Abstract

We present a design study of quantum light sources based on hybrid circular Bragg gratings (CBGs) for emission wavelengths in the telecom O-band. The evaluated CBG designs show photon extraction efficiencies > 95% and Purcell factors close to 30. Using simulations based on the finite element method, and considering the influence of possible fabrication imperfections, we identify optimized high-performance CBG designs which are robust against structural aberrations. In particular, full 3D simulations reveal that the designs show robustness regarding lateral deviations of the emitter position in the device well within reported positioning accuracies of deterministic fabrication technologies. Furthermore, we investigate the coupling of the evaluated hybrid CBG designs to single-mode optical fibers, which is particularly interesting for the development of practical quantum light sources. We obtain coupling efficiencies of up to 77% for off-the-shelf fibers, and again proof robustness against fabrication imperfections. Our results show prospects for the fabrication of close-to-ideal fiber-coupled quantum light sources for long distance quantum communication.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Deterministically fabricated spectrally-tunable quantum dot based single-photon source

Marco Schmidt, Martin V. Helversen, Sarah Fischbach, Arsenty Kaganskiy, Ronny Schmidt, Andrei Schliwa, Tobias Heindel, Sven Rodt, and Stephan Reitzenstein
Opt. Mater. Express 10(1) 76-87 (2020)

Bragg grating cavities embedded into nano-photonic waveguides for Purcell enhanced quantum dot emission

Stefan Hepp, Stephanie Bauer, Florian Hornung, Mario Schwartz, Simone L. Portalupi, Michael Jetter, and Peter Michler
Opt. Express 26(23) 30614-30622 (2018)

Two-photon interference from a bright single-photon source at telecom wavelengths

