Abstract

We report design and experimental verification of narrowband mid-infrared optical filters with transmission characteristics that are practically constant over a wide range of incident angles. The filter employs a dense array of dielectric resonant cavities in a metal film, where the transmission of each cavity depends upon localized rather than travelling fields, making the filter fundamentally angle-independent. We show experimentally a transmission around 90% from normal incidence up to 60°. Simulations show that the filter becomes polarization-independent when geometry of the cavities is azimuthally symmetric.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
An angle-independent Frequency Selective Surface in the optical range

Daniel Van Labeke, Davy Gérard, Brahim Guizal, Fadi I. Baida, and Lifeng Li
Opt. Express 14(25) 11945-11951 (2006)

Highly efficient and angle-tolerant mid-infrared filter based on a cascaded etalon resonator

Chul-Soon Im and Sang-Shin Lee
Opt. Express 25(14) 16083-16091 (2017)

Ultra-narrowband polarization insensitive transmission filter using a coupled dielectric-metal metasurface

A. Nagarajan, K. van Erve, and G. Gerini
Opt. Express 28(1) 773-787 (2020)

References

  • View by:
  • |
  • |
  • |

  1. A. V. Kanaev, M. R. Kutteruf, M. K. Yetzbacher, M. J. Deprenger, and K. M. Novak, “Imaging with multi-spectral mosaic-array cameras,” Appl. Opt. 54(31), F149–F157 (2015).
    [Crossref]
  2. G. Perez, A. M. Bernal-Oliva, E. Marquez, J. M. Gonzalez-Leal, C. Morant, I. Genova, J. F. Trigo, and J. M. Sanz, “Optical and structural characterization of single and multilayer germanium/silicon monoxide systems,” Thin Solid Films 485(1-2), 274–283 (2005).
    [Crossref]
  3. C. Sibilia, M. Scalora, M. Bertolotti, M. J. Blomer, and C. M. Bowden, “Electromagnetic properties of periodic and quasi-periodic one-dimensional, metallo-dielectric band gap structures,” J. Opt. A: Pure Appl. Opt. 1(4), 490–494 (1999).
    [Crossref]
  4. Y. J. Jen and M. J. Lin, “Design and fabrication of a narrow bandpass filter with low dependence on angle of incidence,” Coatings 8(7), 231 (2018).
    [Crossref]
  5. Y. S. Lin and W. Chen, “A large –area, wide-incident-angle, and polarization-independent plasmonic color filter for glucose sensing,” Opt. Mater. 75, 739–743 (2018).
    [Crossref]
  6. C. M. Wang, Y. C. Chang, M. W. Tsai, Y. H. Ye, C. Y. Chen, Y. W. Jiang, S. C. Lee, and D. P. Tsai, “Angle-independent infrared filter assisted by localized surface plasmon polariton,” IEEE Photonics Technol. Lett. 20(13), 1103–1105 (2008).
    [Crossref]
  7. I. A. Avrutsky, G. A. Golubenko, V. A. Sychugov, and A. V. Tishchenko, “Light reflection from the surface of a corrugated waveguide,” Tech. Phys. Lett. 11, 401–402 (1985).
  8. I. A. Avrutsky and V. A. Sychugov, “Reflection of a beam of finite size from a corrugated waveguide,” J. Mod. Opt. 36(11), 1527–1539 (1989).
    [Crossref]
  9. R. Magnusson and S. S. Wang, “New principles for optical filters,” Appl. Phys. Lett. 61(9), 1022–1024 (1992).
    [Crossref]
  10. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
    [Crossref]
  11. I. Avrutsky, Y. Zhao, and V. Kochergin, “Surface-pasmon-assisted resonant tunneling of light through a periodically corrugated thin metal film,” Opt. Lett. 25(9), 595–597 (2000).
    [Crossref]
  12. S. R. Vangala, I. Avrutsky, P. Keiffer, N. Nader, D. Walker, J. W. Cleary, and J. R. Hendrickson, “Asymmetric photonic resonances in GaN slab waveguide for mid infrared selective filters,” Opt. Express 22(20), 24742–24751 (2014).
    [Crossref]
  13. R. F. Harrington and D. T. Auckland, “Electromagnetic transmission through narrow slots in thick conducting screens,” IEEE Trans. Antennas Propag. 28(5), 616–622 (1980).
    [Crossref]
  14. L. Verslegers, Z. Yu, P. B. Catrysse, and S. Fan, “Temporal coupled-mode theory for resonant apertures,” J. Opt. Soc. Am. B 27(10), 1947–1956 (2010).
    [Crossref]
  15. Y. Leviatan, R. F. Harrington, and J. R. Mautz, “Electromagnetic transmission through apertures in a cavity in a thick conductor,” IRE Trans. Antennas Propag. 30(6), 1153–1165 (1982).
    [Crossref]
  16. S. Astilean, P. Lalanne, and M. N. Palamaru, “Light transmission through metallic channels much smaller than the wavelength,” Opt. Commun. 175(4-6), 265–273 (2000).
    [Crossref]
  17. J. Zhou and L. Jay Guo, “Achieving angle-insensitive spectrum filter with the slit nanoresonator array structure,” J. Nanophotonics 9(1), 093795 (2014).
    [Crossref]
  18. Q. Wang, Z. Zhu, H. Gu, and Q. Tan, “Angle-tolerant hybrid plasmonic blue filter with polarization-insensitivity and high transmission,” Opt. Commun. 427, 457–461 (2018).
    [Crossref]
  19. Q. Wang, Z. Zhu, H. Gu, M. Chen, and Q. Tan, “Multi-band transmission color filters for multi-color white LEDs based visible light communication,” Opt. Commun. 403, 330–334 (2017).
    [Crossref]
  20. E. Popov, S. Enoch, G. Tayeb, M. Neviere, B. Gralak, and N. Bonod, “Enhanced transmission due to nonplasmon resonances in one- and two-dimensional gratings,” Appl. Opt. 43(5), 999–1008 (2004).
    [Crossref]
  21. Y. Leviatan, “Electromagnetic coupling between two half-space regions separated by two slot-perforated parallel conducting screens,” IEEE Trans. Microwave Theory Tech. 36(1), 44–52 (1988).
    [Crossref]
  22. R. Merlin, “Pinholes meet Fabry-Perot: perfect and imperfect transmission of waves through small apertures,” Phys. Rev. X 2(3), 031015 (2012).
    [Crossref]
  23. S. M. Young, C. Pfeiffer, A. Grbic, and R. Merlin, “Enhanced resonant transmission of electromagnetic radiation through a pair of subwavelength slits,” Appl. Phys. Lett. 103(4), 041104 (2013).
    [Crossref]
  24. D. Fleischman, L. A. Sweatlock, H. Murakami, and H. Atwater, “Hyper-selective plasmonic color filters,” Opt. Express 25(22), 27386–27395 (2017).
    [Crossref]
  25. M. Liscidini, D. Gerace, L. C. Andreani, and J. E. Sipe, “Scattering-matrix analysis of periodically patterned multilayers with asymmetric unit cells and birefringent media,” Phys. Rev. B 77(3), 035324 (2008).
    [Crossref]
  26. D. V. Labeke, D. Gerard, B. Guizal, F. I. Baida, and L. Li, “An angle-independent frequency selective surface in the optical range,” Opt. Express 14(25), 11945 (2006).
    [Crossref]
  27. COMSOL Multiphysics® v 5.4. www.comsol.com . COMSOL AB, Stockholm, Sweden.
  28. X. Buet, E. Daran, D. Belharet, F. Lozes-Dupey, A. Monmayrant, and O. Gauthier-Lafaye, “High angular tolerance and reflectivity with narrow bandwidth cavity-resonator-integrated guided-mode resonance filter,” Opt. Express 20(8), 9322–9327 (2012).
    [Crossref]
  29. K. Kintaka, T. Majima, J. Inoue, K. Hatanaka, J. Nishii, and S. Ura, “Cavity-resonator-integrated guided-mode resonance filter for aperture miniaturization,” Opt. Express 20(2), 1444–1449 (2012).
    [Crossref]

