Abstract

Laser-induced breakdown spectroscopy (LIBS) is carried out with compact 1064 nm laser and spectrometer components which are suitable for handheld applications. Bursts of ∼0.6 mJ, 5 ns laser pulses are generated by a passively Q-switched laser with a 1 kHz triggered pump diode. The miniature spectrometer with a set wavelength range of ∼188-251 nm has an instrumental broadening at the carbon analyte line, C I 193.09 nm, of less than 36 pm. Analytical calibration curves of C, as well as Cr, Ni, and Si are taken with certified reference samples of iron and steel in an argon purged setup. The net duration of the laser bursts is ∼0.7-1.4 s for a measurement, depending on the number of repetitions on the sample surface. The limit of detection (LOD) is determined to a mass fraction of 34 µg/g for C. High-alloy steels 1.4306 (0.01% C) and 1.4541 (0.035% C) are separated clearly by the LIBS measurement of carbon.

Full Article  |  PDF Article
OSA Recommended Articles
Carbon determination in carbon-manganese steels under atmospheric conditions by Laser-Induced Breakdown Spectroscopy

Timur A. Labutin, Sergey M. Zaytsev, Andrey M. Popov, and Nikita B. Zorov
Opt. Express 22(19) 22382-22387 (2014)

Quantitative elemental analysis of steel using calibration-free laser-induced breakdown spectroscopy

M. L. Shah, A. K. Pulhani, G. P. Gupta, and B. M. Suri
Appl. Opt. 51(20) 4612-4621 (2012)

Liquid steel analysis with laser-induced breakdown spectrometry in the vacuum ultraviolet

Laszlo Peter, Volker Sturm, and Reinhard Noll
Appl. Opt. 42(30) 6199-6204 (2003)

References

  • View by:
  • |
  • |
  • |

  1. A. Kramida, Yu. Ralchenko, and J. Reader, and NIST ASD Team (2018). NIST Atomic Spectra Database (ver. 5.6.1), [Online]. Available: https://physics.nist.gov/asd [2019, July 25]. National Institute of Standards and Technology, Gaithersburg, MD.
  2. A. W. Miziolek, V. Palleschi, and I. Schechter, Laser-induced breakdown spectroscopy (Cambridge University, 2006).
  3. D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (John Wiley, 2006).
  4. D. W. Hahn and N. Omenetto, “Laser-Induced Breakdown Spectroscopy (LIBS), Part I: Review of Basic Diagnostics and Plasma—Particle Interactions: Still-Challenging Issues within the Analytical Plasma Community,” Appl. Spectrosc. 64(12), 335A–336A (2010).
    [Crossref]
  5. D. W. Hahn and N. Omenetto, “Laser-Induced Breakdown Spectroscopy (LIBS), Part II: Review of Instrumental and Methodological Approaches to Material Analysis and Applications to Different Fields,” Appl. Spectrosc. 66(4), 347–419 (2012).
    [Crossref]
  6. G. L. Long and J. D. Winefordner, “Limit of detection, a closer look at the IUPAC definition,” Anal. Chem. 55(7), 712A–724A (1983).
    [Crossref]
  7. V. Sturm, L. Peter, and R. Noll, “Steel analysis with laser-induced breakdown spectrometry in the vacuum ultraviolet,” Appl. Spectrosc. 54(9), 1275–1278 (2000).
    [Crossref]
  8. M. Khater, “Review: Laser-induced breakdown spectroscopy for light elements detection in steel: State of the art,” Spectrochim. Acta, Part B 81, 1–10 (2013).
    [Crossref]
  9. X. Jiang, P. Hayden, J. T. Costello, and E. T. Kennedy, “Double-pulse laser induced breakdown spectroscopy with ambient gas in the vacuum ultraviolet: Optimization of parameters for detection of carbon and sulfur in steel,” Spectrochim. Acta, Part B 101, 106–113 (2014).
    [Crossref]
  10. T. A. Labutin, S. M. Zaytsev, A. M. Popov, and N. B. Zorov, “Carbon determination in carbon-manganese steels under atmospheric conditions by laser-induced breakdown spectroscopy,” Opt. Express 22(19), 22382–22387 (2014).
    [Crossref]
  11. V. S. Burakov, M. V. Belkov, V. V. Kiris, K. Y. Catsalap, and N. V. Tarasenko, “Determination of carbon in low-alloy steels by laser-induced breakdown spectroscopy in air,” J. Appl. Spectrosc. 85(5), 864–869 (2018).
    [Crossref]
  12. K. Y. Yamamoto, D. A. Cremers, M. J. Ferris, and L. E. Foster, “Detection of metals in the environment using a portable laser-induced breakdown spectroscopy instrument,” Appl. Spectrosc. 50(2), 222–233 (1996).
    [Crossref]
  13. C. Lopez-Moreno, K. Amponsah-Manager, B. W. Smith, I. B. Gornushkin, N. Omenetto, S. Palanco, J. J. Laserna, and J. D. Winefordner, “Quantitative analysis of low-alloy steel by microchip laser induced breakdown spectroscopy,” J. Anal. At. Spectrom. 20(6), 552–556 (2005).
    [Crossref]
  14. Qingdong Zeng, Lianbo Guo, Xiangyou Li, Meng Shen, Yining Zhu, Jiaming Li, Xinyan Yang, Kuohu Li, Jun Duan, and Xiaoyan Zeng;, and Yongfeng Lu, “Quantitative analyses of Mn, V, and Si elements in steels using a portable laser-induced breakdown spectroscopy system based on a fiber laser,” J. Anal. At. Spectrom. 31(3), 767–772 (2016).
    [Crossref]
  15. A. Tortschanoff, M. Baumgart, and G. Kroupa, “Application of a compact diode pumped solid-state laser source for quantitative laser induced breakdown spectroscopy of steel,” Opt. Eng. 56(12), 1 (2017).
    [Crossref]
  16. V. N. Lednev, A. E. Dormidonov, P. A. Sdvizhenskii, M. Ya Grishin, A. N. Fedorov, A. D. Savvin, E. S. Safronova, and S. M. Pershin, “Compact diode-pumped Nd:YAG laser for remote analysis of low-alloy steels by laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 33(2), 294–303 (2018).
    [Crossref]
  17. C. Alvarez-Llamas, C. Roux, and O. Musset, “A compact, high-efficiency, quasi-continuous wave mini-stack diode pumped, actively Q-switched laser source for laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 148, 118–128 (2018).
    [Crossref]
  18. D. Day, B. Connors, M. Jennings, J. Egan, K. Derman, P. Soucy, S. Moller, and D. Sackett, “A full featured handheld LIBS analyzer with early results for defense and security,” Proc. SPIE 9482, 948206 (2015).
    [Crossref]
  19. Q. Li, J. Li, K. Bakeev, and S. Wang, “Developing mobile LIBS solutions for real world applications,” Proc. SPIE 9482, 94820F (2015).
    [Crossref]
  20. B. N. Bennet, M. Z. Martin, D. N. Leonard, and E. Garlea, “Calibration curves for commercial copper and aluminum alloys using handheld laser induced breakdown spectroscopy,” Appl. Phys. B: Lasers Opt. 124(3), 42 (2018).
    [Crossref]
  21. M. S. Afgan, Z. Hou, and Z. Wang, “Quantitative analysis of common elements in steel using a handheld-LIBS instrument,” J. Anal. At. Spectrom. 32(10), 1905–1915 (2017).
    [Crossref]
  22. J. Rakovský, P. Čermák, O. Musset, and P. Veis, “A review of the development of portable laser induced breakdown spectroscopy and its applications,” Spectrochim. Acta, Part B 101, 269–287 (2014).
    [Crossref]
  23. R. Noll, C. Fricke-Begemann, S. Connemann, C. Meinhardt, and V. Sturm, “LIBS analyses for industrial applications – an overview of developments from 2014 to 2018,” J. Anal. At. Spectrom. 33(6), 945–956 (2018).
    [Crossref]
  24. R. A. Crocombe, “Portable spectroscopy,” Appl. Spectrosc. 72(12), 1701–1751 (2018).
    [Crossref]
  25. SciAps ApNotes “Carbon analysis in stainless and carbon steels with handheld LIBS,” March 2018, https://www.sciaps.com/wp-content/uploads/2018/04/SciAps_ApNote_LIBSCarbonMARCH2018.pdf?x24702 . [accessed Aug 1 2019].
  26. A. Bideau-Mehu, Y. Guern, R. Abjean, and A. Johannin-Gilles, “Measurement of refractive indices of neon, argon, krypton and xenon in the 253.7-140.4 nm wavelength range. Dispersion relations and estimated oscillator strengths of the resonance lines,” J. Quant. Spectrosc. Radiat. Transfer 25(5), 395–402 (1981).
    [Crossref]
  27. N. Konjevic, A. Lesage, J. R. Fuhr, and W. L. Wiese, “Experimental stark widths and shifts for spectra lines of neutral and ionized atoms,” J. Phys. Chem. Ref. Data 31(3), 819–927 (2002).
    [Crossref]
  28. OriginPro2019, version 9.6.0.172, OriginLab Corporation, Northampton, MA 01060.

