Abstract

This study proposes a highly sensitive and stable optical fiber probe based on Vernier effect for high temperature measurement (up to 1000 °C), utilizing photonic crystal fiber (PCF)–based Fabry-Perot interferometers (FPIs). The cascaded FPIs are fabricated by fusion splicing a section of polarization maintaining PCF to a lead-in single-mode fiber, and then a section of temperature-insensitive hollow core PCF is spliced between the PMPCF and a multi-mode fiber. The shift of the spectral envelope is monitored to measure the temperature variation. Experimental results show that the sensitivities of three fabricated probes are as high as 173.43 pm/ °C, 230.53 pm/ °C and 535.16 pm/ °C when operating from room temperature to 1000 °C, which are consistent with theoretical results. The sensitivities are magnified about 13, 19 and 45 times compared with the single FPI. The linearity of the temperature response is as high as 99.73%. The proposed probe has great application prospects due to compactness, high sensitivity and low cost.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Miniaturized Fabry–Perot probe utilizing PMPCF for high temperature measurement

Gang Zhang, Xuqiang Wu, Shili Li, Wei Liu, Shasha Fang, Cheng Zuo, Wujun Zhang, and Benli Yu
Appl. Opt. 59(3) 873-877 (2020)

High temperature strain sensing with alumina ceramic derived fiber based Fabry-Perot interferometer

Z. Wang, H. Liu, Z. Ma, Z. Chen, T. Wang, and F. Pang
Opt. Express 27(20) 27691-27701 (2019)

References

  • View by:
  • |
  • |
  • |

  1. X. R. Liao, H. F. Chen, and D. N. Wang, “Ultracompact optical fiber sensor for refractive index and high-temperature measurement,” J. Lightwave Technol. 32(14), 2531–2535 (2014).
    [Crossref]
  2. C. M. Jewart, Q. Wang, J. Canning, D. Grobnic, S. J. Mihailov, and K. P. Chen, “Ultrafast femtosecond-laser-induced fiber Bragg gratings in air-hole microstructured fibers for high-temperature pressure sensing,” Opt. Lett. 35(9), 1443–1445 (2010).
    [Crossref]
  3. T. Habisreuther, T. Elsmann, A. Graf, and M. A. Schmidt, “High-temperature strain sensing using sapphire fibers with inscribed first-order Bragg gratings,” IEEE Photonics J. 8(3), 1–8 (2016).
    [Crossref]
  4. Q. Guo, Y. S. Yu, Z. M. Zheng, C. Chen, P. L. Wang, Z. N. Tian, Y. Zhao, X. Y. Ming, Q. D. Chen, H. Yang, and H. B. Sun, “Femtosecond laser inscribed sapphire fiber Bragg grating for high temperature and strain sensing,” IEEE Trans. Nanotechnol. 18, 208–211 (2019).
    [Crossref]
  5. Y. J. Rao, D. W. Duan, Y. E. Fan, T. Ke, and M. Xu, “High-temperature annealing behaviors of CO2 laser pulse-induced long-period fiber grating in a photonic crystal fiber,” J. Lightwave Technol. 28(10), 1530–1535 (2010).
    [Crossref]
  6. B. Wang, W. G. Zhang, Z. Y. Bai, L. Wang, L. Y. Zhang, Q. Zhou, L. Chen, and T. Y. Yan, “CO2-laser-induced long period fiber gratings in few mode fibers,” IEEE Photonics Technol. Lett. 27(2), 145–148 (2015).
    [Crossref]
  7. X. R. Jin, C. T. Sun, S. J. Duan, W. L. Liu, G. A. Li, S. Zhang, X. D. Chen, L. Zhao, C. L. Lu, X. H. Yang, T. Geng, W. M. Sun, and L. B. Yuan, “High strain sensitivity temperature sensor based on a secondary modulated tapered long period fiber grating,” IEEE Photonics J. 11(1), 1–8 (2019).
    [Crossref]
  8. L. Duan, P. Zhang, M. Tang, R. X. Wang, Z. Y. Zhao, S. N. Fu, L. Gan, B. P. Zhu, W. J. Tong, D. M. Liu, and P. P. Shum, “Heterogeneous all-solid multicore fiber based multipath Michelson interferometer for high temperature sensing,” Opt. Express 24(18), 20210–20218 (2016).
    [Crossref]
  9. X. W. Hu, X. Shen, J. J. Wu, J. G. Peng, L. Y. Yang, J. Y. Li, H. Q. Li, and N. L. Dai, “All fiber M-Z interferometer for high temperature sensing based on a hetero-structured cladding solid-core photonic bandgap fiber,” Opt. Express 24(19), 21693–21699 (2016).
    [Crossref]
  10. Z. Zhang, C. R. Liao, J. Tang, Y. Wang, Z. Y. Bai, Z. Y. Li, K. K. Guo, M. Deng, S. Q. Cao, and Y. P. Wang, “Hollow-core-fiber-based interferometer for high-temperature measurements,” IEEE Photonics J. 9(2), 1–9 (2017).
    [Crossref]
  11. D. J. Liu, Q. Wu, C. Mei, J. H. Yuan, X. Xin, A. K. Mallik, F. F. Wei, W. Han, R. Kumar, C. X. Yu, S. P. Wan, X. D. He, B. Liu, G. D. Peng, Y. Semenova, and G. Farrell, “Hollow core fiber based interferometer for high-temperature (1000 °C) measurement,” J. Lightwave Technol. 36(9), 1583–1590 (2018).
    [Crossref]
  12. J. L. Kou, J. Feng, L. Ye, F. Xu, and Y. Q. Lu, “Miniaturized fiber taper reflective interferometer for high temperature measurement,” Opt. Express 18(13), 14245–14250 (2010).
    [Crossref]
  13. Z. S. Chen, S. S. Xiong, S. C. Gao, H. Zhang, L. Wan, X. C. Huang, B. S. Huang, Y. H. Feng, W. P. Liu, and Z. H. Li, “High-temperature sensor based on Fabry-Perot interferometer in microfiber tip,” Sensors 18(2), 202 (2018).
    [Crossref]
  14. H. H. Yu, Y. Wang, J. Ma, Z. Zheng, Z. Z. Luo, and Y. Zheng, “Fabry-Perot interferometric high-temperature sensing up to 1200 ◦C based on a silica glass photonic crystal fiber,” Sensors 18(1), 273 (2018).
    [Crossref]
  15. C. Zhu, Y. Y. Zhuang, B. H. Zhang, M. Roman, P. P. Wang, and J. Huang, “A miniaturized optical fiber tip high-temperature sensor based on concave-shaped Fabry-Perot cavity,” IEEE Photonics Technol. Lett. 31(1), 35–38 (2019).
    [Crossref]
  16. A. Zhou, B. Y. Qin, Z. Zhu, Y. X. Zhang, Z. H. Liu, J. Yang, and L. B. Yuan, “Hybrid structured fiber-optic Fabry-Perot interferometer for simultaneous measurement of strain and temperature,” Opt. Lett. 39(18), 5267–5270 (2014).
    [Crossref]
  17. Y. F. Wu, Y. D. Zhang, J. Wu, and P. Yuan, “Fiber-optic hybrid-structured Fabry-Perot interferometer based on large lateral offset splicing for simultaneous measurement of strain and temperature,” J. Lightwave Technol. 35(19), 4311–4315 (2017).
    [Crossref]
  18. P. C. Chen and X. W. Shu, “Refractive-index-modified-dot Fabry-Perot fiber probe fabricated by femtosecond laser for high-temperature sensing,” Opt. Express 26(5), 5292–5299 (2018).
    [Crossref]
  19. P. Zhang, M. Tang, F. Gao, B. P. Zhu, Z. Y. Zhao, L. Duan, S. N. Fu, J. Ouyang, H. F. Wei, P. P. Shum, and D. M. Liu, “Simplified hollow-core fiber-based Fabry-Perot interferometer with modified Vernier effect for highly sensitive high-temperature measurement,” IEEE Photonics J. 7(1), 1–10 (2015).
    [Crossref]
  20. M. R. Quan, J. J. Tian, and Y. Yao, “Ultra-high sensitivity Fabry-Perot interferometer gas refractive index fiber sensor based on photonic crystal fiber and Vernier effect,” Opt. Lett. 40(21), 4891–4894 (2015).
    [Crossref]
  21. L. X. Kong, Y. X. Zhang, W. G. Zhang, Y. S. Zhang, L. Yu, T. Y. Yan, and P. C. Geng, “Cylinder-type fiber-optic Vernier probe based on cascaded Fabry-Perot interferometers with a controlled FSR ratio,” Appl. Opt. 57(18), 5043–5047 (2018).
    [Crossref]
  22. T. Paixao, F. Araujo, and P. Antunes, “Highly sensitive fiber optic temperature and strain sensor based on an intrinsic Fabry-Perot interferometer fabricated by a femtosecond laser,” Opt. Lett. 44(19), 4833–4836 (2019).
    [Crossref]

