Abstract

We apply an intensity-modulation technique to dual-comb spectroscopy to improve its detection sensitivity. The scheme is demonstrated via Doppler-free optical–optical double-resonance spectroscopy of Rb by modulating the intensity of a pump laser with frequencies set at rates 3 times lower and 50,000 times higher than the difference in the repetition rates of the two frequency combs. The signal-to-noise ratios are enhanced by 3 and 6 times for slow and fast modulations, respectively, compared to those of conventional dual-comb spectroscopy without any intensity modulation. The technique is widely applicable to pump-probe spectroscopy with dual-comb spectroscopy and provides high detection sensitivity.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Doppler-free dual-comb spectroscopy of Rb using optical-optical double resonance technique

Akiko Nishiyama, Satoru Yoshida, Yoshiaki Nakajima, Hiroyuki Sasada, Ken’ichi Nakagawa, Atsushi Onae, and Kaoru Minoshima
Opt. Express 24(22) 25894-25904 (2016)

Sensitivity improvement of dual-comb spectroscopy using mode-filtering technique

Akiko Nishiyama, Satoru Yoshida, Takuya Hariki, Yoshiaki Nakajima, and Kaoru Minoshima
Opt. Express 25(25) 31730-31738 (2017)

High-coherence ultra-broadband bidirectional dual-comb fiber laser

Yoshiaki Nakajima, Yuya Hata, and Kaoru Minoshima
Opt. Express 27(5) 5931-5944 (2019)