2018 (6)

V. S. Burakov, M. V. Belkov, V. V. Kiris, K. Y. Catsalap, and N. V. Tarasenko, “Determination of carbon in low-alloy steels by laser-induced breakdown spectroscopy in air,” J. Appl. Spectrosc. 85(5), 864–869 (2018).
[Crossref]

V. N. Lednev, A. E. Dormidonov, P. A. Sdvizhenskii, M. Ya Grishin, A. N. Fedorov, A. D. Savvin, E. S. Safronova, and S. M. Pershin, “Compact diode-pumped Nd:YAG laser for remote analysis of low-alloy steels by laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 33(2), 294–303 (2018).
[Crossref]

C. Alvarez-Llamas, C. Roux, and O. Musset, “A compact, high-efficiency, quasi-continuous wave mini-stack diode pumped, actively Q-switched laser source for laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 148, 118–128 (2018).
[Crossref]

B. N. Bennet, M. Z. Martin, D. N. Leonard, and E. Garlea, “Calibration curves for commercial copper and aluminum alloys using handheld laser induced breakdown spectroscopy,” Appl. Phys. B: Lasers Opt. 124(3), 42 (2018).
[Crossref]

R. Noll, C. Fricke-Begemann, S. Connemann, C. Meinhardt, and V. Sturm, “LIBS analyses for industrial applications – an overview of developments from 2014 to 2018,” J. Anal. At. Spectrom. 33(6), 945–956 (2018).
[Crossref]

R. A. Crocombe, “Portable spectroscopy,” Appl. Spectrosc. 72(12), 1701–1751 (2018).
[Crossref]

2017 (2)

M. S. Afgan, Z. Hou, and Z. Wang, “Quantitative analysis of common elements in steel using a handheld-LIBS instrument,” J. Anal. At. Spectrom. 32(10), 1905–1915 (2017).
[Crossref]

A. Tortschanoff, M. Baumgart, and G. Kroupa, “Application of a compact diode pumped solid-state laser source for quantitative laser induced breakdown spectroscopy of steel,” Opt. Eng. 56(12), 1 (2017).
[Crossref]

2016 (1)

Qingdong Zeng, Lianbo Guo, Xiangyou Li, Meng Shen, Yining Zhu, Jiaming Li, Xinyan Yang, Kuohu Li, Jun Duan, and Xiaoyan Zeng;, and Yongfeng Lu, “Quantitative analyses of Mn, V, and Si elements in steels using a portable laser-induced breakdown spectroscopy system based on a fiber laser,” J. Anal. At. Spectrom. 31(3), 767–772 (2016).
[Crossref]

Qingdong Zeng, Lianbo Guo, Xiangyou Li, Meng Shen, Yining Zhu, Jiaming Li, Xinyan Yang, Kuohu Li, Jun Duan, and Xiaoyan Zeng;, and Yongfeng Lu, “Quantitative analyses of Mn, V, and Si elements in steels using a portable laser-induced breakdown spectroscopy system based on a fiber laser,” J. Anal. At. Spectrom. 31(3), 767–772 (2016).
[Crossref]

2015 (2)

D. Day, B. Connors, M. Jennings, J. Egan, K. Derman, P. Soucy, S. Moller, and D. Sackett, “A full featured handheld LIBS analyzer with early results for defense and security,” Proc. SPIE 9482, 948206 (2015).
[Crossref]

Q. Li, J. Li, K. Bakeev, and S. Wang, “Developing mobile LIBS solutions for real world applications,” Proc. SPIE 9482, 94820F (2015).
[Crossref]

2014 (3)