Je-Hyung Kim, Tao Cai, Christopher J. K. Richardson, Richard P. Leavitt, and Edo Waks
Optica 3(6) 577-584 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photonics 3(12), 687–695 (2009).
    [Crossref]
  2. I. Aharonovich, D. Englund, and M. Toth, “Solid-state single-photon emitters,” Nat. Photonics 10(10), 631–641 (2016).
    [Crossref]
  3. A. Acín, I. Bloch, H. Buhrman, T. Calarco, C. Eichler, and J. Eisert, “The quantum technologies roadmap: a European community view,” New J. Phys. 20(8), 080201 (2018).
    [Crossref]
  4. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
    [Crossref]
  5. E. Waks, K. Inoue, C. Santori, D. Fattal, J. Vučković, G. Solomon, and Y. Yamamoto, “Secure communication: quantum cryptography with a photon turnstile,” Nature 420(6917), 762 (2002).
    [Crossref]
  6. H.-K. Lo, M. Curty, and K. Tamaki, “Secure quantum key distribution,” Nat. Photonics 8(8), 595–604 (2014).
    [Crossref]
  7. R. Raussendorf and H. J. Briegel, “A one-way quantum computer,” Phys. Rev. Lett. 86(22), 5188–5191 (2001).
    [Crossref]
  8. P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79(1), 135–174 (2007).
    [Crossref]
  9. T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum Computers,” Nature 464(7285), 45–53 (2010).
    [Crossref]
  10. A. Dousse, L. Lanco, J. Suffczyński, E. Semenova, A. Miard, A. Lemaître, I. Sagnes, C. Roblin, J. Bloch, and P. Senellart, “Controlled Light-Matter Coupling for a Single Quantum Dot Em-bedded in a Pillar Microcavity Using Far-Field Optical Lithography,” Phys. Rev. Lett. 101(26), 267404 (2008)..
    [Crossref]
  11. M. Gschrey, F. Gericke, A. Schüßler, R. Schmidt, J.-H. Schulze, T. Heindel, S. Rodt, A. Strittmatter, and S. Reitzenstein, “In situ electron-beam lithography for deterministic single-quantum-dot mesa-structures using low-temperature cathodoluminescence spectroscopy,” Appl. Phys. Lett. 102(25), 251113 (2013).
    [Crossref]
  12. J. Liu, M. I. Darvanço, L. Sapienza, K. Konthasinghe, J. V. De Miranda Cardoso, J. D. Song, A. Badolato, and K. Srinivasan, “Cryogenic photoluminescence imaging system for nanoscale positioning of single quantum emitters,” Rev. Sci. Instrum. 88(2), 023116 (2017)..
    [Crossref]
  13. T. Heindel, S. Rodt, and S. Reitzenstein, in Quantum Dots for Quantum Information Technologies, P. Michler, ed. (Springer International Publishing, Cham, 2017), p. 199
  14. S. Hepp, M. Jetter, S. L. Portalupi, and P. Michler, “Semiconductor Quantum Dots for Integrated Quantum Photonics,” Adv. Quantum Technol. 2(9), 1900020 (2019).
    [Crossref]
  15. S. Reitzenstein and A. Forchel, “Quantum dot micropillars,” J. Phys. D: Appl. Phys. 43(3), 033001 (2010).
    [Crossref]
  16. T. Heindel, C. Schneider, M. Lermer, S. H. Kwon, T. Braun, S. Reitzenstein, S. Höfling, M. Kamp, and A. Forchel, “Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency,” Appl. Phys. Lett. 96(1), 011107 (2010).
    [Crossref]
  17. O. Gazzano, S. M. de Vasconcellos, C. Arnold, A. Nowak, E. Galopin, I. Sagnes, L. Lanco, A. Lemaître, and P. Senellart, “Bright solid-state sources for indistinguishable single photons,” Nat. Commun. 4(1), 1425 (2013).
    [Crossref]
  18. H. Wang, Z.-C. Duan, Y.-H. Li, S. Chen, J.-P.- Lim, Y.-M.- He, M.-C. Chen, Y. Hu, X. Ding, C.-Z. Peng, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “Near-Transform-Limited Single Photons from an Efficient Solid-State Quantum Emitter,” Phys. Rev. Lett. 116(21), 213601 (2016).
    [Crossref]
  19. N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff, “Entangled Photon Pairs from Semiconductor Quantum Dots,” Phys. Rev. Lett. 96(13), 130501 (2006).
    [Crossref]
  20. T. Heindel, A. Thoma, I. Schwartz, E. R. Schmidgall, L. Gantz, D. Cogan, M. Strauß, P. Schnauber, M. Gschrey, J.-H. Schulze, A. Strittmatter, S. Rodt, D. Gershoni, and S. Reitzenstein, “Accessing the dark exciton spin in deterministic quantum-dot microlenses,” APL Photonics 2(12), 121303 (2017).
    [Crossref]
  21. M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Krüger, J.-H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6(1), 7662 (2015).
    [Crossref]
  22. M. I. Davanço, M. T. Rakher, D. Schuh, A. Badolato, and K. Srinivasan, “A circular dielectric grating for vertical extraction of single quantum dot emission,” Appl. Phys. Lett. 99(4), 041102 (2011).
    [Crossref]
  23. S. Kolatschek, S. Hepp, M. Sartison, M. Jetter, P. Michler, and S. L. Portalupi, “Deterministic fabrication of circular Bragg gratings coupled to single quantum emitters via the combination of in-situ optical lithography and electron-beam lithography,” Appl. Phys. Letter. 125, 045701 (2019).
    [Crossref]
  24. B. Yao, R. Su, Y. Wei, Z. Liu, T. Zhao, and J. Liu, “Design for Hybrid Circular Bragg Grating for a Highly Efficient Quantum-Dot Single photon Source,” J. Korean Phys. Soc. 73(10), 1502–1505 (2018).
    [Crossref]
  25. J. Liu, R. Su, Y. Wei, B. Yao, S. F. C. da Silva, Y. Yu, J. Iles-Smith, K. Srinivasan, A. Rastelli, J. Li, and X. Wang, “A solid-state source of strongly entangled photon pairs with high brightness and indistinguishability,” Nat. Nanotechnol. 14(6), 586–593 (2019).
    [Crossref]
  26. H. Wang, H. Hai, T.-H. Chung, J. Qin, L. Xiaoxia, J.-P.- Li, R.-Z. Liu, H.-S. Zhong, Y.-M. He, X. Ding, Y.-H. Deng, Q. Dai, Y.-H. Huo, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor source of entangled photons which simultaneously has high fidelity, efficiency and indistinguishability,” Phys. Rev. Lett. 122(11), 113602 (2019).
    [Crossref]
  27. JCMsuite by JCMwave. Simulation Suite for Nano-Optics (JCMwave GmbH, Berlin, 2019)
  28. P.-I. Schneider, N. Srocka, S. Rodt, L. Zschiedrich, S. Reitzenstein, and S. Burger, “Numerical optimization of the extraction efficiency of a quantum-dot based single-photon emitter into a single-mode fiber,” Opt. Express 26(7), 8479 (2018).
    [Crossref]
  29. A. Thoma, P. Schnauber, M. Gschrey, M. Seifried, J. Wolters, J.-H. Schulze, A. Strittmatter, S. Rodt, A. Carmele, A. Knorr, T. Heindel, and S. Reitzenstein, “Exploring dephasing of a solid-state quantum emitter via time- and temperature-dependent Hong-Ou-Mandel experiments,” Phys. Rev. Lett. 116(3), 033601 (2016).
    [Crossref]
  30. M. Paul, J. Kettler, K. Zeuner, C. Clausen, M. Jetter, and P. Michler, “Metal-organic vapor-phase epitaxy-grown ultra-low density In-GaAs/GaAs quantum dots exhbiting cascaded single-photon emis-sion at 1.3 µm,” Appl. Phys. Lett. 106(12), 122105 (2015).
    [Crossref]
  31. M. Gschrey, R. Schmidt, J.-H. Schulze, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Resolution and alignment accuracy of low-temperature in situ electron beam lithography for nanophotonic device fabrication,” J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 33(2), 021603 (2015).
    [Crossref]
  32. Norland Products Inc., Norland Optical Adhesive 81
  33. A. Schlehahn, S. Fischbach, R. Schmidt, A. Kagansky, A. Strittmatter, S. Rodt, T. Heindel, and S. Reitzenstein, “A stand-alone fiber-coupled single-photon source,” Sci. Rep. 8(1), 1340 (2018).
    [Crossref]
  34. H. Snijders, J. A. Frey, J. Norman, V. P. Post, A. C. Gossard, J. E. Bowers, M. P. van Exter, W. Löffler, and D. Bouwmeester, “Fiber-Coupled Cavity-QED Soruce of Identical Single Photons,” Phys. Rev. Applied 9(3), 031002 (2018).
    [Crossref]
  35. D. Cadeddu, J. Teissier, F. R. Braakman, N. Gregersen, P. Stepanov, J.-M. Gérad, J. Claudon, R. J. Warburton, M. Poggi, and M. Munsch, “A fiber-coupled quantum-dot on a photonic tip,” Appl. Phys. Lett. 108(1), 011112 (2016).
    [Crossref]
  36. C.-M. Lee, H.-J. Lim, C. Schneider, S. Maier, S. Höfling, M. Kamp, and Y.-H. Lee, “Efficient single photon source based on µ-fibre-coupled tunable microcavity,” Sci. Rep. 5(1), 14309 (2015).
    [Crossref]
  37. R. S. Daveau, K. C. Balram, T. Pregnolato, J. Liu, E. H. Lee, J. D. Song, V. Verma, R. Mirin, S. W. Nam, L. Midolo, S. Stobbe, K. Srinivasan, and P. Lodahl, “Efficient fiber-coupled single-photon source based on quantum dots in a photonic-crystal waveguide,” Optica 4(2), 178–184 (2017).
    [Crossref]
  38. P.-I. Schneider, X. G. Santiago, V. Soltwitsch, M. Hammerschmidt, S. Burger, and C. Rockstuhl, “Benchmarking Five Global Optimization Approaches for Nano-optical Shape Optimization and Parameter Reconstruction,” ACS Photonics (posted 17 September 2019).
    [Crossref]

