Abstract

A pulsed laser-induced plasma (LIP) was generated in ambient air inside a high-finesse (F $\approx$ 5200) near-concentric optical cavity. The optical plasma emission was successfully trapped and sustained by the cavity, manifested by ring-down times in excess of 4 μs indicating effective mirror reflectivities of ∼0.9994. The light leaking from the cavity was used to measure broadband absorption spectra of gaseous azulene under ambient air conditions between 580 and 645 nm, employing (i) intensity-dependent cavity-enhanced, and (ii) time-dependent cavity-ring down methodologies. Minimum detectable absorption coefficients of 4.7 × 10−8 cm−1 and 7.4 × 10−8 cm−1 were achieved for the respective approaches. The two approaches were compared and implications of pulsed excitation for gated intensity-dependent measurements were discussed.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Laser-induced plasmas in ambient air for incoherent broadband cavity-enhanced absorption spectroscopy

Albert A. Ruth, Sophie Dixneuf, and Johannes Orphal
Opt. Express 23(5) 6092-6101 (2015)

Actively coupled cavity ringdown spectroscopy with low-power broadband sources

Christian Petermann and Peer Fischer
Opt. Express 19(11) 10164-10173 (2011)

References

  • View by:
  • |
  • |
  • |

  1. S. E. Fiedler, A. Hese, and A. A. Ruth, “Incoherent broad-band cavity-enhanced absorption spectroscopy,” Chem. Phys. Lett. 371(3-4), 284–294 (2003).
    [Crossref]
  2. A. A. Ruth, S. Dixneuf, and J. Orphal, “Laser-induced plasmas in ambient air for incoherent broadband cavity-enhanced absorption spectroscopy,” Opt. Express 23(5), 6092–6101 (2015).
    [Crossref]
  3. A. Czyzewski, S. Chudzyński, K. Ernst, G. Karasiński, Ł. Kilianek, A. Pietruczuk, W. Skubiszak, T. Stacewicz, K. Stelmaszczyk, B. Koch, and P. Rairoux, “Cavity ring-down spectrography,” Opt. Commun. 191(3-6), 271–275 (2001).
    [Crossref]
  4. D. S. Venables, T. Gherman, J. Orphal, J. C. Wenger, and A. A. Ruth, “High sensitivity in situ monitoring of NO3 in an atmospheric simulation chamber using incoherent broadband cavity-enhanced absorption spectroscopy,” Environ. Sci. Technol. 40(21), 6758–6763 (2006).
    [Crossref]
  5. J. M. Langridge, S. M. Ball, and R. L. Jones, “A compact broadband cavity enhanced absorption spectrometer for detection of atmospheric NO2 using light emitting diodes,” Analyst 131(8), 916–922 (2006).
    [Crossref]
  6. N. Jordan, C. Z. Ye, S. Ghosh, R. A. Washenfelder, S. S. Brown, and H. D. Osthoff, “A broadband cavity-enhanced spectrometer for atmospheric trace gas measurements and rayleigh scattering cross sections in the cyan region (470–540 nm),” Atmos. Meas. Tech. 12(2), 1277–1293 (2019).
    [Crossref]
  7. R. A. Washenfelder, A. O. Langford, H. Fuchs, and S. S. Brown, “Measurement of glyoxal using an incoherent broadband cavity enhanced absorption spectrometer,” Atmos. Chem. Phys. 8(24), 7779–7793 (2008).
    [Crossref]
  8. G. Schmidl, W. Paa, W. Triebel, S. Schippel, and H. Heyer, “Spectrally resolved cavity ring down measurement of high reflectivity mirrors using a supercontinuum laser source,” Appl. Opt. 48(35), 6754–6759 (2009).
    [Crossref]
  9. B. P. Keary, “Laser-induced plasmas in air for pulsed broadband cavity-enhanced absorption spectroscopy,” Ph.D. thesis, University College Cork, Cork, Ireland (2019).
  10. B. P. Keary and A. A. Ruth, “Intra-cavity laser-induced plasmas for enhanced absorption spectroscopy: Intrinsic effects on the cavity output intensity,” (2019). To be published.
  11. S. E. Fiedler, G. Hoheisel, A. A. Ruth, and A. Hese, “Incoherent broad-band cavity-enhanced absorption spectroscopy of azulene in a supersonic jet,” Chem. Phys. Lett. 382(3-4), 447–453 (2003).
    [Crossref]
  12. A. A. Ruth, E. -K. Kim, and A. Hese, “The S0 → S1 cavity ring-down absorption spectrum of jet-cooled azulene: dependence of internal conversion on the excess energy,” Phys. Chem. Chem. Phys. 1(22), 5121–5128 (1999).
    [Crossref]
  13. A. O’Keefe, “Integrated cavity output analysis of ultra-weak absorption,” Chem. Phys. Lett. 293(5-6), 331–336 (1998).
    [Crossref]
  14. A. Kramida, Yu. Ralchenko, and J. Reader, and NIST ASD Team, NIST Atomic Spectra Database (ver. 5.6.1), [Online]. Available: https://physics.nist.gov/asd . National Institute of Standards and Technology, Gaithersburg, MD. (2018).