X. Jiang, P. Hayden, J. T. Costello, and E. T. Kennedy, “Double-pulse laser induced breakdown spectroscopy with ambient gas in the vacuum ultraviolet: Optimization of parameters for detection of carbon and sulfur in steel,” Spectrochim. Acta, Part B 101, 106–113 (2014).
[Crossref]

T. A. Labutin, S. M. Zaytsev, A. M. Popov, and N. B. Zorov, “Carbon determination in carbon-manganese steels under atmospheric conditions by laser-induced breakdown spectroscopy,” Opt. Express 22(19), 22382–22387 (2014).
[Crossref]

J. Rakovský, P. Čermák, O. Musset, and P. Veis, “A review of the development of portable laser induced breakdown spectroscopy and its applications,” Spectrochim. Acta, Part B 101, 269–287 (2014).
[Crossref]

2013 (1)

M. Khater, “Review: Laser-induced breakdown spectroscopy for light elements detection in steel: State of the art,” Spectrochim. Acta, Part B 81, 1–10 (2013).
[Crossref]

2012 (1)

2010 (1)

2005 (1)

C. Lopez-Moreno, K. Amponsah-Manager, B. W. Smith, I. B. Gornushkin, N. Omenetto, S. Palanco, J. J. Laserna, and J. D. Winefordner, “Quantitative analysis of low-alloy steel by microchip laser induced breakdown spectroscopy,” J. Anal. At. Spectrom. 20(6), 552–556 (2005).
[Crossref]

2002 (1)

N. Konjevic, A. Lesage, J. R. Fuhr, and W. L. Wiese, “Experimental stark widths and shifts for spectra lines of neutral and ionized atoms,” J. Phys. Chem. Ref. Data 31(3), 819–927 (2002).
[Crossref]

2000 (1)

1996 (1)

1983 (1)

G. L. Long and J. D. Winefordner, “Limit of detection, a closer look at the IUPAC definition,” Anal. Chem. 55(7), 712A–724A (1983).
[Crossref]

1981 (1)

A. Bideau-Mehu, Y. Guern, R. Abjean, and A. Johannin-Gilles, “Measurement of refractive indices of neon, argon, krypton and xenon in the 253.7-140.4 nm wavelength range. Dispersion relations and estimated oscillator strengths of the resonance lines,” J. Quant. Spectrosc. Radiat. Transfer 25(5), 395–402 (1981).
[Crossref]

Abjean, R.

A. Bideau-Mehu, Y. Guern, R. Abjean, and A. Johannin-Gilles, “Measurement of refractive indices of neon, argon, krypton and xenon in the 253.7-140.4 nm wavelength range. Dispersion relations and estimated oscillator strengths of the resonance lines,” J. Quant. Spectrosc. Radiat. Transfer 25(5), 395–402 (1981).
[Crossref]

Afgan, M. S.

M. S. Afgan, Z. Hou, and Z. Wang, “Quantitative analysis of common elements in steel using a handheld-LIBS instrument,” J. Anal. At. Spectrom. 32(10), 1905–1915 (2017).
[Crossref]

Alvarez-Llamas, C.

C. Alvarez-Llamas, C. Roux, and O. Musset, “A compact, high-efficiency, quasi-continuous wave mini-stack diode pumped, actively Q-switched laser source for laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 148, 118–128 (2018).
[Crossref]

Amponsah-Manager, K.

C. Lopez-Moreno, K. Amponsah-Manager, B. W. Smith, I. B. Gornushkin, N. Omenetto, S. Palanco, J. J. Laserna, and J. D. Winefordner, “Quantitative analysis of low-alloy steel by microchip laser induced breakdown spectroscopy,” J. Anal. At. Spectrom. 20(6), 552–556 (2005).
[Crossref]

Bakeev, K.

Q. Li, J. Li, K. Bakeev, and S. Wang, “Developing mobile LIBS solutions for real world applications,” Proc. SPIE 9482, 94820F (2015).
[Crossref]

Baumgart, M.

A. Tortschanoff, M. Baumgart, and G. Kroupa, “Application of a compact diode pumped solid-state laser source for quantitative laser induced breakdown spectroscopy of steel,” Opt. Eng. 56(12), 1 (2017).
[Crossref]

Belkov, M. V.

V. S. Burakov, M. V. Belkov, V. V. Kiris, K. Y. Catsalap, and N. V. Tarasenko, “Determination of carbon in low-alloy steels by laser-induced breakdown spectroscopy in air,” J. Appl. Spectrosc. 85(5), 864–869 (2018).
[Crossref]

Bennet, B. N.

B. N. Bennet, M. Z. Martin, D. N. Leonard, and E. Garlea, “Calibration curves for commercial copper and aluminum alloys using handheld laser induced breakdown spectroscopy,” Appl. Phys. B: Lasers Opt. 124(3), 42 (2018).
[Crossref]

Bideau-Mehu, A.

A. Bideau-Mehu, Y. Guern, R. Abjean, and A. Johannin-Gilles, “Measurement of refractive indices of neon, argon, krypton and xenon in the 253.7-140.4 nm wavelength range. Dispersion relations and estimated oscillator strengths of the resonance lines,” J. Quant. Spectrosc. Radiat. Transfer 25(5), 395–402 (1981).
[Crossref]

Burakov, V. S.

V. S. Burakov, M. V. Belkov, V. V. Kiris, K. Y. Catsalap, and N. V. Tarasenko, “Determination of carbon in low-alloy steels by laser-induced breakdown spectroscopy in air,” J. Appl. Spectrosc. 85(5), 864–869 (2018).
[Crossref]

Catsalap, K. Y.

V. S. Burakov, M. V. Belkov, V. V. Kiris, K. Y. Catsalap, and N. V. Tarasenko, “Determination of carbon in low-alloy steels by laser-induced breakdown spectroscopy in air,” J. Appl. Spectrosc. 85(5), 864–869 (2018).
[Crossref]

Cermák, P.

J. Rakovský, P. Čermák, O. Musset, and P. Veis, “A review of the development of portable laser induced breakdown spectroscopy and its applications,” Spectrochim. Acta, Part B 101, 269–287 (2014).
[Crossref]

Connemann, S.

R. Noll, C. Fricke-Begemann, S. Connemann, C. Meinhardt, and V. Sturm, “LIBS analyses for industrial applications – an overview of developments from 2014 to 2018,” J. Anal. At. Spectrom. 33(6), 945–956 (2018).
[Crossref]

Connors, B.

