wang, W.-H. Yang, Y.-H. Zheng, and K.-C. Peng, “A compact einstein–podolsky–rosen entangled light source,” Chin. Phys. B 24(7), 070303 (2015).
[Crossref]

2014 (4)

M. Chen, N. C. Menicucci, and O. Pfister, “Experimental realization of multipartite entanglement of 60 modes of a quantum optical frequency comb,” Phys. Rev. Lett. 112(12), 120505 (2014).
[Crossref]

C. Peuntinger, B. Heim, C. R. Müller, C. Gabriel, C. Marquardt, and G. Leuchs, “Distribution of squeezed states through an atmospheric channel,” Phys. Rev. Lett. 113(6), 060502 (2014).
[Crossref]

N. C. Menicucci, “Fault-tolerant measurement-based quantum computing with continuous-variable cluster states,” Phys. Rev. Lett. 112(12), 120504 (2014).
[Crossref]

M. A. Taylor, J. Janousek, V. Daria, J. Knittel, B. Hage, H.-A. Bachor, and W. P. Bowen, “Subdiffraction-Limited Quantum Imaging within a Living Cell,” Phys. Rev. X 4(1), 011017 (2014).
[Crossref]

2013 (3)

S. Yokoyama, R. Ukai, S. C. Armstrong, C. Sornphiphatphong, T. Kaji, S. Suzuki, J.-I. Yoshikawa, H. Yonezawa, N. C. Menicucci, and A. Furusawa, “Ultra-large-scale continuous-variable cluster states multiplexed in the time domain,” Nat. Photonics 7(12), 982–986 (2013).
[Crossref]

M. A. Taylor, J. Janousek, V. Daria, J. Knittel, B. Hage, H.-A. Bachor, and W. P. Bowen, “Biological measurement beyond the quantum limit,” Nat. Photonics 7(3), 229–233 (2013).
[Crossref]

The L. I. G. O. Scientific Collaboration, “Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light,” Nat. Photonics 7(8), 613–619 (2013).
[Crossref]

2012 (2)

C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84(2), 621–669 (2012).
[Crossref]

L. S. Madsen, V. C. Usenko, M. Lassen, R. Filip, and U. L. Andersen, “Continuous variable quantum key distribution with modulated entangled states,” Nat. Commun. 3(1), 1083 (2012).
[Crossref]

2011 (2)

The L. I. G. O. Scientific Collaboration, “A gravitational wave observatory operating beyond the quantum shot-noise limit,” Nat. Phys. 7(12), 962–965 (2011).
[Crossref]

M. Mehmet, S. Ast, T. Eberle, S. Steinlechner, H. Vahlbruch, and R. Schnabel, “Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB,” Opt. Express 19(25), 25763–25772 (2011).
[Crossref]

2010 (3)

H. Vahlbruch, A. Khalaidovski, N. Lastzka, C. Gräf, K. Danzmann, and R. Schnabel, “The GEO 600 squeezed light source,” Classical Quantum Gravity 27(8), 084027 (2010).
[Crossref]

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Händchen, H. Vahlbruch, M. Mehmet, H. Müller-Ebhardt, and R. Schnabel, “Quantum Enhancement of the Zero-Area Sagnac Interferometer Topology for Gravitational Wave Detection,” Phys. Rev. Lett. 104(25), 251102 (2010).
[Crossref]

R. Schnabel, N. Mavalvala, D. E. McClelland, and P. K. Lam, “Quantum metrology for gravitational wave astronomy,” Nat. Commun. 1(1), 121 (2010).
[Crossref]

2007 (1)

2006 (2)

H. Vahlbruch, S. Chelkowski, B. Hage, A. Franzen, K. Danzmann, and R. Schnabel, “Coherent control of vacuum squeezing in the gravitational-wave detection band,” Phys. Rev. Lett. 97(1), 011101 (2006).
[Crossref]

T. Aoki, G. Takahashi, and A. Furusawa, “Squeezing at 946nm with periodically poled ktiopo4,” Opt. Express 14(15), 6930–6935 (2006).
[Crossref]

2001 (1)

D. Gottesman, A. Kitaev, and J. Preskill, “Encoding a qubit in an oscillator,” Phys. Rev. A 64(1), 012310 (2001).
[Crossref]

Andersen, U. L.

U. L. Andersen, T. Gehring, C. Marquardt, and G. Leuchs, “30 Years of Squeezed Light Generation,” Phys. Scr. 91(5), 053001 (2016).
[Crossref]

K. Marshall, C. S. Jacobsen, C. Schäfermeier, T. Gehring, C. Weedbrook, and U. L. Andersen, “Continuous-variable quantum computing on encrypted data,” Nat. Commun. 7(1), 13795 (2016).
[Crossref]

U. L. Andersen, J. S. Neergaard-Nielsen, P. van Loock, and A. Furusawa, “Hybrid discrete- and continuous-variable quantum information,” Nat. Phys. 11(9), 713–719 (2015).
[Crossref]

L. S. Madsen, V. C. Usenko, M. Lassen, R. Filip, and U. L. Andersen, “Continuous variable quantum key distribution with modulated entangled states,” Nat. Commun. 3(1), 1083 (2012).
[Crossref]

M. V. Larsen, X. Guo, C. R. Breum, J. S. Neergaard-Nielsen, and U. L. Andersen, “Deterministic generation of a two-dimensional cluster state for universal quantum computing,” arXiv e-prints arXiv:1906.08709 (2019).

A. Otterpohl, F. Sedlmeir, G. Shafiee, T. Dirmeier, U. Vogl, G. Schunk, D. V. Strekalov, H. G. Schwefel, T. Gehring, U. L. Andersen, G. Leuchs, and C. Marquardt, “Squeezed vacuum states from a whispering gallery mode resonator,” arXiv p. 1905.07955 (2019).

Aoki, T.

Armstrong, S. C.

S. Yokoyama, R. Ukai, S. C. Armstrong, C. Sornphiphatphong, T. Kaji, S. Suzuki, J.-I. Yoshikawa, H. Yonezawa, N. C. Menicucci, and A. Furusawa, “Ultra-large-scale continuous-variable cluster states multiplexed in the time domain,” Nat. Photonics 7(12), 982–986 (2013).
[Crossref]

Ast, S.

Bachor, H.-A.

M. A. Taylor, J. Janousek, V. Daria, J. Knittel, B. Hage, H.-A. Bachor, and W. P. Bowen, “Subdiffraction-Limited Quantum Imaging within a Living Cell,” Phys. Rev. X 4(1), 011017 (2014).
[Crossref]

M. A. Taylor, J. Janousek, V. Daria, J. Knittel, B. Hage, H.-A. Bachor, and W. P. Bowen, “Biological measurement beyond the quantum limit,” Nat. Photonics 7(3), 229–233 (2013).
[Crossref]

Bardhan, B. R.

S. Pirandola, B. R. Bardhan, T. Gehring, C. Weedbrook, and S. Lloyd, “Advances in photonic quantum sensing,” Nat. Photonics 12(12), 724–733 (2018).
[Crossref]

Bauchrowitz, J.

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Händchen, H. Vahlbruch, M. Mehmet, H. Müller-Ebhardt, and R. Schnabel, “Quantum Enhancement of the Zero-Area Sagnac Interferometer Topology for Gravitational Wave Detection,” Phys. Rev. Lett. 104(25), 251102 (2010).
[Crossref]

Bowen, W. P.

M. A. Taylor and W. P. Bowen, “Quantum metrology and its application in biology,” Phys. Rep. 615, 1–59 (2016).
[Crossref]

M. A. Taylor, J. Janousek, V. Daria, J. Knittel, B. Hage, H.-A. Bachor, and W. P. Bowen, “Subdiffraction-Limited Quantum Imaging within a Living Cell,” Phys. Rev. X 4(1), 011017 (2014).
[Crossref]

M. A. Taylor, J. Janousek, V. Daria, J. Knittel, B. Hage, H.-A. Bachor, and W. P. Bowen, “Biological measurement beyond the quantum limit,” Nat. Photonics 7(3), 229–233 (2013).
[Crossref]

Breum, C. R.

M. V. Larsen, X. Guo, C. R. Breum, J. S. Neergaard-Nielsen, and U. L. Andersen, “Deterministic generation of a two-dimensional cluster state for universal quantum computing,” arXiv e-prints arXiv:1906.08709 (2019).

Cardenas, J.

Cerf, N. J.

C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84(2), 621–669 (2012).
[Crossref]

Chelkowski, S.

H. Vahlbruch, S. Chelkowski, B. Hage, A. Franzen, K. Danzmann, and R. Schnabel, “Coherent control of vacuum squeezing in the gravitational-wave detection band,” Phys. Rev. Lett. 97(1), 011101 (2006).
[Crossref]

Chen, M.