References

  • View by:
  • |
  • |
  • |

  1. S. Okubo, K. Iwakuni, H. Inaba, K. Hosaka, A. Onae, H. Sasada, and F.-L. Hong, “Ultra-broadband dual-comb spectroscopy across 1.0–1.9 µm,” Appl. Phys. Express 8(8), 082402 (2015).
    [Crossref]
  2. G. Ycas, F. R. Giorgetta, K. C. Cossel, E. M. Waxman, E. Baumann, N. R. Newbury, and I. Coddington, “Mid-infrared dual-comb spectroscopy of volatile organic compounds across long open-air paths,” Optica 6(2), 165 (2019).
    [Crossref]
  3. T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
    [Crossref]
  4. I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
    [Crossref]
  5. I. Coddington, N. Newbury, and W. Swann, “Dual-comb spectroscopy,” Optica 3(4), 414–426 (2016).
    [Crossref]
  6. T. W. Hänsch and N. Picqué, “Laser Spectroscopy and Frequency Combs,” J. Phys.: Conf. Ser. 467(1), 012001 (2013).
    [Crossref]
  7. A. Nishiyama, Y. Nakajima, K. Nakagawa, and K. Minoshima, “Precise and highly-sensitive Doppler-free two-photon absorption dual-comb spectroscopy using pulse shaping and coherent averaging for fluorescence signal detection,” Opt. Express 26(7), 8957–8967 (2018).
    [Crossref]
  8. S. A. Meek, A. Hipke, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Doppler-free Fourier transform spectroscopy,” Opt. Lett. 43(1), 162–165 (2018).
    [Crossref]
  9. A. Nishiyama, S. Yoshida, Y. Nakajima, H. Sasada, K. Nakagawa, A. Onae, and K. Minoshima, “Doppler-free dual-comb spectroscopy of Rb using optical-optical double resonance technique,” Opt. Express 24(22), 25894–25904 (2016).
    [Crossref]
  10. N. Kuse, A. Ozawa, I. Ito, and Y. Kobayashi, “Dual-comb saturated absorption spectroscopy,” in Conference on Lasers and Electro Optics (Optical Society of America, 2013), paper CTu2I.1.
  11. N. R. Newbury, I. Coddington, and W. Swann, “Sensitivity of coherent dual-comb spectroscopy,” Opt. Express 18(8), 7929–7945 (2010).
    [Crossref]
  12. B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picque, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
    [Crossref]
  13. A. J. Fleisher, D. A. Long, Z. D. Reed, J. T. Hodges, and D. F. Plusquellic, “Coherent cavity-enhanced dual-comb spectroscopy,” Opt. Express 24(10), 10424–10434 (2016).
    [Crossref]
  14. A. Nishiyama, S. Yoshida, T. Hariki, Y. Nakajima, and K. Minoshima, “Sensitivity improvement of dual-comb spectroscopy using mode-filtering technique,” Opt. Express 25(25), 31730–31738 (2017).
    [Crossref]
  15. T. Tomeberg, A. Muraviev, Q. Ru, and K. L. Vodopyanov, “Background-free broadband absorption spectroscopy based on interferometric suppression with a sign-inverted waveform,” Optica 6(2), 147 (2019).
    [Crossref]
  16. W. Demtröder, Laser Spectroscopy, 4th ed. (Springer, 2008), Vol. 2.
  17. W.-K. Lee and H. S. Moon, “Measurement of absolute frequencies and hyperfine structure constants of 4D5/2 and 4D3/2 levels of 87Rb and 85Rb using an optical frequency comb,” Phys. Rev. A 92(1), 012501 (2015).
    [Crossref]
  18. H. S. Moon, L. Lee, and J. B. Kim, “Double-resonance optical pumping of Rb atoms,” J. Opt. Soc. Am. B 24(9), 2157 (2007).
    [Crossref]
  19. N. Picqué and T. W. Hänsch, “Frequency comb spectroscopy,” Nat. Photonics 13(3), 146–157 (2019).
    [Crossref]
  20. P. Maslowski, K. F. Lee, A. C. Johansson, A. Khodabakhsh, G. Kowzan, L. Rutkowski, A. A. Mills, C. Mohr, J. Jiang, M. E. Fermann, and A. Foltynowicz, “Surpassing the path-limited resolution of Fourier-transform spectrometry with frequency combs,” Phys. Rev. A 93(2), 021802 (2016).
    [Crossref]
  21. S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007).
    [Crossref]
  22. J. Mandon, G. Guelachvili, and N. Picqué, “Fourier transform spectroscopy with a laser frequency comb,” Nat. Photonics 3(2), 99–102 (2009).
    [Crossref]
  23. A. Khodabakhsh, C. A. Alrahman, and A. Foltynowicz, “Noise-immune cavity-enhanced optical frequency comb spectroscopy,” Opt. Lett. 39(17), 5034–5037 (2014).
    [Crossref]
  24. L. C. Sinclair, K. C. Cossel, T. Coffey, J. Ye, and E. A. Cornell, “Frequency comb velocity-modulation spectroscopy,” Phys. Rev. Lett. 107(9), 093002 (2011).
    [Crossref]
  25. K. A. Sumihara, S. Okubo, M. Okao, H. Inaba, and S. Watanabe, “Polarization-sensitive dual-comb spectroscopy,” J. Opt. Soc. Am. B 34(1), 154–158 (2017).
    [Crossref]
  26. A. N. Dharamsi, “A theory of modulation spectroscopy with applications of higher harmonic detection,” J. Phys. D: Appl. Phys. 29(3), 540–549 (1996).
    [Crossref]
  27. I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent linear optical sampling at 15 bits of resolution,” Opt. Lett. 34(14), 2153–2155 (2009).
    [Crossref]
  28. D. A. Long, A. J. Fleisher, D. F. Plusquellic, and J. T. Hodges, “Multiplexed sub-Doppler spectroscopy with an optical frequency comb,” Phys. Rev. A 94(6), 061801 (2016).
    [Crossref]
  29. D. A. Long, A. J. Fleisher, D. F. Plusquellic, and J. T. Hodges, “Electromagnetically induced transparency in vacuum and buffer gas potassium cells probed via electro-optic frequency combs,” Opt. Lett. 42(21), 4430–4433 (2017).
    [Crossref]
  30. D. A. Long, A. J. Fleisher, and J. T. Hodges, “Direct frequency comb saturation spectroscopy with an ultradense tooth spacing of 100 Hz,” arXiv:1812.09342 (2018).
  31. U. Volz and H. Schmoranzer, “Precision lifetime measurements on alkali atoms and on helium by beam-gas-laser spectroscopy,” Phys. Scr. T65, 48–56 (1996).
    [Crossref]
  32. M. Breton, P. Tremblay, C. Julien, N. Cyr, M. Têtu, and C. Latrasse, “Optically pumped rubidium as a frequency standard at 196 THz,” IEEE Trans. Instrum. Meas. 44(2), 162–165 (1995).
    [Crossref]
  33. A. C. Johansson, L. Rutkowski, A. Filipsson, T. Hausmaninger, G. Zhao, O. Axner, and A. Foltynowicz, “Broadband calibration-free cavity-enhanced complex refractive index spectroscopy using a frequency comb,” Opt. Express 26(16), 20633–20648 (2018).
    [Crossref]
  34. S. Le Boiteux, D. Bloch, and M. Ducloy, “Theory of optical heterodyne three-level saturation spectroscopy via collinear non-degenerate four-wave mixing in coupled Doppler-broadened transitions,” J. Phys. 47(1), 31–38 (1986).
    [Crossref]
  35. Y. N. Martinez de Escobar, S. P. Álvarez, S. Coop, T. Vanderbruggen, K. T. Kaczmarek, and M. W. Mitchell, “Absolute frequency references at 1529 and 1560 nm using modulation transfer spectroscopy,” Opt. Lett. 40(20), 4731–4734 (2015).
    [Crossref]
  36. A. Asahara and K. Minoshima, “Development of ultrafast time-resolved dual-comb spectroscopy,” APL Photonics 2(4), 041301 (2017).
    [Crossref]
  37. J. Bergevin, T.-H. Wu, J. Yeak, B. E. Brumfield, S. S. Harilal, M. C. Phillips, and R. J. Jones, “Dual-comb spectroscopy of laser-induced plasmas,” Nat. Commun. 9(1), 1273 (2018).
    [Crossref]

2019 (3)

2018 (4)

2017 (4)

2016 (5)

P. Maslowski, K. F. Lee, A. C. Johansson, A. Khodabakhsh, G. Kowzan, L. Rutkowski, A. A. Mills, C. Mohr, J. Jiang, M. E. Fermann, and A. Foltynowicz, “Surpassing the path-limited resolution of Fourier-transform spectrometry with frequency combs,” Phys. Rev. A 93(2), 021802 (2016).
[Crossref]

A. J. Fleisher, D. A. Long, Z. D. Reed, J. T. Hodges, and D. F. Plusquellic, “Coherent cavity-enhanced dual-comb spectroscopy,” Opt. Express 24(10), 10424–10434 (2016).
[Crossref]

A. Nishiyama, S. Yoshida, Y. Nakajima, H. Sasada, K. Nakagawa, A. Onae, and K. Minoshima, “Doppler-free dual-comb spectroscopy of Rb using optical-optical double resonance technique,” Opt. Express 24(22), 25894–25904 (2016).
[Crossref]

I. Coddington, N. Newbury, and W. Swann, “Dual-comb spectroscopy,” Optica 3(4), 414–426 (2016).
[Crossref]

D. A. Long, A. J. Fleisher, D. F. Plusquellic, and J. T. Hodges, “Multiplexed sub-Doppler spectroscopy with an optical frequency comb,” Phys. Rev. A 94(6), 061801 (2016).
[Crossref]