D. Day, B. Connors, M. Jennings, J. Egan, K. Derman, P. Soucy, S. Moller, and D. Sackett, “A full featured handheld LIBS analyzer with early results for defense and security,” Proc. SPIE 9482, 948206 (2015).
[Crossref]

Costello, J. T.

X. Jiang, P. Hayden, J. T. Costello, and E. T. Kennedy, “Double-pulse laser induced breakdown spectroscopy with ambient gas in the vacuum ultraviolet: Optimization of parameters for detection of carbon and sulfur in steel,” Spectrochim. Acta, Part B 101, 106–113 (2014).
[Crossref]

Cremers, D. A.

Crocombe, R. A.

Day, D.

D. Day, B. Connors, M. Jennings, J. Egan, K. Derman, P. Soucy, S. Moller, and D. Sackett, “A full featured handheld LIBS analyzer with early results for defense and security,” Proc. SPIE 9482, 948206 (2015).
[Crossref]

Derman, K.

D. Day, B. Connors, M. Jennings, J. Egan, K. Derman, P. Soucy, S. Moller, and D. Sackett, “A full featured handheld LIBS analyzer with early results for defense and security,” Proc. SPIE 9482, 948206 (2015).
[Crossref]

Dormidonov, A. E.

V. N. Lednev, A. E. Dormidonov, P. A. Sdvizhenskii, M. Ya Grishin, A. N. Fedorov, A. D. Savvin, E. S. Safronova, and S. M. Pershin, “Compact diode-pumped Nd:YAG laser for remote analysis of low-alloy steels by laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 33(2), 294–303 (2018).
[Crossref]

Duan, Jun

Qingdong Zeng, Lianbo Guo, Xiangyou Li, Meng Shen, Yining Zhu, Jiaming Li, Xinyan Yang, Kuohu Li, Jun Duan, and Xiaoyan Zeng;, and Yongfeng Lu, “Quantitative analyses of Mn, V, and Si elements in steels using a portable laser-induced breakdown spectroscopy system based on a fiber laser,” J. Anal. At. Spectrom. 31(3), 767–772 (2016).
[Crossref]

Egan, J.

D. Day, B. Connors, M. Jennings, J. Egan, K. Derman, P. Soucy, S. Moller, and D. Sackett, “A full featured handheld LIBS analyzer with early results for defense and security,” Proc. SPIE 9482, 948206 (2015).
[Crossref]

Fedorov, A. N.

V. N. Lednev, A. E. Dormidonov, P. A. Sdvizhenskii, M. Ya Grishin, A. N. Fedorov, A. D. Savvin, E. S. Safronova, and S. M. Pershin, “Compact diode-pumped Nd:YAG laser for remote analysis of low-alloy steels by laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 33(2), 294–303 (2018).
[Crossref]

Ferris, M. J.

Foster, L. E.

Fricke-Begemann, C.

R. Noll, C. Fricke-Begemann, S. Connemann, C. Meinhardt, and V. Sturm, “LIBS analyses for industrial applications – an overview of developments from 2014 to 2018,” J. Anal. At. Spectrom. 33(6), 945–956 (2018).
[Crossref]

Fuhr, J. R.

N. Konjevic, A. Lesage, J. R. Fuhr, and W. L. Wiese, “Experimental stark widths and shifts for spectra lines of neutral and ionized atoms,” J. Phys. Chem. Ref. Data 31(3), 819–927 (2002).
[Crossref]

Garlea, E.

B. N. Bennet, M. Z. Martin, D. N. Leonard, and E. Garlea, “Calibration curves for commercial copper and aluminum alloys using handheld laser induced breakdown spectroscopy,” Appl. Phys. B: Lasers Opt. 124(3), 42 (2018).
[Crossref]

Gornushkin, I. B.

C. Lopez-Moreno, K. Amponsah-Manager, B. W. Smith, I. B. Gornushkin, N. Omenetto, S. Palanco, J. J. Laserna, and J. D. Winefordner, “Quantitative analysis of low-alloy steel by microchip laser induced breakdown spectroscopy,” J. Anal. At. Spectrom. 20(6), 552–556 (2005).
[Crossref]

Grishin, M. Ya

V. N. Lednev, A. E. Dormidonov, P. A. Sdvizhenskii, M. Ya Grishin, A. N. Fedorov, A. D. Savvin, E. S. Safronova, and S. M. Pershin, “Compact diode-pumped Nd:YAG laser for remote analysis of low-alloy steels by laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 33(2), 294–303 (2018).
[Crossref]

Guern, Y.

A. Bideau-Mehu, Y. Guern, R. Abjean, and A. Johannin-Gilles, “Measurement of refractive indices of neon, argon, krypton and xenon in the 253.7-140.4 nm wavelength range. Dispersion relations and estimated oscillator strengths of the resonance lines,” J. Quant. Spectrosc. Radiat. Transfer 25(5), 395–402 (1981).
[Crossref]

Guo, Lianbo

Qingdong Zeng, Lianbo Guo, Xiangyou Li, Meng Shen, Yining Zhu, Jiaming Li, Xinyan Yang, Kuohu Li, Jun Duan, and Xiaoyan Zeng;, and Yongfeng Lu, “Quantitative analyses of Mn, V, and Si elements in steels using a portable laser-induced breakdown spectroscopy system based on a fiber laser,” J. Anal. At. Spectrom. 31(3), 767–772 (2016).
[Crossref]

Hahn, D. W.

Hayden, P.

X. Jiang, P. Hayden, J. T. Costello, and E. T. Kennedy, “Double-pulse laser induced breakdown spectroscopy with ambient gas in the vacuum ultraviolet: Optimization of parameters for detection of carbon and sulfur in steel,” Spectrochim. Acta, Part B 101, 106–113 (2014).
[Crossref]

Hou, Z.

M. S. Afgan, Z. Hou, and Z. Wang, “Quantitative analysis of common elements in steel using a handheld-LIBS instrument,” J. Anal. At. Spectrom. 32(10), 1905–1915 (2017).
[Crossref]

Jennings, M.

D. Day, B. Connors, M. Jennings, J. Egan, K. Derman, P. Soucy, S. Moller, and D. Sackett, “A full featured handheld LIBS analyzer with early results for defense and security,” Proc. SPIE 9482, 948206 (2015).
[Crossref]

Jiang, X.

X. Jiang, P. Hayden, J. T. Costello, and E. T. Kennedy, “Double-pulse laser induced breakdown spectroscopy with ambient gas in the vacuum ultraviolet: Optimization of parameters for detection of carbon and sulfur in steel,” Spectrochim. Acta, Part B 101, 106–113 (2014).
[Crossref]

Johannin-Gilles, A.

