Abstract

We use a Wiener deconvolution filter to deblur the streak image of streak tube imaging lidar to improve the spatial resolution of the system and reduce the edge blurring effect in point clouds. Experiments were performed to investigate the performance of the deconvolution method. Results show that the spatial resolution improved from 9 to 4.5 mm, and the root-mean-square errors of the edge regions are effectively reduced. Additionally, the transition section decreases from 14 to 5.6 mm when the target is 5 m away from the receiver.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Signal-to-noise performance analysis of streak tube imaging lidar systems. I. Cascaded model

Hongru Yang, Lei Wu, Xiaopeng Wang, Chao Chen, Bing Yu, Bin Yang, Liang Yuan, Lipeng Wu, Zhanli Xue, Gaoping Li, and Baoning Wu
Appl. Opt. 51(36) 8825-8835 (2012)

Design and modeling of three-dimensional laser imaging system based on streak tube

Wenze Xia, Shaokun Han, Naeem Ullah, Jingya Cao, Liang Wang, Jie Cao, Yang Cheng, and Haoyong Yu
Appl. Opt. 56(3) 487-497 (2017)

Deconvolution methods for image deblurring in optical coherence tomography

Yiheng Liu, Yanmei Liang, Guoguang Mu, and Xiaonong Zhu
J. Opt. Soc. Am. A 26(1) 72-77 (2009)

References

  • View by:
  • |
  • |
  • |

  1. J. Gao, J. Sun, and Q. Wang, “Experiments of ocean surface waves and underwater target detection imaging using a slit Streak Tube Imaging Lidar,” Optik 125(18), 5199–5201 (2014).
    [Crossref]
  2. Z. Tian, Z. Cui, L. Zhang, T. Xu, Y. Zhang, and S. Fu, “Control and image processing for streak tube imaging lidar based on VB and MATLAB,” Chin. Opt. Lett. 12(6), 67–70 (2014).
    [Crossref]
  3. J. Gao, J. Sun, and Q. Wang, “Experiments on the range resolution measurement of a slit streak tube imaging lidar,” Optik 126(21), 3084–3087 (2015).
    [Crossref]
  4. G. Ye, R. Fan, Z. Chen, W. Yuan, D. Chen, and P. He, “Range accuracy analysis of streak tube imaging lidar systems,” Opt. Commun. 360, 7–14 (2016).
    [Crossref]
  5. G. Ye, R. Fan, Z. Chen, X. Xu, P. He, and D. Chen, “Effect of time bin size on accuracy of streak tube imaging lidar,” Chin. Opt. Lett. 14(2), 21101–21104 (2016).
    [Crossref]
  6. W. Xia, S. Han, N. Ullah, J. Cao, L. Wang, J. Cao, Y. Cheng, and H. Yu, “Design and modeling of three-dimensional laser imaging system based on streak tube,” Appl. Opt. 56(3), 487–497 (2017).
    [Crossref]
  7. K. Xu, “Monolithically integrated Si gate-controlled light-emitting device: science and properties,” J. Opt. 20(2), 024014 (2018).
    [Crossref]
  8. J. Yu, S. K. Jha, L. Xiao, Q. Liu, P. Wang, C. Surya, and M. Yang, “AlGaN/GaN heterostructures for non-invasive cell electrophysiological measurements,” Biosens. Bioelectron. 23(4), 513–519 (2007).
    [Crossref]
  9. K. Xu, Y. Chen, T. A. Okhai, and L. W. Snyman, “Micro optical sensors based on avalanching silicon light-emitting devices monolithically integrated on chips,” Opt. Mater. Express 9(10), 3985–3997 (2019).
    [Crossref]
  10. B. C. Redman, A. J. Griffis, and E. B. Schibley, “Streak Tube Imaging Lidar (STIL) for 3-D Imaging of Terrestrial Targets,” in Proceeding of 2000 Meeting of the MSS Specialty Group on Active E-O Systems, (Academic, 2000).
  11. Z. Chen, R. Fan, G. Ye, T. Luo, J. Guan, Z. Zhou, and D. Chen, “Depth resolution improvement of streak tube imaging lidar system using three laser beams,” Chin. Opt. Lett. 16(4), 041101 (2018).
    [Crossref]
  12. B. Bonczak and C. E. Kontokosta, “Large-scale parameterization of 3D building morphology in complex urban landscapes using aerial LiDAR and city administrative data,” Comput. Environ. Urban 73, 126–142 (2019).
    [Crossref]
  13. S. Rapinel, E. Fabre, S. Dufour, D. Arvor, C. Mony, and L. and Hubert-Moy, “Mapping potential, existing and efficient wetlands using free remote sensing data,” J. Environ. Manage. 247, 829–839 (2019).
    [Crossref]
  14. A. Räsänen and T. Virtanen, “Data and resolution requirements in mapping vegetation in spatially heterogeneous landscapes,” Remote Sens. Environ. 230, 111207 (2019).
    [Crossref]
  15. R. Fergus, B. Singh, A. Hertzmann, S. T. Roweis, and W. T. Freeman, “Removing camera shake from a single photograph,” ACM Trans. Graph. 25(3), 787–794 (2006).
    [Crossref]
  16. W. H. Richardson, “Bayesian-based iterative method of image restoration,” J. Opt. Soc. Am. 62(1), 55 (1972).
    [Crossref]
  17. L. B. Lucy, “An iterative technique for the rectification of observed distributions,” Astron. J. 79, 745 (1974).
    [Crossref]
  18. A. Rav-Acha and S. Peleg, “Two motion-blurred images are better than one,” Pattern Recognit. Lett. 26(3), 311–317 (2005).
    [Crossref]
  19. R. Neelamani, H. Choi, and R. Baraniuk, “ForWaRD: Fourier-wavelet regularized deconvolution for ill-conditioned systems,” IEEE Trans. Signal Process. 52(2), 418–433 (2004).
    [Crossref]
  20. K. Xu, “Silicon MOS Optoelectronic Micro-Nano Structure Based on Reverse-Biased PN Junction,” Phys. Status Solidi A 216(7), 1800868 (2019).
    [Crossref]