2019 (4)

Q. Guo, Y. S. Yu, Z. M. Zheng, C. Chen, P. L. Wang, Z. N. Tian, Y. Zhao, X. Y. Ming, Q. D. Chen, H. Yang, and H. B. Sun, “Femtosecond laser inscribed sapphire fiber Bragg grating for high temperature and strain sensing,” IEEE Trans. Nanotechnol. 18, 208–211 (2019).
[Crossref]

X. R. Jin, C. T. Sun, S. J. Duan, W. L. Liu, G. A. Li, S. Zhang, X. D. Chen, L. Zhao, C. L. Lu, X. H. Yang, T. Geng, W. M. Sun, and L. B. Yuan, “High strain sensitivity temperature sensor based on a secondary modulated tapered long period fiber grating,” IEEE Photonics J. 11(1), 1–8 (2019).
[Crossref]

C. Zhu, Y. Y. Zhuang, B. H. Zhang, M. Roman, P. P. Wang, and J. Huang, “A miniaturized optical fiber tip high-temperature sensor based on concave-shaped Fabry-Perot cavity,” IEEE Photonics Technol. Lett. 31(1), 35–38 (2019).
[Crossref]

T. Paixao, F. Araujo, and P. Antunes, “Highly sensitive fiber optic temperature and strain sensor based on an intrinsic Fabry-Perot interferometer fabricated by a femtosecond laser,” Opt. Lett. 44(19), 4833–4836 (2019).
[Crossref]

2018 (5)

2017 (2)

Z. Zhang, C. R. Liao, J. Tang, Y. Wang, Z. Y. Bai, Z. Y. Li, K. K. Guo, M. Deng, S. Q. Cao, and Y. P. Wang, “Hollow-core-fiber-based interferometer for high-temperature measurements,” IEEE Photonics J. 9(2), 1–9 (2017).
[Crossref]

Y. F. Wu, Y. D. Zhang, J. Wu, and P. Yuan, “Fiber-optic hybrid-structured Fabry-Perot interferometer based on large lateral offset splicing for simultaneous measurement of strain and temperature,” J. Lightwave Technol. 35(19), 4311–4315 (2017).
[Crossref]

2016 (3)

2015 (3)

B. Wang, W. G. Zhang, Z. Y. Bai, L. Wang, L. Y. Zhang, Q. Zhou, L. Chen, and T. Y. Yan, “CO2-laser-induced long period fiber gratings in few mode fibers,” IEEE Photonics Technol. Lett. 27(2), 145–148 (2015).
[Crossref]

P. Zhang, M. Tang, F. Gao, B. P. Zhu, Z. Y. Zhao, L. Duan, S. N. Fu, J. Ouyang, H. F. Wei, P. P. Shum, and D. M. Liu, “Simplified hollow-core fiber-based Fabry-Perot interferometer with modified Vernier effect for highly sensitive high-temperature measurement,” IEEE Photonics J. 7(1), 1–10 (2015).
[Crossref]

M. R. Quan, J. J. Tian, and Y. Yao, “Ultra-high sensitivity Fabry-Perot interferometer gas refractive index fiber sensor based on photonic crystal fiber and Vernier effect,” Opt. Lett. 40(21), 4891–4894 (2015).
[Crossref]

2014 (2)

2010 (3)

Antunes, P.

Araujo, F.

Bai, Z. Y.

Z. Zhang, C. R. Liao, J. Tang, Y. Wang, Z. Y. Bai, Z. Y. Li, K. K. Guo, M. Deng, S. Q. Cao, and Y. P. Wang, “Hollow-core-fiber-based interferometer for high-temperature measurements,” IEEE Photonics J. 9(2), 1–9 (2017).
[Crossref]

B. Wang, W. G. Zhang, Z. Y. Bai, L. Wang, L. Y. Zhang, Q. Zhou, L. Chen, and T. Y. Yan, “CO2-laser-induced long period fiber gratings in few mode fibers,” IEEE Photonics Technol. Lett. 27(2), 145–148 (2015).
[Crossref]

Canning, J.

Cao, S. Q.

Z. Zhang, C. R. Liao, J. Tang, Y. Wang, Z. Y. Bai, Z. Y. Li, K. K. Guo, M. Deng, S. Q. Cao, and Y. P. Wang, “Hollow-core-fiber-based interferometer for high-temperature measurements,” IEEE Photonics J. 9(2), 1–9 (2017).
[Crossref]

Chen, C.