A. Bideau-Mehu, Y. Guern, R. Abjean, and A. Johannin-Gilles, “Measurement of refractive indices of neon, argon, krypton and xenon in the 253.7-140.4 nm wavelength range. Dispersion relations and estimated oscillator strengths of the resonance lines,” J. Quant. Spectrosc. Radiat. Transfer 25(5), 395–402 (1981).
[Crossref]

Kennedy, E. T.

X. Jiang, P. Hayden, J. T. Costello, and E. T. Kennedy, “Double-pulse laser induced breakdown spectroscopy with ambient gas in the vacuum ultraviolet: Optimization of parameters for detection of carbon and sulfur in steel,” Spectrochim. Acta, Part B 101, 106–113 (2014).
[Crossref]

Khater, M.

M. Khater, “Review: Laser-induced breakdown spectroscopy for light elements detection in steel: State of the art,” Spectrochim. Acta, Part B 81, 1–10 (2013).
[Crossref]

Kiris, V. V.

V. S. Burakov, M. V. Belkov, V. V. Kiris, K. Y. Catsalap, and N. V. Tarasenko, “Determination of carbon in low-alloy steels by laser-induced breakdown spectroscopy in air,” J. Appl. Spectrosc. 85(5), 864–869 (2018).
[Crossref]

Konjevic, N.

N. Konjevic, A. Lesage, J. R. Fuhr, and W. L. Wiese, “Experimental stark widths and shifts for spectra lines of neutral and ionized atoms,” J. Phys. Chem. Ref. Data 31(3), 819–927 (2002).
[Crossref]

Kramida, A.

A. Kramida, Yu. Ralchenko, and J. Reader, and NIST ASD Team (2018). NIST Atomic Spectra Database (ver. 5.6.1), [Online]. Available: https://physics.nist.gov/asd [2019, July 25]. National Institute of Standards and Technology, Gaithersburg, MD.

Kroupa, G.

A. Tortschanoff, M. Baumgart, and G. Kroupa, “Application of a compact diode pumped solid-state laser source for quantitative laser induced breakdown spectroscopy of steel,” Opt. Eng. 56(12), 1 (2017).
[Crossref]

Labutin, T. A.

Laserna, J. J.

C. Lopez-Moreno, K. Amponsah-Manager, B. W. Smith, I. B. Gornushkin, N. Omenetto, S. Palanco, J. J. Laserna, and J. D. Winefordner, “Quantitative analysis of low-alloy steel by microchip laser induced breakdown spectroscopy,” J. Anal. At. Spectrom. 20(6), 552–556 (2005).
[Crossref]

Lednev, V. N.

V. N. Lednev, A. E. Dormidonov, P. A. Sdvizhenskii, M. Ya Grishin, A. N. Fedorov, A. D. Savvin, E. S. Safronova, and S. M. Pershin, “Compact diode-pumped Nd:YAG laser for remote analysis of low-alloy steels by laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 33(2), 294–303 (2018).
[Crossref]

Leonard, D. N.

B. N. Bennet, M. Z. Martin, D. N. Leonard, and E. Garlea, “Calibration curves for commercial copper and aluminum alloys using handheld laser induced breakdown spectroscopy,” Appl. Phys. B: Lasers Opt. 124(3), 42 (2018).
[Crossref]

Lesage, A.

N. Konjevic, A. Lesage, J. R. Fuhr, and W. L. Wiese, “Experimental stark widths and shifts for spectra lines of neutral and ionized atoms,” J. Phys. Chem. Ref. Data 31(3), 819–927 (2002).
[Crossref]

Li, J.

Q. Li, J. Li, K. Bakeev, and S. Wang, “Developing mobile LIBS solutions for real world applications,” Proc. SPIE 9482, 94820F (2015).
[Crossref]

Li, Jiaming

Qingdong Zeng, Lianbo Guo, Xiangyou Li, Meng Shen, Yining Zhu, Jiaming Li, Xinyan Yang, Kuohu Li, Jun Duan, and Xiaoyan Zeng;, and Yongfeng Lu, “Quantitative analyses of Mn, V, and Si elements in steels using a portable laser-induced breakdown spectroscopy system based on a fiber laser,” J. Anal. At. Spectrom. 31(3), 767–772 (2016).
[Crossref]

Li, Kuohu

Qingdong Zeng, Lianbo Guo, Xiangyou Li, Meng Shen, Yining Zhu, Jiaming Li, Xinyan Yang, Kuohu Li, Jun Duan, and Xiaoyan Zeng;, and Yongfeng Lu, “Quantitative analyses of Mn, V, and Si elements in steels using a portable laser-induced breakdown spectroscopy system based on a fiber laser,” J. Anal. At. Spectrom. 31(3), 767–772 (2016).
[Crossref]

Li, Q.

Q. Li, J. Li, K. Bakeev, and S. Wang, “Developing mobile LIBS solutions for real world applications,” Proc. SPIE 9482, 94820F (2015).
[Crossref]

Li, Xiangyou

Qingdong Zeng, Lianbo Guo, Xiangyou Li, Meng Shen, Yining Zhu, Jiaming Li, Xinyan Yang, Kuohu Li, Jun Duan, and Xiaoyan Zeng;, and Yongfeng Lu, “Quantitative analyses of Mn, V, and Si elements in steels using a portable laser-induced breakdown spectroscopy system based on a fiber laser,” J. Anal. At. Spectrom. 31(3), 767–772 (2016).
[Crossref]

Long, G. L.

G. L. Long and J. D. Winefordner, “Limit of detection, a closer look at the IUPAC definition,” Anal. Chem. 55(7), 712A–724A (1983).
[Crossref]

Lopez-Moreno, C.

C. Lopez-Moreno, K. Amponsah-Manager, B. W. Smith, I. B. Gornushkin, N. Omenetto, S. Palanco, J. J. Laserna, and J. D. Winefordner, “Quantitative analysis of low-alloy steel by microchip laser induced breakdown spectroscopy,” J. Anal. At. Spectrom. 20(6), 552–556 (2005).
[Crossref]

Lu, Yongfeng

Qingdong Zeng, Lianbo Guo, Xiangyou Li, Meng Shen, Yining Zhu, Jiaming Li, Xinyan Yang, Kuohu Li, Jun Duan, and Xiaoyan Zeng;, and Yongfeng Lu, “Quantitative analyses of Mn, V, and Si elements in steels using a portable laser-induced breakdown spectroscopy system based on a fiber laser,” J. Anal. At. Spectrom. 31(3), 767–772 (2016).
[Crossref]

Martin, M. Z.