2018 (3)

Y. J. Jen and M. J. Lin, “Design and fabrication of a narrow bandpass filter with low dependence on angle of incidence,” Coatings 8(7), 231 (2018).
[Crossref]

Y. S. Lin and W. Chen, “A large –area, wide-incident-angle, and polarization-independent plasmonic color filter for glucose sensing,” Opt. Mater. 75, 739–743 (2018).
[Crossref]

Q. Wang, Z. Zhu, H. Gu, and Q. Tan, “Angle-tolerant hybrid plasmonic blue filter with polarization-insensitivity and high transmission,” Opt. Commun. 427, 457–461 (2018).
[Crossref]

2017 (2)

Q. Wang, Z. Zhu, H. Gu, M. Chen, and Q. Tan, “Multi-band transmission color filters for multi-color white LEDs based visible light communication,” Opt. Commun. 403, 330–334 (2017).
[Crossref]

D. Fleischman, L. A. Sweatlock, H. Murakami, and H. Atwater, “Hyper-selective plasmonic color filters,” Opt. Express 25(22), 27386–27395 (2017).
[Crossref]

2015 (1)

2014 (2)

2013 (1)

S. M. Young, C. Pfeiffer, A. Grbic, and R. Merlin, “Enhanced resonant transmission of electromagnetic radiation through a pair of subwavelength slits,” Appl. Phys. Lett. 103(4), 041104 (2013).
[Crossref]

2012 (3)

2010 (1)

2008 (2)