Q. Guo, Y. S. Yu, Z. M. Zheng, C. Chen, P. L. Wang, Z. N. Tian, Y. Zhao, X. Y. Ming, Q. D. Chen, H. Yang, and H. B. Sun, “Femtosecond laser inscribed sapphire fiber Bragg grating for high temperature and strain sensing,” IEEE Trans. Nanotechnol. 18, 208–211 (2019).
[Crossref]

Chen, H. F.

Chen, K. P.

Chen, L.

B. Wang, W. G. Zhang, Z. Y. Bai, L. Wang, L. Y. Zhang, Q. Zhou, L. Chen, and T. Y. Yan, “CO2-laser-induced long period fiber gratings in few mode fibers,” IEEE Photonics Technol. Lett. 27(2), 145–148 (2015).
[Crossref]

Chen, P. C.

Chen, Q. D.

Q. Guo, Y. S. Yu, Z. M. Zheng, C. Chen, P. L. Wang, Z. N. Tian, Y. Zhao, X. Y. Ming, Q. D. Chen, H. Yang, and H. B. Sun, “Femtosecond laser inscribed sapphire fiber Bragg grating for high temperature and strain sensing,” IEEE Trans. Nanotechnol. 18, 208–211 (2019).
[Crossref]

Chen, X. D.

X. R. Jin, C. T. Sun, S. J. Duan, W. L. Liu, G. A. Li, S. Zhang, X. D. Chen, L. Zhao, C. L. Lu, X. H. Yang, T. Geng, W. M. Sun, and L. B. Yuan, “High strain sensitivity temperature sensor based on a secondary modulated tapered long period fiber grating,” IEEE Photonics J. 11(1), 1–8 (2019).
[Crossref]

Chen, Z. S.

Z. S. Chen, S. S. Xiong, S. C. Gao, H. Zhang, L. Wan, X. C. Huang, B. S. Huang, Y. H. Feng, W. P. Liu, and Z. H. Li, “High-temperature sensor based on Fabry-Perot interferometer in microfiber tip,” Sensors 18(2), 202 (2018).
[Crossref]

Dai, N. L.

Deng, M.

Z. Zhang, C. R. Liao, J. Tang, Y. Wang, Z. Y. Bai, Z. Y. Li, K. K. Guo, M. Deng, S. Q. Cao, and Y. P. Wang, “Hollow-core-fiber-based interferometer for high-temperature measurements,” IEEE Photonics J. 9(2), 1–9 (2017).
[Crossref]

Duan, D. W.

Duan, L.

L. Duan, P. Zhang, M. Tang, R. X. Wang, Z. Y. Zhao, S. N. Fu, L. Gan, B. P. Zhu, W. J. Tong, D. M. Liu, and P. P. Shum, “Heterogeneous all-solid multicore fiber based multipath Michelson interferometer for high temperature sensing,” Opt. Express 24(18), 20210–20218 (2016).
[Crossref]

P. Zhang, M. Tang, F. Gao, B. P. Zhu, Z. Y. Zhao, L. Duan, S. N. Fu, J. Ouyang, H. F. Wei, P. P. Shum, and D. M. Liu, “Simplified hollow-core fiber-based Fabry-Perot interferometer with modified Vernier effect for highly sensitive high-temperature measurement,” IEEE Photonics J. 7(1), 1–10 (2015).
[Crossref]

Duan, S. J.

X. R. Jin, C. T. Sun, S. J. Duan, W. L. Liu, G. A. Li, S. Zhang, X. D. Chen, L. Zhao, C. L. Lu, X. H. Yang, T. Geng, W. M. Sun, and L. B. Yuan, “High strain sensitivity temperature sensor based on a secondary modulated tapered long period fiber grating,” IEEE Photonics J. 11(1), 1–8 (2019).
[Crossref]

Elsmann, T.

T. Habisreuther, T. Elsmann, A. Graf, and M. A. Schmidt, “High-temperature strain sensing using sapphire fibers with inscribed first-order Bragg gratings,” IEEE Photonics J. 8(3), 1–8 (2016).
[Crossref]

Fan, Y. E.

Farrell, G.

Feng, J.

Feng, Y. H.

Z. S. Chen, S. S. Xiong, S. C. Gao, H. Zhang, L. Wan, X. C. Huang, B. S. Huang, Y. H. Feng, W. P. Liu, and Z. H. Li, “High-temperature sensor based on Fabry-Perot interferometer in microfiber tip,” Sensors 18(2), 202 (2018).
[Crossref]

Fu, S. N.

L. Duan, P. Zhang, M. Tang, R. X. Wang, Z. Y. Zhao, S. N. Fu, L. Gan, B. P. Zhu, W. J. Tong, D. M. Liu, and P. P. Shum, “Heterogeneous all-solid multicore fiber based multipath Michelson interferometer for high temperature sensing,” Opt. Express 24(18), 20210–20218 (2016).
[Crossref]

P. Zhang, M. Tang, F. Gao, B. P. Zhu, Z. Y. Zhao, L. Duan, S. N. Fu, J. Ouyang, H. F. Wei, P. P. Shum, and D. M. Liu, “Simplified hollow-core fiber-based Fabry-Perot interferometer with modified Vernier effect for highly sensitive high-temperature measurement,” IEEE Photonics J. 7(1), 1–10 (2015).
[Crossref]

Gan, L.

Gao, F.

P. Zhang, M. Tang, F. Gao, B. P. Zhu, Z. Y. Zhao, L. Duan, S. N. Fu, J. Ouyang, H. F. Wei, P. P. Shum, and D. M. Liu, “Simplified hollow-core fiber-based Fabry-Perot interferometer with modified Vernier effect for highly sensitive high-temperature measurement,” IEEE Photonics J. 7(1), 1–10 (2015).
[Crossref]

Gao, S. C.

Z. S. Chen, S. S. Xiong, S. C. Gao, H. Zhang, L. Wan, X. C. Huang, B. S. Huang, Y. H. Feng, W. P. Liu, and Z. H. Li, “High-temperature sensor based on Fabry-Perot interferometer in microfiber tip,” Sensors 18(2), 202 (2018).
[Crossref]

Geng, P. C.

Geng, T.

X. R. Jin, C. T. Sun, S. J. Duan, W. L. Liu, G. A. Li, S. Zhang, X. D. Chen, L. Zhao, C. L. Lu, X. H. Yang, T. Geng, W. M. Sun, and L. B. Yuan, “High strain sensitivity temperature sensor based on a secondary modulated tapered long period fiber grating,” IEEE Photonics J. 11(1), 1–8 (2019).
[Crossref]

Graf, A.

T. Habisreuther, T. Elsmann, A. Graf, and M. A. Schmidt, “High-temperature strain sensing using sapphire fibers with inscribed first-order Bragg gratings,” IEEE Photonics J. 8(3), 1–8 (2016).
[Crossref]

Grobnic, D.

Guo, K. K.