B. N. Bennet, M. Z. Martin, D. N. Leonard, and E. Garlea, “Calibration curves for commercial copper and aluminum alloys using handheld laser induced breakdown spectroscopy,” Appl. Phys. B: Lasers Opt. 124(3), 42 (2018).
[Crossref]

Meinhardt, C.

R. Noll, C. Fricke-Begemann, S. Connemann, C. Meinhardt, and V. Sturm, “LIBS analyses for industrial applications – an overview of developments from 2014 to 2018,” J. Anal. At. Spectrom. 33(6), 945–956 (2018).
[Crossref]

Miziolek, A. W.

A. W. Miziolek, V. Palleschi, and I. Schechter, Laser-induced breakdown spectroscopy (Cambridge University, 2006).

Moller, S.

D. Day, B. Connors, M. Jennings, J. Egan, K. Derman, P. Soucy, S. Moller, and D. Sackett, “A full featured handheld LIBS analyzer with early results for defense and security,” Proc. SPIE 9482, 948206 (2015).
[Crossref]

Musset, O.

C. Alvarez-Llamas, C. Roux, and O. Musset, “A compact, high-efficiency, quasi-continuous wave mini-stack diode pumped, actively Q-switched laser source for laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 148, 118–128 (2018).
[Crossref]

J. Rakovský, P. Čermák, O. Musset, and P. Veis, “A review of the development of portable laser induced breakdown spectroscopy and its applications,” Spectrochim. Acta, Part B 101, 269–287 (2014).
[Crossref]

Noll, R.

R. Noll, C. Fricke-Begemann, S. Connemann, C. Meinhardt, and V. Sturm, “LIBS analyses for industrial applications – an overview of developments from 2014 to 2018,” J. Anal. At. Spectrom. 33(6), 945–956 (2018).
[Crossref]

V. Sturm, L. Peter, and R. Noll, “Steel analysis with laser-induced breakdown spectrometry in the vacuum ultraviolet,” Appl. Spectrosc. 54(9), 1275–1278 (2000).
[Crossref]

Omenetto, N.

Palanco, S.

C. Lopez-Moreno, K. Amponsah-Manager, B. W. Smith, I. B. Gornushkin, N. Omenetto, S. Palanco, J. J. Laserna, and J. D. Winefordner, “Quantitative analysis of low-alloy steel by microchip laser induced breakdown spectroscopy,” J. Anal. At. Spectrom. 20(6), 552–556 (2005).
[Crossref]

Palleschi, V.

A. W. Miziolek, V. Palleschi, and I. Schechter, Laser-induced breakdown spectroscopy (Cambridge University, 2006).

Pershin, S. M.

V. N. Lednev, A. E. Dormidonov, P. A. Sdvizhenskii, M. Ya Grishin, A. N. Fedorov, A. D. Savvin, E. S. Safronova, and S. M. Pershin, “Compact diode-pumped Nd:YAG laser for remote analysis of low-alloy steels by laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 33(2), 294–303 (2018).
[Crossref]

Peter, L.

Popov, A. M.

Radziemski, L. J.

D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (John Wiley, 2006).

Rakovský, J.

J. Rakovský, P. Čermák, O. Musset, and P. Veis, “A review of the development of portable laser induced breakdown spectroscopy and its applications,” Spectrochim. Acta, Part B 101, 269–287 (2014).
[Crossref]

Ralchenko, Yu.

A. Kramida, Yu. Ralchenko, and J. Reader, and NIST ASD Team (2018). NIST Atomic Spectra Database (ver. 5.6.1), [Online]. Available: https://physics.nist.gov/asd [2019, July 25]. National Institute of Standards and Technology, Gaithersburg, MD.

Reader, J.

A. Kramida, Yu. Ralchenko, and J. Reader, and NIST ASD Team (2018). NIST Atomic Spectra Database (ver. 5.6.1), [Online]. Available: https://physics.nist.gov/asd [2019, July 25]. National Institute of Standards and Technology, Gaithersburg, MD.

Roux, C.

C. Alvarez-Llamas, C. Roux, and O. Musset, “A compact, high-efficiency, quasi-continuous wave mini-stack diode pumped, actively Q-switched laser source for laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 148, 118–128 (2018).
[Crossref]

Sackett, D.

D. Day, B. Connors, M. Jennings, J. Egan, K. Derman, P. Soucy, S. Moller, and D. Sackett, “A full featured handheld LIBS analyzer with early results for defense and security,” Proc. SPIE 9482, 948206 (2015).
[Crossref]

Safronova, E. S.

V. N. Lednev, A. E. Dormidonov, P. A. Sdvizhenskii, M. Ya Grishin, A. N. Fedorov, A. D. Savvin, E. S. Safronova, and S. M. Pershin, “Compact diode-pumped Nd:YAG laser for remote analysis of low-alloy steels by laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 33(2), 294–303 (2018).
[Crossref]

Savvin, A. D.

V. N. Lednev, A. E. Dormidonov, P. A. Sdvizhenskii, M. Ya Grishin, A. N. Fedorov, A. D. Savvin, E. S. Safronova, and S. M. Pershin, “Compact diode-pumped Nd:YAG laser for remote analysis of low-alloy steels by laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 33(2), 294–303 (2018).
[Crossref]

Schechter, I.

A. W. Miziolek, V. Palleschi, and I. Schechter, Laser-induced breakdown spectroscopy (Cambridge University, 2006).

Sdvizhenskii, P. A.

V. N. Lednev, A. E. Dormidonov, P. A. Sdvizhenskii, M. Ya Grishin, A. N. Fedorov, A. D. Savvin, E. S. Safronova, and S. M. Pershin, “Compact diode-pumped Nd:YAG laser for remote analysis of low-alloy steels by laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 33(2), 294–303 (2018).
[Crossref]

Shen, Meng

Qingdong Zeng, Lianbo Guo, Xiangyou Li, Meng Shen, Yining Zhu, Jiaming Li, Xinyan Yang, Kuohu Li, Jun Duan, and Xiaoyan Zeng;, and Yongfeng Lu, “Quantitative analyses of Mn, V, and Si elements in steels using a portable laser-induced breakdown spectroscopy system based on a fiber laser,” J. Anal. At. Spectrom. 31(3), 767–772 (2016).
[Crossref]

Smith, B. W.