2015 (3)

Y. N. Martinez de Escobar, S. P. Álvarez, S. Coop, T. Vanderbruggen, K. T. Kaczmarek, and M. W. Mitchell, “Absolute frequency references at 1529 and 1560 nm using modulation transfer spectroscopy,” Opt. Lett. 40(20), 4731–4734 (2015).
[Crossref]

S. Okubo, K. Iwakuni, H. Inaba, K. Hosaka, A. Onae, H. Sasada, and F.-L. Hong, “Ultra-broadband dual-comb spectroscopy across 1.0–1.9 µm,” Appl. Phys. Express 8(8), 082402 (2015).
[Crossref]

W.-K. Lee and H. S. Moon, “Measurement of absolute frequencies and hyperfine structure constants of 4D5/2 and 4D3/2 levels of 87Rb and 85Rb using an optical frequency comb,” Phys. Rev. A 92(1), 012501 (2015).
[Crossref]

2014 (1)

2013 (2)

T. W. Hänsch and N. Picqué, “Laser Spectroscopy and Frequency Combs,” J. Phys.: Conf. Ser. 467(1), 012001 (2013).
[Crossref]

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref]

2011 (1)

L. C. Sinclair, K. C. Cossel, T. Coffey, J. Ye, and E. A. Cornell, “Frequency comb velocity-modulation spectroscopy,” Phys. Rev. Lett. 107(9), 093002 (2011).
[Crossref]

2010 (2)

N. R. Newbury, I. Coddington, and W. Swann, “Sensitivity of coherent dual-comb spectroscopy,” Opt. Express 18(8), 7929–7945 (2010).
[Crossref]

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picque, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

2009 (2)

J. Mandon, G. Guelachvili, and N. Picqué, “Fourier transform spectroscopy with a laser frequency comb,” Nat. Photonics 3(2), 99–102 (2009).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent linear optical sampling at 15 bits of resolution,” Opt. Lett. 34(14), 2153–2155 (2009).
[Crossref]

2008 (1)

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[Crossref]

2007 (2)

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007).
[Crossref]

H. S. Moon, L. Lee, and J. B. Kim, “Double-resonance optical pumping of Rb atoms,” J. Opt. Soc. Am. B 24(9), 2157 (2007).
[Crossref]

1996 (2)

U. Volz and H. Schmoranzer, “Precision lifetime measurements on alkali atoms and on helium by beam-gas-laser spectroscopy,” Phys. Scr. T65, 48–56 (1996).
[Crossref]

A. N. Dharamsi, “A theory of modulation spectroscopy with applications of higher harmonic detection,” J. Phys. D: Appl. Phys. 29(3), 540–549 (1996).
[Crossref]

1995 (1)

M. Breton, P. Tremblay, C. Julien, N. Cyr, M. Têtu, and C. Latrasse, “Optically pumped rubidium as a frequency standard at 196 THz,” IEEE Trans. Instrum. Meas. 44(2), 162–165 (1995).
[Crossref]

1986 (1)

S. Le Boiteux, D. Bloch, and M. Ducloy, “Theory of optical heterodyne three-level saturation spectroscopy via collinear non-degenerate four-wave mixing in coupled Doppler-broadened transitions,” J. Phys. 47(1), 31–38 (1986).
[Crossref]

Alrahman, C. A.

Álvarez, S. P.

Asahara, A.

A. Asahara and K. Minoshima, “Development of ultrafast time-resolved dual-comb spectroscopy,” APL Photonics 2(4), 041301 (2017).
[Crossref]

Axner, O.

Baumann, E.

Bergevin, J.

J. Bergevin, T.-H. Wu, J. Yeak, B. E. Brumfield, S. S. Harilal, M. C. Phillips, and R. J. Jones, “Dual-comb spectroscopy of laser-induced plasmas,” Nat. Commun. 9(1), 1273 (2018).
[Crossref]

Bernhardt, B.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref]

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picque, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Bloch, D.

S. Le Boiteux, D. Bloch, and M. Ducloy, “Theory of optical heterodyne three-level saturation spectroscopy via collinear non-degenerate four-wave mixing in coupled Doppler-broadened transitions,” J. Phys. 47(1), 31–38 (1986).
[Crossref]

Breton, M.

M. Breton, P. Tremblay, C. Julien, N. Cyr, M. Têtu, and C. Latrasse, “Optically pumped rubidium as a frequency standard at 196 THz,” IEEE Trans. Instrum. Meas. 44(2), 162–165 (1995).
[Crossref]

Brumfield, B. E.

J. Bergevin, T.-H. Wu, J. Yeak, B. E. Brumfield, S. S. Harilal, M. C. Phillips, and R. J. Jones, “Dual-comb spectroscopy of laser-induced plasmas,” Nat. Commun. 9(1), 1273 (2018).
[Crossref]

Coddington, I.

Coffey, T.

L. C. Sinclair, K. C. Cossel, T. Coffey, J. Ye, and E. A. Cornell, “Frequency comb velocity-modulation spectroscopy,” Phys. Rev. Lett. 107(9), 093002 (2011).
[Crossref]

Coop, S.

Cornell, E. A.

L. C. Sinclair, K. C. Cossel, T. Coffey, J. Ye, and E. A. Cornell, “Frequency comb velocity-modulation spectroscopy,” Phys. Rev. Lett. 107(9), 093002 (2011).
[Crossref]

Cossel, K. C.