2019 (1)

N. Jordan, C. Z. Ye, S. Ghosh, R. A. Washenfelder, S. S. Brown, and H. D. Osthoff, “A broadband cavity-enhanced spectrometer for atmospheric trace gas measurements and rayleigh scattering cross sections in the cyan region (470–540 nm),” Atmos. Meas. Tech. 12(2), 1277–1293 (2019).
[Crossref]

2015 (1)

2009 (1)

2008 (1)

R. A. Washenfelder, A. O. Langford, H. Fuchs, and S. S. Brown, “Measurement of glyoxal using an incoherent broadband cavity enhanced absorption spectrometer,” Atmos. Chem. Phys. 8(24), 7779–7793 (2008).
[Crossref]

2006 (2)

D. S. Venables, T. Gherman, J. Orphal, J. C. Wenger, and A. A. Ruth, “High sensitivity in situ monitoring of NO3 in an atmospheric simulation chamber using incoherent broadband cavity-enhanced absorption spectroscopy,” Environ. Sci. Technol. 40(21), 6758–6763 (2006).
[Crossref]

J. M. Langridge, S. M. Ball, and R. L. Jones, “A compact broadband cavity enhanced absorption spectrometer for detection of atmospheric NO2 using light emitting diodes,” Analyst 131(8), 916–922 (2006).
[Crossref]

2003 (2)

S. E. Fiedler, G. Hoheisel, A. A. Ruth, and A. Hese, “Incoherent broad-band cavity-enhanced absorption spectroscopy of azulene in a supersonic jet,” Chem. Phys. Lett. 382(3-4), 447–453 (2003).
[Crossref]

S. E. Fiedler, A. Hese, and A. A. Ruth, “Incoherent broad-band cavity-enhanced absorption spectroscopy,” Chem. Phys. Lett. 371(3-4), 284–294 (2003).
[Crossref]

2001 (1)

A. Czyzewski, S. Chudzyński, K. Ernst, G. Karasiński, Ł. Kilianek, A. Pietruczuk, W. Skubiszak, T. Stacewicz, K. Stelmaszczyk, B. Koch, and P. Rairoux, “Cavity ring-down spectrography,” Opt. Commun. 191(3-6), 271–275 (2001).
[Crossref]

1999 (1)

A. A. Ruth, E. -K. Kim, and A. Hese, “The S0 → S1 cavity ring-down absorption spectrum of jet-cooled azulene: dependence of internal conversion on the excess energy,” Phys. Chem. Chem. Phys. 1(22), 5121–5128 (1999).
[Crossref]

1998 (1)

A. O’Keefe, “Integrated cavity output analysis of ultra-weak absorption,” Chem. Phys. Lett. 293(5-6), 331–336 (1998).
[Crossref]

Ball, S. M.