M. Chen, N. C. Menicucci, and O. Pfister, “Experimental realization of multipartite entanglement of 60 modes of a quantum optical frequency comb,” Phys. Rev. Lett. 112(12), 120505 (2014).
[Crossref]

Collins, M. J.

V. D. Vaidya, B. Morrison, L. G. Helt, R. Shahrokhshahi, D. H. Mahler, M. J. Collins, K. Tan, J. Lavoie, A. Repingon, M. Menotti, N. Quesada, R. C. Pooser, A. E. Lita, T. Gerrits, S. W. Nam, and Z. Vernon, “Broadband quadrature-squeezed vacuum and nonclassical photon number correlations from a nanophotonic device,” arXiv e-prints arXiv:1904.07833 (2019).

D’Auria, V.

F. Mondain, T. Lunghi, A. Zavatta, É. Gouzien, F. Doutre, M. De Micheli, S. Tanzilli, and V. D’Auria, “Chip-based squeezing at a telecom wavelength,” Photonics Res. 7(7), A36–A39 (2019).
[Crossref]

Danzmann, K.

H. Vahlbruch, M. Mehmet, K. Danzmann, and R. Schnabel, “Detection of 15 dB Squeezed States of Light and their Application for the Absolute Calibration of Photoelectric Quantum Efficiency,” Phys. Rev. Lett. 117(11), 110801 (2016).
[Crossref]

H. Vahlbruch, A. Khalaidovski, N. Lastzka, C. Gräf, K. Danzmann, and R. Schnabel, “The GEO 600 squeezed light source,” Classical Quantum Gravity 27(8), 084027 (2010).
[Crossref]

H. Vahlbruch, S. Chelkowski, B. Hage, A. Franzen, K. Danzmann, and R. Schnabel, “Coherent control of vacuum squeezing in the gravitational-wave detection band,” Phys. Rev. Lett. 97(1), 011101 (2006).
[Crossref]

Daria, V.

M. A. Taylor, J. Janousek, V. Daria, J. Knittel, B. Hage, H.-A. Bachor, and W. P. Bowen, “Subdiffraction-Limited Quantum Imaging within a Living Cell,” Phys. Rev. X 4(1), 011017 (2014).
[Crossref]

M. A. Taylor, J. Janousek, V. Daria, J. Knittel, B. Hage, H.-A. Bachor, and W. P. Bowen, “Biological measurement beyond the quantum limit,” Nat. Photonics 7(3), 229–233 (2013).
[Crossref]

De Micheli, M.

F. Mondain, T. Lunghi, A. Zavatta, É. Gouzien, F. Doutre, M. De Micheli, S. Tanzilli, and V. D’Auria, “Chip-based squeezing at a telecom wavelength,” Photonics Res. 7(7), A36–A39 (2019).
[Crossref]

Dirmeier, T.

A. Otterpohl, F. Sedlmeir, G. Shafiee, T. Dirmeier, U. Vogl, G. Schunk, D. V. Strekalov, H. G. Schwefel, T. Gehring, U. L. Andersen, G. Leuchs, and C. Marquardt, “Squeezed vacuum states from a whispering gallery mode resonator,” arXiv p. 1905.07955 (2019).

Doutre, F.

F. Mondain, T. Lunghi, A. Zavatta, É. Gouzien, F. Doutre, M. De Micheli, S. Tanzilli, and V. D’Auria, “Chip-based squeezing at a telecom wavelength,” Photonics Res. 7(7), A36–A39 (2019).
[Crossref]

Duhme, J.

T. Gehring, V. Handchen, J. Duhme, F. Furrer, T. Franz, C. Pacher, R. F. Werner, and R. Schnabel, “Implementation of continuous-variable quantum key distribution with composable and one-sided-device-independent security against coherent attacks,” Nat. Commun. 6(1), 8795 (2015).
[Crossref]

Dutt, A.

Eberle, T.

M. Mehmet, S. Ast, T. Eberle, S. Steinlechner, H. Vahlbruch, and R. Schnabel, “Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB,” Opt. Express 19(25), 25763–25772 (2011).
[Crossref]

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Händchen, H. Vahlbruch, M. Mehmet, H. Müller-Ebhardt, and R. Schnabel, “Quantum Enhancement of the Zero-Area Sagnac Interferometer Topology for Gravitational Wave Detection,” Phys. Rev. Lett. 104(25), 251102 (2010).
[Crossref]

Eigner, C.

M. Stefszky, R. Ricken, C. Eigner, V. Quiring, H. Herrmann, and C. Silberhorn, “A waveguide cavity resonator source of squeezing,” Phys. Rev. Appl. 7(4), 044026 (2017).
[Crossref]

Enbutsu, K.

N. Takanashi, T. Kashiwazaki, T. Kazama, K. Enbutsu, R. Kasahara, T. Umeki, and A. Furusawa, “Detection of 3-dB continuous-wave squeezing at 1.55 um from a fiber-coupled single-pass PPLN ridge waveguide,” arXiv p. 1906.09749 (2019).

Filip, R.

L. S. Madsen, V. C. Usenko, M. Lassen, R. Filip, and U. L. Andersen, “Continuous variable quantum key distribution with modulated entangled states,” Nat. Commun. 3(1), 1083 (2012).
[Crossref]

Franz, T.

T. Gehring, V. Handchen, J. Duhme, F. Furrer, T. Franz, C. Pacher, R. F. Werner, and R. Schnabel, “Implementation of continuous-variable quantum key distribution with composable and one-sided-device-independent security against coherent attacks,” Nat. Commun. 6(1), 8795 (2015).
[Crossref]

Franzen, A.

H. Vahlbruch, S. Chelkowski, B. Hage, A. Franzen, K. Danzmann, and R. Schnabel, “Coherent control of vacuum squeezing in the gravitational-wave detection band,” Phys. Rev. Lett. 97(1), 011101 (2006).
[Crossref]

Furrer, F.

F. Furrer, T. Gehring, C. Schaffner, C. Pacher, R. Schnabel, and S. Wehner, “Continuous-variable protocol for oblivious transfer in the noisy-storage model,” Nat. Commun. 9(1), 1450 (2018).
[Crossref]

T. Gehring, V. Handchen, J. Duhme, F. Furrer, T. Franz, C. Pacher, R. F. Werner, and R. Schnabel, “Implementation of continuous-variable quantum key distribution with composable and one-sided-device-independent security against coherent attacks,” Nat. Commun. 6(1), 8795 (2015).
[Crossref]

Furusawa, A.

U. L. Andersen, J. S. Neergaard-Nielsen, P. van Loock, and A. Furusawa, “Hybrid discrete- and continuous-variable quantum information,” Nat. Phys. 11(9), 713–719 (2015).
[Crossref]

S. Yokoyama, R. Ukai, S. C. Armstrong, C. Sornphiphatphong, T. Kaji, S. Suzuki, J.-I. Yoshikawa, H. Yonezawa, N. C. Menicucci, and A. Furusawa, “Ultra-large-scale continuous-variable cluster states multiplexed in the time domain,” Nat. Photonics 7(12), 982–986 (2013).
[Crossref]

Y. Takeno, M. Yukawa, H. Yonezawa, and A. Furusawa, “Observation of -9 dB quadrature squeezing with improvement of phase stability in homodyne measurement,” Opt. Express 15(7), 4321–4327 (2007).
[Crossref]

T. Aoki, G. Takahashi, and A. Furusawa, “Squeezing at 946nm with periodically poled ktiopo4,” Opt. Express 14(15), 6930–6935 (2006).
[Crossref]

N. Takanashi, T. Kashiwazaki, T. Kazama, K. Enbutsu, R. Kasahara, T. Umeki, and A. Furusawa, “Detection of 3-dB continuous-wave squeezing at 1.55 um from a fiber-coupled single-pass PPLN ridge waveguide,” arXiv p. 1906.09749 (2019).

Gabriel, C.

C. Peuntinger, B. Heim, C. R. Müller, C. Gabriel, C. Marquardt, and G. Leuchs, “Distribution of squeezed states through an atmospheric channel,” Phys. Rev. Lett. 113(6), 060502 (2014).
[Crossref]

Gaeta, A. L.

García-Patrón, R.

C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84(2), 621–669 (2012).
[Crossref]

Gehring, T.