Z. Zhang, C. R. Liao, J. Tang, Y. Wang, Z. Y. Bai, Z. Y. Li, K. K. Guo, M. Deng, S. Q. Cao, and Y. P. Wang, “Hollow-core-fiber-based interferometer for high-temperature measurements,” IEEE Photonics J. 9(2), 1–9 (2017).
[Crossref]

Guo, Q.

Q. Guo, Y. S. Yu, Z. M. Zheng, C. Chen, P. L. Wang, Z. N. Tian, Y. Zhao, X. Y. Ming, Q. D. Chen, H. Yang, and H. B. Sun, “Femtosecond laser inscribed sapphire fiber Bragg grating for high temperature and strain sensing,” IEEE Trans. Nanotechnol. 18, 208–211 (2019).
[Crossref]

Habisreuther, T.

T. Habisreuther, T. Elsmann, A. Graf, and M. A. Schmidt, “High-temperature strain sensing using sapphire fibers with inscribed first-order Bragg gratings,” IEEE Photonics J. 8(3), 1–8 (2016).
[Crossref]

Han, W.

He, X. D.

Hu, X. W.

Huang, B. S.

Z. S. Chen, S. S. Xiong, S. C. Gao, H. Zhang, L. Wan, X. C. Huang, B. S. Huang, Y. H. Feng, W. P. Liu, and Z. H. Li, “High-temperature sensor based on Fabry-Perot interferometer in microfiber tip,” Sensors 18(2), 202 (2018).
[Crossref]

Huang, J.

C. Zhu, Y. Y. Zhuang, B. H. Zhang, M. Roman, P. P. Wang, and J. Huang, “A miniaturized optical fiber tip high-temperature sensor based on concave-shaped Fabry-Perot cavity,” IEEE Photonics Technol. Lett. 31(1), 35–38 (2019).
[Crossref]

Huang, X. C.

Z. S. Chen, S. S. Xiong, S. C. Gao, H. Zhang, L. Wan, X. C. Huang, B. S. Huang, Y. H. Feng, W. P. Liu, and Z. H. Li, “High-temperature sensor based on Fabry-Perot interferometer in microfiber tip,” Sensors 18(2), 202 (2018).
[Crossref]

Jewart, C. M.

Jin, X. R.

X. R. Jin, C. T. Sun, S. J. Duan, W. L. Liu, G. A. Li, S. Zhang, X. D. Chen, L. Zhao, C. L. Lu, X. H. Yang, T. Geng, W. M. Sun, and L. B. Yuan, “High strain sensitivity temperature sensor based on a secondary modulated tapered long period fiber grating,” IEEE Photonics J. 11(1), 1–8 (2019).
[Crossref]

Ke, T.

Kong, L. X.

Kou, J. L.

Kumar, R.

Li, G. A.

X. R. Jin, C. T. Sun, S. J. Duan, W. L. Liu, G. A. Li, S. Zhang, X. D. Chen, L. Zhao, C. L. Lu, X. H. Yang, T. Geng, W. M. Sun, and L. B. Yuan, “High strain sensitivity temperature sensor based on a secondary modulated tapered long period fiber grating,” IEEE Photonics J. 11(1), 1–8 (2019).
[Crossref]

Li, H. Q.

Li, J. Y.

Li, Z. H.

Z. S. Chen, S. S. Xiong, S. C. Gao, H. Zhang, L. Wan, X. C. Huang, B. S. Huang, Y. H. Feng, W. P. Liu, and Z. H. Li, “High-temperature sensor based on Fabry-Perot interferometer in microfiber tip,” Sensors 18(2), 202 (2018).
[Crossref]

Li, Z. Y.

Z. Zhang, C. R. Liao, J. Tang, Y. Wang, Z. Y. Bai, Z. Y. Li, K. K. Guo, M. Deng, S. Q. Cao, and Y. P. Wang, “Hollow-core-fiber-based interferometer for high-temperature measurements,” IEEE Photonics J. 9(2), 1–9 (2017).
[Crossref]

Liao, C. R.

Z. Zhang, C. R. Liao, J. Tang, Y. Wang, Z. Y. Bai, Z. Y. Li, K. K. Guo, M. Deng, S. Q. Cao, and Y. P. Wang, “Hollow-core-fiber-based interferometer for high-temperature measurements,” IEEE Photonics J. 9(2), 1–9 (2017).
[Crossref]

Liao, X. R.

Liu, B.

Liu, D. J.

Liu, D. M.

L. Duan, P. Zhang, M. Tang, R. X. Wang, Z. Y. Zhao, S. N. Fu, L. Gan, B. P. Zhu, W. J. Tong, D. M. Liu, and P. P. Shum, “Heterogeneous all-solid multicore fiber based multipath Michelson interferometer for high temperature sensing,” Opt. Express 24(18), 20210–20218 (2016).
[Crossref]

P. Zhang, M. Tang, F. Gao, B. P. Zhu, Z. Y. Zhao, L. Duan, S. N. Fu, J. Ouyang, H. F. Wei, P. P. Shum, and D. M. Liu, “Simplified hollow-core fiber-based Fabry-Perot interferometer with modified Vernier effect for highly sensitive high-temperature measurement,” IEEE Photonics J. 7(1), 1–10 (2015).
[Crossref]

Liu, W. L.

X. R. Jin, C. T. Sun, S. J. Duan, W. L. Liu, G. A. Li, S. Zhang, X. D. Chen, L. Zhao, C. L. Lu, X. H. Yang, T. Geng, W. M. Sun, and L. B. Yuan, “High strain sensitivity temperature sensor based on a secondary modulated tapered long period fiber grating,” IEEE Photonics J. 11(1), 1–8 (2019).
[Crossref]

Liu, W. P.

Z. S. Chen, S. S. Xiong, S. C. Gao, H. Zhang, L. Wan, X. C. Huang, B. S. Huang, Y. H. Feng, W. P. Liu, and Z. H. Li, “High-temperature sensor based on Fabry-Perot interferometer in microfiber tip,” Sensors 18(2), 202 (2018).
[Crossref]

Liu, Z. H.

Lu, C. L.

X. R. Jin, C. T. Sun, S. J. Duan, W. L. Liu, G. A. Li, S. Zhang, X. D. Chen, L. Zhao, C. L. Lu, X. H. Yang, T. Geng, W. M. Sun, and L. B. Yuan, “High strain sensitivity temperature sensor based on a secondary modulated tapered long period fiber grating,” IEEE Photonics J. 11(1), 1–8 (2019).
[Crossref]

Lu, Y. Q.

Luo, Z. Z.

H. H. Yu, Y. Wang, J. Ma, Z. Zheng, Z. Z. Luo, and Y. Zheng, “Fabry-Perot interferometric high-temperature sensing up to 1200 ◦C based on a silica glass photonic crystal fiber,” Sensors 18(1), 273 (2018).
[Crossref]

Ma, J.