G. Ycas, F. R. Giorgetta, K. C. Cossel, E. M. Waxman, E. Baumann, N. R. Newbury, and I. Coddington, “Mid-infrared dual-comb spectroscopy of volatile organic compounds across long open-air paths,” Optica 6(2), 165 (2019).
[Crossref]

L. C. Sinclair, K. C. Cossel, T. Coffey, J. Ye, and E. A. Cornell, “Frequency comb velocity-modulation spectroscopy,” Phys. Rev. Lett. 107(9), 093002 (2011).
[Crossref]

Cyr, N.

M. Breton, P. Tremblay, C. Julien, N. Cyr, M. Têtu, and C. Latrasse, “Optically pumped rubidium as a frequency standard at 196 THz,” IEEE Trans. Instrum. Meas. 44(2), 162–165 (1995).
[Crossref]

Demtröder, W.

W. Demtröder, Laser Spectroscopy, 4th ed. (Springer, 2008), Vol. 2.

Dharamsi, A. N.

A. N. Dharamsi, “A theory of modulation spectroscopy with applications of higher harmonic detection,” J. Phys. D: Appl. Phys. 29(3), 540–549 (1996).
[Crossref]

Diddams, S. A.

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007).
[Crossref]

Ducloy, M.

S. Le Boiteux, D. Bloch, and M. Ducloy, “Theory of optical heterodyne three-level saturation spectroscopy via collinear non-degenerate four-wave mixing in coupled Doppler-broadened transitions,” J. Phys. 47(1), 31–38 (1986).
[Crossref]

Fermann, M. E.

P. Maslowski, K. F. Lee, A. C. Johansson, A. Khodabakhsh, G. Kowzan, L. Rutkowski, A. A. Mills, C. Mohr, J. Jiang, M. E. Fermann, and A. Foltynowicz, “Surpassing the path-limited resolution of Fourier-transform spectrometry with frequency combs,” Phys. Rev. A 93(2), 021802 (2016).
[Crossref]

Filipsson, A.

Fleisher, A. J.

D. A. Long, A. J. Fleisher, D. F. Plusquellic, and J. T. Hodges, “Electromagnetically induced transparency in vacuum and buffer gas potassium cells probed via electro-optic frequency combs,” Opt. Lett. 42(21), 4430–4433 (2017).
[Crossref]

A. J. Fleisher, D. A. Long, Z. D. Reed, J. T. Hodges, and D. F. Plusquellic, “Coherent cavity-enhanced dual-comb spectroscopy,” Opt. Express 24(10), 10424–10434 (2016).
[Crossref]

D. A. Long, A. J. Fleisher, D. F. Plusquellic, and J. T. Hodges, “Multiplexed sub-Doppler spectroscopy with an optical frequency comb,” Phys. Rev. A 94(6), 061801 (2016).
[Crossref]

D. A. Long, A. J. Fleisher, and J. T. Hodges, “Direct frequency comb saturation spectroscopy with an ultradense tooth spacing of 100 Hz,” arXiv:1812.09342 (2018).

Foltynowicz, A.

Giorgetta, F. R.

Guelachvili, G.

S. A. Meek, A. Hipke, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Doppler-free Fourier transform spectroscopy,” Opt. Lett. 43(1), 162–165 (2018).
[Crossref]

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref]

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picque, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

J. Mandon, G. Guelachvili, and N. Picqué, “Fourier transform spectroscopy with a laser frequency comb,” Nat. Photonics 3(2), 99–102 (2009).
[Crossref]

Hänsch, T. W.

N. Picqué and T. W. Hänsch, “Frequency comb spectroscopy,” Nat. Photonics 13(3), 146–157 (2019).
[Crossref]

S. A. Meek, A. Hipke, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Doppler-free Fourier transform spectroscopy,” Opt. Lett. 43(1), 162–165 (2018).
[Crossref]

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref]

T. W. Hänsch and N. Picqué, “Laser Spectroscopy and Frequency Combs,” J. Phys.: Conf. Ser. 467(1), 012001 (2013).
[Crossref]

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picque, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Hariki, T.

Harilal, S. S.

J. Bergevin, T.-H. Wu, J. Yeak, B. E. Brumfield, S. S. Harilal, M. C. Phillips, and R. J. Jones, “Dual-comb spectroscopy of laser-induced plasmas,” Nat. Commun. 9(1), 1273 (2018).
[Crossref]

Hausmaninger, T.

Hipke, A.

Hodges, J. T.

D. A. Long, A. J. Fleisher, D. F. Plusquellic, and J. T. Hodges, “Electromagnetically induced transparency in vacuum and buffer gas potassium cells probed via electro-optic frequency combs,” Opt. Lett. 42(21), 4430–4433 (2017).
[Crossref]

A. J. Fleisher, D. A. Long, Z. D. Reed, J. T. Hodges, and D. F. Plusquellic, “Coherent cavity-enhanced dual-comb spectroscopy,” Opt. Express 24(10), 10424–10434 (2016).
[Crossref]

D. A. Long, A. J. Fleisher, D. F. Plusquellic, and J. T. Hodges, “Multiplexed sub-Doppler spectroscopy with an optical frequency comb,” Phys. Rev. A 94(6), 061801 (2016).
[Crossref]

D. A. Long, A. J. Fleisher, and J. T. Hodges, “Direct frequency comb saturation spectroscopy with an ultradense tooth spacing of 100 Hz,” arXiv:1812.09342 (2018).

Hollberg, L.

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007).
[Crossref]

Holzner, S.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref]

Holzwarth, R.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picque, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Hong, F.-L.

S. Okubo, K. Iwakuni, H. Inaba, K. Hosaka, A. Onae, H. Sasada, and F.-L. Hong, “Ultra-broadband dual-comb spectroscopy across 1.0–1.9 µm,” Appl. Phys. Express 8(8), 082402 (2015).
[Crossref]

Hosaka, K.