S. Pirandola, B. R. Bardhan, T. Gehring, C. Weedbrook, and S. Lloyd, “Advances in photonic quantum sensing,” Nat. Photonics 12(12), 724–733 (2018).
[Crossref]

F. Furrer, T. Gehring, C. Schaffner, C. Pacher, R. Schnabel, and S. Wehner, “Continuous-variable protocol for oblivious transfer in the noisy-storage model,” Nat. Commun. 9(1), 1450 (2018).
[Crossref]

K. Marshall, C. S. Jacobsen, C. Schäfermeier, T. Gehring, C. Weedbrook, and U. L. Andersen, “Continuous-variable quantum computing on encrypted data,” Nat. Commun. 7(1), 13795 (2016).
[Crossref]

U. L. Andersen, T. Gehring, C. Marquardt, and G. Leuchs, “30 Years of Squeezed Light Generation,” Phys. Scr. 91(5), 053001 (2016).
[Crossref]

T. Gehring, V. Handchen, J. Duhme, F. Furrer, T. Franz, C. Pacher, R. F. Werner, and R. Schnabel, “Implementation of continuous-variable quantum key distribution with composable and one-sided-device-independent security against coherent attacks,” Nat. Commun. 6(1), 8795 (2015).
[Crossref]

A. Otterpohl, F. Sedlmeir, G. Shafiee, T. Dirmeier, U. Vogl, G. Schunk, D. V. Strekalov, H. G. Schwefel, T. Gehring, U. L. Andersen, G. Leuchs, and C. Marquardt, “Squeezed vacuum states from a whispering gallery mode resonator,” arXiv p. 1905.07955 (2019).

Gerrits, T.

V. D. Vaidya, B. Morrison, L. G. Helt, R. Shahrokhshahi, D. H. Mahler, M. J. Collins, K. Tan, J. Lavoie, A. Repingon, M. Menotti, N. Quesada, R. C. Pooser, A. E. Lita, T. Gerrits, S. W. Nam, and Z. Vernon, “Broadband quadrature-squeezed vacuum and nonclassical photon number correlations from a nanophotonic device,” arXiv e-prints arXiv:1904.07833 (2019).

Gottesman, D.

D. Gottesman, A. Kitaev, and J. Preskill, “Encoding a qubit in an oscillator,” Phys. Rev. A 64(1), 012310 (2001).
[Crossref]

Gouzien, É.

F. Mondain, T. Lunghi, A. Zavatta, É. Gouzien, F. Doutre, M. De Micheli, S. Tanzilli, and V. D’Auria, “Chip-based squeezing at a telecom wavelength,” Photonics Res. 7(7), A36–A39 (2019).
[Crossref]

Gräf, C.

H. Vahlbruch, A. Khalaidovski, N. Lastzka, C. Gräf, K. Danzmann, and R. Schnabel, “The GEO 600 squeezed light source,” Classical Quantum Gravity 27(8), 084027 (2010).
[Crossref]

Guo, X.

M. V. Larsen, X. Guo, C. R. Breum, J. S. Neergaard-Nielsen, and U. L. Andersen, “Deterministic generation of a two-dimensional cluster state for universal quantum computing,” arXiv e-prints arXiv:1906.08709 (2019).

Hage, B.

M. A. Taylor, J. Janousek, V. Daria, J. Knittel, B. Hage, H.-A. Bachor, and W. P. Bowen, “Subdiffraction-Limited Quantum Imaging within a Living Cell,” Phys. Rev. X 4(1), 011017 (2014).
[Crossref]

M. A. Taylor, J. Janousek, V. Daria, J. Knittel, B. Hage, H.-A. Bachor, and W. P. Bowen, “Biological measurement beyond the quantum limit,” Nat. Photonics 7(3), 229–233 (2013).
[Crossref]

H. Vahlbruch, S. Chelkowski, B. Hage, A. Franzen, K. Danzmann, and R. Schnabel, “Coherent control of vacuum squeezing in the gravitational-wave detection band,” Phys. Rev. Lett. 97(1), 011101 (2006).
[Crossref]

Handchen, V.

T. Gehring, V. Handchen, J. Duhme, F. Furrer, T. Franz, C. Pacher, R. F. Werner, and R. Schnabel, “Implementation of continuous-variable quantum key distribution with composable and one-sided-device-independent security against coherent attacks,” Nat. Commun. 6(1), 8795 (2015).
[Crossref]

Händchen, V.

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Händchen, H. Vahlbruch, M. Mehmet, H. Müller-Ebhardt, and R. Schnabel, “Quantum Enhancement of the Zero-Area Sagnac Interferometer Topology for Gravitational Wave Detection,” Phys. Rev. Lett. 104(25), 251102 (2010).
[Crossref]

Heim, B.

C. Peuntinger, B. Heim, C. R. Müller, C. Gabriel, C. Marquardt, and G. Leuchs, “Distribution of squeezed states through an atmospheric channel,” Phys. Rev. Lett. 113(6), 060502 (2014).
[Crossref]

Helt, L. G.

V. D. Vaidya, B. Morrison, L. G. Helt, R. Shahrokhshahi, D. H. Mahler, M. J. Collins, K. Tan, J. Lavoie, A. Repingon, M. Menotti, N. Quesada, R. C. Pooser, A. E. Lita, T. Gerrits, S. W. Nam, and Z. Vernon, “Broadband quadrature-squeezed vacuum and nonclassical photon number correlations from a nanophotonic device,” arXiv e-prints arXiv:1904.07833 (2019).

Herrmann, H.

M. Stefszky, R. Ricken, C. Eigner, V. Quiring, H. Herrmann, and C. Silberhorn, “A waveguide cavity resonator source of squeezing,” Phys. Rev. Appl. 7(4), 044026 (2017).
[Crossref]

Jacobsen, C. S.

K. Marshall, C. S. Jacobsen, C. Schäfermeier, T. Gehring, C. Weedbrook, and U. L. Andersen, “Continuous-variable quantum computing on encrypted data,” Nat. Commun. 7(1), 13795 (2016).
[Crossref]

Janousek, J.

M. A. Taylor, J. Janousek, V. Daria, J. Knittel, B. Hage, H.-A. Bachor, and W. P. Bowen, “Subdiffraction-Limited Quantum Imaging within a Living Cell,” Phys. Rev. X 4(1), 011017 (2014).
[Crossref]

M. A. Taylor, J. Janousek, V. Daria, J. Knittel, B. Hage, H.-A. Bachor, and W. P. Bowen, “Biological measurement beyond the quantum limit,” Nat. Photonics 7(3), 229–233 (2013).
[Crossref]

Kaji, T.

S. Yokoyama, R. Ukai, S. C. Armstrong, C. Sornphiphatphong, T. Kaji, S. Suzuki, J.-I. Yoshikawa, H. Yonezawa, N. C. Menicucci, and A. Furusawa, “Ultra-large-scale continuous-variable cluster states multiplexed in the time domain,” Nat. Photonics 7(12), 982–986 (2013).
[Crossref]

Kasahara, R.

N. Takanashi, T. Kashiwazaki, T. Kazama, K. Enbutsu, R. Kasahara, T. Umeki, and A. Furusawa, “Detection of 3-dB continuous-wave squeezing at 1.55 um from a fiber-coupled single-pass PPLN ridge waveguide,” arXiv p. 1906.09749 (2019).

Kashiwazaki, T.

N. Takanashi, T. Kashiwazaki, T. Kazama, K. Enbutsu, R. Kasahara, T. Umeki, and A. Furusawa, “Detection of 3-dB continuous-wave squeezing at 1.55 um from a fiber-coupled single-pass PPLN ridge waveguide,” arXiv p. 1906.09749 (2019).

Kazama, T.

N. Takanashi, T. Kashiwazaki, T. Kazama, K. Enbutsu, R. Kasahara, T. Umeki, and A. Furusawa, “Detection of 3-dB continuous-wave squeezing at 1.55 um from a fiber-coupled single-pass PPLN ridge waveguide,” arXiv p. 1906.09749 (2019).

Khalaidovski, A.

H. Vahlbruch, A. Khalaidovski, N. Lastzka, C. Gräf, K. Danzmann, and R. Schnabel, “The GEO 600 squeezed light source,” Classical Quantum Gravity 27(8), 084027 (2010).
[Crossref]

Kitaev, A.

D. Gottesman, A. Kitaev, and J. Preskill, “Encoding a qubit in an oscillator,” Phys. Rev. A 64(1), 012310 (2001).
[Crossref]

Knittel, J.

M. A. Taylor, J. Janousek, V. Daria, J. Knittel, B. Hage, H.-A. Bachor, and W. P. Bowen, “Subdiffraction-Limited Quantum Imaging within a Living Cell,” Phys. Rev. X 4(1), 011017 (2014).
[Crossref]

M. A. Taylor, J. Janousek, V. Daria, J. Knittel, B. Hage, H.-A. Bachor, and W. P. Bowen, “Biological measurement beyond the quantum limit,” Nat. Photonics 7(3), 229–233 (2013).
[Crossref]

Lam, P. K.

R. Schnabel, N. Mavalvala, D. E. McClelland, and P. K. Lam, “Quantum metrology for gravitational wave astronomy,” Nat. Commun. 1(1), 121 (2010).
[Crossref]

Larsen, M. V.

M. V. Larsen, X. Guo, C. R. Breum, J. S. Neergaard-Nielsen, and U. L. Andersen, “Deterministic generation of a two-dimensional cluster state for universal quantum computing,” arXiv e-prints arXiv:1906.08709 (2019).

Lassen, M.