H. H. Yu, Y. Wang, J. Ma, Z. Zheng, Z. Z. Luo, and Y. Zheng, “Fabry-Perot interferometric high-temperature sensing up to 1200 ◦C based on a silica glass photonic crystal fiber,” Sensors 18(1), 273 (2018).
[Crossref]

Mallik, A. K.

Mei, C.

Mihailov, S. J.

Ming, X. Y.

Q. Guo, Y. S. Yu, Z. M. Zheng, C. Chen, P. L. Wang, Z. N. Tian, Y. Zhao, X. Y. Ming, Q. D. Chen, H. Yang, and H. B. Sun, “Femtosecond laser inscribed sapphire fiber Bragg grating for high temperature and strain sensing,” IEEE Trans. Nanotechnol. 18, 208–211 (2019).
[Crossref]

Ouyang, J.

P. Zhang, M. Tang, F. Gao, B. P. Zhu, Z. Y. Zhao, L. Duan, S. N. Fu, J. Ouyang, H. F. Wei, P. P. Shum, and D. M. Liu, “Simplified hollow-core fiber-based Fabry-Perot interferometer with modified Vernier effect for highly sensitive high-temperature measurement,” IEEE Photonics J. 7(1), 1–10 (2015).
[Crossref]

Paixao, T.

Peng, G. D.

Peng, J. G.

Qin, B. Y.

Quan, M. R.

Rao, Y. J.

Roman, M.

C. Zhu, Y. Y. Zhuang, B. H. Zhang, M. Roman, P. P. Wang, and J. Huang, “A miniaturized optical fiber tip high-temperature sensor based on concave-shaped Fabry-Perot cavity,” IEEE Photonics Technol. Lett. 31(1), 35–38 (2019).
[Crossref]

Schmidt, M. A.

T. Habisreuther, T. Elsmann, A. Graf, and M. A. Schmidt, “High-temperature strain sensing using sapphire fibers with inscribed first-order Bragg gratings,” IEEE Photonics J. 8(3), 1–8 (2016).
[Crossref]

Semenova, Y.

Shen, X.

Shu, X. W.

Shum, P. P.

L. Duan, P. Zhang, M. Tang, R. X. Wang, Z. Y. Zhao, S. N. Fu, L. Gan, B. P. Zhu, W. J. Tong, D. M. Liu, and P. P. Shum, “Heterogeneous all-solid multicore fiber based multipath Michelson interferometer for high temperature sensing,” Opt. Express 24(18), 20210–20218 (2016).
[Crossref]

P. Zhang, M. Tang, F. Gao, B. P. Zhu, Z. Y. Zhao, L. Duan, S. N. Fu, J. Ouyang, H. F. Wei, P. P. Shum, and D. M. Liu, “Simplified hollow-core fiber-based Fabry-Perot interferometer with modified Vernier effect for highly sensitive high-temperature measurement,” IEEE Photonics J. 7(1), 1–10 (2015).
[Crossref]

Sun, C. T.

X. R. Jin, C. T. Sun, S. J. Duan, W. L. Liu, G. A. Li, S. Zhang, X. D. Chen, L. Zhao, C. L. Lu, X. H. Yang, T. Geng, W. M. Sun, and L. B. Yuan, “High strain sensitivity temperature sensor based on a secondary modulated tapered long period fiber grating,” IEEE Photonics J. 11(1), 1–8 (2019).
[Crossref]

Sun, H. B.

Q. Guo, Y. S. Yu, Z. M. Zheng, C. Chen, P. L. Wang, Z. N. Tian, Y. Zhao, X. Y. Ming, Q. D. Chen, H. Yang, and H. B. Sun, “Femtosecond laser inscribed sapphire fiber Bragg grating for high temperature and strain sensing,” IEEE Trans. Nanotechnol. 18, 208–211 (2019).
[Crossref]

Sun, W. M.

X. R. Jin, C. T. Sun, S. J. Duan, W. L. Liu, G. A. Li, S. Zhang, X. D. Chen, L. Zhao, C. L. Lu, X. H. Yang, T. Geng, W. M. Sun, and L. B. Yuan, “High strain sensitivity temperature sensor based on a secondary modulated tapered long period fiber grating,” IEEE Photonics J. 11(1), 1–8 (2019).
[Crossref]

Tang, J.

Z. Zhang, C. R. Liao, J. Tang, Y. Wang, Z. Y. Bai, Z. Y. Li, K. K. Guo, M. Deng, S. Q. Cao, and Y. P. Wang, “Hollow-core-fiber-based interferometer for high-temperature measurements,” IEEE Photonics J. 9(2), 1–9 (2017).
[Crossref]

Tang, M.

L. Duan, P. Zhang, M. Tang, R. X. Wang, Z. Y. Zhao, S. N. Fu, L. Gan, B. P. Zhu, W. J. Tong, D. M. Liu, and P. P. Shum, “Heterogeneous all-solid multicore fiber based multipath Michelson interferometer for high temperature sensing,” Opt. Express 24(18), 20210–20218 (2016).
[Crossref]

P. Zhang, M. Tang, F. Gao, B. P. Zhu, Z. Y. Zhao, L. Duan, S. N. Fu, J. Ouyang, H. F. Wei, P. P. Shum, and D. M. Liu, “Simplified hollow-core fiber-based Fabry-Perot interferometer with modified Vernier effect for highly sensitive high-temperature measurement,” IEEE Photonics J. 7(1), 1–10 (2015).
[Crossref]

Tian, J. J.

Tian, Z. N.

Q. Guo, Y. S. Yu, Z. M. Zheng, C. Chen, P. L. Wang, Z. N. Tian, Y. Zhao, X. Y. Ming, Q. D. Chen, H. Yang, and H. B. Sun, “Femtosecond laser inscribed sapphire fiber Bragg grating for high temperature and strain sensing,” IEEE Trans. Nanotechnol. 18, 208–211 (2019).
[Crossref]

Tong, W. J.

Wan, L.

Z. S. Chen, S. S. Xiong, S. C. Gao, H. Zhang, L. Wan, X. C. Huang, B. S. Huang, Y. H. Feng, W. P. Liu, and Z. H. Li, “High-temperature sensor based on Fabry-Perot interferometer in microfiber tip,” Sensors 18(2), 202 (2018).
[Crossref]

Wan, S. P.

Wang, B.

B. Wang, W. G. Zhang, Z. Y. Bai, L. Wang, L. Y. Zhang, Q. Zhou, L. Chen, and T. Y. Yan, “CO2-laser-induced long period fiber gratings in few mode fibers,” IEEE Photonics Technol. Lett. 27(2), 145–148 (2015).
[Crossref]

Wang, D. N.

Wang, L.