C. M. Wang, Y. C. Chang, M. W. Tsai, Y. H. Ye, C. Y. Chen, Y. W. Jiang, S. C. Lee, and D. P. Tsai, “Angle-independent infrared filter assisted by localized surface plasmon polariton,” IEEE Photonics Technol. Lett. 20(13), 1103–1105 (2008).
[Crossref]

M. Liscidini, D. Gerace, L. C. Andreani, and J. E. Sipe, “Scattering-matrix analysis of periodically patterned multilayers with asymmetric unit cells and birefringent media,” Phys. Rev. B 77(3), 035324 (2008).
[Crossref]

2006 (1)

2005 (1)

G. Perez, A. M. Bernal-Oliva, E. Marquez, J. M. Gonzalez-Leal, C. Morant, I. Genova, J. F. Trigo, and J. M. Sanz, “Optical and structural characterization of single and multilayer germanium/silicon monoxide systems,” Thin Solid Films 485(1-2), 274–283 (2005).
[Crossref]

2004 (1)

2000 (2)

S. Astilean, P. Lalanne, and M. N. Palamaru, “Light transmission through metallic channels much smaller than the wavelength,” Opt. Commun. 175(4-6), 265–273 (2000).
[Crossref]

I. Avrutsky, Y. Zhao, and V. Kochergin, “Surface-pasmon-assisted resonant tunneling of light through a periodically corrugated thin metal film,” Opt. Lett. 25(9), 595–597 (2000).
[Crossref]

1999 (1)

C. Sibilia, M. Scalora, M. Bertolotti, M. J. Blomer, and C. M. Bowden, “Electromagnetic properties of periodic and quasi-periodic one-dimensional, metallo-dielectric band gap structures,” J. Opt. A: Pure Appl. Opt. 1(4), 490–494 (1999).
[Crossref]

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

1992 (1)

R. Magnusson and S. S. Wang, “New principles for optical filters,” Appl. Phys. Lett. 61(9), 1022–1024 (1992).
[Crossref]

1989 (1)

I. A. Avrutsky and V. A. Sychugov, “Reflection of a beam of finite size from a corrugated waveguide,” J. Mod. Opt. 36(11), 1527–1539 (1989).
[Crossref]

1988 (1)

Y. Leviatan, “Electromagnetic coupling between two half-space regions separated by two slot-perforated parallel conducting screens,” IEEE Trans. Microwave Theory Tech. 36(1), 44–52 (1988).
[Crossref]

1985 (1)

I. A. Avrutsky, G. A. Golubenko, V. A. Sychugov, and A. V. Tishchenko, “Light reflection from the surface of a corrugated waveguide,” Tech. Phys. Lett. 11, 401–402 (1985).

1982 (1)

Y. Leviatan, R. F. Harrington, and J. R. Mautz, “Electromagnetic transmission through apertures in a cavity in a thick conductor,” IRE Trans. Antennas Propag. 30(6), 1153–1165 (1982).
[Crossref]

1980 (1)

R. F. Harrington and D. T. Auckland, “Electromagnetic transmission through narrow slots in thick conducting screens,” IEEE Trans. Antennas Propag. 28(5), 616–622 (1980).
[Crossref]

Andreani, L. C.

M. Liscidini, D. Gerace, L. C. Andreani, and J. E. Sipe, “Scattering-matrix analysis of periodically patterned multilayers with asymmetric unit cells and birefringent media,” Phys. Rev. B 77(3), 035324 (2008).
[Crossref]

Astilean, S.

S. Astilean, P. Lalanne, and M. N. Palamaru, “Light transmission through metallic channels much smaller than the wavelength,” Opt. Commun. 175(4-6), 265–273 (2000).
[Crossref]

Atwater, H.

Auckland, D. T.

R. F. Harrington and D. T. Auckland, “Electromagnetic transmission through narrow slots in thick conducting screens,” IEEE Trans. Antennas Propag. 28(5), 616–622 (1980).
[Crossref]

Avrutsky, I.

Avrutsky, I. A.

I. A. Avrutsky and V. A. Sychugov, “Reflection of a beam of finite size from a corrugated waveguide,” J. Mod. Opt. 36(11), 1527–1539 (1989).
[Crossref]

I. A. Avrutsky, G. A. Golubenko, V. A. Sychugov, and A. V. Tishchenko, “Light reflection from the surface of a corrugated waveguide,” Tech. Phys. Lett. 11, 401–402 (1985).

Baida, F. I.

Belharet, D.

Bernal-Oliva, A. M.

G. Perez, A. M. Bernal-Oliva, E. Marquez, J. M. Gonzalez-Leal, C. Morant, I. Genova, J. F. Trigo, and J. M. Sanz, “Optical and structural characterization of single and multilayer germanium/silicon monoxide systems,” Thin Solid Films 485(1-2), 274–283 (2005).
[Crossref]

Bertolotti, M.