2019 (4)

S. Hepp, M. Jetter, S. L. Portalupi, and P. Michler, “Semiconductor Quantum Dots for Integrated Quantum Photonics,” Adv. Quantum Technol. 2(9), 1900020 (2019).
[Crossref]

S. Kolatschek, S. Hepp, M. Sartison, M. Jetter, P. Michler, and S. L. Portalupi, “Deterministic fabrication of circular Bragg gratings coupled to single quantum emitters via the combination of in-situ optical lithography and electron-beam lithography,” Appl. Phys. Letter. 125, 045701 (2019).
[Crossref]

J. Liu, R. Su, Y. Wei, B. Yao, S. F. C. da Silva, Y. Yu, J. Iles-Smith, K. Srinivasan, A. Rastelli, J. Li, and X. Wang, “A solid-state source of strongly entangled photon pairs with high brightness and indistinguishability,” Nat. Nanotechnol. 14(6), 586–593 (2019).
[Crossref]

H. Wang, H. Hai, T.-H. Chung, J. Qin, L. Xiaoxia, J.-P.- Li, R.-Z. Liu, H.-S. Zhong, Y.-M. He, X. Ding, Y.-H. Deng, Q. Dai, Y.-H. Huo, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor source of entangled photons which simultaneously has high fidelity, efficiency and indistinguishability,” Phys. Rev. Lett. 122(11), 113602 (2019).
[Crossref]

2018 (5)

P.-I. Schneider, N. Srocka, S. Rodt, L. Zschiedrich, S. Reitzenstein, and S. Burger, “Numerical optimization of the extraction efficiency of a quantum-dot based single-photon emitter into a single-mode fiber,” Opt. Express 26(7), 8479 (2018).
[Crossref]

B. Yao, R. Su, Y. Wei, Z. Liu, T. Zhao, and J. Liu, “Design for Hybrid Circular Bragg Grating for a Highly Efficient Quantum-Dot Single photon Source,” J. Korean Phys. Soc. 73(10), 1502–1505 (2018).
[Crossref]

A. Schlehahn, S. Fischbach, R. Schmidt, A. Kagansky, A. Strittmatter, S. Rodt, T. Heindel, and S. Reitzenstein, “A stand-alone fiber-coupled single-photon source,” Sci. Rep. 8(1), 1340 (2018).
[Crossref]

H. Snijders, J. A. Frey, J. Norman, V. P. Post, A. C. Gossard, J. E. Bowers, M. P. van Exter, W. Löffler, and D. Bouwmeester, “Fiber-Coupled Cavity-QED Soruce of Identical Single Photons,” Phys. Rev. Applied 9(3), 031002 (2018).
[Crossref]

A. Acín, I. Bloch, H. Buhrman, T. Calarco, C. Eichler, and J. Eisert, “The quantum technologies roadmap: a European community view,” New J. Phys. 20(8), 080201 (2018).
[Crossref]

2017 (3)

J. Liu, M. I. Darvanço, L. Sapienza, K. Konthasinghe, J. V. De Miranda Cardoso, J. D. Song, A. Badolato, and K. Srinivasan, “Cryogenic photoluminescence imaging system for nanoscale positioning of single quantum emitters,” Rev. Sci. Instrum. 88(2), 023116 (2017)..
[Crossref]