2019 (5)

B. Bonczak and C. E. Kontokosta, “Large-scale parameterization of 3D building morphology in complex urban landscapes using aerial LiDAR and city administrative data,” Comput. Environ. Urban 73, 126–142 (2019).
[Crossref]

S. Rapinel, E. Fabre, S. Dufour, D. Arvor, C. Mony, and L. and Hubert-Moy, “Mapping potential, existing and efficient wetlands using free remote sensing data,” J. Environ. Manage. 247, 829–839 (2019).
[Crossref]

A. Räsänen and T. Virtanen, “Data and resolution requirements in mapping vegetation in spatially heterogeneous landscapes,” Remote Sens. Environ. 230, 111207 (2019).
[Crossref]

K. Xu, Y. Chen, T. A. Okhai, and L. W. Snyman, “Micro optical sensors based on avalanching silicon light-emitting devices monolithically integrated on chips,” Opt. Mater. Express 9(10), 3985–3997 (2019).
[Crossref]

K. Xu, “Silicon MOS Optoelectronic Micro-Nano Structure Based on Reverse-Biased PN Junction,” Phys. Status Solidi A 216(7), 1800868 (2019).
[Crossref]

2018 (2)

2017 (1)

2016 (2)

G. Ye, R. Fan, Z. Chen, W. Yuan, D. Chen, and P. He, “Range accuracy analysis of streak tube imaging lidar systems,” Opt. Commun. 360, 7–14 (2016).
[Crossref]

G. Ye, R. Fan, Z. Chen, X. Xu, P. He, and D. Chen, “Effect of time bin size on accuracy of streak tube imaging lidar,” Chin. Opt. Lett. 14(2), 21101–21104 (2016).
[Crossref]

2015 (1)

J. Gao, J. Sun, and Q. Wang, “Experiments on the range resolution measurement of a slit streak tube imaging lidar,” Optik 126(21), 3084–3087 (2015).
[Crossref]

2014 (2)

J. Gao, J. Sun, and Q. Wang, “Experiments of ocean surface waves and underwater target detection imaging using a slit Streak Tube Imaging Lidar,” Optik 125(18), 5199–5201 (2014).
[Crossref]

Z. Tian, Z. Cui, L. Zhang, T. Xu, Y. Zhang, and S. Fu, “Control and image processing for streak tube imaging lidar based on VB and MATLAB,” Chin. Opt. Lett. 12(6), 67–70 (2014).
[Crossref]

2007 (1)