C. Sibilia, M. Scalora, M. Bertolotti, M. J. Blomer, and C. M. Bowden, “Electromagnetic properties of periodic and quasi-periodic one-dimensional, metallo-dielectric band gap structures,” J. Opt. A: Pure Appl. Opt. 1(4), 490–494 (1999).
[Crossref]

Blomer, M. J.

C. Sibilia, M. Scalora, M. Bertolotti, M. J. Blomer, and C. M. Bowden, “Electromagnetic properties of periodic and quasi-periodic one-dimensional, metallo-dielectric band gap structures,” J. Opt. A: Pure Appl. Opt. 1(4), 490–494 (1999).
[Crossref]

Bonod, N.

Bowden, C. M.

C. Sibilia, M. Scalora, M. Bertolotti, M. J. Blomer, and C. M. Bowden, “Electromagnetic properties of periodic and quasi-periodic one-dimensional, metallo-dielectric band gap structures,” J. Opt. A: Pure Appl. Opt. 1(4), 490–494 (1999).
[Crossref]

Buet, X.

Catrysse, P. B.

Chang, Y. C.

C. M. Wang, Y. C. Chang, M. W. Tsai, Y. H. Ye, C. Y. Chen, Y. W. Jiang, S. C. Lee, and D. P. Tsai, “Angle-independent infrared filter assisted by localized surface plasmon polariton,” IEEE Photonics Technol. Lett. 20(13), 1103–1105 (2008).
[Crossref]

Chen, C. Y.

C. M. Wang, Y. C. Chang, M. W. Tsai, Y. H. Ye, C. Y. Chen, Y. W. Jiang, S. C. Lee, and D. P. Tsai, “Angle-independent infrared filter assisted by localized surface plasmon polariton,” IEEE Photonics Technol. Lett. 20(13), 1103–1105 (2008).
[Crossref]

Chen, M.

Q. Wang, Z. Zhu, H. Gu, M. Chen, and Q. Tan, “Multi-band transmission color filters for multi-color white LEDs based visible light communication,” Opt. Commun. 403, 330–334 (2017).
[Crossref]

Chen, W.

Y. S. Lin and W. Chen, “A large –area, wide-incident-angle, and polarization-independent plasmonic color filter for glucose sensing,” Opt. Mater. 75, 739–743 (2018).
[Crossref]

Cleary, J. W.

Daran, E.

Deprenger, M. J.

Ebbesen, T. W.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Enoch, S.

Fan, S.

Fleischman, D.

Gauthier-Lafaye, O.

Genova, I.

G. Perez, A. M. Bernal-Oliva, E. Marquez, J. M. Gonzalez-Leal, C. Morant, I. Genova, J. F. Trigo, and J. M. Sanz, “Optical and structural characterization of single and multilayer germanium/silicon monoxide systems,” Thin Solid Films 485(1-2), 274–283 (2005).
[Crossref]

Gerace, D.

M. Liscidini, D. Gerace, L. C. Andreani, and J. E. Sipe, “Scattering-matrix analysis of periodically patterned multilayers with asymmetric unit cells and birefringent media,” Phys. Rev. B 77(3), 035324 (2008).
[Crossref]

Gerard, D.

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Golubenko, G. A.

I. A. Avrutsky, G. A. Golubenko, V. A. Sychugov, and A. V. Tishchenko, “Light reflection from the surface of a corrugated waveguide,” Tech. Phys. Lett. 11, 401–402 (1985).

Gonzalez-Leal, J. M.

G. Perez, A. M. Bernal-Oliva, E. Marquez, J. M. Gonzalez-Leal, C. Morant, I. Genova, J. F. Trigo, and J. M. Sanz, “Optical and structural characterization of single and multilayer germanium/silicon monoxide systems,” Thin Solid Films 485(1-2), 274–283 (2005).
[Crossref]

Gralak, B.

Grbic, A.

S. M. Young, C. Pfeiffer, A. Grbic, and R. Merlin, “Enhanced resonant transmission of electromagnetic radiation through a pair of subwavelength slits,” Appl. Phys. Lett. 103(4), 041104 (2013).
[Crossref]

Gu, H.

Q. Wang, Z. Zhu, H. Gu, and Q. Tan, “Angle-tolerant hybrid plasmonic blue filter with polarization-insensitivity and high transmission,” Opt. Commun. 427, 457–461 (2018).
[Crossref]

Q. Wang, Z. Zhu, H. Gu, M. Chen, and Q. Tan, “Multi-band transmission color filters for multi-color white LEDs based visible light communication,” Opt. Commun. 403, 330–334 (2017).
[Crossref]

Guizal, B.

Harrington, R. F.

Y. Leviatan, R. F. Harrington, and J. R. Mautz, “Electromagnetic transmission through apertures in a cavity in a thick conductor,” IRE Trans. Antennas Propag. 30(6), 1153–1165 (1982).
[Crossref]

R. F. Harrington and D. T. Auckland, “Electromagnetic transmission through narrow slots in thick conducting screens,” IEEE Trans. Antennas Propag. 28(5), 616–622 (1980).
[Crossref]

Hatanaka, K.