J. M. Langridge, S. M. Ball, and R. L. Jones, “A compact broadband cavity enhanced absorption spectrometer for detection of atmospheric NO2 using light emitting diodes,” Analyst 131(8), 916–922 (2006).
[Crossref]

Brown, S. S.

N. Jordan, C. Z. Ye, S. Ghosh, R. A. Washenfelder, S. S. Brown, and H. D. Osthoff, “A broadband cavity-enhanced spectrometer for atmospheric trace gas measurements and rayleigh scattering cross sections in the cyan region (470–540 nm),” Atmos. Meas. Tech. 12(2), 1277–1293 (2019).
[Crossref]

R. A. Washenfelder, A. O. Langford, H. Fuchs, and S. S. Brown, “Measurement of glyoxal using an incoherent broadband cavity enhanced absorption spectrometer,” Atmos. Chem. Phys. 8(24), 7779–7793 (2008).
[Crossref]

Chudzynski, S.

A. Czyzewski, S. Chudzyński, K. Ernst, G. Karasiński, Ł. Kilianek, A. Pietruczuk, W. Skubiszak, T. Stacewicz, K. Stelmaszczyk, B. Koch, and P. Rairoux, “Cavity ring-down spectrography,” Opt. Commun. 191(3-6), 271–275 (2001).
[Crossref]

Czyzewski, A.

A. Czyzewski, S. Chudzyński, K. Ernst, G. Karasiński, Ł. Kilianek, A. Pietruczuk, W. Skubiszak, T. Stacewicz, K. Stelmaszczyk, B. Koch, and P. Rairoux, “Cavity ring-down spectrography,” Opt. Commun. 191(3-6), 271–275 (2001).
[Crossref]

Dixneuf, S.

Ernst, K.

A. Czyzewski, S. Chudzyński, K. Ernst, G. Karasiński, Ł. Kilianek, A. Pietruczuk, W. Skubiszak, T. Stacewicz, K. Stelmaszczyk, B. Koch, and P. Rairoux, “Cavity ring-down spectrography,” Opt. Commun. 191(3-6), 271–275 (2001).
[Crossref]

Fiedler, S. E.

S. E. Fiedler, A. Hese, and A. A. Ruth, “Incoherent broad-band cavity-enhanced absorption spectroscopy,” Chem. Phys. Lett. 371(3-4), 284–294 (2003).
[Crossref]

S. E. Fiedler, G. Hoheisel, A. A. Ruth, and A. Hese, “Incoherent broad-band cavity-enhanced absorption spectroscopy of azulene in a supersonic jet,” Chem. Phys. Lett. 382(3-4), 447–453 (2003).
[Crossref]

Fuchs, H.

R. A. Washenfelder, A. O. Langford, H. Fuchs, and S. S. Brown, “Measurement of glyoxal using an incoherent broadband cavity enhanced absorption spectrometer,” Atmos. Chem. Phys. 8(24), 7779–7793 (2008).
[Crossref]

Gherman, T.

D. S. Venables, T. Gherman, J. Orphal, J. C. Wenger, and A. A. Ruth, “High sensitivity in situ monitoring of NO3 in an atmospheric simulation chamber using incoherent broadband cavity-enhanced absorption spectroscopy,” Environ. Sci. Technol. 40(21), 6758–6763 (2006).
[Crossref]

Ghosh, S.

N. Jordan, C. Z. Ye, S. Ghosh, R. A. Washenfelder, S. S. Brown, and H. D. Osthoff, “A broadband cavity-enhanced spectrometer for atmospheric trace gas measurements and rayleigh scattering cross sections in the cyan region (470–540 nm),” Atmos. Meas. Tech. 12(2), 1277–1293 (2019).
[Crossref]

Hese, A.