S. Okubo, K. Iwakuni, H. Inaba, K. Hosaka, A. Onae, H. Sasada, and F.-L. Hong, “Ultra-broadband dual-comb spectroscopy across 1.0–1.9 µm,” Appl. Phys. Express 8(8), 082402 (2015).
[Crossref]

Ideguchi, T.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref]

Inaba, H.

K. A. Sumihara, S. Okubo, M. Okao, H. Inaba, and S. Watanabe, “Polarization-sensitive dual-comb spectroscopy,” J. Opt. Soc. Am. B 34(1), 154–158 (2017).
[Crossref]

S. Okubo, K. Iwakuni, H. Inaba, K. Hosaka, A. Onae, H. Sasada, and F.-L. Hong, “Ultra-broadband dual-comb spectroscopy across 1.0–1.9 µm,” Appl. Phys. Express 8(8), 082402 (2015).
[Crossref]

Ito, I.

N. Kuse, A. Ozawa, I. Ito, and Y. Kobayashi, “Dual-comb saturated absorption spectroscopy,” in Conference on Lasers and Electro Optics (Optical Society of America, 2013), paper CTu2I.1.

Iwakuni, K.

S. Okubo, K. Iwakuni, H. Inaba, K. Hosaka, A. Onae, H. Sasada, and F.-L. Hong, “Ultra-broadband dual-comb spectroscopy across 1.0–1.9 µm,” Appl. Phys. Express 8(8), 082402 (2015).
[Crossref]

Jacquet, P.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picque, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Jacquey, M.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picque, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Jiang, J.

P. Maslowski, K. F. Lee, A. C. Johansson, A. Khodabakhsh, G. Kowzan, L. Rutkowski, A. A. Mills, C. Mohr, J. Jiang, M. E. Fermann, and A. Foltynowicz, “Surpassing the path-limited resolution of Fourier-transform spectrometry with frequency combs,” Phys. Rev. A 93(2), 021802 (2016).
[Crossref]

Johansson, A. C.

A. C. Johansson, L. Rutkowski, A. Filipsson, T. Hausmaninger, G. Zhao, O. Axner, and A. Foltynowicz, “Broadband calibration-free cavity-enhanced complex refractive index spectroscopy using a frequency comb,” Opt. Express 26(16), 20633–20648 (2018).
[Crossref]

P. Maslowski, K. F. Lee, A. C. Johansson, A. Khodabakhsh, G. Kowzan, L. Rutkowski, A. A. Mills, C. Mohr, J. Jiang, M. E. Fermann, and A. Foltynowicz, “Surpassing the path-limited resolution of Fourier-transform spectrometry with frequency combs,” Phys. Rev. A 93(2), 021802 (2016).
[Crossref]

Jones, R. J.

J. Bergevin, T.-H. Wu, J. Yeak, B. E. Brumfield, S. S. Harilal, M. C. Phillips, and R. J. Jones, “Dual-comb spectroscopy of laser-induced plasmas,” Nat. Commun. 9(1), 1273 (2018).
[Crossref]

Julien, C.

M. Breton, P. Tremblay, C. Julien, N. Cyr, M. Têtu, and C. Latrasse, “Optically pumped rubidium as a frequency standard at 196 THz,” IEEE Trans. Instrum. Meas. 44(2), 162–165 (1995).
[Crossref]

Kaczmarek, K. T.

Khodabakhsh, A.

P. Maslowski, K. F. Lee, A. C. Johansson, A. Khodabakhsh, G. Kowzan, L. Rutkowski, A. A. Mills, C. Mohr, J. Jiang, M. E. Fermann, and A. Foltynowicz, “Surpassing the path-limited resolution of Fourier-transform spectrometry with frequency combs,” Phys. Rev. A 93(2), 021802 (2016).
[Crossref]

A. Khodabakhsh, C. A. Alrahman, and A. Foltynowicz, “Noise-immune cavity-enhanced optical frequency comb spectroscopy,” Opt. Lett. 39(17), 5034–5037 (2014).
[Crossref]

Kim, J. B.

Kobayashi, Y.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picque, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

N. Kuse, A. Ozawa, I. Ito, and Y. Kobayashi, “Dual-comb saturated absorption spectroscopy,” in Conference on Lasers and Electro Optics (Optical Society of America, 2013), paper CTu2I.1.

Kowzan, G.

P. Maslowski, K. F. Lee, A. C. Johansson, A. Khodabakhsh, G. Kowzan, L. Rutkowski, A. A. Mills, C. Mohr, J. Jiang, M. E. Fermann, and A. Foltynowicz, “Surpassing the path-limited resolution of Fourier-transform spectrometry with frequency combs,” Phys. Rev. A 93(2), 021802 (2016).
[Crossref]

Kuse, N.

N. Kuse, A. Ozawa, I. Ito, and Y. Kobayashi, “Dual-comb saturated absorption spectroscopy,” in Conference on Lasers and Electro Optics (Optical Society of America, 2013), paper CTu2I.1.

Latrasse, C.

M. Breton, P. Tremblay, C. Julien, N. Cyr, M. Têtu, and C. Latrasse, “Optically pumped rubidium as a frequency standard at 196 THz,” IEEE Trans. Instrum. Meas. 44(2), 162–165 (1995).
[Crossref]

Le Boiteux, S.

S. Le Boiteux, D. Bloch, and M. Ducloy, “Theory of optical heterodyne three-level saturation spectroscopy via collinear non-degenerate four-wave mixing in coupled Doppler-broadened transitions,” J. Phys. 47(1), 31–38 (1986).
[Crossref]

Lee, K. F.