Hendrickson, J. R.

Inoue, J.

Jay Guo, L.

J. Zhou and L. Jay Guo, “Achieving angle-insensitive spectrum filter with the slit nanoresonator array structure,” J. Nanophotonics 9(1), 093795 (2014).
[Crossref]

Jen, Y. J.

Y. J. Jen and M. J. Lin, “Design and fabrication of a narrow bandpass filter with low dependence on angle of incidence,” Coatings 8(7), 231 (2018).
[Crossref]

Jiang, Y. W.

C. M. Wang, Y. C. Chang, M. W. Tsai, Y. H. Ye, C. Y. Chen, Y. W. Jiang, S. C. Lee, and D. P. Tsai, “Angle-independent infrared filter assisted by localized surface plasmon polariton,” IEEE Photonics Technol. Lett. 20(13), 1103–1105 (2008).
[Crossref]

Kanaev, A. V.

Keiffer, P.

Kintaka, K.

Kochergin, V.

Kutteruf, M. R.

Labeke, D. V.

Lalanne, P.

S. Astilean, P. Lalanne, and M. N. Palamaru, “Light transmission through metallic channels much smaller than the wavelength,” Opt. Commun. 175(4-6), 265–273 (2000).
[Crossref]

Lee, S. C.

C. M. Wang, Y. C. Chang, M. W. Tsai, Y. H. Ye, C. Y. Chen, Y. W. Jiang, S. C. Lee, and D. P. Tsai, “Angle-independent infrared filter assisted by localized surface plasmon polariton,” IEEE Photonics Technol. Lett. 20(13), 1103–1105 (2008).
[Crossref]

Leviatan, Y.

Y. Leviatan, “Electromagnetic coupling between two half-space regions separated by two slot-perforated parallel conducting screens,” IEEE Trans. Microwave Theory Tech. 36(1), 44–52 (1988).
[Crossref]

Y. Leviatan, R. F. Harrington, and J. R. Mautz, “Electromagnetic transmission through apertures in a cavity in a thick conductor,” IRE Trans. Antennas Propag. 30(6), 1153–1165 (1982).
[Crossref]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Li, L.

Lin, M. J.

Y. J. Jen and M. J. Lin, “Design and fabrication of a narrow bandpass filter with low dependence on angle of incidence,” Coatings 8(7), 231 (2018).
[Crossref]

Lin, Y. S.

Y. S. Lin and W. Chen, “A large –area, wide-incident-angle, and polarization-independent plasmonic color filter for glucose sensing,” Opt. Mater. 75, 739–743 (2018).
[Crossref]

Liscidini, M.

M. Liscidini, D. Gerace, L. C. Andreani, and J. E. Sipe, “Scattering-matrix analysis of periodically patterned multilayers with asymmetric unit cells and birefringent media,” Phys. Rev. B 77(3), 035324 (2008).
[Crossref]

Lozes-Dupey, F.

Magnusson, R.

R. Magnusson and S. S. Wang, “New principles for optical filters,” Appl. Phys. Lett. 61(9), 1022–1024 (1992).
[Crossref]

Majima, T.

Marquez, E.

G. Perez, A. M. Bernal-Oliva, E. Marquez, J. M. Gonzalez-Leal, C. Morant, I. Genova, J. F. Trigo, and J. M. Sanz, “Optical and structural characterization of single and multilayer germanium/silicon monoxide systems,” Thin Solid Films 485(1-2), 274–283 (2005).
[Crossref]

Mautz, J. R.

Y. Leviatan, R. F. Harrington, and J. R. Mautz, “Electromagnetic transmission through apertures in a cavity in a thick conductor,” IRE Trans. Antennas Propag. 30(6), 1153–1165 (1982).
[Crossref]

Merlin, R.

S. M. Young, C. Pfeiffer, A. Grbic, and R. Merlin, “Enhanced resonant transmission of electromagnetic radiation through a pair of subwavelength slits,” Appl. Phys. Lett. 103(4), 041104 (2013).
[Crossref]

R. Merlin, “Pinholes meet Fabry-Perot: perfect and imperfect transmission of waves through small apertures,” Phys. Rev. X 2(3), 031015 (2012).
[Crossref]

Monmayrant, A.

Morant, C.

G. Perez, A. M. Bernal-Oliva, E. Marquez, J. M. Gonzalez-Leal, C. Morant, I. Genova, J. F. Trigo, and J. M. Sanz, “Optical and structural characterization of single and multilayer germanium/silicon monoxide systems,” Thin Solid Films 485(1-2), 274–283 (2005).
[Crossref]

Murakami, H.

Nader, N.

Neviere, M.

Nishii, J.

Novak, K. M.

Palamaru, M. N.