J. Yu, S. K. Jha, L. Xiao, Q. Liu, P. Wang, C. Surya, and M. Yang, “AlGaN/GaN heterostructures for non-invasive cell electrophysiological measurements,” Biosens. Bioelectron. 23(4), 513–519 (2007).
[Crossref]

2006 (1)

R. Fergus, B. Singh, A. Hertzmann, S. T. Roweis, and W. T. Freeman, “Removing camera shake from a single photograph,” ACM Trans. Graph. 25(3), 787–794 (2006).
[Crossref]

2005 (1)

A. Rav-Acha and S. Peleg, “Two motion-blurred images are better than one,” Pattern Recognit. Lett. 26(3), 311–317 (2005).
[Crossref]

2004 (1)

R. Neelamani, H. Choi, and R. Baraniuk, “ForWaRD: Fourier-wavelet regularized deconvolution for ill-conditioned systems,” IEEE Trans. Signal Process. 52(2), 418–433 (2004).
[Crossref]

1974 (1)

L. B. Lucy, “An iterative technique for the rectification of observed distributions,” Astron. J. 79, 745 (1974).
[Crossref]

1972 (1)

and Hubert-Moy, L.

S. Rapinel, E. Fabre, S. Dufour, D. Arvor, C. Mony, and L. and Hubert-Moy, “Mapping potential, existing and efficient wetlands using free remote sensing data,” J. Environ. Manage. 247, 829–839 (2019).
[Crossref]

Arvor, D.

S. Rapinel, E. Fabre, S. Dufour, D. Arvor, C. Mony, and L. and Hubert-Moy, “Mapping potential, existing and efficient wetlands using free remote sensing data,” J. Environ. Manage. 247, 829–839 (2019).
[Crossref]

Baraniuk, R.

R. Neelamani, H. Choi, and R. Baraniuk, “ForWaRD: Fourier-wavelet regularized deconvolution for ill-conditioned systems,” IEEE Trans. Signal Process. 52(2), 418–433 (2004).
[Crossref]

Bonczak, B.

B. Bonczak and C. E. Kontokosta, “Large-scale parameterization of 3D building morphology in complex urban landscapes using aerial LiDAR and city administrative data,” Comput. Environ. Urban 73, 126–142 (2019).
[Crossref]

Cao, J.

Chen, D.

Z. Chen, R. Fan, G. Ye, T. Luo, J. Guan, Z. Zhou, and D. Chen, “Depth resolution improvement of streak tube imaging lidar system using three laser beams,” Chin. Opt. Lett. 16(4), 041101 (2018).
[Crossref]

G. Ye, R. Fan, Z. Chen, X. Xu, P. He, and D. Chen, “Effect of time bin size on accuracy of streak tube imaging lidar,” Chin. Opt. Lett. 14(2), 21101–21104 (2016).
[Crossref]

G. Ye, R. Fan, Z. Chen, W. Yuan, D. Chen, and P. He, “Range accuracy analysis of streak tube imaging lidar systems,” Opt. Commun. 360, 7–14 (2016).
[Crossref]

Chen, Y.

Chen, Z.

Z. Chen, R. Fan, G. Ye, T. Luo, J. Guan, Z. Zhou, and D. Chen, “Depth resolution improvement of streak tube imaging lidar system using three laser beams,” Chin. Opt. Lett. 16(4), 041101 (2018).
[Crossref]

G. Ye, R. Fan, Z. Chen, W. Yuan, D. Chen, and P. He, “Range accuracy analysis of streak tube imaging lidar systems,” Opt. Commun. 360, 7–14 (2016).
[Crossref]

G. Ye, R. Fan, Z. Chen, X. Xu, P. He, and D. Chen, “Effect of time bin size on accuracy of streak tube imaging lidar,” Chin. Opt. Lett. 14(2), 21101–21104 (2016).
[Crossref]

Cheng, Y.

Choi, H.

R. Neelamani, H. Choi, and R. Baraniuk, “ForWaRD: Fourier-wavelet regularized deconvolution for ill-conditioned systems,” IEEE Trans. Signal Process. 52(2), 418–433 (2004).
[Crossref]

Cui, Z.

Z. Tian, Z. Cui, L. Zhang, T. Xu, Y. Zhang, and S. Fu, “Control and image processing for streak tube imaging lidar based on VB and MATLAB,” Chin. Opt. Lett. 12(6), 67–70 (2014).
[Crossref]

Dufour, S.