P. Maslowski, K. F. Lee, A. C. Johansson, A. Khodabakhsh, G. Kowzan, L. Rutkowski, A. A. Mills, C. Mohr, J. Jiang, M. E. Fermann, and A. Foltynowicz, “Surpassing the path-limited resolution of Fourier-transform spectrometry with frequency combs,” Phys. Rev. A 93(2), 021802 (2016).
[Crossref]

Lee, L.

Lee, W.-K.

W.-K. Lee and H. S. Moon, “Measurement of absolute frequencies and hyperfine structure constants of 4D5/2 and 4D3/2 levels of 87Rb and 85Rb using an optical frequency comb,” Phys. Rev. A 92(1), 012501 (2015).
[Crossref]

Long, D. A.

D. A. Long, A. J. Fleisher, D. F. Plusquellic, and J. T. Hodges, “Electromagnetically induced transparency in vacuum and buffer gas potassium cells probed via electro-optic frequency combs,” Opt. Lett. 42(21), 4430–4433 (2017).
[Crossref]

A. J. Fleisher, D. A. Long, Z. D. Reed, J. T. Hodges, and D. F. Plusquellic, “Coherent cavity-enhanced dual-comb spectroscopy,” Opt. Express 24(10), 10424–10434 (2016).
[Crossref]

D. A. Long, A. J. Fleisher, D. F. Plusquellic, and J. T. Hodges, “Multiplexed sub-Doppler spectroscopy with an optical frequency comb,” Phys. Rev. A 94(6), 061801 (2016).
[Crossref]

D. A. Long, A. J. Fleisher, and J. T. Hodges, “Direct frequency comb saturation spectroscopy with an ultradense tooth spacing of 100 Hz,” arXiv:1812.09342 (2018).

Mandon, J.

J. Mandon, G. Guelachvili, and N. Picqué, “Fourier transform spectroscopy with a laser frequency comb,” Nat. Photonics 3(2), 99–102 (2009).
[Crossref]

Martinez de Escobar, Y. N.

Maslowski, P.

P. Maslowski, K. F. Lee, A. C. Johansson, A. Khodabakhsh, G. Kowzan, L. Rutkowski, A. A. Mills, C. Mohr, J. Jiang, M. E. Fermann, and A. Foltynowicz, “Surpassing the path-limited resolution of Fourier-transform spectrometry with frequency combs,” Phys. Rev. A 93(2), 021802 (2016).
[Crossref]

Mbele, V.

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007).
[Crossref]

Meek, S. A.

Mills, A. A.

P. Maslowski, K. F. Lee, A. C. Johansson, A. Khodabakhsh, G. Kowzan, L. Rutkowski, A. A. Mills, C. Mohr, J. Jiang, M. E. Fermann, and A. Foltynowicz, “Surpassing the path-limited resolution of Fourier-transform spectrometry with frequency combs,” Phys. Rev. A 93(2), 021802 (2016).
[Crossref]

Minoshima, K.

Mitchell, M. W.

Mohr, C.

P. Maslowski, K. F. Lee, A. C. Johansson, A. Khodabakhsh, G. Kowzan, L. Rutkowski, A. A. Mills, C. Mohr, J. Jiang, M. E. Fermann, and A. Foltynowicz, “Surpassing the path-limited resolution of Fourier-transform spectrometry with frequency combs,” Phys. Rev. A 93(2), 021802 (2016).
[Crossref]

Moon, H. S.

W.-K. Lee and H. S. Moon, “Measurement of absolute frequencies and hyperfine structure constants of 4D5/2 and 4D3/2 levels of 87Rb and 85Rb using an optical frequency comb,” Phys. Rev. A 92(1), 012501 (2015).
[Crossref]

H. S. Moon, L. Lee, and J. B. Kim, “Double-resonance optical pumping of Rb atoms,” J. Opt. Soc. Am. B 24(9), 2157 (2007).
[Crossref]

Muraviev, A.

Nakagawa, K.

Nakajima, Y.

Newbury, N.

Newbury, N. R.

Nishiyama, A.

Okao, M.

Okubo, S.

K. A. Sumihara, S. Okubo, M. Okao, H. Inaba, and S. Watanabe, “Polarization-sensitive dual-comb spectroscopy,” J. Opt. Soc. Am. B 34(1), 154–158 (2017).
[Crossref]

S. Okubo, K. Iwakuni, H. Inaba, K. Hosaka, A. Onae, H. Sasada, and F.-L. Hong, “Ultra-broadband dual-comb spectroscopy across 1.0–1.9 µm,” Appl. Phys. Express 8(8), 082402 (2015).
[Crossref]

Onae, A.

A. Nishiyama, S. Yoshida, Y. Nakajima, H. Sasada, K. Nakagawa, A. Onae, and K. Minoshima, “Doppler-free dual-comb spectroscopy of Rb using optical-optical double resonance technique,” Opt. Express 24(22), 25894–25904 (2016).
[Crossref]

S. Okubo, K. Iwakuni, H. Inaba, K. Hosaka, A. Onae, H. Sasada, and F.-L. Hong, “Ultra-broadband dual-comb spectroscopy across 1.0–1.9 µm,” Appl. Phys. Express 8(8), 082402 (2015).
[Crossref]

Ozawa, A.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picque, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

N. Kuse, A. Ozawa, I. Ito, and Y. Kobayashi, “Dual-comb saturated absorption spectroscopy,” in Conference on Lasers and Electro Optics (Optical Society of America, 2013), paper CTu2I.1.

Phillips, M. C.

J. Bergevin, T.-H. Wu, J. Yeak, B. E. Brumfield, S. S. Harilal, M. C. Phillips, and R. J. Jones, “Dual-comb spectroscopy of laser-induced plasmas,” Nat. Commun. 9(1), 1273 (2018).
[Crossref]

Picque, N.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picque, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Picqué, N.