S. E. Fiedler, A. Hese, and A. A. Ruth, “Incoherent broad-band cavity-enhanced absorption spectroscopy,” Chem. Phys. Lett. 371(3-4), 284–294 (2003).
[Crossref]

S. E. Fiedler, G. Hoheisel, A. A. Ruth, and A. Hese, “Incoherent broad-band cavity-enhanced absorption spectroscopy of azulene in a supersonic jet,” Chem. Phys. Lett. 382(3-4), 447–453 (2003).
[Crossref]

A. A. Ruth, E. -K. Kim, and A. Hese, “The S0 → S1 cavity ring-down absorption spectrum of jet-cooled azulene: dependence of internal conversion on the excess energy,” Phys. Chem. Chem. Phys. 1(22), 5121–5128 (1999).
[Crossref]

Heyer, H.

Hoheisel, G.

S. E. Fiedler, G. Hoheisel, A. A. Ruth, and A. Hese, “Incoherent broad-band cavity-enhanced absorption spectroscopy of azulene in a supersonic jet,” Chem. Phys. Lett. 382(3-4), 447–453 (2003).
[Crossref]

Jones, R. L.

J. M. Langridge, S. M. Ball, and R. L. Jones, “A compact broadband cavity enhanced absorption spectrometer for detection of atmospheric NO2 using light emitting diodes,” Analyst 131(8), 916–922 (2006).
[Crossref]

Jordan, N.

N. Jordan, C. Z. Ye, S. Ghosh, R. A. Washenfelder, S. S. Brown, and H. D. Osthoff, “A broadband cavity-enhanced spectrometer for atmospheric trace gas measurements and rayleigh scattering cross sections in the cyan region (470–540 nm),” Atmos. Meas. Tech. 12(2), 1277–1293 (2019).
[Crossref]

-K. Kim, E.

A. A. Ruth, E. -K. Kim, and A. Hese, “The S0 → S1 cavity ring-down absorption spectrum of jet-cooled azulene: dependence of internal conversion on the excess energy,” Phys. Chem. Chem. Phys. 1(22), 5121–5128 (1999).
[Crossref]

Karasinski, G.

A. Czyzewski, S. Chudzyński, K. Ernst, G. Karasiński, Ł. Kilianek, A. Pietruczuk, W. Skubiszak, T. Stacewicz, K. Stelmaszczyk, B. Koch, and P. Rairoux, “Cavity ring-down spectrography,” Opt. Commun. 191(3-6), 271–275 (2001).
[Crossref]

Keary, B. P.

B. P. Keary, “Laser-induced plasmas in air for pulsed broadband cavity-enhanced absorption spectroscopy,” Ph.D. thesis, University College Cork, Cork, Ireland (2019).

B. P. Keary and A. A. Ruth, “Intra-cavity laser-induced plasmas for enhanced absorption spectroscopy: Intrinsic effects on the cavity output intensity,” (2019). To be published.

Kilianek, L.

A. Czyzewski, S. Chudzyński, K. Ernst, G. Karasiński, Ł. Kilianek, A. Pietruczuk, W. Skubiszak, T. Stacewicz, K. Stelmaszczyk, B. Koch, and P. Rairoux, “Cavity ring-down spectrography,” Opt. Commun. 191(3-6), 271–275 (2001).
[Crossref]

Koch, B.

A. Czyzewski, S. Chudzyński, K. Ernst, G. Karasiński, Ł. Kilianek, A. Pietruczuk, W. Skubiszak, T. Stacewicz, K. Stelmaszczyk, B. Koch, and P. Rairoux, “Cavity ring-down spectrography,” Opt. Commun. 191(3-6), 271–275 (2001).
[Crossref]

Kramida, A.

A. Kramida, Yu. Ralchenko, and J. Reader, and NIST ASD Team, NIST Atomic Spectra Database (ver. 5.6.1), [Online]. Available: https://physics.nist.gov/asd . National Institute of Standards and Technology, Gaithersburg, MD. (2018).