R. S. Daveau, K. C. Balram, T. Pregnolato, J. Liu, E. H. Lee, J. D. Song, V. Verma, R. Mirin, S. W. Nam, L. Midolo, S. Stobbe, K. Srinivasan, and P. Lodahl, “Efficient fiber-coupled single-photon source based on quantum dots in a photonic-crystal waveguide,” Optica 4(2), 178–184 (2017).
[Crossref]

T. Heindel, A. Thoma, I. Schwartz, E. R. Schmidgall, L. Gantz, D. Cogan, M. Strauß, P. Schnauber, M. Gschrey, J.-H. Schulze, A. Strittmatter, S. Rodt, D. Gershoni, and S. Reitzenstein, “Accessing the dark exciton spin in deterministic quantum-dot microlenses,” APL Photonics 2(12), 121303 (2017).
[Crossref]

2016 (4)

A. Thoma, P. Schnauber, M. Gschrey, M. Seifried, J. Wolters, J.-H. Schulze, A. Strittmatter, S. Rodt, A. Carmele, A. Knorr, T. Heindel, and S. Reitzenstein, “Exploring dephasing of a solid-state quantum emitter via time- and temperature-dependent Hong-Ou-Mandel experiments,” Phys. Rev. Lett. 116(3), 033601 (2016).
[Crossref]

D. Cadeddu, J. Teissier, F. R. Braakman, N. Gregersen, P. Stepanov, J.-M. Gérad, J. Claudon, R. J. Warburton, M. Poggi, and M. Munsch, “A fiber-coupled quantum-dot on a photonic tip,” Appl. Phys. Lett. 108(1), 011112 (2016).
[Crossref]

H. Wang, Z.-C. Duan, Y.-H. Li, S. Chen, J.-P.- Lim, Y.-M.- He, M.-C. Chen, Y. Hu, X. Ding, C.-Z. Peng, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “Near-Transform-Limited Single Photons from an Efficient Solid-State Quantum Emitter,” Phys. Rev. Lett. 116(21), 213601 (2016).
[Crossref]

I. Aharonovich, D. Englund, and M. Toth, “Solid-state single-photon emitters,” Nat. Photonics 10(10), 631–641 (2016).
[Crossref]

2015 (4)

C.-M. Lee, H.-J. Lim, C. Schneider, S. Maier, S. Höfling, M. Kamp, and Y.-H. Lee, “Efficient single photon source based on µ-fibre-coupled tunable microcavity,” Sci. Rep. 5(1), 14309 (2015).
[Crossref]

M. Paul, J. Kettler, K. Zeuner, C. Clausen, M. Jetter, and P. Michler, “Metal-organic vapor-phase epitaxy-grown ultra-low density In-GaAs/GaAs quantum dots exhbiting cascaded single-photon emis-sion at 1.3 µm,” Appl. Phys. Lett. 106(12), 122105 (2015).
[Crossref]

M. Gschrey, R. Schmidt, J.-H. Schulze, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Resolution and alignment accuracy of low-temperature in situ electron beam lithography for nanophotonic device fabrication,” J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 33(2), 021603 (2015).
[Crossref]

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Krüger, J.-H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6(1), 7662 (2015).
[Crossref]

2014 (1)

H.-K. Lo, M. Curty, and K. Tamaki, “Secure quantum key distribution,” Nat. Photonics 8(8), 595–604 (2014).
[Crossref]

2013 (2)

O. Gazzano, S. M. de Vasconcellos, C. Arnold, A. Nowak, E. Galopin, I. Sagnes, L. Lanco, A. Lemaître, and P. Senellart, “Bright solid-state sources for indistinguishable single photons,” Nat. Commun. 4(1), 1425 (2013).
[Crossref]

M. Gschrey, F. Gericke, A. Schüßler, R. Schmidt, J.-H. Schulze, T. Heindel, S. Rodt, A. Strittmatter, and S. Reitzenstein, “In situ electron-beam lithography for deterministic single-quantum-dot mesa-structures using low-temperature cathodoluminescence spectroscopy,” Appl. Phys. Lett. 102(25), 251113 (2013).
[Crossref]

2011 (1)

M. I. Davanço, M. T. Rakher, D. Schuh, A. Badolato, and K. Srinivasan, “A circular dielectric grating for vertical extraction of single quantum dot emission,” Appl. Phys. Lett. 99(4), 041102 (2011).
[Crossref]

2010 (3)

S. Reitzenstein and A. Forchel, “Quantum dot micropillars,” J. Phys. D: Appl. Phys. 43(3), 033001 (2010).
[Crossref]

T. Heindel, C. Schneider, M. Lermer, S. H. Kwon, T. Braun, S. Reitzenstein, S. Höfling, M. Kamp, and A. Forchel, “Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency,” Appl. Phys. Lett. 96(1), 011107 (2010).
[Crossref]

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum Computers,” Nature 464(7285), 45–53 (2010).
[Crossref]