N. Picqué and T. W. Hänsch, “Frequency comb spectroscopy,” Nat. Photonics 13(3), 146–157 (2019).
[Crossref]

S. A. Meek, A. Hipke, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Doppler-free Fourier transform spectroscopy,” Opt. Lett. 43(1), 162–165 (2018).
[Crossref]

T. W. Hänsch and N. Picqué, “Laser Spectroscopy and Frequency Combs,” J. Phys.: Conf. Ser. 467(1), 012001 (2013).
[Crossref]

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref]

J. Mandon, G. Guelachvili, and N. Picqué, “Fourier transform spectroscopy with a laser frequency comb,” Nat. Photonics 3(2), 99–102 (2009).
[Crossref]

Plusquellic, D. F.

Reed, Z. D.

Ru, Q.

Rutkowski, L.

A. C. Johansson, L. Rutkowski, A. Filipsson, T. Hausmaninger, G. Zhao, O. Axner, and A. Foltynowicz, “Broadband calibration-free cavity-enhanced complex refractive index spectroscopy using a frequency comb,” Opt. Express 26(16), 20633–20648 (2018).
[Crossref]

P. Maslowski, K. F. Lee, A. C. Johansson, A. Khodabakhsh, G. Kowzan, L. Rutkowski, A. A. Mills, C. Mohr, J. Jiang, M. E. Fermann, and A. Foltynowicz, “Surpassing the path-limited resolution of Fourier-transform spectrometry with frequency combs,” Phys. Rev. A 93(2), 021802 (2016).
[Crossref]

Sasada, H.

A. Nishiyama, S. Yoshida, Y. Nakajima, H. Sasada, K. Nakagawa, A. Onae, and K. Minoshima, “Doppler-free dual-comb spectroscopy of Rb using optical-optical double resonance technique,” Opt. Express 24(22), 25894–25904 (2016).
[Crossref]

S. Okubo, K. Iwakuni, H. Inaba, K. Hosaka, A. Onae, H. Sasada, and F.-L. Hong, “Ultra-broadband dual-comb spectroscopy across 1.0–1.9 µm,” Appl. Phys. Express 8(8), 082402 (2015).
[Crossref]

Schmoranzer, H.

U. Volz and H. Schmoranzer, “Precision lifetime measurements on alkali atoms and on helium by beam-gas-laser spectroscopy,” Phys. Scr. T65, 48–56 (1996).
[Crossref]

Sinclair, L. C.

L. C. Sinclair, K. C. Cossel, T. Coffey, J. Ye, and E. A. Cornell, “Frequency comb velocity-modulation spectroscopy,” Phys. Rev. Lett. 107(9), 093002 (2011).
[Crossref]

Sumihara, K. A.

Swann, W.

Swann, W. C.

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent linear optical sampling at 15 bits of resolution,” Opt. Lett. 34(14), 2153–2155 (2009).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[Crossref]

Têtu, M.

M. Breton, P. Tremblay, C. Julien, N. Cyr, M. Têtu, and C. Latrasse, “Optically pumped rubidium as a frequency standard at 196 THz,” IEEE Trans. Instrum. Meas. 44(2), 162–165 (1995).
[Crossref]

Tomeberg, T.

Tremblay, P.

M. Breton, P. Tremblay, C. Julien, N. Cyr, M. Têtu, and C. Latrasse, “Optically pumped rubidium as a frequency standard at 196 THz,” IEEE Trans. Instrum. Meas. 44(2), 162–165 (1995).
[Crossref]

Udem, T.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picque, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Vanderbruggen, T.

Vodopyanov, K. L.

Volz, U.

U. Volz and H. Schmoranzer, “Precision lifetime measurements on alkali atoms and on helium by beam-gas-laser spectroscopy,” Phys. Scr. T65, 48–56 (1996).
[Crossref]

Watanabe, S.

Waxman, E. M.

Wu, T.-H.

J. Bergevin, T.-H. Wu, J. Yeak, B. E. Brumfield, S. S. Harilal, M. C. Phillips, and R. J. Jones, “Dual-comb spectroscopy of laser-induced plasmas,” Nat. Commun. 9(1), 1273 (2018).
[Crossref]

Ycas, G.

Ye, J.

L. C. Sinclair, K. C. Cossel, T. Coffey, J. Ye, and E. A. Cornell, “Frequency comb velocity-modulation spectroscopy,” Phys. Rev. Lett. 107(9), 093002 (2011).
[Crossref]

Yeak, J.

J. Bergevin, T.-H. Wu, J. Yeak, B. E. Brumfield, S. S. Harilal, M. C. Phillips, and R. J. Jones, “Dual-comb spectroscopy of laser-induced plasmas,” Nat. Commun. 9(1), 1273 (2018).
[Crossref]

Yoshida, S.

Zhao, G.