L. S. Madsen, V. C. Usenko, M. Lassen, R. Filip, and U. L. Andersen, “Continuous variable quantum key distribution with modulated entangled states,” Nat. Commun. 3(1), 1083 (2012).
[Crossref]

Lastzka, N.

H. Vahlbruch, A. Khalaidovski, N. Lastzka, C. Gräf, K. Danzmann, and R. Schnabel, “The GEO 600 squeezed light source,” Classical Quantum Gravity 27(8), 084027 (2010).
[Crossref]

Lavoie, J.

V. D. Vaidya, B. Morrison, L. G. Helt, R. Shahrokhshahi, D. H. Mahler, M. J. Collins, K. Tan, J. Lavoie, A. Repingon, M. Menotti, N. Quesada, R. C. Pooser, A. E. Lita, T. Gerrits, S. W. Nam, and Z. Vernon, “Broadband quadrature-squeezed vacuum and nonclassical photon number correlations from a nanophotonic device,” arXiv e-prints arXiv:1904.07833 (2019).

Leuchs, G.

U. L. Andersen, T. Gehring, C. Marquardt, and G. Leuchs, “30 Years of Squeezed Light Generation,” Phys. Scr. 91(5), 053001 (2016).
[Crossref]

C. Peuntinger, B. Heim, C. R. Müller, C. Gabriel, C. Marquardt, and G. Leuchs, “Distribution of squeezed states through an atmospheric channel,” Phys. Rev. Lett. 113(6), 060502 (2014).
[Crossref]

A. Otterpohl, F. Sedlmeir, G. Shafiee, T. Dirmeier, U. Vogl, G. Schunk, D. V. Strekalov, H. G. Schwefel, T. Gehring, U. L. Andersen, G. Leuchs, and C. Marquardt, “Squeezed vacuum states from a whispering gallery mode resonator,” arXiv p. 1905.07955 (2019).

Lipson, M.

Lita, A. E.

V. D. Vaidya, B. Morrison, L. G. Helt, R. Shahrokhshahi, D. H. Mahler, M. J. Collins, K. Tan, J. Lavoie, A. Repingon, M. Menotti, N. Quesada, R. C. Pooser, A. E. Lita, T. Gerrits, S. W. Nam, and Z. Vernon, “Broadband quadrature-squeezed vacuum and nonclassical photon number correlations from a nanophotonic device,” arXiv e-prints arXiv:1904.07833 (2019).

Lloyd, S.

S. Pirandola, B. R. Bardhan, T. Gehring, C. Weedbrook, and S. Lloyd, “Advances in photonic quantum sensing,” Nat. Photonics 12(12), 724–733 (2018).
[Crossref]

C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84(2), 621–669 (2012).
[Crossref]

Luke, K.

Lunghi, T.

F. Mondain, T. Lunghi, A. Zavatta, É. Gouzien, F. Doutre, M. De Micheli, S. Tanzilli, and V. D’Auria, “Chip-based squeezing at a telecom wavelength,” Photonics Res. 7(7), A36–A39 (2019).
[Crossref]

Lvovsky, A. I.

A. I. Lvovsky, “Squeezed light,” in Photonics Volume 1: Fundamentals of Photonics and Physics, D. Andrews, ed. (Wiley, 2015), pp. 121–164.

Madsen, L. S.

L. S. Madsen, V. C. Usenko, M. Lassen, R. Filip, and U. L. Andersen, “Continuous variable quantum key distribution with modulated entangled states,” Nat. Commun. 3(1), 1083 (2012).
[Crossref]

Mahler, D. H.

V. D. Vaidya, B. Morrison, L. G. Helt, R. Shahrokhshahi, D. H. Mahler, M. J. Collins, K. Tan, J. Lavoie, A. Repingon, M. Menotti, N. Quesada, R. C. Pooser, A. E. Lita, T. Gerrits, S. W. Nam, and Z. Vernon, “Broadband quadrature-squeezed vacuum and nonclassical photon number correlations from a nanophotonic device,” arXiv e-prints arXiv:1904.07833 (2019).

Marquardt, C.

U. L. Andersen, T. Gehring, C. Marquardt, and G. Leuchs, “30 Years of Squeezed Light Generation,” Phys. Scr. 91(5), 053001 (2016).
[Crossref]

C. Peuntinger, B. Heim, C. R. Müller, C. Gabriel, C. Marquardt, and G. Leuchs, “Distribution of squeezed states through an atmospheric channel,” Phys. Rev. Lett. 113(6), 060502 (2014).
[Crossref]

A. Otterpohl, F. Sedlmeir, G. Shafiee, T. Dirmeier, U. Vogl, G. Schunk, D. V. Strekalov, H. G. Schwefel, T. Gehring, U. L. Andersen, G. Leuchs, and C. Marquardt, “Squeezed vacuum states from a whispering gallery mode resonator,” arXiv p. 1905.07955 (2019).

Marshall, K.

K. Marshall, C. S. Jacobsen, C. Schäfermeier, T. Gehring, C. Weedbrook, and U. L. Andersen, “Continuous-variable quantum computing on encrypted data,” Nat. Commun. 7(1), 13795 (2016).
[Crossref]

Mavalvala, N.

R. Schnabel, N. Mavalvala, D. E. McClelland, and P. K. Lam, “Quantum metrology for gravitational wave astronomy,” Nat. Commun. 1(1), 121 (2010).
[Crossref]

McClelland, D. E.

R. Schnabel, N. Mavalvala, D. E. McClelland, and P. K. Lam, “Quantum metrology for gravitational wave astronomy,” Nat. Commun. 1(1), 121 (2010).
[Crossref]

Mehmet, M.

H. Vahlbruch, M. Mehmet, K. Danzmann, and R. Schnabel, “Detection of 15 dB Squeezed States of Light and their Application for the Absolute Calibration of Photoelectric Quantum Efficiency,” Phys. Rev. Lett. 117(11), 110801 (2016).
[Crossref]

M. Mehmet, S. Ast, T. Eberle, S. Steinlechner, H. Vahlbruch, and R. Schnabel, “Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB,” Opt. Express 19(25), 25763–25772 (2011).
[Crossref]

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Händchen, H. Vahlbruch, M. Mehmet, H. Müller-Ebhardt, and R. Schnabel, “Quantum Enhancement of the Zero-Area Sagnac Interferometer Topology for Gravitational Wave Detection,” Phys. Rev. Lett. 104(25), 251102 (2010).
[Crossref]

Menicucci, N. C.

M. Chen, N. C. Menicucci, and O. Pfister, “Experimental realization of multipartite entanglement of 60 modes of a quantum optical frequency comb,” Phys. Rev. Lett. 112(12), 120505 (2014).
[Crossref]

N. C. Menicucci, “Fault-tolerant measurement-based quantum computing with continuous-variable cluster states,” Phys. Rev. Lett. 112(12), 120504 (2014).
[Crossref]

S. Yokoyama, R. Ukai, S. C. Armstrong, C. Sornphiphatphong, T. Kaji, S. Suzuki, J.-I. Yoshikawa, H. Yonezawa, N. C. Menicucci, and A. Furusawa, “Ultra-large-scale continuous-variable cluster states multiplexed in the time domain,” Nat. Photonics 7(12), 982–986 (2013).
[Crossref]

Menotti, M.

V. D. Vaidya, B. Morrison, L. G. Helt, R. Shahrokhshahi, D. H. Mahler, M. J. Collins, K. Tan, J. Lavoie, A. Repingon, M. Menotti, N. Quesada, R. C. Pooser, A. E. Lita, T. Gerrits, S. W. Nam, and Z. Vernon, “Broadband quadrature-squeezed vacuum and nonclassical photon number correlations from a nanophotonic device,” arXiv e-prints arXiv:1904.07833 (2019).

Miller, S.

Mondain, F.

F. Mondain, T. Lunghi, A. Zavatta, É. Gouzien, F. Doutre, M. De Micheli, S. Tanzilli, and V. D’Auria, “Chip-based squeezing at a telecom wavelength,” Photonics Res. 7(7), A36–A39 (2019).
[Crossref]

Morrison, B.

V. D. Vaidya, B. Morrison, L. G. Helt, R. Shahrokhshahi, D. H. Mahler, M. J. Collins, K. Tan, J. Lavoie, A. Repingon, M. Menotti, N. Quesada, R. C. Pooser, A. E. Lita, T. Gerrits, S. W. Nam, and Z. Vernon, “Broadband quadrature-squeezed vacuum and nonclassical photon number correlations from a nanophotonic device,” arXiv e-prints arXiv:1904.07833 (2019).

Müller, C. R.

C. Peuntinger, B. Heim, C. R. Müller, C. Gabriel, C. Marquardt, and G. Leuchs, “Distribution of squeezed states through an atmospheric channel,” Phys. Rev. Lett. 113(6), 060502 (2014).
[Crossref]

Müller-Ebhardt, H.