Langford, A. O.

R. A. Washenfelder, A. O. Langford, H. Fuchs, and S. S. Brown, “Measurement of glyoxal using an incoherent broadband cavity enhanced absorption spectrometer,” Atmos. Chem. Phys. 8(24), 7779–7793 (2008).
[Crossref]

Langridge, J. M.

J. M. Langridge, S. M. Ball, and R. L. Jones, “A compact broadband cavity enhanced absorption spectrometer for detection of atmospheric NO2 using light emitting diodes,” Analyst 131(8), 916–922 (2006).
[Crossref]

O’Keefe, A.

A. O’Keefe, “Integrated cavity output analysis of ultra-weak absorption,” Chem. Phys. Lett. 293(5-6), 331–336 (1998).
[Crossref]

Orphal, J.

A. A. Ruth, S. Dixneuf, and J. Orphal, “Laser-induced plasmas in ambient air for incoherent broadband cavity-enhanced absorption spectroscopy,” Opt. Express 23(5), 6092–6101 (2015).
[Crossref]

D. S. Venables, T. Gherman, J. Orphal, J. C. Wenger, and A. A. Ruth, “High sensitivity in situ monitoring of NO3 in an atmospheric simulation chamber using incoherent broadband cavity-enhanced absorption spectroscopy,” Environ. Sci. Technol. 40(21), 6758–6763 (2006).
[Crossref]

Osthoff, H. D.

N. Jordan, C. Z. Ye, S. Ghosh, R. A. Washenfelder, S. S. Brown, and H. D. Osthoff, “A broadband cavity-enhanced spectrometer for atmospheric trace gas measurements and rayleigh scattering cross sections in the cyan region (470–540 nm),” Atmos. Meas. Tech. 12(2), 1277–1293 (2019).
[Crossref]

Paa, W.

Pietruczuk, A.

A. Czyzewski, S. Chudzyński, K. Ernst, G. Karasiński, Ł. Kilianek, A. Pietruczuk, W. Skubiszak, T. Stacewicz, K. Stelmaszczyk, B. Koch, and P. Rairoux, “Cavity ring-down spectrography,” Opt. Commun. 191(3-6), 271–275 (2001).
[Crossref]

Rairoux, P.

A. Czyzewski, S. Chudzyński, K. Ernst, G. Karasiński, Ł. Kilianek, A. Pietruczuk, W. Skubiszak, T. Stacewicz, K. Stelmaszczyk, B. Koch, and P. Rairoux, “Cavity ring-down spectrography,” Opt. Commun. 191(3-6), 271–275 (2001).
[Crossref]

Ralchenko, Yu.

A. Kramida, Yu. Ralchenko, and J. Reader, and NIST ASD Team, NIST Atomic Spectra Database (ver. 5.6.1), [Online]. Available: https://physics.nist.gov/asd . National Institute of Standards and Technology, Gaithersburg, MD. (2018).

Reader, J.

A. Kramida, Yu. Ralchenko, and J. Reader, and NIST ASD Team, NIST Atomic Spectra Database (ver. 5.6.1), [Online]. Available: https://physics.nist.gov/asd . National Institute of Standards and Technology, Gaithersburg, MD. (2018).

Ruth, A. A.

A. A. Ruth, S. Dixneuf, and J. Orphal, “Laser-induced plasmas in ambient air for incoherent broadband cavity-enhanced absorption spectroscopy,” Opt. Express 23(5), 6092–6101 (2015).
[Crossref]

D. S. Venables, T. Gherman, J. Orphal, J. C. Wenger, and A. A. Ruth, “High sensitivity in situ monitoring of NO3 in an atmospheric simulation chamber using incoherent broadband cavity-enhanced absorption spectroscopy,” Environ. Sci. Technol. 40(21), 6758–6763 (2006).
[Crossref]