C. Lopez-Moreno, K. Amponsah-Manager, B. W. Smith, I. B. Gornushkin, N. Omenetto, S. Palanco, J. J. Laserna, and J. D. Winefordner, “Quantitative analysis of low-alloy steel by microchip laser induced breakdown spectroscopy,” J. Anal. At. Spectrom. 20(6), 552–556 (2005).
[Crossref]

Soucy, P.

D. Day, B. Connors, M. Jennings, J. Egan, K. Derman, P. Soucy, S. Moller, and D. Sackett, “A full featured handheld LIBS analyzer with early results for defense and security,” Proc. SPIE 9482, 948206 (2015).
[Crossref]

Sturm, V.

R. Noll, C. Fricke-Begemann, S. Connemann, C. Meinhardt, and V. Sturm, “LIBS analyses for industrial applications – an overview of developments from 2014 to 2018,” J. Anal. At. Spectrom. 33(6), 945–956 (2018).
[Crossref]

V. Sturm, L. Peter, and R. Noll, “Steel analysis with laser-induced breakdown spectrometry in the vacuum ultraviolet,” Appl. Spectrosc. 54(9), 1275–1278 (2000).
[Crossref]

Tarasenko, N. V.

V. S. Burakov, M. V. Belkov, V. V. Kiris, K. Y. Catsalap, and N. V. Tarasenko, “Determination of carbon in low-alloy steels by laser-induced breakdown spectroscopy in air,” J. Appl. Spectrosc. 85(5), 864–869 (2018).
[Crossref]

Tortschanoff, A.

A. Tortschanoff, M. Baumgart, and G. Kroupa, “Application of a compact diode pumped solid-state laser source for quantitative laser induced breakdown spectroscopy of steel,” Opt. Eng. 56(12), 1 (2017).
[Crossref]

Veis, P.

J. Rakovský, P. Čermák, O. Musset, and P. Veis, “A review of the development of portable laser induced breakdown spectroscopy and its applications,” Spectrochim. Acta, Part B 101, 269–287 (2014).
[Crossref]

Wang, S.

Q. Li, J. Li, K. Bakeev, and S. Wang, “Developing mobile LIBS solutions for real world applications,” Proc. SPIE 9482, 94820F (2015).
[Crossref]

Wang, Z.

M. S. Afgan, Z. Hou, and Z. Wang, “Quantitative analysis of common elements in steel using a handheld-LIBS instrument,” J. Anal. At. Spectrom. 32(10), 1905–1915 (2017).
[Crossref]

Wiese, W. L.

N. Konjevic, A. Lesage, J. R. Fuhr, and W. L. Wiese, “Experimental stark widths and shifts for spectra lines of neutral and ionized atoms,” J. Phys. Chem. Ref. Data 31(3), 819–927 (2002).
[Crossref]

Winefordner, J. D.

C. Lopez-Moreno, K. Amponsah-Manager, B. W. Smith, I. B. Gornushkin, N. Omenetto, S. Palanco, J. J. Laserna, and J. D. Winefordner, “Quantitative analysis of low-alloy steel by microchip laser induced breakdown spectroscopy,” J. Anal. At. Spectrom. 20(6), 552–556 (2005).
[Crossref]

G. L. Long and J. D. Winefordner, “Limit of detection, a closer look at the IUPAC definition,” Anal. Chem. 55(7), 712A–724A (1983).
[Crossref]

Yamamoto, K. Y.

Yang, Xinyan

Qingdong Zeng, Lianbo Guo, Xiangyou Li, Meng Shen, Yining Zhu, Jiaming Li, Xinyan Yang, Kuohu Li, Jun Duan, and Xiaoyan Zeng;, and Yongfeng Lu, “Quantitative analyses of Mn, V, and Si elements in steels using a portable laser-induced breakdown spectroscopy system based on a fiber laser,” J. Anal. At. Spectrom. 31(3), 767–772 (2016).
[Crossref]

Zaytsev, S. M.

Zeng, Qingdong

Qingdong Zeng, Lianbo Guo, Xiangyou Li, Meng Shen, Yining Zhu, Jiaming Li, Xinyan Yang, Kuohu Li, Jun Duan, and Xiaoyan Zeng;, and Yongfeng Lu, “Quantitative analyses of Mn, V, and Si elements in steels using a portable laser-induced breakdown spectroscopy system based on a fiber laser,” J. Anal. At. Spectrom. 31(3), 767–772 (2016).
[Crossref]

Zeng, Xiaoyan

Qingdong Zeng, Lianbo Guo, Xiangyou Li, Meng Shen, Yining Zhu, Jiaming Li, Xinyan Yang, Kuohu Li, Jun Duan, and Xiaoyan Zeng;, and Yongfeng Lu, “Quantitative analyses of Mn, V, and Si elements in steels using a portable laser-induced breakdown spectroscopy system based on a fiber laser,” J. Anal. At. Spectrom. 31(3), 767–772 (2016).
[Crossref]

Zhu, Yining

Qingdong Zeng, Lianbo Guo, Xiangyou Li, Meng Shen, Yining Zhu, Jiaming Li, Xinyan Yang, Kuohu Li, Jun Duan, and Xiaoyan Zeng;, and Yongfeng Lu, “Quantitative analyses of Mn, V, and Si elements in steels using a portable laser-induced breakdown spectroscopy system based on a fiber laser,” J. Anal. At. Spectrom. 31(3), 767–772 (2016).
[Crossref]

Zorov, N. B.