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Händchen, H. Vahlbruch, M. Mehmet, H. Müller-Ebhardt, and R. Schnabel, “Quantum Enhancement of the Zero-Area Sagnac Interferometer Topology for Gravitational Wave Detection,” Phys. Rev. Lett. 104(25), 251102 (2010).
[Crossref]

Nam, S. W.

V. D. Vaidya, B. Morrison, L. G. Helt, R. Shahrokhshahi, D. H. Mahler, M. J. Collins, K. Tan, J. Lavoie, A. Repingon, M. Menotti, N. Quesada, R. C. Pooser, A. E. Lita, T. Gerrits, S. W. Nam, and Z. Vernon, “Broadband quadrature-squeezed vacuum and nonclassical photon number correlations from a nanophotonic device,” arXiv e-prints arXiv:1904.07833 (2019).

Neergaard-Nielsen, J. S.

U. L. Andersen, J. S. Neergaard-Nielsen, P. van Loock, and A. Furusawa, “Hybrid discrete- and continuous-variable quantum information,” Nat. Phys. 11(9), 713–719 (2015).
[Crossref]

M. V. Larsen, X. Guo, C. R. Breum, J. S. Neergaard-Nielsen, and U. L. Andersen, “Deterministic generation of a two-dimensional cluster state for universal quantum computing,” arXiv e-prints arXiv:1906.08709 (2019).

Nussenzveig, P.

Otterpohl, A.

A. Otterpohl, F. Sedlmeir, G. Shafiee, T. Dirmeier, U. Vogl, G. Schunk, D. V. Strekalov, H. G. Schwefel, T. Gehring, U. L. Andersen, G. Leuchs, and C. Marquardt, “Squeezed vacuum states from a whispering gallery mode resonator,” arXiv p. 1905.07955 (2019).

Pacher, C.

F. Furrer, T. Gehring, C. Schaffner, C. Pacher, R. Schnabel, and S. Wehner, “Continuous-variable protocol for oblivious transfer in the noisy-storage model,” Nat. Commun. 9(1), 1450 (2018).
[Crossref]

T. Gehring, V. Handchen, J. Duhme, F. Furrer, T. Franz, C. Pacher, R. F. Werner, and R. Schnabel, “Implementation of continuous-variable quantum key distribution with composable and one-sided-device-independent security against coherent attacks,” Nat. Commun. 6(1), 8795 (2015).
[Crossref]

Peng, K.

Peng, K.-C.

Y.-J. Wang, W.-H. Yang, Y.-H. Zheng, and K.-C. Peng, “A compact einstein–podolsky–rosen entangled light source,” Chin. Phys. B 24(7), 070303 (2015).
[Crossref]

Peuntinger, C.

C. Peuntinger, B. Heim, C. R. Müller, C. Gabriel, C. Marquardt, and G. Leuchs, “Distribution of squeezed states through an atmospheric channel,” Phys. Rev. Lett. 113(6), 060502 (2014).
[Crossref]

Pfister, O.

M. Chen, N. C. Menicucci, and O. Pfister, “Experimental realization of multipartite entanglement of 60 modes of a quantum optical frequency comb,” Phys. Rev. Lett. 112(12), 120505 (2014).
[Crossref]

Pirandola, S.

S. Pirandola, B. R. Bardhan, T. Gehring, C. Weedbrook, and S. Lloyd, “Advances in photonic quantum sensing,” Nat. Photonics 12(12), 724–733 (2018).
[Crossref]

C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84(2), 621–669 (2012).
[Crossref]

Pooser, R. C.

V. D. Vaidya, B. Morrison, L. G. Helt, R. Shahrokhshahi, D. H. Mahler, M. J. Collins, K. Tan, J. Lavoie, A. Repingon, M. Menotti, N. Quesada, R. C. Pooser, A. E. Lita, T. Gerrits, S. W. Nam, and Z. Vernon, “Broadband quadrature-squeezed vacuum and nonclassical photon number correlations from a nanophotonic device,” arXiv e-prints arXiv:1904.07833 (2019).

Preskill, J.

D. Gottesman, A. Kitaev, and J. Preskill, “Encoding a qubit in an oscillator,” Phys. Rev. A 64(1), 012310 (2001).
[Crossref]

Quesada, N.

V. D. Vaidya, B. Morrison, L. G. Helt, R. Shahrokhshahi, D. H. Mahler, M. J. Collins, K. Tan, J. Lavoie, A. Repingon, M. Menotti, N. Quesada, R. C. Pooser, A. E. Lita, T. Gerrits, S. W. Nam, and Z. Vernon, “Broadband quadrature-squeezed vacuum and nonclassical photon number correlations from a nanophotonic device,” arXiv e-prints arXiv:1904.07833 (2019).

Quiring, V.

M. Stefszky, R. Ricken, C. Eigner, V. Quiring, H. Herrmann, and C. Silberhorn, “A waveguide cavity resonator source of squeezing,” Phys. Rev. Appl. 7(4), 044026 (2017).
[Crossref]

Ralph, T. C.

C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84(2), 621–669 (2012).
[Crossref]

Repingon, A.

V. D. Vaidya, B. Morrison, L. G. Helt, R. Shahrokhshahi, D. H. Mahler, M. J. Collins, K. Tan, J. Lavoie, A. Repingon, M. Menotti, N. Quesada, R. C. Pooser, A. E. Lita, T. Gerrits, S. W. Nam, and Z. Vernon, “Broadband quadrature-squeezed vacuum and nonclassical photon number correlations from a nanophotonic device,” arXiv e-prints arXiv:1904.07833 (2019).

Ricken, R.

M. Stefszky, R. Ricken, C. Eigner, V. Quiring, H. Herrmann, and C. Silberhorn, “A waveguide cavity resonator source of squeezing,” Phys. Rev. Appl. 7(4), 044026 (2017).
[Crossref]

Schäfermeier, C.

K. Marshall, C. S. Jacobsen, C. Schäfermeier, T. Gehring, C. Weedbrook, and U. L. Andersen, “Continuous-variable quantum computing on encrypted data,” Nat. Commun. 7(1), 13795 (2016).
[Crossref]

Schaffner, C.

F. Furrer, T. Gehring, C. Schaffner, C. Pacher, R. Schnabel, and S. Wehner, “Continuous-variable protocol for oblivious transfer in the noisy-storage model,” Nat. Commun. 9(1), 1450 (2018).
[Crossref]

Schnabel, R.

F. Furrer, T. Gehring, C. Schaffner, C. Pacher, R. Schnabel, and S. Wehner, “Continuous-variable protocol for oblivious transfer in the noisy-storage model,” Nat. Commun. 9(1), 1450 (2018).
[Crossref]

A. Schönbeck, F. Thies, and R. Schnabel, “13 dB squeezed vacuum states at 1550 nm from 12 mW external pump power at 775 nm,” Opt. Lett. 43(1), 110–113 (2018).
[Crossref]

H. Vahlbruch, M. Mehmet, K. Danzmann, and R. Schnabel, “Detection of 15 dB Squeezed States of Light and their Application for the Absolute Calibration of Photoelectric Quantum Efficiency,” Phys. Rev. Lett. 117(11), 110801 (2016).
[Crossref]

T. Gehring, V. Handchen, J. Duhme, F. Furrer, T. Franz, C. Pacher, R. F. Werner, and R. Schnabel, “Implementation of continuous-variable quantum key distribution with composable and one-sided-device-independent security against coherent attacks,” Nat. Commun. 6(1), 8795 (2015).
[Crossref]

M. Mehmet, S. Ast, T. Eberle, S. Steinlechner, H. Vahlbruch, and R. Schnabel, “Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB,” Opt. Express 19(25), 25763–25772 (2011).
[Crossref]

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Händchen, H. Vahlbruch, M. Mehmet, H. Müller-Ebhardt, and R. Schnabel, “Quantum Enhancement of the Zero-Area Sagnac Interferometer Topology for Gravitational Wave Detection,” Phys. Rev. Lett. 104(25), 251102 (2010).
[Crossref]

R. Schnabel, N. Mavalvala, D. E. McClelland, and P. K. Lam, “Quantum metrology for gravitational wave astronomy,” Nat. Commun. 1(1), 121 (2010).
[Crossref]

H. Vahlbruch, A. Khalaidovski, N. Lastzka, C. Gräf, K. Danzmann, and R. Schnabel, “The GEO 600 squeezed light source,” Classical Quantum Gravity 27(8), 084027 (2010).
[Crossref]

H. Vahlbruch, S. Chelkowski, B. Hage, A. Franzen, K. Danzmann, and R. Schnabel, “Coherent control of vacuum squeezing in the gravitational-wave detection band,” Phys. Rev. Lett. 97(1), 011101 (2006).
[Crossref]

Schönbeck, A.