S. Astilean, P. Lalanne, and M. N. Palamaru, “Light transmission through metallic channels much smaller than the wavelength,” Opt. Commun. 175(4-6), 265–273 (2000).
[Crossref]

Perez, G.

G. Perez, A. M. Bernal-Oliva, E. Marquez, J. M. Gonzalez-Leal, C. Morant, I. Genova, J. F. Trigo, and J. M. Sanz, “Optical and structural characterization of single and multilayer germanium/silicon monoxide systems,” Thin Solid Films 485(1-2), 274–283 (2005).
[Crossref]

Pfeiffer, C.

S. M. Young, C. Pfeiffer, A. Grbic, and R. Merlin, “Enhanced resonant transmission of electromagnetic radiation through a pair of subwavelength slits,” Appl. Phys. Lett. 103(4), 041104 (2013).
[Crossref]

Popov, E.

Sanz, J. M.

G. Perez, A. M. Bernal-Oliva, E. Marquez, J. M. Gonzalez-Leal, C. Morant, I. Genova, J. F. Trigo, and J. M. Sanz, “Optical and structural characterization of single and multilayer germanium/silicon monoxide systems,” Thin Solid Films 485(1-2), 274–283 (2005).
[Crossref]

Scalora, M.

C. Sibilia, M. Scalora, M. Bertolotti, M. J. Blomer, and C. M. Bowden, “Electromagnetic properties of periodic and quasi-periodic one-dimensional, metallo-dielectric band gap structures,” J. Opt. A: Pure Appl. Opt. 1(4), 490–494 (1999).
[Crossref]

Sibilia, C.

C. Sibilia, M. Scalora, M. Bertolotti, M. J. Blomer, and C. M. Bowden, “Electromagnetic properties of periodic and quasi-periodic one-dimensional, metallo-dielectric band gap structures,” J. Opt. A: Pure Appl. Opt. 1(4), 490–494 (1999).
[Crossref]

Sipe, J. E.

M. Liscidini, D. Gerace, L. C. Andreani, and J. E. Sipe, “Scattering-matrix analysis of periodically patterned multilayers with asymmetric unit cells and birefringent media,” Phys. Rev. B 77(3), 035324 (2008).
[Crossref]

Sweatlock, L. A.

Sychugov, V. A.

I. A. Avrutsky and V. A. Sychugov, “Reflection of a beam of finite size from a corrugated waveguide,” J. Mod. Opt. 36(11), 1527–1539 (1989).
[Crossref]

I. A. Avrutsky, G. A. Golubenko, V. A. Sychugov, and A. V. Tishchenko, “Light reflection from the surface of a corrugated waveguide,” Tech. Phys. Lett. 11, 401–402 (1985).

Tan, Q.

Q. Wang, Z. Zhu, H. Gu, and Q. Tan, “Angle-tolerant hybrid plasmonic blue filter with polarization-insensitivity and high transmission,” Opt. Commun. 427, 457–461 (2018).
[Crossref]

Q. Wang, Z. Zhu, H. Gu, M. Chen, and Q. Tan, “Multi-band transmission color filters for multi-color white LEDs based visible light communication,” Opt. Commun. 403, 330–334 (2017).
[Crossref]

Tayeb, G.

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Tishchenko, A. V.

I. A. Avrutsky, G. A. Golubenko, V. A. Sychugov, and A. V. Tishchenko, “Light reflection from the surface of a corrugated waveguide,” Tech. Phys. Lett. 11, 401–402 (1985).

Trigo, J. F.

G. Perez, A. M. Bernal-Oliva, E. Marquez, J. M. Gonzalez-Leal, C. Morant, I. Genova, J. F. Trigo, and J. M. Sanz, “Optical and structural characterization of single and multilayer germanium/silicon monoxide systems,” Thin Solid Films 485(1-2), 274–283 (2005).
[Crossref]

Tsai, D. P.

C. M. Wang, Y. C. Chang, M. W. Tsai, Y. H. Ye, C. Y. Chen, Y. W. Jiang, S. C. Lee, and D. P. Tsai, “Angle-independent infrared filter assisted by localized surface plasmon polariton,” IEEE Photonics Technol. Lett. 20(13), 1103–1105 (2008).
[Crossref]

Tsai, M. W.

C. M. Wang, Y. C. Chang, M. W. Tsai, Y. H. Ye, C. Y. Chen, Y. W. Jiang, S. C. Lee, and D. P. Tsai, “Angle-independent infrared filter assisted by localized surface plasmon polariton,” IEEE Photonics Technol. Lett. 20(13), 1103–1105 (2008).
[Crossref]

Ura, S.

Vangala, S. R.

Verslegers, L.

Walker, D.

Wang, C. M.

C. M. Wang, Y. C. Chang, M. W. Tsai, Y. H. Ye, C. Y. Chen, Y. W. Jiang, S. C. Lee, and D. P. Tsai, “Angle-independent infrared filter assisted by localized surface plasmon polariton,” IEEE Photonics Technol. Lett. 20(13), 1103–1105 (2008).
[Crossref]

Wang, Q.