B. Wang, W. G. Zhang, Z. Y. Bai, L. Wang, L. Y. Zhang, Q. Zhou, L. Chen, and T. Y. Yan, “CO2-laser-induced long period fiber gratings in few mode fibers,” IEEE Photonics Technol. Lett. 27(2), 145–148 (2015).
[Crossref]

Wang, P. L.

Q. Guo, Y. S. Yu, Z. M. Zheng, C. Chen, P. L. Wang, Z. N. Tian, Y. Zhao, X. Y. Ming, Q. D. Chen, H. Yang, and H. B. Sun, “Femtosecond laser inscribed sapphire fiber Bragg grating for high temperature and strain sensing,” IEEE Trans. Nanotechnol. 18, 208–211 (2019).
[Crossref]

Wang, P. P.

C. Zhu, Y. Y. Zhuang, B. H. Zhang, M. Roman, P. P. Wang, and J. Huang, “A miniaturized optical fiber tip high-temperature sensor based on concave-shaped Fabry-Perot cavity,” IEEE Photonics Technol. Lett. 31(1), 35–38 (2019).
[Crossref]

Wang, Q.

Wang, R. X.

Wang, Y.

H. H. Yu, Y. Wang, J. Ma, Z. Zheng, Z. Z. Luo, and Y. Zheng, “Fabry-Perot interferometric high-temperature sensing up to 1200 ◦C based on a silica glass photonic crystal fiber,” Sensors 18(1), 273 (2018).
[Crossref]

Z. Zhang, C. R. Liao, J. Tang, Y. Wang, Z. Y. Bai, Z. Y. Li, K. K. Guo, M. Deng, S. Q. Cao, and Y. P. Wang, “Hollow-core-fiber-based interferometer for high-temperature measurements,” IEEE Photonics J. 9(2), 1–9 (2017).
[Crossref]

Wang, Y. P.

Z. Zhang, C. R. Liao, J. Tang, Y. Wang, Z. Y. Bai, Z. Y. Li, K. K. Guo, M. Deng, S. Q. Cao, and Y. P. Wang, “Hollow-core-fiber-based interferometer for high-temperature measurements,” IEEE Photonics J. 9(2), 1–9 (2017).
[Crossref]

Wei, F. F.

Wei, H. F.

P. Zhang, M. Tang, F. Gao, B. P. Zhu, Z. Y. Zhao, L. Duan, S. N. Fu, J. Ouyang, H. F. Wei, P. P. Shum, and D. M. Liu, “Simplified hollow-core fiber-based Fabry-Perot interferometer with modified Vernier effect for highly sensitive high-temperature measurement,” IEEE Photonics J. 7(1), 1–10 (2015).
[Crossref]

Wu, J.

Wu, J. J.

Wu, Q.

Wu, Y. F.

Xin, X.

Xiong, S. S.

Z. S. Chen, S. S. Xiong, S. C. Gao, H. Zhang, L. Wan, X. C. Huang, B. S. Huang, Y. H. Feng, W. P. Liu, and Z. H. Li, “High-temperature sensor based on Fabry-Perot interferometer in microfiber tip,” Sensors 18(2), 202 (2018).
[Crossref]

Xu, F.

Xu, M.

Yan, T. Y.

L. X. Kong, Y. X. Zhang, W. G. Zhang, Y. S. Zhang, L. Yu, T. Y. Yan, and P. C. Geng, “Cylinder-type fiber-optic Vernier probe based on cascaded Fabry-Perot interferometers with a controlled FSR ratio,” Appl. Opt. 57(18), 5043–5047 (2018).
[Crossref]

B. Wang, W. G. Zhang, Z. Y. Bai, L. Wang, L. Y. Zhang, Q. Zhou, L. Chen, and T. Y. Yan, “CO2-laser-induced long period fiber gratings in few mode fibers,” IEEE Photonics Technol. Lett. 27(2), 145–148 (2015).
[Crossref]

Yang, H.

Q. Guo, Y. S. Yu, Z. M. Zheng, C. Chen, P. L. Wang, Z. N. Tian, Y. Zhao, X. Y. Ming, Q. D. Chen, H. Yang, and H. B. Sun, “Femtosecond laser inscribed sapphire fiber Bragg grating for high temperature and strain sensing,” IEEE Trans. Nanotechnol. 18, 208–211 (2019).
[Crossref]

Yang, J.

Yang, L. Y.

Yang, X. H.

X. R. Jin, C. T. Sun, S. J. Duan, W. L. Liu, G. A. Li, S. Zhang, X. D. Chen, L. Zhao, C. L. Lu, X. H. Yang, T. Geng, W. M. Sun, and L. B. Yuan, “High strain sensitivity temperature sensor based on a secondary modulated tapered long period fiber grating,” IEEE Photonics J. 11(1), 1–8 (2019).
[Crossref]

Yao, Y.

Ye, L.

Yu, C. X.

Yu, H. H.

H. H. Yu, Y. Wang, J. Ma, Z. Zheng, Z. Z. Luo, and Y. Zheng, “Fabry-Perot interferometric high-temperature sensing up to 1200 ◦C based on a silica glass photonic crystal fiber,” Sensors 18(1), 273 (2018).
[Crossref]

Yu, L.

Yu, Y. S.

Q. Guo, Y. S. Yu, Z. M. Zheng, C. Chen, P. L. Wang, Z. N. Tian, Y. Zhao, X. Y. Ming, Q. D. Chen, H. Yang, and H. B. Sun, “Femtosecond laser inscribed sapphire fiber Bragg grating for high temperature and strain sensing,” IEEE Trans. Nanotechnol. 18, 208–211 (2019).
[Crossref]

Yuan, J. H.

Yuan, L. B.

X. R. Jin, C. T. Sun, S. J. Duan, W. L. Liu, G. A. Li, S. Zhang, X. D. Chen, L. Zhao, C. L. Lu, X. H. Yang, T. Geng, W. M. Sun, and L. B. Yuan, “High strain sensitivity temperature sensor based on a secondary modulated tapered long period fiber grating,” IEEE Photonics J. 11(1), 1–8 (2019).
[Crossref]

A. Zhou, B. Y. Qin, Z. Zhu, Y. X. Zhang, Z. H. Liu, J. Yang, and L. B. Yuan, “Hybrid structured fiber-optic Fabry-Perot interferometer for simultaneous measurement of strain and temperature,” Opt. Lett. 39(18), 5267–5270 (2014).
[Crossref]

Yuan, P.

Zhang, B. H.

C. Zhu, Y. Y. Zhuang, B. H. Zhang, M. Roman, P. P. Wang, and J. Huang, “A miniaturized optical fiber tip high-temperature sensor based on concave-shaped Fabry-Perot cavity,” IEEE Photonics Technol. Lett. 31(1), 35–38 (2019).
[Crossref]

Zhang, H.