Anal. Chem. (1)

G. L. Long and J. D. Winefordner, “Limit of detection, a closer look at the IUPAC definition,” Anal. Chem. 55(7), 712A–724A (1983).
[Crossref]

Appl. Phys. B: Lasers Opt. (1)

B. N. Bennet, M. Z. Martin, D. N. Leonard, and E. Garlea, “Calibration curves for commercial copper and aluminum alloys using handheld laser induced breakdown spectroscopy,” Appl. Phys. B: Lasers Opt. 124(3), 42 (2018).
[Crossref]

Appl. Spectrosc. (5)

J. Anal. At. Spectrom. (5)

M. S. Afgan, Z. Hou, and Z. Wang, “Quantitative analysis of common elements in steel using a handheld-LIBS instrument,” J. Anal. At. Spectrom. 32(10), 1905–1915 (2017).
[Crossref]

R. Noll, C. Fricke-Begemann, S. Connemann, C. Meinhardt, and V. Sturm, “LIBS analyses for industrial applications – an overview of developments from 2014 to 2018,” J. Anal. At. Spectrom. 33(6), 945–956 (2018).
[Crossref]

C. Lopez-Moreno, K. Amponsah-Manager, B. W. Smith, I. B. Gornushkin, N. Omenetto, S. Palanco, J. J. Laserna, and J. D. Winefordner, “Quantitative analysis of low-alloy steel by microchip laser induced breakdown spectroscopy,” J. Anal. At. Spectrom. 20(6), 552–556 (2005).
[Crossref]

Qingdong Zeng, Lianbo Guo, Xiangyou Li, Meng Shen, Yining Zhu, Jiaming Li, Xinyan Yang, Kuohu Li, Jun Duan, and Xiaoyan Zeng;, and Yongfeng Lu, “Quantitative analyses of Mn, V, and Si elements in steels using a portable laser-induced breakdown spectroscopy system based on a fiber laser,” J. Anal. At. Spectrom. 31(3), 767–772 (2016).
[Crossref]

V. N. Lednev, A. E. Dormidonov, P. A. Sdvizhenskii, M. Ya Grishin, A. N. Fedorov, A. D. Savvin, E. S. Safronova, and S. M. Pershin, “Compact diode-pumped Nd:YAG laser for remote analysis of low-alloy steels by laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 33(2), 294–303 (2018).
[Crossref]

J. Appl. Spectrosc. (1)

V. S. Burakov, M. V. Belkov, V. V. Kiris, K. Y. Catsalap, and N. V. Tarasenko, “Determination of carbon in low-alloy steels by laser-induced breakdown spectroscopy in air,” J. Appl. Spectrosc. 85(5), 864–869 (2018).
[Crossref]

J. Phys. Chem. Ref. Data (1)

N. Konjevic, A. Lesage, J. R. Fuhr, and W. L. Wiese, “Experimental stark widths and shifts for spectra lines of neutral and ionized atoms,” J. Phys. Chem. Ref. Data 31(3), 819–927 (2002).
[Crossref]

J. Quant. Spectrosc. Radiat. Transfer (1)

A. Bideau-Mehu, Y. Guern, R. Abjean, and A. Johannin-Gilles, “Measurement of refractive indices of neon, argon, krypton and xenon in the 253.7-140.4 nm wavelength range. Dispersion relations and estimated oscillator strengths of the resonance lines,” J. Quant. Spectrosc. Radiat. Transfer 25(5), 395–402 (1981).
[Crossref]

Opt. Eng. (1)

A. Tortschanoff, M. Baumgart, and G. Kroupa, “Application of a compact diode pumped solid-state laser source for quantitative laser induced breakdown spectroscopy of steel,” Opt. Eng. 56(12), 1 (2017).
[Crossref]

Opt. Express (1)

Proc. SPIE (2)

D. Day, B. Connors, M. Jennings, J. Egan, K. Derman, P. Soucy, S. Moller, and D. Sackett, “A full featured handheld LIBS analyzer with early results for defense and security,” Proc. SPIE 9482, 948206 (2015).
[Crossref]

Q. Li, J. Li, K. Bakeev, and S. Wang, “Developing mobile LIBS solutions for real world applications,” Proc. SPIE 9482, 94820F (2015).
[Crossref]

Spectrochim. Acta, Part B (4)

J. Rakovský, P. Čermák, O. Musset, and P. Veis, “A review of the development of portable laser induced breakdown spectroscopy and its applications,” Spectrochim. Acta, Part B 101, 269–287 (2014).
[Crossref]

C. Alvarez-Llamas, C. Roux, and O. Musset, “A compact, high-efficiency, quasi-continuous wave mini-stack diode pumped, actively Q-switched laser source for laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 148, 118–128 (2018).
[Crossref]

M. Khater, “Review: Laser-induced breakdown spectroscopy for light elements detection in steel: State of the art,” Spectrochim. Acta, Part B 81, 1–10 (2013).
[Crossref]

X. Jiang, P. Hayden, J. T. Costello, and E. T. Kennedy, “Double-pulse laser induced breakdown spectroscopy with ambient gas in the vacuum ultraviolet: Optimization of parameters for detection of carbon and sulfur in steel,” Spectrochim. Acta, Part B 101, 106–113 (2014).
[Crossref]

Other (5)

A. Kramida, Yu. Ralchenko, and J. Reader, and NIST ASD Team (2018). NIST Atomic Spectra Database (ver. 5.6.1), [Online]. Available: https://physics.nist.gov/asd [2019, July 25]. National Institute of Standards and Technology, Gaithersburg, MD.

A. W. Miziolek, V. Palleschi, and I. Schechter, Laser-induced breakdown spectroscopy (Cambridge University, 2006).

D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (John Wiley, 2006).

OriginPro2019, version 9.6.0.172, OriginLab Corporation, Northampton, MA 01060.

SciAps ApNotes “Carbon analysis in stainless and carbon steels with handheld LIBS,” March 2018, https://www.sciaps.com/wp-content/uploads/2018/04/SciAps_ApNote_LIBSCarbonMARCH2018.pdf?x24702 . [accessed Aug 1 2019].

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1. Spectral width of measured C line of steel samples fitted by Lorentzian profiles with FWHM, wL. The C mass fractions of the four samples (set B, see section 2.2) are given in the legend.
Fig. 2.
Fig. 2. Global calibration curves for (a,b) C, (c,d) Ni, (e) Cr, and (f) Si. The normalized analyte line intensities are given vs. the mass fractions, or (f) the mass fraction ratios, respectively.
Fig. 3.
Fig. 3. Analytical calibration curve for C in the low-level range up to 0.09% (a), and 0.016% (b) Note: There are no errors for the mass fractions available for the SUS samples and two of the CRMs (NBS 1165, NBS 1166).

Tables (1)

Tables Icon

Table 1. List of 15 CRM samples (set C) and 4 SUS samples (marked by “S”) with < 860 µg/g C and an excerpt of their compositions. For the CRMs, the mass fractions are taken from the certificates and in addition the estimates of uncertainty (“uncert.”) for C. Iron is calculated from [100%-(sum of certified mass fractions)]. For SUS, the guide values of the supplier reference sheets are listed.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

LOD = 3 × SD / m = 3 × 0.00634 / [ 5.713 × 10 4 ( μ g / g ) 1 ] = 34 μ g / g ,

Metrics