S. Rapinel, E. Fabre, S. Dufour, D. Arvor, C. Mony, and L. and Hubert-Moy, “Mapping potential, existing and efficient wetlands using free remote sensing data,” J. Environ. Manage. 247, 829–839 (2019).
[Crossref]

Fabre, E.

S. Rapinel, E. Fabre, S. Dufour, D. Arvor, C. Mony, and L. and Hubert-Moy, “Mapping potential, existing and efficient wetlands using free remote sensing data,” J. Environ. Manage. 247, 829–839 (2019).
[Crossref]

Fan, R.

Z. Chen, R. Fan, G. Ye, T. Luo, J. Guan, Z. Zhou, and D. Chen, “Depth resolution improvement of streak tube imaging lidar system using three laser beams,” Chin. Opt. Lett. 16(4), 041101 (2018).
[Crossref]

G. Ye, R. Fan, Z. Chen, W. Yuan, D. Chen, and P. He, “Range accuracy analysis of streak tube imaging lidar systems,” Opt. Commun. 360, 7–14 (2016).
[Crossref]

G. Ye, R. Fan, Z. Chen, X. Xu, P. He, and D. Chen, “Effect of time bin size on accuracy of streak tube imaging lidar,” Chin. Opt. Lett. 14(2), 21101–21104 (2016).
[Crossref]

Fergus, R.

R. Fergus, B. Singh, A. Hertzmann, S. T. Roweis, and W. T. Freeman, “Removing camera shake from a single photograph,” ACM Trans. Graph. 25(3), 787–794 (2006).
[Crossref]

Freeman, W. T.

R. Fergus, B. Singh, A. Hertzmann, S. T. Roweis, and W. T. Freeman, “Removing camera shake from a single photograph,” ACM Trans. Graph. 25(3), 787–794 (2006).
[Crossref]

Fu, S.

Z. Tian, Z. Cui, L. Zhang, T. Xu, Y. Zhang, and S. Fu, “Control and image processing for streak tube imaging lidar based on VB and MATLAB,” Chin. Opt. Lett. 12(6), 67–70 (2014).
[Crossref]

Gao, J.

J. Gao, J. Sun, and Q. Wang, “Experiments on the range resolution measurement of a slit streak tube imaging lidar,” Optik 126(21), 3084–3087 (2015).
[Crossref]

J. Gao, J. Sun, and Q. Wang, “Experiments of ocean surface waves and underwater target detection imaging using a slit Streak Tube Imaging Lidar,” Optik 125(18), 5199–5201 (2014).
[Crossref]

Griffis, A. J.

B. C. Redman, A. J. Griffis, and E. B. Schibley, “Streak Tube Imaging Lidar (STIL) for 3-D Imaging of Terrestrial Targets,” in Proceeding of 2000 Meeting of the MSS Specialty Group on Active E-O Systems, (Academic, 2000).

Guan, J.

Han, S.

He, P.

G. Ye, R. Fan, Z. Chen, X. Xu, P. He, and D. Chen, “Effect of time bin size on accuracy of streak tube imaging lidar,” Chin. Opt. Lett. 14(2), 21101–21104 (2016).
[Crossref]

G. Ye, R. Fan, Z. Chen, W. Yuan, D. Chen, and P. He, “Range accuracy analysis of streak tube imaging lidar systems,” Opt. Commun. 360, 7–14 (2016).
[Crossref]

Hertzmann, A.

R. Fergus, B. Singh, A. Hertzmann, S. T. Roweis, and W. T. Freeman, “Removing camera shake from a single photograph,” ACM Trans. Graph. 25(3), 787–794 (2006).
[Crossref]

Jha, S. K.

J. Yu, S. K. Jha, L. Xiao, Q. Liu, P. Wang, C. Surya, and M. Yang, “AlGaN/GaN heterostructures for non-invasive cell electrophysiological measurements,” Biosens. Bioelectron. 23(4), 513–519 (2007).
[Crossref]

Kontokosta, C. E.

B. Bonczak and C. E. Kontokosta, “Large-scale parameterization of 3D building morphology in complex urban landscapes using aerial LiDAR and city administrative data,” Comput. Environ. Urban 73, 126–142 (2019).
[Crossref]

Liu, Q.