2009 (1)

J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photonics 3(12), 687–695 (2009).
[Crossref]

2008 (1)

A. Dousse, L. Lanco, J. Suffczyński, E. Semenova, A. Miard, A. Lemaître, I. Sagnes, C. Roblin, J. Bloch, and P. Senellart, “Controlled Light-Matter Coupling for a Single Quantum Dot Em-bedded in a Pillar Microcavity Using Far-Field Optical Lithography,” Phys. Rev. Lett. 101(26), 267404 (2008)..
[Crossref]

2007 (1)

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79(1), 135–174 (2007).
[Crossref]

2006 (1)

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff, “Entangled Photon Pairs from Semiconductor Quantum Dots,” Phys. Rev. Lett. 96(13), 130501 (2006).
[Crossref]

2002 (2)

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[Crossref]

E. Waks, K. Inoue, C. Santori, D. Fattal, J. Vučković, G. Solomon, and Y. Yamamoto, “Secure communication: quantum cryptography with a photon turnstile,” Nature 420(6917), 762 (2002).
[Crossref]

2001 (1)

R. Raussendorf and H. J. Briegel, “A one-way quantum computer,” Phys. Rev. Lett. 86(22), 5188–5191 (2001).
[Crossref]

Acín, A.

A. Acín, I. Bloch, H. Buhrman, T. Calarco, C. Eichler, and J. Eisert, “The quantum technologies roadmap: a European community view,” New J. Phys. 20(8), 080201 (2018).
[Crossref]

Aharonovich, I.

I. Aharonovich, D. Englund, and M. Toth, “Solid-state single-photon emitters,” Nat. Photonics 10(10), 631–641 (2016).
[Crossref]

Akopian, N.

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff, “Entangled Photon Pairs from Semiconductor Quantum Dots,” Phys. Rev. Lett. 96(13), 130501 (2006).
[Crossref]

Arnold, C.

O. Gazzano, S. M. de Vasconcellos, C. Arnold, A. Nowak, E. Galopin, I. Sagnes, L. Lanco, A. Lemaître, and P. Senellart, “Bright solid-state sources for indistinguishable single photons,” Nat. Commun. 4(1), 1425 (2013).
[Crossref]

Avron, J.

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff, “Entangled Photon Pairs from Semiconductor Quantum Dots,” Phys. Rev. Lett. 96(13), 130501 (2006).
[Crossref]

Badolato, A.

J. Liu, M. I. Darvanço, L. Sapienza, K. Konthasinghe, J. V. De Miranda Cardoso, J. D. Song, A. Badolato, and K. Srinivasan, “Cryogenic photoluminescence imaging system for nanoscale positioning of single quantum emitters,” Rev. Sci. Instrum. 88(2), 023116 (2017)..
[Crossref]

M. I. Davanço, M. T. Rakher, D. Schuh, A. Badolato, and K. Srinivasan, “A circular dielectric grating for vertical extraction of single quantum dot emission,” Appl. Phys. Lett. 99(4), 041102 (2011).
[Crossref]

Balram, K. C.

Berlatzky, Y.

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff, “Entangled Photon Pairs from Semiconductor Quantum Dots,” Phys. Rev. Lett. 96(13), 130501 (2006).
[Crossref]

Bloch, I.

A. Acín, I. Bloch, H. Buhrman, T. Calarco, C. Eichler, and J. Eisert, “The quantum technologies roadmap: a European community view,” New J. Phys. 20(8), 080201 (2018).
[Crossref]

Bloch, J.

A. Dousse, L. Lanco, J. Suffczyński, E. Semenova, A. Miard, A. Lemaître, I. Sagnes, C. Roblin, J. Bloch, and P. Senellart, “Controlled Light-Matter Coupling for a Single Quantum Dot Em-bedded in a Pillar Microcavity Using Far-Field Optical Lithography,” Phys. Rev. Lett. 101(26), 267404 (2008)..
[Crossref]

Bouwmeester, D.

H. Snijders, J. A. Frey, J. Norman, V. P. Post, A. C. Gossard, J. E. Bowers, M. P. van Exter, W. Löffler, and D. Bouwmeester, “Fiber-Coupled Cavity-QED Soruce of Identical Single Photons,” Phys. Rev. Applied 9(3), 031002 (2018).
[Crossref]

Bowers, J. E.

H. Snijders, J. A. Frey, J. Norman, V. P. Post, A. C. Gossard, J. E. Bowers, M. P. van Exter, W. Löffler, and D. Bouwmeester, “Fiber-Coupled Cavity-QED Soruce of Identical Single Photons,” Phys. Rev. Applied 9(3), 031002 (2018).
[Crossref]

Braakman, F. R.

D. Cadeddu, J. Teissier, F. R. Braakman, N. Gregersen, P. Stepanov, J.-M. Gérad, J. Claudon, R. J. Warburton, M. Poggi, and M. Munsch, “A fiber-coupled quantum-dot on a photonic tip,” Appl. Phys. Lett. 108(1), 011112 (2016).
[Crossref]

Braun, T.