A. Schönbeck, F. Thies, and R. Schnabel, “13 dB squeezed vacuum states at 1550 nm from 12 mW external pump power at 775 nm,” Opt. Lett. 43(1), 110–113 (2018).
[Crossref]

A. Schönbeck, “Compact squeezed-light source at 1550 nm,” Ph.D. thesis, Fakultät für Mathematik, Informatik und Naturwissenschaften Fachbereich Physik der Universit ät Hamburg (2018).

Schunk, G.

A. Otterpohl, F. Sedlmeir, G. Shafiee, T. Dirmeier, U. Vogl, G. Schunk, D. V. Strekalov, H. G. Schwefel, T. Gehring, U. L. Andersen, G. Leuchs, and C. Marquardt, “Squeezed vacuum states from a whispering gallery mode resonator,” arXiv p. 1905.07955 (2019).

Schwefel, H. G.

A. Otterpohl, F. Sedlmeir, G. Shafiee, T. Dirmeier, U. Vogl, G. Schunk, D. V. Strekalov, H. G. Schwefel, T. Gehring, U. L. Andersen, G. Leuchs, and C. Marquardt, “Squeezed vacuum states from a whispering gallery mode resonator,” arXiv p. 1905.07955 (2019).

Sedlmeir, F.

A. Otterpohl, F. Sedlmeir, G. Shafiee, T. Dirmeier, U. Vogl, G. Schunk, D. V. Strekalov, H. G. Schwefel, T. Gehring, U. L. Andersen, G. Leuchs, and C. Marquardt, “Squeezed vacuum states from a whispering gallery mode resonator,” arXiv p. 1905.07955 (2019).

Shafiee, G.

A. Otterpohl, F. Sedlmeir, G. Shafiee, T. Dirmeier, U. Vogl, G. Schunk, D. V. Strekalov, H. G. Schwefel, T. Gehring, U. L. Andersen, G. Leuchs, and C. Marquardt, “Squeezed vacuum states from a whispering gallery mode resonator,” arXiv p. 1905.07955 (2019).

Shahrokhshahi, R.

V. D. Vaidya, B. Morrison, L. G. Helt, R. Shahrokhshahi, D. H. Mahler, M. J. Collins, K. Tan, J. Lavoie, A. Repingon, M. Menotti, N. Quesada, R. C. Pooser, A. E. Lita, T. Gerrits, S. W. Nam, and Z. Vernon, “Broadband quadrature-squeezed vacuum and nonclassical photon number correlations from a nanophotonic device,” arXiv e-prints arXiv:1904.07833 (2019).

Shapiro, J. H.

C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84(2), 621–669 (2012).
[Crossref]

Shi, S.

Silberhorn, C.

M. Stefszky, R. Ricken, C. Eigner, V. Quiring, H. Herrmann, and C. Silberhorn, “A waveguide cavity resonator source of squeezing,” Phys. Rev. Appl. 7(4), 044026 (2017).
[Crossref]

Sornphiphatphong, C.

S. Yokoyama, R. Ukai, S. C. Armstrong, C. Sornphiphatphong, T. Kaji, S. Suzuki, J.-I. Yoshikawa, H. Yonezawa, N. C. Menicucci, and A. Furusawa, “Ultra-large-scale continuous-variable cluster states multiplexed in the time domain,” Nat. Photonics 7(12), 982–986 (2013).
[Crossref]

Stefszky, M.

M. Stefszky, R. Ricken, C. Eigner, V. Quiring, H. Herrmann, and C. Silberhorn, “A waveguide cavity resonator source of squeezing,” Phys. Rev. Appl. 7(4), 044026 (2017).
[Crossref]

Steinlechner, S.

M. Mehmet, S. Ast, T. Eberle, S. Steinlechner, H. Vahlbruch, and R. Schnabel, “Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB,” Opt. Express 19(25), 25763–25772 (2011).
[Crossref]

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Händchen, H. Vahlbruch, M. Mehmet, H. Müller-Ebhardt, and R. Schnabel, “Quantum Enhancement of the Zero-Area Sagnac Interferometer Topology for Gravitational Wave Detection,” Phys. Rev. Lett. 104(25), 251102 (2010).
[Crossref]

Strekalov, D. V.

A. Otterpohl, F. Sedlmeir, G. Shafiee, T. Dirmeier, U. Vogl, G. Schunk, D. V. Strekalov, H. G. Schwefel, T. Gehring, U. L. Andersen, G. Leuchs, and C. Marquardt, “Squeezed vacuum states from a whispering gallery mode resonator,” arXiv p. 1905.07955 (2019).

Suzuki, S.

S. Yokoyama, R. Ukai, S. C. Armstrong, C. Sornphiphatphong, T. Kaji, S. Suzuki, J.-I. Yoshikawa, H. Yonezawa, N. C. Menicucci, and A. Furusawa, “Ultra-large-scale continuous-variable cluster states multiplexed in the time domain,” Nat. Photonics 7(12), 982–986 (2013).
[Crossref]

Takahashi, G.

Takanashi, N.

N. Takanashi, T. Kashiwazaki, T. Kazama, K. Enbutsu, R. Kasahara, T. Umeki, and A. Furusawa, “Detection of 3-dB continuous-wave squeezing at 1.55 um from a fiber-coupled single-pass PPLN ridge waveguide,” arXiv p. 1906.09749 (2019).

Takeno, Y.

Tan, K.

V. D. Vaidya, B. Morrison, L. G. Helt, R. Shahrokhshahi, D. H. Mahler, M. J. Collins, K. Tan, J. Lavoie, A. Repingon, M. Menotti, N. Quesada, R. C. Pooser, A. E. Lita, T. Gerrits, S. W. Nam, and Z. Vernon, “Broadband quadrature-squeezed vacuum and nonclassical photon number correlations from a nanophotonic device,” arXiv e-prints arXiv:1904.07833 (2019).

Tanzilli, S.

F. Mondain, T. Lunghi, A. Zavatta, É. Gouzien, F. Doutre, M. De Micheli, S. Tanzilli, and V. D’Auria, “Chip-based squeezing at a telecom wavelength,” Photonics Res. 7(7), A36–A39 (2019).
[Crossref]

Taylor, M. A.

M. A. Taylor and W. P. Bowen, “Quantum metrology and its application in biology,” Phys. Rep. 615, 1–59 (2016).
[Crossref]

M. A. Taylor, J. Janousek, V. Daria, J. Knittel, B. Hage, H.-A. Bachor, and W. P. Bowen, “Subdiffraction-Limited Quantum Imaging within a Living Cell,” Phys. Rev. X 4(1), 011017 (2014).
[Crossref]

M. A. Taylor, J. Janousek, V. Daria, J. Knittel, B. Hage, H.-A. Bachor, and W. P. Bowen, “Biological measurement beyond the quantum limit,” Nat. Photonics 7(3), 229–233 (2013).
[Crossref]

Thies, F.

Ukai, R.

S. Yokoyama, R. Ukai, S. C. Armstrong, C. Sornphiphatphong, T. Kaji, S. Suzuki, J.-I. Yoshikawa, H. Yonezawa, N. C. Menicucci, and A. Furusawa, “Ultra-large-scale continuous-variable cluster states multiplexed in the time domain,” Nat. Photonics 7(12), 982–986 (2013).
[Crossref]

Umeki, T.

N. Takanashi, T. Kashiwazaki, T. Kazama, K. Enbutsu, R. Kasahara, T. Umeki, and A. Furusawa, “Detection of 3-dB continuous-wave squeezing at 1.55 um from a fiber-coupled single-pass PPLN ridge waveguide,” arXiv p. 1906.09749 (2019).

Usenko, V. C.

L. S. Madsen, V. C. Usenko, M. Lassen, R. Filip, and U. L. Andersen, “Continuous variable quantum key distribution with modulated entangled states,” Nat. Commun. 3(1), 1083 (2012).
[Crossref]

Vahlbruch, H.

H. Vahlbruch, M. Mehmet, K. Danzmann, and R. Schnabel, “Detection of 15 dB Squeezed States of Light and their Application for the Absolute Calibration of Photoelectric Quantum Efficiency,” Phys. Rev. Lett. 117(11), 110801 (2016).
[Crossref]

M. Mehmet, S. Ast, T. Eberle, S. Steinlechner, H. Vahlbruch, and R. Schnabel, “Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB,” Opt. Express 19(25), 25763–25772 (2011).
[Crossref]

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Händchen, H. Vahlbruch, M. Mehmet, H. Müller-Ebhardt, and R. Schnabel, “Quantum Enhancement of the Zero-Area Sagnac Interferometer Topology for Gravitational Wave Detection,” Phys. Rev. Lett. 104(25), 251102 (2010).
[Crossref]

H. Vahlbruch, A. Khalaidovski, N. Lastzka, C. Gräf, K. Danzmann, and R. Schnabel, “The GEO 600 squeezed light source,” Classical Quantum Gravity 27(8), 084027 (2010).
[Crossref]

H. Vahlbruch, S. Chelkowski, B. Hage, A. Franzen, K. Danzmann, and R. Schnabel, “Coherent control of vacuum squeezing in the gravitational-wave detection band,” Phys. Rev. Lett. 97(1), 011101 (2006).
[Crossref]

Vaidya, V. D.