J. Yu, S. K. Jha, L. Xiao, Q. Liu, P. Wang, C. Surya, and M. Yang, “AlGaN/GaN heterostructures for non-invasive cell electrophysiological measurements,” Biosens. Bioelectron. 23(4), 513–519 (2007).
[Crossref]

Lucy, L. B.

L. B. Lucy, “An iterative technique for the rectification of observed distributions,” Astron. J. 79, 745 (1974).
[Crossref]

Luo, T.

Mony, C.

S. Rapinel, E. Fabre, S. Dufour, D. Arvor, C. Mony, and L. and Hubert-Moy, “Mapping potential, existing and efficient wetlands using free remote sensing data,” J. Environ. Manage. 247, 829–839 (2019).
[Crossref]

Neelamani, R.

R. Neelamani, H. Choi, and R. Baraniuk, “ForWaRD: Fourier-wavelet regularized deconvolution for ill-conditioned systems,” IEEE Trans. Signal Process. 52(2), 418–433 (2004).
[Crossref]

Okhai, T. A.

Peleg, S.

A. Rav-Acha and S. Peleg, “Two motion-blurred images are better than one,” Pattern Recognit. Lett. 26(3), 311–317 (2005).
[Crossref]

Rapinel, S.

S. Rapinel, E. Fabre, S. Dufour, D. Arvor, C. Mony, and L. and Hubert-Moy, “Mapping potential, existing and efficient wetlands using free remote sensing data,” J. Environ. Manage. 247, 829–839 (2019).
[Crossref]

Räsänen, A.

A. Räsänen and T. Virtanen, “Data and resolution requirements in mapping vegetation in spatially heterogeneous landscapes,” Remote Sens. Environ. 230, 111207 (2019).
[Crossref]

Rav-Acha, A.

A. Rav-Acha and S. Peleg, “Two motion-blurred images are better than one,” Pattern Recognit. Lett. 26(3), 311–317 (2005).
[Crossref]

Redman, B. C.

B. C. Redman, A. J. Griffis, and E. B. Schibley, “Streak Tube Imaging Lidar (STIL) for 3-D Imaging of Terrestrial Targets,” in Proceeding of 2000 Meeting of the MSS Specialty Group on Active E-O Systems, (Academic, 2000).

Richardson, W. H.

Roweis, S. T.

R. Fergus, B. Singh, A. Hertzmann, S. T. Roweis, and W. T. Freeman, “Removing camera shake from a single photograph,” ACM Trans. Graph. 25(3), 787–794 (2006).
[Crossref]

Schibley, E. B.

B. C. Redman, A. J. Griffis, and E. B. Schibley, “Streak Tube Imaging Lidar (STIL) for 3-D Imaging of Terrestrial Targets,” in Proceeding of 2000 Meeting of the MSS Specialty Group on Active E-O Systems, (Academic, 2000).

Singh, B.

R. Fergus, B. Singh, A. Hertzmann, S. T. Roweis, and W. T. Freeman, “Removing camera shake from a single photograph,” ACM Trans. Graph. 25(3), 787–794 (2006).
[Crossref]

Snyman, L. W.

Sun, J.

J. Gao, J. Sun, and Q. Wang, “Experiments on the range resolution measurement of a slit streak tube imaging lidar,” Optik 126(21), 3084–3087 (2015).
[Crossref]

J. Gao, J. Sun, and Q. Wang, “Experiments of ocean surface waves and underwater target detection imaging using a slit Streak Tube Imaging Lidar,” Optik 125(18), 5199–5201 (2014).
[Crossref]

Surya, C.

J. Yu, S. K. Jha, L. Xiao, Q. Liu, P. Wang, C. Surya, and M. Yang, “AlGaN/GaN heterostructures for non-invasive cell electrophysiological measurements,” Biosens. Bioelectron. 23(4), 513–519 (2007).
[Crossref]

Tian, Z.

Z. Tian, Z. Cui, L. Zhang, T. Xu, Y. Zhang, and S. Fu, “Control and image processing for streak tube imaging lidar based on VB and MATLAB,” Chin. Opt. Lett. 12(6), 67–70 (2014).
[Crossref]

Ullah, N.

Virtanen, T.

A. Räsänen and T. Virtanen, “Data and resolution requirements in mapping vegetation in spatially heterogeneous landscapes,” Remote Sens. Environ. 230, 111207 (2019).
[Crossref]

Wang, L.