S. E. Fiedler, A. Hese, and A. A. Ruth, “Incoherent broad-band cavity-enhanced absorption spectroscopy,” Chem. Phys. Lett. 371(3-4), 284–294 (2003).
[Crossref]

S. E. Fiedler, G. Hoheisel, A. A. Ruth, and A. Hese, “Incoherent broad-band cavity-enhanced absorption spectroscopy of azulene in a supersonic jet,” Chem. Phys. Lett. 382(3-4), 447–453 (2003).
[Crossref]

A. A. Ruth, E. -K. Kim, and A. Hese, “The S0 → S1 cavity ring-down absorption spectrum of jet-cooled azulene: dependence of internal conversion on the excess energy,” Phys. Chem. Chem. Phys. 1(22), 5121–5128 (1999).
[Crossref]

B. P. Keary and A. A. Ruth, “Intra-cavity laser-induced plasmas for enhanced absorption spectroscopy: Intrinsic effects on the cavity output intensity,” (2019). To be published.

Schippel, S.

Schmidl, G.

Skubiszak, W.

A. Czyzewski, S. Chudzyński, K. Ernst, G. Karasiński, Ł. Kilianek, A. Pietruczuk, W. Skubiszak, T. Stacewicz, K. Stelmaszczyk, B. Koch, and P. Rairoux, “Cavity ring-down spectrography,” Opt. Commun. 191(3-6), 271–275 (2001).
[Crossref]

Stacewicz, T.

A. Czyzewski, S. Chudzyński, K. Ernst, G. Karasiński, Ł. Kilianek, A. Pietruczuk, W. Skubiszak, T. Stacewicz, K. Stelmaszczyk, B. Koch, and P. Rairoux, “Cavity ring-down spectrography,” Opt. Commun. 191(3-6), 271–275 (2001).
[Crossref]

Stelmaszczyk, K.

A. Czyzewski, S. Chudzyński, K. Ernst, G. Karasiński, Ł. Kilianek, A. Pietruczuk, W. Skubiszak, T. Stacewicz, K. Stelmaszczyk, B. Koch, and P. Rairoux, “Cavity ring-down spectrography,” Opt. Commun. 191(3-6), 271–275 (2001).
[Crossref]

Triebel, W.

Venables, D. S.

D. S. Venables, T. Gherman, J. Orphal, J. C. Wenger, and A. A. Ruth, “High sensitivity in situ monitoring of NO3 in an atmospheric simulation chamber using incoherent broadband cavity-enhanced absorption spectroscopy,” Environ. Sci. Technol. 40(21), 6758–6763 (2006).
[Crossref]

Washenfelder, R. A.

N. Jordan, C. Z. Ye, S. Ghosh, R. A. Washenfelder, S. S. Brown, and H. D. Osthoff, “A broadband cavity-enhanced spectrometer for atmospheric trace gas measurements and rayleigh scattering cross sections in the cyan region (470–540 nm),” Atmos. Meas. Tech. 12(2), 1277–1293 (2019).
[Crossref]

R. A. Washenfelder, A. O. Langford, H. Fuchs, and S. S. Brown, “Measurement of glyoxal using an incoherent broadband cavity enhanced absorption spectrometer,” Atmos. Chem. Phys. 8(24), 7779–7793 (2008).
[Crossref]

Wenger, J. C.

D. S. Venables, T. Gherman, J. Orphal, J. C. Wenger, and A. A. Ruth, “High sensitivity in situ monitoring of NO3 in an atmospheric simulation chamber using incoherent broadband cavity-enhanced absorption spectroscopy,” Environ. Sci. Technol. 40(21), 6758–6763 (2006).
[Crossref]

Ye, C. Z.