Q. Wang, Z. Zhu, H. Gu, and Q. Tan, “Angle-tolerant hybrid plasmonic blue filter with polarization-insensitivity and high transmission,” Opt. Commun. 427, 457–461 (2018).
[Crossref]

Q. Wang, Z. Zhu, H. Gu, M. Chen, and Q. Tan, “Multi-band transmission color filters for multi-color white LEDs based visible light communication,” Opt. Commun. 403, 330–334 (2017).
[Crossref]

Wang, S. S.

R. Magnusson and S. S. Wang, “New principles for optical filters,” Appl. Phys. Lett. 61(9), 1022–1024 (1992).
[Crossref]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Ye, Y. H.

C. M. Wang, Y. C. Chang, M. W. Tsai, Y. H. Ye, C. Y. Chen, Y. W. Jiang, S. C. Lee, and D. P. Tsai, “Angle-independent infrared filter assisted by localized surface plasmon polariton,” IEEE Photonics Technol. Lett. 20(13), 1103–1105 (2008).
[Crossref]

Yetzbacher, M. K.

Young, S. M.

S. M. Young, C. Pfeiffer, A. Grbic, and R. Merlin, “Enhanced resonant transmission of electromagnetic radiation through a pair of subwavelength slits,” Appl. Phys. Lett. 103(4), 041104 (2013).
[Crossref]

Yu, Z.

Zhao, Y.

Zhou, J.

J. Zhou and L. Jay Guo, “Achieving angle-insensitive spectrum filter with the slit nanoresonator array structure,” J. Nanophotonics 9(1), 093795 (2014).
[Crossref]

Zhu, Z.

Q. Wang, Z. Zhu, H. Gu, and Q. Tan, “Angle-tolerant hybrid plasmonic blue filter with polarization-insensitivity and high transmission,” Opt. Commun. 427, 457–461 (2018).
[Crossref]

Q. Wang, Z. Zhu, H. Gu, M. Chen, and Q. Tan, “Multi-band transmission color filters for multi-color white LEDs based visible light communication,” Opt. Commun. 403, 330–334 (2017).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

S. M. Young, C. Pfeiffer, A. Grbic, and R. Merlin, “Enhanced resonant transmission of electromagnetic radiation through a pair of subwavelength slits,” Appl. Phys. Lett. 103(4), 041104 (2013).
[Crossref]

R. Magnusson and S. S. Wang, “New principles for optical filters,” Appl. Phys. Lett. 61(9), 1022–1024 (1992).
[Crossref]

Coatings (1)

Y. J. Jen and M. J. Lin, “Design and fabrication of a narrow bandpass filter with low dependence on angle of incidence,” Coatings 8(7), 231 (2018).
[Crossref]

IEEE Photonics Technol. Lett. (1)

C. M. Wang, Y. C. Chang, M. W. Tsai, Y. H. Ye, C. Y. Chen, Y. W. Jiang, S. C. Lee, and D. P. Tsai, “Angle-independent infrared filter assisted by localized surface plasmon polariton,” IEEE Photonics Technol. Lett. 20(13), 1103–1105 (2008).
[Crossref]

IEEE Trans. Antennas Propag. (1)

R. F. Harrington and D. T. Auckland, “Electromagnetic transmission through narrow slots in thick conducting screens,” IEEE Trans. Antennas Propag. 28(5), 616–622 (1980).
[Crossref]

IEEE Trans. Microwave Theory Tech. (1)

Y. Leviatan, “Electromagnetic coupling between two half-space regions separated by two slot-perforated parallel conducting screens,” IEEE Trans. Microwave Theory Tech. 36(1), 44–52 (1988).
[Crossref]

IRE Trans. Antennas Propag. (1)

Y. Leviatan, R. F. Harrington, and J. R. Mautz, “Electromagnetic transmission through apertures in a cavity in a thick conductor,” IRE Trans. Antennas Propag. 30(6), 1153–1165 (1982).
[Crossref]

J. Mod. Opt. (1)

I. A. Avrutsky and V. A. Sychugov, “Reflection of a beam of finite size from a corrugated waveguide,” J. Mod. Opt. 36(11), 1527–1539 (1989).
[Crossref]

J. Nanophotonics (1)

J. Zhou and L. Jay Guo, “Achieving angle-insensitive spectrum filter with the slit nanoresonator array structure,” J. Nanophotonics 9(1), 093795 (2014).
[Crossref]

J. Opt. A: Pure Appl. Opt. (1)

C. Sibilia, M. Scalora, M. Bertolotti, M. J. Blomer, and C. M. Bowden, “Electromagnetic properties of periodic and quasi-periodic one-dimensional, metallo-dielectric band gap structures,” J. Opt. A: Pure Appl. Opt. 1(4), 490–494 (1999).
[Crossref]