T. Heindel, C. Schneider, M. Lermer, S. H. Kwon, T. Braun, S. Reitzenstein, S. Höfling, M. Kamp, and A. Forchel, “Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency,” Appl. Phys. Lett. 96(1), 011107 (2010).
[Crossref]

Briegel, H. J.

R. Raussendorf and H. J. Briegel, “A one-way quantum computer,” Phys. Rev. Lett. 86(22), 5188–5191 (2001).
[Crossref]

Buhrman, H.

A. Acín, I. Bloch, H. Buhrman, T. Calarco, C. Eichler, and J. Eisert, “The quantum technologies roadmap: a European community view,” New J. Phys. 20(8), 080201 (2018).
[Crossref]

Burger, S.

P.-I. Schneider, N. Srocka, S. Rodt, L. Zschiedrich, S. Reitzenstein, and S. Burger, “Numerical optimization of the extraction efficiency of a quantum-dot based single-photon emitter into a single-mode fiber,” Opt. Express 26(7), 8479 (2018).
[Crossref]

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Krüger, J.-H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6(1), 7662 (2015).
[Crossref]

P.-I. Schneider, X. G. Santiago, V. Soltwitsch, M. Hammerschmidt, S. Burger, and C. Rockstuhl, “Benchmarking Five Global Optimization Approaches for Nano-optical Shape Optimization and Parameter Reconstruction,” ACS Photonics (posted 17 September 2019).
[Crossref]

Cadeddu, D.

D. Cadeddu, J. Teissier, F. R. Braakman, N. Gregersen, P. Stepanov, J.-M. Gérad, J. Claudon, R. J. Warburton, M. Poggi, and M. Munsch, “A fiber-coupled quantum-dot on a photonic tip,” Appl. Phys. Lett. 108(1), 011112 (2016).
[Crossref]

Calarco, T.

A. Acín, I. Bloch, H. Buhrman, T. Calarco, C. Eichler, and J. Eisert, “The quantum technologies roadmap: a European community view,” New J. Phys. 20(8), 080201 (2018).
[Crossref]

Carmele, A.

A. Thoma, P. Schnauber, M. Gschrey, M. Seifried, J. Wolters, J.-H. Schulze, A. Strittmatter, S. Rodt, A. Carmele, A. Knorr, T. Heindel, and S. Reitzenstein, “Exploring dephasing of a solid-state quantum emitter via time- and temperature-dependent Hong-Ou-Mandel experiments,” Phys. Rev. Lett. 116(3), 033601 (2016).
[Crossref]

Chen, M.-C.

H. Wang, Z.-C. Duan, Y.-H. Li, S. Chen, J.-P.- Lim, Y.-M.- He, M.-C. Chen, Y. Hu, X. Ding, C.-Z. Peng, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “Near-Transform-Limited Single Photons from an Efficient Solid-State Quantum Emitter,” Phys. Rev. Lett. 116(21), 213601 (2016).
[Crossref]

Chen, S.

H. Wang, Z.-C. Duan, Y.-H. Li, S. Chen, J.-P.- Lim, Y.-M.- He, M.-C. Chen, Y. Hu, X. Ding, C.-Z. Peng, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “Near-Transform-Limited Single Photons from an Efficient Solid-State Quantum Emitter,” Phys. Rev. Lett. 116(21), 213601 (2016).
[Crossref]

Chung, T.-H.

H. Wang, H. Hai, T.-H. Chung, J. Qin, L. Xiaoxia, J.-P.- Li, R.-Z. Liu, H.-S. Zhong, Y.-M. He, X. Ding, Y.-H. Deng, Q. Dai, Y.-H. Huo, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor source of entangled photons which simultaneously has high fidelity, efficiency and indistinguishability,” Phys. Rev. Lett. 122(11), 113602 (2019).
[Crossref]

Claudon, J.

D. Cadeddu, J. Teissier, F. R. Braakman, N. Gregersen, P. Stepanov, J.-M. Gérad, J. Claudon, R. J. Warburton, M. Poggi, and M. Munsch, “A fiber-coupled quantum-dot on a photonic tip,” Appl. Phys. Lett. 108(1), 011112 (2016).
[Crossref]

Clausen, C.

M. Paul, J. Kettler, K. Zeuner, C. Clausen, M. Jetter, and P. Michler, “Metal-organic vapor-phase epitaxy-grown ultra-low density In-GaAs/GaAs quantum dots exhbiting cascaded single-photon emis-sion at 1.3 µm,” Appl. Phys. Lett. 106(12), 122105 (2015).
[Crossref]

Cogan, D.

T. Heindel, A. Thoma, I. Schwartz, E. R. Schmidgall, L. Gantz, D. Cogan, M. Strauß, P. Schnauber, M. Gschrey, J.-H. Schulze, A. Strittmatter, S. Rodt, D. Gershoni, and S. Reitzenstein, “Accessing the dark exciton spin in deterministic quantum-dot microlenses,” APL Photonics 2(12), 121303 (2017).
[Crossref]

Curty, M.