Z. S. Chen, S. S. Xiong, S. C. Gao, H. Zhang, L. Wan, X. C. Huang, B. S. Huang, Y. H. Feng, W. P. Liu, and Z. H. Li, “High-temperature sensor based on Fabry-Perot interferometer in microfiber tip,” Sensors 18(2), 202 (2018).
[Crossref]

Zhang, L. Y.

B. Wang, W. G. Zhang, Z. Y. Bai, L. Wang, L. Y. Zhang, Q. Zhou, L. Chen, and T. Y. Yan, “CO2-laser-induced long period fiber gratings in few mode fibers,” IEEE Photonics Technol. Lett. 27(2), 145–148 (2015).
[Crossref]

Zhang, P.

L. Duan, P. Zhang, M. Tang, R. X. Wang, Z. Y. Zhao, S. N. Fu, L. Gan, B. P. Zhu, W. J. Tong, D. M. Liu, and P. P. Shum, “Heterogeneous all-solid multicore fiber based multipath Michelson interferometer for high temperature sensing,” Opt. Express 24(18), 20210–20218 (2016).
[Crossref]

P. Zhang, M. Tang, F. Gao, B. P. Zhu, Z. Y. Zhao, L. Duan, S. N. Fu, J. Ouyang, H. F. Wei, P. P. Shum, and D. M. Liu, “Simplified hollow-core fiber-based Fabry-Perot interferometer with modified Vernier effect for highly sensitive high-temperature measurement,” IEEE Photonics J. 7(1), 1–10 (2015).
[Crossref]

Zhang, S.

X. R. Jin, C. T. Sun, S. J. Duan, W. L. Liu, G. A. Li, S. Zhang, X. D. Chen, L. Zhao, C. L. Lu, X. H. Yang, T. Geng, W. M. Sun, and L. B. Yuan, “High strain sensitivity temperature sensor based on a secondary modulated tapered long period fiber grating,” IEEE Photonics J. 11(1), 1–8 (2019).
[Crossref]

Zhang, W. G.

L. X. Kong, Y. X. Zhang, W. G. Zhang, Y. S. Zhang, L. Yu, T. Y. Yan, and P. C. Geng, “Cylinder-type fiber-optic Vernier probe based on cascaded Fabry-Perot interferometers with a controlled FSR ratio,” Appl. Opt. 57(18), 5043–5047 (2018).
[Crossref]

B. Wang, W. G. Zhang, Z. Y. Bai, L. Wang, L. Y. Zhang, Q. Zhou, L. Chen, and T. Y. Yan, “CO2-laser-induced long period fiber gratings in few mode fibers,” IEEE Photonics Technol. Lett. 27(2), 145–148 (2015).
[Crossref]

Zhang, Y. D.

Zhang, Y. S.

Zhang, Y. X.

Zhang, Z.

Z. Zhang, C. R. Liao, J. Tang, Y. Wang, Z. Y. Bai, Z. Y. Li, K. K. Guo, M. Deng, S. Q. Cao, and Y. P. Wang, “Hollow-core-fiber-based interferometer for high-temperature measurements,” IEEE Photonics J. 9(2), 1–9 (2017).
[Crossref]

Zhao, L.

X. R. Jin, C. T. Sun, S. J. Duan, W. L. Liu, G. A. Li, S. Zhang, X. D. Chen, L. Zhao, C. L. Lu, X. H. Yang, T. Geng, W. M. Sun, and L. B. Yuan, “High strain sensitivity temperature sensor based on a secondary modulated tapered long period fiber grating,” IEEE Photonics J. 11(1), 1–8 (2019).
[Crossref]

Zhao, Y.

Q. Guo, Y. S. Yu, Z. M. Zheng, C. Chen, P. L. Wang, Z. N. Tian, Y. Zhao, X. Y. Ming, Q. D. Chen, H. Yang, and H. B. Sun, “Femtosecond laser inscribed sapphire fiber Bragg grating for high temperature and strain sensing,” IEEE Trans. Nanotechnol. 18, 208–211 (2019).
[Crossref]

Zhao, Z. Y.

L. Duan, P. Zhang, M. Tang, R. X. Wang, Z. Y. Zhao, S. N. Fu, L. Gan, B. P. Zhu, W. J. Tong, D. M. Liu, and P. P. Shum, “Heterogeneous all-solid multicore fiber based multipath Michelson interferometer for high temperature sensing,” Opt. Express 24(18), 20210–20218 (2016).
[Crossref]

P. Zhang, M. Tang, F. Gao, B. P. Zhu, Z. Y. Zhao, L. Duan, S. N. Fu, J. Ouyang, H. F. Wei, P. P. Shum, and D. M. Liu, “Simplified hollow-core fiber-based Fabry-Perot interferometer with modified Vernier effect for highly sensitive high-temperature measurement,” IEEE Photonics J. 7(1), 1–10 (2015).
[Crossref]

Zheng, Y.

H. H. Yu, Y. Wang, J. Ma, Z. Zheng, Z. Z. Luo, and Y. Zheng, “Fabry-Perot interferometric high-temperature sensing up to 1200 ◦C based on a silica glass photonic crystal fiber,” Sensors 18(1), 273 (2018).
[Crossref]

Zheng, Z.

H. H. Yu, Y. Wang, J. Ma, Z. Zheng, Z. Z. Luo, and Y. Zheng, “Fabry-Perot interferometric high-temperature sensing up to 1200 ◦C based on a silica glass photonic crystal fiber,” Sensors 18(1), 273 (2018).
[Crossref]

Zheng, Z. M.

Q. Guo, Y. S. Yu, Z. M. Zheng, C. Chen, P. L. Wang, Z. N. Tian, Y. Zhao, X. Y. Ming, Q. D. Chen, H. Yang, and H. B. Sun, “Femtosecond laser inscribed sapphire fiber Bragg grating for high temperature and strain sensing,” IEEE Trans. Nanotechnol. 18, 208–211 (2019).
[Crossref]

Zhou, A.

Zhou, Q.

B. Wang, W. G. Zhang, Z. Y. Bai, L. Wang, L. Y. Zhang, Q. Zhou, L. Chen, and T. Y. Yan, “CO2-laser-induced long period fiber gratings in few mode fibers,” IEEE Photonics Technol. Lett. 27(2), 145–148 (2015).
[Crossref]

Zhu, B. P.

L. Duan, P. Zhang, M. Tang, R. X. Wang, Z. Y. Zhao, S. N. Fu, L. Gan, B. P. Zhu, W. J. Tong, D. M. Liu, and P. P. Shum, “Heterogeneous all-solid multicore fiber based multipath Michelson interferometer for high temperature sensing,” Opt. Express 24(18), 20210–20218 (2016).
[Crossref]

P. Zhang, M. Tang, F. Gao, B. P. Zhu, Z. Y. Zhao, L. Duan, S. N. Fu, J. Ouyang, H. F. Wei, P. P. Shum, and D. M. Liu, “Simplified hollow-core fiber-based Fabry-Perot interferometer with modified Vernier effect for highly sensitive high-temperature measurement,” IEEE Photonics J. 7(1), 1–10 (2015).
[Crossref]

Zhu, C.