N. Jordan, C. Z. Ye, S. Ghosh, R. A. Washenfelder, S. S. Brown, and H. D. Osthoff, “A broadband cavity-enhanced spectrometer for atmospheric trace gas measurements and rayleigh scattering cross sections in the cyan region (470–540 nm),” Atmos. Meas. Tech. 12(2), 1277–1293 (2019).
[Crossref]

Analyst (1)

J. M. Langridge, S. M. Ball, and R. L. Jones, “A compact broadband cavity enhanced absorption spectrometer for detection of atmospheric NO2 using light emitting diodes,” Analyst 131(8), 916–922 (2006).
[Crossref]

Appl. Opt. (1)

Atmos. Chem. Phys. (1)

R. A. Washenfelder, A. O. Langford, H. Fuchs, and S. S. Brown, “Measurement of glyoxal using an incoherent broadband cavity enhanced absorption spectrometer,” Atmos. Chem. Phys. 8(24), 7779–7793 (2008).
[Crossref]

Atmos. Meas. Tech. (1)

N. Jordan, C. Z. Ye, S. Ghosh, R. A. Washenfelder, S. S. Brown, and H. D. Osthoff, “A broadband cavity-enhanced spectrometer for atmospheric trace gas measurements and rayleigh scattering cross sections in the cyan region (470–540 nm),” Atmos. Meas. Tech. 12(2), 1277–1293 (2019).
[Crossref]

Chem. Phys. Lett. (3)

S. E. Fiedler, A. Hese, and A. A. Ruth, “Incoherent broad-band cavity-enhanced absorption spectroscopy,” Chem. Phys. Lett. 371(3-4), 284–294 (2003).
[Crossref]

S. E. Fiedler, G. Hoheisel, A. A. Ruth, and A. Hese, “Incoherent broad-band cavity-enhanced absorption spectroscopy of azulene in a supersonic jet,” Chem. Phys. Lett. 382(3-4), 447–453 (2003).
[Crossref]

A. O’Keefe, “Integrated cavity output analysis of ultra-weak absorption,” Chem. Phys. Lett. 293(5-6), 331–336 (1998).
[Crossref]

Environ. Sci. Technol. (1)

D. S. Venables, T. Gherman, J. Orphal, J. C. Wenger, and A. A. Ruth, “High sensitivity in situ monitoring of NO3 in an atmospheric simulation chamber using incoherent broadband cavity-enhanced absorption spectroscopy,” Environ. Sci. Technol. 40(21), 6758–6763 (2006).
[Crossref]

Opt. Commun. (1)

A. Czyzewski, S. Chudzyński, K. Ernst, G. Karasiński, Ł. Kilianek, A. Pietruczuk, W. Skubiszak, T. Stacewicz, K. Stelmaszczyk, B. Koch, and P. Rairoux, “Cavity ring-down spectrography,” Opt. Commun. 191(3-6), 271–275 (2001).
[Crossref]

Opt. Express (1)

Phys. Chem. Chem. Phys. (1)

A. A. Ruth, E. -K. Kim, and A. Hese, “The S0 → S1 cavity ring-down absorption spectrum of jet-cooled azulene: dependence of internal conversion on the excess energy,” Phys. Chem. Chem. Phys. 1(22), 5121–5128 (1999).
[Crossref]

Other (3)

B. P. Keary, “Laser-induced plasmas in air for pulsed broadband cavity-enhanced absorption spectroscopy,” Ph.D. thesis, University College Cork, Cork, Ireland (2019).

B. P. Keary and A. A. Ruth, “Intra-cavity laser-induced plasmas for enhanced absorption spectroscopy: Intrinsic effects on the cavity output intensity,” (2019). To be published.