APL Photonics (1)

A. Asahara and K. Minoshima, “Development of ultrafast time-resolved dual-comb spectroscopy,” APL Photonics 2(4), 041301 (2017).
[Crossref]

Appl. Phys. Express (1)

S. Okubo, K. Iwakuni, H. Inaba, K. Hosaka, A. Onae, H. Sasada, and F.-L. Hong, “Ultra-broadband dual-comb spectroscopy across 1.0–1.9 µm,” Appl. Phys. Express 8(8), 082402 (2015).
[Crossref]

IEEE Trans. Instrum. Meas. (1)

M. Breton, P. Tremblay, C. Julien, N. Cyr, M. Têtu, and C. Latrasse, “Optically pumped rubidium as a frequency standard at 196 THz,” IEEE Trans. Instrum. Meas. 44(2), 162–165 (1995).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Phys. (1)

S. Le Boiteux, D. Bloch, and M. Ducloy, “Theory of optical heterodyne three-level saturation spectroscopy via collinear non-degenerate four-wave mixing in coupled Doppler-broadened transitions,” J. Phys. 47(1), 31–38 (1986).
[Crossref]

J. Phys. D: Appl. Phys. (1)

A. N. Dharamsi, “A theory of modulation spectroscopy with applications of higher harmonic detection,” J. Phys. D: Appl. Phys. 29(3), 540–549 (1996).
[Crossref]

J. Phys.: Conf. Ser. (1)

T. W. Hänsch and N. Picqué, “Laser Spectroscopy and Frequency Combs,” J. Phys.: Conf. Ser. 467(1), 012001 (2013).
[Crossref]

Nat. Commun. (1)

J. Bergevin, T.-H. Wu, J. Yeak, B. E. Brumfield, S. S. Harilal, M. C. Phillips, and R. J. Jones, “Dual-comb spectroscopy of laser-induced plasmas,” Nat. Commun. 9(1), 1273 (2018).
[Crossref]

Nat. Photonics (3)

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picque, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

N. Picqué and T. W. Hänsch, “Frequency comb spectroscopy,” Nat. Photonics 13(3), 146–157 (2019).
[Crossref]

J. Mandon, G. Guelachvili, and N. Picqué, “Fourier transform spectroscopy with a laser frequency comb,” Nat. Photonics 3(2), 99–102 (2009).
[Crossref]

Nature (2)

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007).
[Crossref]

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref]

Opt. Express (6)

Opt. Lett. (5)

Optica (3)

Phys. Rev. A (3)

P. Maslowski, K. F. Lee, A. C. Johansson, A. Khodabakhsh, G. Kowzan, L. Rutkowski, A. A. Mills, C. Mohr, J. Jiang, M. E. Fermann, and A. Foltynowicz, “Surpassing the path-limited resolution of Fourier-transform spectrometry with frequency combs,” Phys. Rev. A 93(2), 021802 (2016).
[Crossref]

W.-K. Lee and H. S. Moon, “Measurement of absolute frequencies and hyperfine structure constants of 4D5/2 and 4D3/2 levels of 87Rb and 85Rb using an optical frequency comb,” Phys. Rev. A 92(1), 012501 (2015).
[Crossref]

D. A. Long, A. J. Fleisher, D. F. Plusquellic, and J. T. Hodges, “Multiplexed sub-Doppler spectroscopy with an optical frequency comb,” Phys. Rev. A 94(6), 061801 (2016).
[Crossref]

Phys. Rev. Lett. (2)

L. C. Sinclair, K. C. Cossel, T. Coffey, J. Ye, and E. A. Cornell, “Frequency comb velocity-modulation spectroscopy,” Phys. Rev. Lett. 107(9), 093002 (2011).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[Crossref]

Phys. Scr. (1)

U. Volz and H. Schmoranzer, “Precision lifetime measurements on alkali atoms and on helium by beam-gas-laser spectroscopy,” Phys. Scr. T65, 48–56 (1996).
[Crossref]

Other (3)

N. Kuse, A. Ozawa, I. Ito, and Y. Kobayashi, “Dual-comb saturated absorption spectroscopy,” in Conference on Lasers and Electro Optics (Optical Society of America, 2013), paper CTu2I.1.

W. Demtröder, Laser Spectroscopy, 4th ed. (Springer, 2008), Vol. 2.

D. A. Long, A. J. Fleisher, and J. T. Hodges, “Direct frequency comb saturation spectroscopy with an ultradense tooth spacing of 100 Hz,” arXiv:1812.09342 (2018).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Energy level scheme of OODR dual-comb spectroscopy of 87Rb. The pump cw laser frequency is stabilized to the hyperfine transition between the 5S1/2 (F’ = 2) and 5P3/2 (F” = 3) levels. A signal comb is used to probe some transitions from the intermediate level to the 4D5/2 and 4D3/2 levels with a sub-Doppler resolution.
Fig. 2.
Fig. 2. Principle of intensity-modulated OODR dual-comb spectroscopy with slow modulation (a) and fast modulation (b). The upper traces are the temporal interferograms of the signal and local combs (blue) and pump laser intensity (red), and the lower traces are the RF comb spectra (black) and sideband spectra generated by the intensity modulation (red). (a) The intensity-modulation frequency is Δfrep/m, where m = 3. The modulated signals appear at a frequency of ±Δfrep/m away from the RF comb modes. (b) The intensity-modulation frequency is nΔfrep. In the lower trace, the modulated signals (red) appear at frequencies of ± nΔfrep, far away from the OODR absorptions in the comb spectrum (black).
Fig. 3.
Fig. 3. Experimental setup for Doppler-free OODR dual-comb spectroscopy with intensity modulation. The frequency of the pump cw laser is related to the hyperfine transition between 5S1/2(F” = 2) - 5P3/2(F’ = 3) of 87Rb using the same Rb cell as that for OODR spectroscopy. For slow modulation, the intensity modulator is an AOM, whereas an EOAM and a polarizer are used for fast modulation. PD: photodetector, BPF: optical band-pass filter.
Fig. 4.
Fig. 4. Observed Doppler-free OODR dual-comb spectra of the 5P3/2-4D5/2 and 4D3/2 transitions employing (a) the conventional dual-comb setup, (b) slow-intensity modulation, and (c) fast-intensity modulation. In (a)–(c), each (i) shows a wide span including the range of 196.02–196.04 THz, and (ii) and (iii) show the magnified views around the transitions of 5P3/2-4D5/2 and 4D3/2, respectively.

Metrics