J. Opt. Soc. Am. B (1)

Nature (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Opt. Commun. (3)

Q. Wang, Z. Zhu, H. Gu, and Q. Tan, “Angle-tolerant hybrid plasmonic blue filter with polarization-insensitivity and high transmission,” Opt. Commun. 427, 457–461 (2018).
[Crossref]

Q. Wang, Z. Zhu, H. Gu, M. Chen, and Q. Tan, “Multi-band transmission color filters for multi-color white LEDs based visible light communication,” Opt. Commun. 403, 330–334 (2017).
[Crossref]

S. Astilean, P. Lalanne, and M. N. Palamaru, “Light transmission through metallic channels much smaller than the wavelength,” Opt. Commun. 175(4-6), 265–273 (2000).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Opt. Mater. (1)

Y. S. Lin and W. Chen, “A large –area, wide-incident-angle, and polarization-independent plasmonic color filter for glucose sensing,” Opt. Mater. 75, 739–743 (2018).
[Crossref]

Phys. Rev. B (1)

M. Liscidini, D. Gerace, L. C. Andreani, and J. E. Sipe, “Scattering-matrix analysis of periodically patterned multilayers with asymmetric unit cells and birefringent media,” Phys. Rev. B 77(3), 035324 (2008).
[Crossref]

Phys. Rev. X (1)

R. Merlin, “Pinholes meet Fabry-Perot: perfect and imperfect transmission of waves through small apertures,” Phys. Rev. X 2(3), 031015 (2012).
[Crossref]

Tech. Phys. Lett. (1)

I. A. Avrutsky, G. A. Golubenko, V. A. Sychugov, and A. V. Tishchenko, “Light reflection from the surface of a corrugated waveguide,” Tech. Phys. Lett. 11, 401–402 (1985).

Thin Solid Films (1)

G. Perez, A. M. Bernal-Oliva, E. Marquez, J. M. Gonzalez-Leal, C. Morant, I. Genova, J. F. Trigo, and J. M. Sanz, “Optical and structural characterization of single and multilayer germanium/silicon monoxide systems,” Thin Solid Films 485(1-2), 274–283 (2005).
[Crossref]

Other (1)

COMSOL Multiphysics® v 5.4. www.comsol.com . COMSOL AB, Stockholm, Sweden.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1. A narrow slit in a metal film of finite thickness (left), and a pair of thin metal screens with narrow slits (right).
Fig. 2.
Fig. 2. Variety of implementations of Fabry-Perot style filters.
Fig. 3.
Fig. 3. Details of the nano-resonator array: 3D view (left) and cross section (right).
Fig. 4.
Fig. 4. Representative normal incidence transmission spectra of high-index-dielectric-filled slotted metal films: TM and TE transmission spectra of Ag/Ge structure (left), and TM transmission spectra of Ag/Ge, Au/Ge, and Al/Ge structures.
Fig. 5.
Fig. 5. Resonant wavelengths – film thickness map (left), and modal index and phase change due to reflections at the apertures versus wavelength (right).
Fig. 6.
Fig. 6. Main transmission peak for different vales of incident angles (left), structure periods (center), and slit width (right).
Fig. 7.
Fig. 7. Transmission resonances of an array of nano-resonators (left) at different incident angles (right). Incident wave is TM-polarized.
Fig. 8.
Fig. 8. Cell structure in the simulation (left), and transmission spectra for TM- (center) and TE- polarized (right) input.
Fig. 9.
Fig. 9. Resonant electric field strength distribution in a horizontal plane in the middle of the resonator (left) and in the sagittal plane (right).
Fig. 10.
Fig. 10. Peak wavelength (left), full width at half maximum (center), and peak transmission (right) versus the incident angle for both polarizations.
Fig. 11.
Fig. 11. Resonant transmission peaks for various sizes of the apertures (left), and relation between the full width at half maximum and peak reflection (right).
Fig. 12.
Fig. 12. (Left) Schematic diagram of the fabricated filter. This design corresponds with Fig. 2(c). (Right) Cross section of filter structure imaged by scanning electron microscope. Silver is deposited by e-beam evaporation followed by sputtering, resulting in the metal appearing to have two distinct layers. The gaps between the metal and dielectric are on the order of 30-60 nm, although not uniform.
Fig. 13.
Fig. 13. Experimental transmission spectra for fabricated devices based on 1-D grating design. (Left) Transmission at normal incidence for TM and TE polarizations, compared with the simulated transmission shown in Fig. 4. (Right) Transmission spectra as a function of angle of incidence for TM-polarized light.
Fig. 14.
Fig. 14. Simulated transmission spectra for transmission filters at normal incidence for TM-polarized light. The black curve is identical to the transmission from Fig. 4 and represents a cavity completely filled with germanium. The red and blue curves include small gaps in between the metal and dielectric.

Metrics