H.-K. Lo, M. Curty, and K. Tamaki, “Secure quantum key distribution,” Nat. Photonics 8(8), 595–604 (2014).
[Crossref]

da Silva, S. F. C.

J. Liu, R. Su, Y. Wei, B. Yao, S. F. C. da Silva, Y. Yu, J. Iles-Smith, K. Srinivasan, A. Rastelli, J. Li, and X. Wang, “A solid-state source of strongly entangled photon pairs with high brightness and indistinguishability,” Nat. Nanotechnol. 14(6), 586–593 (2019).
[Crossref]

Dai, Q.

H. Wang, H. Hai, T.-H. Chung, J. Qin, L. Xiaoxia, J.-P.- Li, R.-Z. Liu, H.-S. Zhong, Y.-M. He, X. Ding, Y.-H. Deng, Q. Dai, Y.-H. Huo, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor source of entangled photons which simultaneously has high fidelity, efficiency and indistinguishability,” Phys. Rev. Lett. 122(11), 113602 (2019).
[Crossref]

Darvanço, M. I.

J. Liu, M. I. Darvanço, L. Sapienza, K. Konthasinghe, J. V. De Miranda Cardoso, J. D. Song, A. Badolato, and K. Srinivasan, “Cryogenic photoluminescence imaging system for nanoscale positioning of single quantum emitters,” Rev. Sci. Instrum. 88(2), 023116 (2017)..
[Crossref]

Davanço, M. I.

M. I. Davanço, M. T. Rakher, D. Schuh, A. Badolato, and K. Srinivasan, “A circular dielectric grating for vertical extraction of single quantum dot emission,” Appl. Phys. Lett. 99(4), 041102 (2011).
[Crossref]

Daveau, R. S.

De Miranda Cardoso, J. V.

J. Liu, M. I. Darvanço, L. Sapienza, K. Konthasinghe, J. V. De Miranda Cardoso, J. D. Song, A. Badolato, and K. Srinivasan, “Cryogenic photoluminescence imaging system for nanoscale positioning of single quantum emitters,” Rev. Sci. Instrum. 88(2), 023116 (2017)..
[Crossref]

de Vasconcellos, S. M.

O. Gazzano, S. M. de Vasconcellos, C. Arnold, A. Nowak, E. Galopin, I. Sagnes, L. Lanco, A. Lemaître, and P. Senellart, “Bright solid-state sources for indistinguishable single photons,” Nat. Commun. 4(1), 1425 (2013).
[Crossref]

Deng, Y.-H.

H. Wang, H. Hai, T.-H. Chung, J. Qin, L. Xiaoxia, J.-P.- Li, R.-Z. Liu, H.-S. Zhong, Y.-M. He, X. Ding, Y.-H. Deng, Q. Dai, Y.-H. Huo, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor source of entangled photons which simultaneously has high fidelity, efficiency and indistinguishability,” Phys. Rev. Lett. 122(11), 113602 (2019).
[Crossref]

Ding, X.

H. Wang, H. Hai, T.-H. Chung, J. Qin, L. Xiaoxia, J.-P.- Li, R.-Z. Liu, H.-S. Zhong, Y.-M. He, X. Ding, Y.-H. Deng, Q. Dai, Y.-H. Huo, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor source of entangled photons which simultaneously has high fidelity, efficiency and indistinguishability,” Phys. Rev. Lett. 122(11), 113602 (2019).
[Crossref]

H. Wang, Z.-C. Duan, Y.-H. Li, S. Chen, J.-P.- Lim, Y.-M.- He, M.-C. Chen, Y. Hu, X. Ding, C.-Z. Peng, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “Near-Transform-Limited Single Photons from an Efficient Solid-State Quantum Emitter,” Phys. Rev. Lett. 116(21), 213601 (2016).
[Crossref]

Dousse, A.

A. Dousse, L. Lanco, J. Suffczyński, E. Semenova, A. Miard, A. Lemaître, I. Sagnes, C. Roblin, J. Bloch, and P. Senellart, “Controlled Light-Matter Coupling for a Single Quantum Dot Em-bedded in a Pillar Microcavity Using Far-Field Optical Lithography,” Phys. Rev. Lett. 101(26), 267404 (2008)..
[Crossref]

Dowling, J. P.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79(1), 135–174 (2007).
[Crossref]

Duan, Z.-C.

H. Wang, Z.-C. Duan, Y.-H. Li, S. Chen, J.-P.- Lim, Y.-M.- He, M.-C. Chen, Y. Hu, X. Ding, C.-Z. Peng, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “Near-Transform-Limited Single Photons from an Efficient Solid-State Quantum Emitter,” Phys. Rev. Lett. 116(21), 213601 (2016).
[Crossref]

Eichler, C.

A. Acín, I. Bloch, H. Buhrman, T. Calarco, C. Eichler, and J. Eisert, “The quantum technologies roadmap: a European community view,” New J. Phys. 20(8), 080201 (2018).
[Crossref]

Eisert, J.