V. D. Vaidya, B. Morrison, L. G. Helt, R. Shahrokhshahi, D. H. Mahler, M. J. Collins, K. Tan, J. Lavoie, A. Repingon, M. Menotti, N. Quesada, R. C. Pooser, A. E. Lita, T. Gerrits, S. W. Nam, and Z. Vernon, “Broadband quadrature-squeezed vacuum and nonclassical photon number correlations from a nanophotonic device,” arXiv e-prints arXiv:1904.07833 (2019).

van Loock, P.

U. L. Andersen, J. S. Neergaard-Nielsen, P. van Loock, and A. Furusawa, “Hybrid discrete- and continuous-variable quantum information,” Nat. Phys. 11(9), 713–719 (2015).
[Crossref]

Vernon, Z.

V. D. Vaidya, B. Morrison, L. G. Helt, R. Shahrokhshahi, D. H. Mahler, M. J. Collins, K. Tan, J. Lavoie, A. Repingon, M. Menotti, N. Quesada, R. C. Pooser, A. E. Lita, T. Gerrits, S. W. Nam, and Z. Vernon, “Broadband quadrature-squeezed vacuum and nonclassical photon number correlations from a nanophotonic device,” arXiv e-prints arXiv:1904.07833 (2019).

Vogl, U.

A. Otterpohl, F. Sedlmeir, G. Shafiee, T. Dirmeier, U. Vogl, G. Schunk, D. V. Strekalov, H. G. Schwefel, T. Gehring, U. L. Andersen, G. Leuchs, and C. Marquardt, “Squeezed vacuum states from a whispering gallery mode resonator,” arXiv p. 1905.07955 (2019).

Wang, Y.

Wang, Y.-J.

Y.-J. Wang, W.-H. Yang, Y.-H. Zheng, and K.-C. Peng, “A compact einstein–podolsky–rosen entangled light source,” Chin. Phys. B 24(7), 070303 (2015).
[Crossref]

Weedbrook, C.

S. Pirandola, B. R. Bardhan, T. Gehring, C. Weedbrook, and S. Lloyd, “Advances in photonic quantum sensing,” Nat. Photonics 12(12), 724–733 (2018).
[Crossref]

K. Marshall, C. S. Jacobsen, C. Schäfermeier, T. Gehring, C. Weedbrook, and U. L. Andersen, “Continuous-variable quantum computing on encrypted data,” Nat. Commun. 7(1), 13795 (2016).
[Crossref]

C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84(2), 621–669 (2012).
[Crossref]

Wehner, S.

F. Furrer, T. Gehring, C. Schaffner, C. Pacher, R. Schnabel, and S. Wehner, “Continuous-variable protocol for oblivious transfer in the noisy-storage model,” Nat. Commun. 9(1), 1450 (2018).
[Crossref]

Werner, R. F.

T. Gehring, V. Handchen, J. Duhme, F. Furrer, T. Franz, C. Pacher, R. F. Werner, and R. Schnabel, “Implementation of continuous-variable quantum key distribution with composable and one-sided-device-independent security against coherent attacks,” Nat. Commun. 6(1), 8795 (2015).
[Crossref]

Yang, W.

Yang, W.-H.

Y.-J. Wang, W.-H. Yang, Y.-H. Zheng, and K.-C. Peng, “A compact einstein–podolsky–rosen entangled light source,” Chin. Phys. B 24(7), 070303 (2015).
[Crossref]

Yokoyama, S.

S. Yokoyama, R. Ukai, S. C. Armstrong, C. Sornphiphatphong, T. Kaji, S. Suzuki, J.-I. Yoshikawa, H. Yonezawa, N. C. Menicucci, and A. Furusawa, “Ultra-large-scale continuous-variable cluster states multiplexed in the time domain,” Nat. Photonics 7(12), 982–986 (2013).
[Crossref]

Yonezawa, H.

S. Yokoyama, R. Ukai, S. C. Armstrong, C. Sornphiphatphong, T. Kaji, S. Suzuki, J.-I. Yoshikawa, H. Yonezawa, N. C. Menicucci, and A. Furusawa, “Ultra-large-scale continuous-variable cluster states multiplexed in the time domain,” Nat. Photonics 7(12), 982–986 (2013).
[Crossref]

Y. Takeno, M. Yukawa, H. Yonezawa, and A. Furusawa, “Observation of -9 dB quadrature squeezing with improvement of phase stability in homodyne measurement,” Opt. Express 15(7), 4321–4327 (2007).
[Crossref]

Yoshikawa, J.-I.

S. Yokoyama, R. Ukai, S. C. Armstrong, C. Sornphiphatphong, T. Kaji, S. Suzuki, J.-I. Yoshikawa, H. Yonezawa, N. C. Menicucci, and A. Furusawa, “Ultra-large-scale continuous-variable cluster states multiplexed in the time domain,” Nat. Photonics 7(12), 982–986 (2013).
[Crossref]

Yukawa, M.

Zavatta, A.

F. Mondain, T. Lunghi, A. Zavatta, É. Gouzien, F. Doutre, M. De Micheli, S. Tanzilli, and V. D’Auria, “Chip-based squeezing at a telecom wavelength,” Photonics Res. 7(7), A36–A39 (2019).
[Crossref]

Zheng, Y.

Zheng, Y.-H.

Y.-J. Wang, W.-H. Yang, Y.-H. Zheng, and K.-C. Peng, “A compact einstein–podolsky–rosen entangled light source,” Chin. Phys. B 24(7), 070303 (2015).
[Crossref]

Chin. Phys. B (1)

Y.-J. Wang, W.-H. Yang, Y.-H. Zheng, and K.-C. Peng, “A compact einstein–podolsky–rosen entangled light source,” Chin. Phys. B 24(7), 070303 (2015).
[Crossref]

Classical Quantum Gravity (1)

H. Vahlbruch, A. Khalaidovski, N. Lastzka, C. Gräf, K. Danzmann, and R. Schnabel, “The GEO 600 squeezed light source,” Classical Quantum Gravity 27(8), 084027 (2010).
[Crossref]

Nat. Commun. (5)

K. Marshall, C. S. Jacobsen, C. Schäfermeier, T. Gehring, C. Weedbrook, and U. L. Andersen, “Continuous-variable quantum computing on encrypted data,” Nat. Commun. 7(1), 13795 (2016).
[Crossref]

R. Schnabel, N. Mavalvala, D. E. McClelland, and P. K. Lam, “Quantum metrology for gravitational wave astronomy,” Nat. Commun. 1(1), 121 (2010).
[Crossref]

L. S. Madsen, V. C. Usenko, M. Lassen, R. Filip, and U. L. Andersen, “Continuous variable quantum key distribution with modulated entangled states,” Nat. Commun. 3(1), 1083 (2012).
[Crossref]

T. Gehring, V. Handchen, J. Duhme, F. Furrer, T. Franz, C. Pacher, R. F. Werner, and R. Schnabel, “Implementation of continuous-variable quantum key distribution with composable and one-sided-device-independent security against coherent attacks,” Nat. Commun. 6(1), 8795 (2015).
[Crossref]

F. Furrer, T. Gehring, C. Schaffner, C. Pacher, R. Schnabel, and S. Wehner, “Continuous-variable protocol for oblivious transfer in the noisy-storage model,” Nat. Commun. 9(1), 1450 (2018).
[Crossref]

Nat. Photonics (4)

S. Pirandola, B. R. Bardhan, T. Gehring, C. Weedbrook, and S. Lloyd, “Advances in photonic quantum sensing,” Nat. Photonics 12(12), 724–733 (2018).
[Crossref]

M. A. Taylor, J. Janousek, V. Daria, J. Knittel, B. Hage, H.-A. Bachor, and W. P. Bowen, “Biological measurement beyond the quantum limit,” Nat. Photonics 7(3), 229–233 (2013).
[Crossref]

The L. I. G. O. Scientific Collaboration, “Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light,” Nat. Photonics 7(8), 613–619 (2013).
[Crossref]

S. Yokoyama, R. Ukai, S. C. Armstrong, C. Sornphiphatphong, T. Kaji, S. Suzuki, J.-I. Yoshikawa, H. Yonezawa, N. C. Menicucci, and A. Furusawa, “Ultra-large-scale continuous-variable cluster states multiplexed in the time domain,” Nat. Photonics 7(12), 982–986 (2013).
[Crossref]

Nat. Phys. (2)

The L. I. G. O. Scientific Collaboration, “A gravitational wave observatory operating beyond the quantum shot-noise limit,” Nat. Phys. 7(12), 962–965 (2011).
[Crossref]