C. Zhu, Y. Y. Zhuang, B. H. Zhang, M. Roman, P. P. Wang, and J. Huang, “A miniaturized optical fiber tip high-temperature sensor based on concave-shaped Fabry-Perot cavity,” IEEE Photonics Technol. Lett. 31(1), 35–38 (2019).
[Crossref]

Zhu, Z.

Zhuang, Y. Y.

C. Zhu, Y. Y. Zhuang, B. H. Zhang, M. Roman, P. P. Wang, and J. Huang, “A miniaturized optical fiber tip high-temperature sensor based on concave-shaped Fabry-Perot cavity,” IEEE Photonics Technol. Lett. 31(1), 35–38 (2019).
[Crossref]

Appl. Opt. (1)

IEEE Photonics J. (4)

T. Habisreuther, T. Elsmann, A. Graf, and M. A. Schmidt, “High-temperature strain sensing using sapphire fibers with inscribed first-order Bragg gratings,” IEEE Photonics J. 8(3), 1–8 (2016).
[Crossref]

X. R. Jin, C. T. Sun, S. J. Duan, W. L. Liu, G. A. Li, S. Zhang, X. D. Chen, L. Zhao, C. L. Lu, X. H. Yang, T. Geng, W. M. Sun, and L. B. Yuan, “High strain sensitivity temperature sensor based on a secondary modulated tapered long period fiber grating,” IEEE Photonics J. 11(1), 1–8 (2019).
[Crossref]

P. Zhang, M. Tang, F. Gao, B. P. Zhu, Z. Y. Zhao, L. Duan, S. N. Fu, J. Ouyang, H. F. Wei, P. P. Shum, and D. M. Liu, “Simplified hollow-core fiber-based Fabry-Perot interferometer with modified Vernier effect for highly sensitive high-temperature measurement,” IEEE Photonics J. 7(1), 1–10 (2015).
[Crossref]

Z. Zhang, C. R. Liao, J. Tang, Y. Wang, Z. Y. Bai, Z. Y. Li, K. K. Guo, M. Deng, S. Q. Cao, and Y. P. Wang, “Hollow-core-fiber-based interferometer for high-temperature measurements,” IEEE Photonics J. 9(2), 1–9 (2017).
[Crossref]

IEEE Photonics Technol. Lett. (2)

B. Wang, W. G. Zhang, Z. Y. Bai, L. Wang, L. Y. Zhang, Q. Zhou, L. Chen, and T. Y. Yan, “CO2-laser-induced long period fiber gratings in few mode fibers,” IEEE Photonics Technol. Lett. 27(2), 145–148 (2015).
[Crossref]

C. Zhu, Y. Y. Zhuang, B. H. Zhang, M. Roman, P. P. Wang, and J. Huang, “A miniaturized optical fiber tip high-temperature sensor based on concave-shaped Fabry-Perot cavity,” IEEE Photonics Technol. Lett. 31(1), 35–38 (2019).
[Crossref]

IEEE Trans. Nanotechnol. (1)

Q. Guo, Y. S. Yu, Z. M. Zheng, C. Chen, P. L. Wang, Z. N. Tian, Y. Zhao, X. Y. Ming, Q. D. Chen, H. Yang, and H. B. Sun, “Femtosecond laser inscribed sapphire fiber Bragg grating for high temperature and strain sensing,” IEEE Trans. Nanotechnol. 18, 208–211 (2019).
[Crossref]

J. Lightwave Technol. (4)

Opt. Express (4)

Opt. Lett. (4)

Sensors (2)

Z. S. Chen, S. S. Xiong, S. C. Gao, H. Zhang, L. Wan, X. C. Huang, B. S. Huang, Y. H. Feng, W. P. Liu, and Z. H. Li, “High-temperature sensor based on Fabry-Perot interferometer in microfiber tip,” Sensors 18(2), 202 (2018).
[Crossref]

H. H. Yu, Y. Wang, J. Ma, Z. Zheng, Z. Z. Luo, and Y. Zheng, “Fabry-Perot interferometric high-temperature sensing up to 1200 ◦C based on a silica glass photonic crystal fiber,” Sensors 18(1), 273 (2018).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. (a) Schematic of the HTVP, cross views of (b) the PMPCF and (c) the HCPCF.
Fig. 2.
Fig. 2. Simulated spectra of the proposed HTVP when n1=1.45 and 1.451.
Fig. 3.
Fig. 3. (a) Microscope image and (b) measured spectrum of HTVP-1, (c) microscope image and (d) measured spectrum of HTVP-2, and (e) microscope image and (f) measured spectrum of HTVP-3.
Fig. 4.
Fig. 4. Experimental setup for high temperature measurement.
Fig. 5.
Fig. 5. (a) Measured spectra of the single FPI-1 under temperatures from 24 °C to 600 °C, and (b) the dip wavelength shifts versus the temperatures.
Fig. 6.
Fig. 6. Spectra of (a) HTVP-1, (c) HTVP-2 and (e)HTVP-3 under temperatures from 24 °C to 1000 °C, the shifts of the spectral envelope of (b) HTVP-1, (d) HTVP-2 and (f) HTVP-3 versus the temperatures.
Fig. 7.
Fig. 7. (a) Spectra of HTVP-2 under 1000 °C in the duration of 6 hours and (b) residual of dip wavelength.

Tables (2)

Tables Icon

Table 1. Main Parameters of the CO2 laser fusion splicer.

Tables Icon

Table 2. Comparison between our HTVP and the reported OFHTSs.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

I = R 1 + A 2 + B 2 + 2 R 1 B cos ( ϕ 1 + ϕ 2 ) + 2 R 1 A cos ( ϕ 1 ) + 2 A B cos ( ϕ 2 ) ,
A = ( 1 k 1 ) ( 1 R 1 ) R 2 ,
B = ( 1 k 1 ) ( 1 k 2 ) ( 1 R 1 ) ( 1 R 2 ) R 3 ,
λ m = 4 2 m + 1 n 1 L 1 ,
S = Δ λ m Δ T = λ m ( 1 n 1 n 1 T + 1 L 1 L 1 T ) = λ m ( α T + β T ) ,
F E = 2 C cos [ 4 π ( n 1 L 1 n 2 L 2 ) λ + 4 π ( Δ n 1 L 1 + n 1 Δ L 1 ) λ ] ,
F S R E = F S R 2 F S R 1 | F S R 2 F S R 1 | ,
M = F S R 2 | F S R 2 F S R 1 | = n 1 L 1 | n 1 L 1 n 2 L 2 |

Metrics