Wang, P.

J. Yu, S. K. Jha, L. Xiao, Q. Liu, P. Wang, C. Surya, and M. Yang, “AlGaN/GaN heterostructures for non-invasive cell electrophysiological measurements,” Biosens. Bioelectron. 23(4), 513–519 (2007).
[Crossref]

Wang, Q.

J. Gao, J. Sun, and Q. Wang, “Experiments on the range resolution measurement of a slit streak tube imaging lidar,” Optik 126(21), 3084–3087 (2015).
[Crossref]

J. Gao, J. Sun, and Q. Wang, “Experiments of ocean surface waves and underwater target detection imaging using a slit Streak Tube Imaging Lidar,” Optik 125(18), 5199–5201 (2014).
[Crossref]

Xia, W.

Xiao, L.

J. Yu, S. K. Jha, L. Xiao, Q. Liu, P. Wang, C. Surya, and M. Yang, “AlGaN/GaN heterostructures for non-invasive cell electrophysiological measurements,” Biosens. Bioelectron. 23(4), 513–519 (2007).
[Crossref]

Xu, K.

K. Xu, Y. Chen, T. A. Okhai, and L. W. Snyman, “Micro optical sensors based on avalanching silicon light-emitting devices monolithically integrated on chips,” Opt. Mater. Express 9(10), 3985–3997 (2019).
[Crossref]

K. Xu, “Silicon MOS Optoelectronic Micro-Nano Structure Based on Reverse-Biased PN Junction,” Phys. Status Solidi A 216(7), 1800868 (2019).
[Crossref]

K. Xu, “Monolithically integrated Si gate-controlled light-emitting device: science and properties,” J. Opt. 20(2), 024014 (2018).
[Crossref]

Xu, T.

Z. Tian, Z. Cui, L. Zhang, T. Xu, Y. Zhang, and S. Fu, “Control and image processing for streak tube imaging lidar based on VB and MATLAB,” Chin. Opt. Lett. 12(6), 67–70 (2014).
[Crossref]

Xu, X.

G. Ye, R. Fan, Z. Chen, X. Xu, P. He, and D. Chen, “Effect of time bin size on accuracy of streak tube imaging lidar,” Chin. Opt. Lett. 14(2), 21101–21104 (2016).
[Crossref]

Yang, M.

J. Yu, S. K. Jha, L. Xiao, Q. Liu, P. Wang, C. Surya, and M. Yang, “AlGaN/GaN heterostructures for non-invasive cell electrophysiological measurements,” Biosens. Bioelectron. 23(4), 513–519 (2007).
[Crossref]

Ye, G.

Z. Chen, R. Fan, G. Ye, T. Luo, J. Guan, Z. Zhou, and D. Chen, “Depth resolution improvement of streak tube imaging lidar system using three laser beams,” Chin. Opt. Lett. 16(4), 041101 (2018).
[Crossref]

G. Ye, R. Fan, Z. Chen, X. Xu, P. He, and D. Chen, “Effect of time bin size on accuracy of streak tube imaging lidar,” Chin. Opt. Lett. 14(2), 21101–21104 (2016).
[Crossref]

G. Ye, R. Fan, Z. Chen, W. Yuan, D. Chen, and P. He, “Range accuracy analysis of streak tube imaging lidar systems,” Opt. Commun. 360, 7–14 (2016).
[Crossref]

Yu, H.

Yu, J.

J. Yu, S. K. Jha, L. Xiao, Q. Liu, P. Wang, C. Surya, and M. Yang, “AlGaN/GaN heterostructures for non-invasive cell electrophysiological measurements,” Biosens. Bioelectron. 23(4), 513–519 (2007).
[Crossref]

Yuan, W.

G. Ye, R. Fan, Z. Chen, W. Yuan, D. Chen, and P. He, “Range accuracy analysis of streak tube imaging lidar systems,” Opt. Commun. 360, 7–14 (2016).
[Crossref]

Zhang, L.

Z. Tian, Z. Cui, L. Zhang, T. Xu, Y. Zhang, and S. Fu, “Control and image processing for streak tube imaging lidar based on VB and MATLAB,” Chin. Opt. Lett. 12(6), 67–70 (2014).
[Crossref]

Zhang, Y.