A. Kramida, Yu. Ralchenko, and J. Reader, and NIST ASD Team, NIST Atomic Spectra Database (ver. 5.6.1), [Online]. Available: https://physics.nist.gov/asd . National Institute of Standards and Technology, Gaithersburg, MD. (2018).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Schematic of the experimental setup. The Nd:YAG laser produced 10 ns pulses with an energy of $\sim$ 55 mJ. L$_{1}$ (f = 3 cm): Focusing lens for plasma generation. L$_{2}$ (f = 12 cm): Achromatic lens to image light leaking from the cavity to a light guide (fibre bundle). F: notch filter (FWHM = 17 nm) centered at 532 nm. M$_{1,2}$: High reflectivity ($R\sim 0.9993$, cf. Section 3) plano-concave ($r = -40$ cm) dielectric cavity mirrors centered at 610 nm. BS: 95/5 beamsplitter. PM: Power meter. SG: Signal generator (output 9.7 Hz) providing laser trigger and signal for digital delay generator (DDG) of the iCCD.
Fig. 2.
Fig. 2. Relative cavity output intensity for a laser-induced plasma at the centre of a 79.3 cm cavity, measured at $\lambda =631$ nm. The cavity output intensity was accumulated over 500 plasma pulses with a gate duration of 500 ns, giving a total integration time of 250 µs for each data point. After the initial decrease in intensity by a factor of $\sim 7$, mono-exponential decay behaviour is observed after approximately 1.5 µs. Corresponding ring-down time: 4.24 µs. Red trace: Linear regression fit to data points shown.
Fig. 3.
Fig. 3. Black race: Effective mirror reflectivity (left-axis) calculated from the wavelength-dependent ring-down time of light leaking from the cavity (right-axis). Red trace: Fourth-order polynomial fit to the measured reflectivity spectrum.
Fig. 4.
Fig. 4. Red trace: Broadband CRDS spectrum of azulene obtained from the ring-down time of light leaking from the cavity between 1.5 and 10.5 µs after plasma formation. The ring-down time was measured in steps of 0.5 µs accumulated over 500 plasma pulses (integration time of 250 µs) per step. Blue trace: IBBCEAS spectrum of azulene obtained by accumulating the cavity output for 500 plasma pulses from 1.5 to 10.5 µs after plasma formation (gated data acquisition); total integration time of 4.5 ms. Determination of the extinction coefficient is based on the effective reflectivity shown in Fig. 3. Black trace: Arbitrarily scaled cavity ring-down absorption spectrum of jet-cooled azulene from [12] for comparison. Inset: Semi-logarithmic plot of the cavity output intensity showing the ring-down time measurements including the respective fit without and with azulene present in the cavity (red squares and dots respectively), measured at 631 nm (also compare Fig. 2).
Fig. 5.
Fig. 5. Illustration of the source of error in pulsed IBBCEAS measurement with delayed (i.e. gated) data acquisition. $A(t)$ is the time-dependent cavity output intensity without (light green) and with (dark green) the sample. $I$ and $I_{0}$ (both dark grey) are the time-integrated intensities as measured in pulsed IBBCEAS during the gate time, i.e. ($t_\textrm {end}-t_\textrm {start}$). $I'$ and $I'_{0}$ (both light grey) are the time-integrated intensities during an arbitrary delay time, $t_\textrm {start}$, that needs to be accounted for. If not corrected, pulsed gated IBBCEAS will deliver absorption coefficients that are too high, depending on the gate delay.
Fig. 6.
Fig. 6. Red trace: Broadband CRDS spectrum of gaseous static azulene in ambient air from Fig. 4. Blue traces: IBBCEAS spectra from Fig. 4 corrected using CRDS-based evaluation (1)-light blue ($\varepsilon _\textrm {(1)}$), and CEAS-based evaluation (2)-dark blue ($\varepsilon _\textrm {(2)}$).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I = A t = 0 t start t end exp ( t τ ) d t = A t = 0 τ ( exp ( t start τ ) exp ( t end τ ) )
ε (1) ( λ ) = 1 c ( 1 τ ( λ ) 1 τ 0 ( λ ) ) .
ε (2) ( λ ) = 1 R ( λ ) L ( I 0 ( λ ) + I 0 ( λ ) I ( λ ) + I ( λ ) 1 )
η = 1 2 ( D L ) 2

Metrics