U. L. Andersen, J. S. Neergaard-Nielsen, P. van Loock, and A. Furusawa, “Hybrid discrete- and continuous-variable quantum information,” Nat. Phys. 11(9), 713–719 (2015).
[Crossref]

Opt. Express (3)

Opt. Lett. (3)

Photonics Res. (1)

F. Mondain, T. Lunghi, A. Zavatta, É. Gouzien, F. Doutre, M. De Micheli, S. Tanzilli, and V. D’Auria, “Chip-based squeezing at a telecom wavelength,” Photonics Res. 7(7), A36–A39 (2019).
[Crossref]

Phys. Rep. (1)

M. A. Taylor and W. P. Bowen, “Quantum metrology and its application in biology,” Phys. Rep. 615, 1–59 (2016).
[Crossref]

Phys. Rev. A (1)

D. Gottesman, A. Kitaev, and J. Preskill, “Encoding a qubit in an oscillator,” Phys. Rev. A 64(1), 012310 (2001).
[Crossref]

Phys. Rev. Appl. (1)

M. Stefszky, R. Ricken, C. Eigner, V. Quiring, H. Herrmann, and C. Silberhorn, “A waveguide cavity resonator source of squeezing,” Phys. Rev. Appl. 7(4), 044026 (2017).
[Crossref]

Phys. Rev. Lett. (6)

M. Chen, N. C. Menicucci, and O. Pfister, “Experimental realization of multipartite entanglement of 60 modes of a quantum optical frequency comb,” Phys. Rev. Lett. 112(12), 120505 (2014).
[Crossref]

H. Vahlbruch, M. Mehmet, K. Danzmann, and R. Schnabel, “Detection of 15 dB Squeezed States of Light and their Application for the Absolute Calibration of Photoelectric Quantum Efficiency,” Phys. Rev. Lett. 117(11), 110801 (2016).
[Crossref]

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Händchen, H. Vahlbruch, M. Mehmet, H. Müller-Ebhardt, and R. Schnabel, “Quantum Enhancement of the Zero-Area Sagnac Interferometer Topology for Gravitational Wave Detection,” Phys. Rev. Lett. 104(25), 251102 (2010).
[Crossref]

C. Peuntinger, B. Heim, C. R. Müller, C. Gabriel, C. Marquardt, and G. Leuchs, “Distribution of squeezed states through an atmospheric channel,” Phys. Rev. Lett. 113(6), 060502 (2014).
[Crossref]

H. Vahlbruch, S. Chelkowski, B. Hage, A. Franzen, K. Danzmann, and R. Schnabel, “Coherent control of vacuum squeezing in the gravitational-wave detection band,” Phys. Rev. Lett. 97(1), 011101 (2006).
[Crossref]

N. C. Menicucci, “Fault-tolerant measurement-based quantum computing with continuous-variable cluster states,” Phys. Rev. Lett. 112(12), 120504 (2014).
[Crossref]

Phys. Rev. X (1)

M. A. Taylor, J. Janousek, V. Daria, J. Knittel, B. Hage, H.-A. Bachor, and W. P. Bowen, “Subdiffraction-Limited Quantum Imaging within a Living Cell,” Phys. Rev. X 4(1), 011017 (2014).
[Crossref]

Phys. Scr. (1)

U. L. Andersen, T. Gehring, C. Marquardt, and G. Leuchs, “30 Years of Squeezed Light Generation,” Phys. Scr. 91(5), 053001 (2016).
[Crossref]

Rev. Mod. Phys. (1)

C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84(2), 621–669 (2012).
[Crossref]

Other (7)

A. I. Lvovsky, “Squeezed light,” in Photonics Volume 1: Fundamentals of Photonics and Physics, D. Andrews, ed. (Wiley, 2015), pp. 121–164.

GEO600, “Gravitational-wave detectors begin third observation run,” url: http://www.geo600.org/1897380/gravitational-wave-detectors-begin-third-observation-run (2019).

A. Schönbeck, “Compact squeezed-light source at 1550 nm,” Ph.D. thesis, Fakultät für Mathematik, Informatik und Naturwissenschaften Fachbereich Physik der Universit ät Hamburg (2018).

M. V. Larsen, X. Guo, C. R. Breum, J. S. Neergaard-Nielsen, and U. L. Andersen, “Deterministic generation of a two-dimensional cluster state for universal quantum computing,” arXiv e-prints arXiv:1906.08709 (2019).

V. D. Vaidya, B. Morrison, L. G. Helt, R. Shahrokhshahi, D. H. Mahler, M. J. Collins, K. Tan, J. Lavoie, A. Repingon, M. Menotti, N. Quesada, R. C. Pooser, A. E. Lita, T. Gerrits, S. W. Nam, and Z. Vernon, “Broadband quadrature-squeezed vacuum and nonclassical photon number correlations from a nanophotonic device,” arXiv e-prints arXiv:1904.07833 (2019).

A. Otterpohl, F. Sedlmeir, G. Shafiee, T. Dirmeier, U. Vogl, G. Schunk, D. V. Strekalov, H. G. Schwefel, T. Gehring, U. L. Andersen, G. Leuchs, and C. Marquardt, “Squeezed vacuum states from a whispering gallery mode resonator,” arXiv p. 1905.07955 (2019).

N. Takanashi, T. Kashiwazaki, T. Kazama, K. Enbutsu, R. Kasahara, T. Umeki, and A. Furusawa, “Detection of 3-dB continuous-wave squeezing at 1.55 um from a fiber-coupled single-pass PPLN ridge waveguide,” arXiv p. 1906.09749 (2019).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Schematic and photographic representation of the experimental setup. The free-space part of the setup is placed on a breadboard measuring 30 cm×45 cm with the fiber components being placed around for convenience. The plan is to fit both the free-space part and the fiber components (marked by the teal rectangle) into a 19" box. The beam paths are marked in the photo, and the squeezed beam is marked by the dotted line. The grey boxes in the photo mark temporary components of no importance to the setup. The arrows in the LO path mark the point at which the polarization noise is measured. The 775 nm light, used to generate the squeezed light, is generated in a single-pass LiNbO$_3$ waveguide second-harmonic generator (SHG). A Pound-Drever-Hall lock in the pump path stabilizes the cavity. A coherent-locking scheme for locking the relative phase between pump and local oscillator utilizes a 40 MHz up-shifted pilot tone transmitted together with the squeezed light. The squeezed light is characterized by a balanced homodyne setup that utilizes a reference cavity to help mode-match the squeezed light and local oscillator. Polarization sensitive fiber isolators are inserted along the local oscillator fiber path in order to minimize polarization noise build-up along the fiber path. AOM: acousto-optic modulator, EOM: electro-optic modulator, BS: (50/50) beam-splitter, DBS: dichroic beam-splitter, OPO: double-resonant optical parametric oscillator, PD: photo-detector, HWP: half-wave plate, PS: phase-shifter, Iso: isolator, Circ: circulator, Coll: collimator, Flip: flip mirror
Fig. 2.
Fig. 2. Overlapped Allan deviation (OADEV) and power-spectral density of polarization noise measurements in the local oscillator path. The data was taken at a 1 Hz sampling rate and is normalized to the mean and has mean subtracted. The blue trace is without any polarizing components. The yellow trace is with one polarization sensitive isolator and the green trace is with two isolators. The red trace is polarization insensitive amplitude noise.
Fig. 3.
Fig. 3. Graph showing experimentally obtained gain values (orange dots) as a function of input pump power. The blue line is a fit to Eq. (1), and a threshold value of 5.12±0.03 mW is extracted from the model. The error-bars assume a 5% error on the power.
Fig. 4.
Fig. 4. Squeezing and anti-squeezing relative to shot noise as a function of pump power at a side-band frequency of 5 MHz. The blue points are squeezing and the orange points are anti-squeezing. The theoretical model of Eq. (2) is fitted to the data and plotted in solid lines. The purple dashed line is the fitted squeezing model in the absence of phase noise. The electronic noise, which is 22 dB below shot noise, was subtracted from the data. The error-bars assume a 5% error on the power.
Fig. 5.
Fig. 5. Spectrum of the squeezing and anti-squeezing from 1−120 MHz for different pump powers. The traces are corrected for electronic noise and normalized to the shot noise. The thin solid lines are fits of Eq. (2). Bands around 40 MHz, 80 MHz and 100 MHz are excluded from the fit as they contain the 40 MHz up-shifted pilot tone and electronic pick-up of modulation signals, and the 80 MHz and 100 MHz peaks are removed from the figure.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

g = 1 ( 1 P p P p thr ) 2 ,
δ X ^ ± 2 1 + η esc η opt V 2 η QE ( ± cos 2 ( ϕ ) 4 P p P p thr ( 1 P p P p thr ) 2 + 4 ( ω κ ) 2 sin 2 ( ϕ ) 4 P p P p thr ( 1 ± P p P p thr ) 2 + 4 ( ω κ ) 2 ) ,

Metrics