Z. Tian, Z. Cui, L. Zhang, T. Xu, Y. Zhang, and S. Fu, “Control and image processing for streak tube imaging lidar based on VB and MATLAB,” Chin. Opt. Lett. 12(6), 67–70 (2014).
[Crossref]

Zhou, Z.

ACM Trans. Graph. (1)

R. Fergus, B. Singh, A. Hertzmann, S. T. Roweis, and W. T. Freeman, “Removing camera shake from a single photograph,” ACM Trans. Graph. 25(3), 787–794 (2006).
[Crossref]

Appl. Opt. (1)

Astron. J. (1)

L. B. Lucy, “An iterative technique for the rectification of observed distributions,” Astron. J. 79, 745 (1974).
[Crossref]

Biosens. Bioelectron. (1)

J. Yu, S. K. Jha, L. Xiao, Q. Liu, P. Wang, C. Surya, and M. Yang, “AlGaN/GaN heterostructures for non-invasive cell electrophysiological measurements,” Biosens. Bioelectron. 23(4), 513–519 (2007).
[Crossref]

Chin. Opt. Lett. (3)

Z. Tian, Z. Cui, L. Zhang, T. Xu, Y. Zhang, and S. Fu, “Control and image processing for streak tube imaging lidar based on VB and MATLAB,” Chin. Opt. Lett. 12(6), 67–70 (2014).
[Crossref]

Z. Chen, R. Fan, G. Ye, T. Luo, J. Guan, Z. Zhou, and D. Chen, “Depth resolution improvement of streak tube imaging lidar system using three laser beams,” Chin. Opt. Lett. 16(4), 041101 (2018).
[Crossref]

G. Ye, R. Fan, Z. Chen, X. Xu, P. He, and D. Chen, “Effect of time bin size on accuracy of streak tube imaging lidar,” Chin. Opt. Lett. 14(2), 21101–21104 (2016).
[Crossref]

Comput. Environ. Urban (1)

B. Bonczak and C. E. Kontokosta, “Large-scale parameterization of 3D building morphology in complex urban landscapes using aerial LiDAR and city administrative data,” Comput. Environ. Urban 73, 126–142 (2019).
[Crossref]

IEEE Trans. Signal Process. (1)

R. Neelamani, H. Choi, and R. Baraniuk, “ForWaRD: Fourier-wavelet regularized deconvolution for ill-conditioned systems,” IEEE Trans. Signal Process. 52(2), 418–433 (2004).
[Crossref]

J. Environ. Manage. (1)

S. Rapinel, E. Fabre, S. Dufour, D. Arvor, C. Mony, and L. and Hubert-Moy, “Mapping potential, existing and efficient wetlands using free remote sensing data,” J. Environ. Manage. 247, 829–839 (2019).
[Crossref]

J. Opt. (1)

K. Xu, “Monolithically integrated Si gate-controlled light-emitting device: science and properties,” J. Opt. 20(2), 024014 (2018).
[Crossref]

J. Opt. Soc. Am. (1)

Opt. Commun. (1)

G. Ye, R. Fan, Z. Chen, W. Yuan, D. Chen, and P. He, “Range accuracy analysis of streak tube imaging lidar systems,” Opt. Commun. 360, 7–14 (2016).
[Crossref]

Opt. Mater. Express (1)

Optik (2)

J. Gao, J. Sun, and Q. Wang, “Experiments of ocean surface waves and underwater target detection imaging using a slit Streak Tube Imaging Lidar,” Optik 125(18), 5199–5201 (2014).
[Crossref]

J. Gao, J. Sun, and Q. Wang, “Experiments on the range resolution measurement of a slit streak tube imaging lidar,” Optik 126(21), 3084–3087 (2015).
[Crossref]

Pattern Recognit. Lett. (1)

A. Rav-Acha and S. Peleg, “Two motion-blurred images are better than one,” Pattern Recognit. Lett. 26(3), 311–317 (2005).
[Crossref]

Phys. Status Solidi A (1)

K. Xu, “Silicon MOS Optoelectronic Micro-Nano Structure Based on Reverse-Biased PN Junction,” Phys. Status Solidi A 216(7), 1800868 (2019).
[Crossref]

Remote Sens. Environ. (1)

A. Räsänen and T. Virtanen, “Data and resolution requirements in mapping vegetation in spatially heterogeneous landscapes,” Remote Sens. Environ. 230, 111207 (2019).
[Crossref]

Other (1)

B. C. Redman, A. J. Griffis, and E. B. Schibley, “Streak Tube Imaging Lidar (STIL) for 3-D Imaging of Terrestrial Targets,” in Proceeding of 2000 Meeting of the MSS Specialty Group on Active E-O Systems, (Academic, 2000).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Schematic of the STIL system. (a) - schematic of the laser after the emission. (b) - schematic of the data collection process. (c) - streak image on the CCD.
Fig. 2.
Fig. 2. Fit results of the intensity image of the point-source object streak image. (a) - the main plot; (b) - the contour plot.
Fig. 3.
Fig. 3. (a) Top view of the target. (b) Three-dimensional view of the target. (c) Intensity image of the original streak image when the gap width is 10 mm. (d) Intensity image of the image after Wiener deconvolution filtering when the gap width is 10 mm. (e) Intensity of the pixels on the red line, and the calculated Cs of the original streak image. (f) Intensity of the pixels on the red line, and the calculated Cs of the image after Wiener deconvolution filtering.
Fig. 4.
Fig. 4. Spatial resolution results of the original streak image and the image after Wiener deconvolution filtering. (a) Cs results of the original streak image and the image after Wiener deconvolution filtering when the gap width changes from 1 to 60 mm. (b), (d), (f), (h) Intensity and calculated Cs of the pixels on the red line of the original streak image when the gap widths are 2, 4.5, 9, and 18 mm. (c), (e), (g), (i) Intensity and calculated Cs of the pixels on the red line on the image after Wiener deconvolution filtering when the gap widths are 2, 4.5, 9, and 18 mm.
Fig. 5.
Fig. 5. (a) Front view of the target. (b) Top view of the target. (c) Intensity image of the original streak image when the depth distance is 12 mm. (d) Intensity image of the image after Wiener deconvolution filtering when the depth distance is 12 mm. (e) Histogram of the vertical pixel values of 100 original streak images and the calculated Cd, when the depth distance is 12 mm. (f) Histogram of the vertical pixel values of 100 images after Wiener deconvolution filtering and the calculated Cd, when the depth distance is 12 mm.
Fig. 6.
Fig. 6. Depth resolution results of the original streak image and the image after Wiener deconvolution filtering. (a) Cd results of the original streak image and the image after Wiener deconvolution filtering when the depth distance changes from 1 to 200 mm. (b), (d), (f), (h) Intensity and calculated Cd of the pixels on the red line of the original streak image when the gap widths are 8, 9, 10, and 15 mm. (c), (e), (g), (i) Intensity and calculated Cd of the pixels on the red line of the image after Wiener deconvolution filtering when the gap widths are 8, 9, 10, and 15 mm.
Fig. 7.
Fig. 7. (a) Front view and top view of one plane target. (b) Calculated vertical position of one plane target.
Fig. 8.
Fig. 8. (a), (b) Top view and left view of the two plane targets, the depth distances are set as 500 and 1000 mm. (c), (d) The calculated vertical position and RMSE when the depth distances are 500 and 1000 mm.
Fig. 9.
Fig. 9. (a) RMSE of the original streak image and the image after Wiener deconvolution filtering of the three plane targets when the gap width changes from 2 to 50 mm. (b), (c), (d) Calculated vertical position and RMSE of the three plane targets when the gap widths are 8, 16, 25 mm.

Tables (1)

Tables Icon

Table 1. Experimental results of the original streak image and the image after Wiener deconvolution filtering (units: mm)

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

y ( t ) = ( h x ) ( t ) + n ( t ) ,
x ^ ( t ) = ( g y ) ( t ) ,
G ( f ) = H ( f ) S ( f ) | H ( f ) | 2 S ( f ) + N ( f )  =  1 H ( f ) [ | H ( f ) | 2 | H ( f ) | 2 + NSR( f ) ] ,
f ( x , y ) = a 2 π b c d e exp ( 1 2 ( b c d e ) ( c ( x f ) 2 ( d + e ) ( x f ) ( y g ) + b ( y g ) 2 ) ) .
C s = ( I max 1 + I max 2 ) 2 I min ( I max 1 + I max 2 ) 2 + I min .
C d = N min N max 1 + N max 2 2 .

Metrics