A. Acín, I. Bloch, H. Buhrman, T. Calarco, C. Eichler, and J. Eisert, “The quantum technologies roadmap: a European community view,” New J. Phys. 20(8), 080201 (2018).
[Crossref]

Englund, D.

I. Aharonovich, D. Englund, and M. Toth, “Solid-state single-photon emitters,” Nat. Photonics 10(10), 631–641 (2016).
[Crossref]

Fattal, D.

E. Waks, K. Inoue, C. Santori, D. Fattal, J. Vučković, G. Solomon, and Y. Yamamoto, “Secure communication: quantum cryptography with a photon turnstile,” Nature 420(6917), 762 (2002).
[Crossref]

Fischbach, S.

A. Schlehahn, S. Fischbach, R. Schmidt, A. Kagansky, A. Strittmatter, S. Rodt, T. Heindel, and S. Reitzenstein, “A stand-alone fiber-coupled single-photon source,” Sci. Rep. 8(1), 1340 (2018).
[Crossref]

Forchel, A.

T. Heindel, C. Schneider, M. Lermer, S. H. Kwon, T. Braun, S. Reitzenstein, S. Höfling, M. Kamp, and A. Forchel, “Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency,” Appl. Phys. Lett. 96(1), 011107 (2010).
[Crossref]

S. Reitzenstein and A. Forchel, “Quantum dot micropillars,” J. Phys. D: Appl. Phys. 43(3), 033001 (2010).
[Crossref]

Frey, J. A.

H. Snijders, J. A. Frey, J. Norman, V. P. Post, A. C. Gossard, J. E. Bowers, M. P. van Exter, W. Löffler, and D. Bouwmeester, “Fiber-Coupled Cavity-QED Soruce of Identical Single Photons,” Phys. Rev. Applied 9(3), 031002 (2018).
[Crossref]

Furusawa, A.

J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photonics 3(12), 687–695 (2009).
[Crossref]

Galopin, E.

O. Gazzano, S. M. de Vasconcellos, C. Arnold, A. Nowak, E. Galopin, I. Sagnes, L. Lanco, A. Lemaître, and P. Senellart, “Bright solid-state sources for indistinguishable single photons,” Nat. Commun. 4(1), 1425 (2013).
[Crossref]

Gantz, L.

T. Heindel, A. Thoma, I. Schwartz, E. R. Schmidgall, L. Gantz, D. Cogan, M. Strauß, P. Schnauber, M. Gschrey, J.-H. Schulze, A. Strittmatter, S. Rodt, D. Gershoni, and S. Reitzenstein, “Accessing the dark exciton spin in deterministic quantum-dot microlenses,” APL Photonics 2(12), 121303 (2017).
[Crossref]

Gazzano, O.

O. Gazzano, S. M. de Vasconcellos, C. Arnold, A. Nowak, E. Galopin, I. Sagnes, L. Lanco, A. Lemaître, and P. Senellart, “Bright solid-state sources for indistinguishable single photons,” Nat. Commun. 4(1), 1425 (2013).
[Crossref]

Gérad, J.-M.

D. Cadeddu, J. Teissier, F. R. Braakman, N. Gregersen, P. Stepanov, J.-M. Gérad, J. Claudon, R. J. Warburton, M. Poggi, and M. Munsch, “A fiber-coupled quantum-dot on a photonic tip,” Appl. Phys. Lett. 108(1), 011112 (2016).
[Crossref]

Gerardot, B. D.

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff, “Entangled Photon Pairs from Semiconductor Quantum Dots,” Phys. Rev. Lett. 96(13), 130501 (2006).
[Crossref]

Gericke, F.

M. Gschrey, F. Gericke, A. Schüßler, R. Schmidt, J.-H. Schulze, T. Heindel, S. Rodt, A. Strittmatter, and S. Reitzenstein, “In situ electron-beam lithography for deterministic single-quantum-dot mesa-structures using low-temperature cathodoluminescence spectroscopy,” Appl. Phys. Lett. 102(25), 251113 (2013).
[Crossref]

Gershoni, D.

T. Heindel, A. Thoma, I. Schwartz, E. R. Schmidgall, L. Gantz, D. Cogan, M. Strauß, P. Schnauber, M. Gschrey, J.-H. Schulze, A. Strittmatter, S. Rodt, D. Gershoni, and S. Reitzenstein, “Accessing the dark exciton spin in deterministic quantum-dot microlenses,” APL Photonics 2(12), 121303 (2017).
[Crossref]

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff, “Entangled Photon Pairs from Semiconductor Quantum Dots,” Phys. Rev. Lett. 96(13), 130501 (2006).
[Crossref]

Gisin, N.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[Crossref]

Gossard, A. C.

H. Snijders, J. A. Frey, J. Norman, V. P. Post, A. C. Gossard, J. E. Bowers, M. P. van Exter, W. Löffler, and D. Bouwmeester, “Fiber-Coupled Cavity-QED Soruce of Identical Single Photons,” Phys. Rev. Applied 9(3), 031002 (2018).
[Crossref]

Gregersen, N.

D. Cadeddu, J. Teissier, F. R. Braakman, N. Gregersen, P. Stepanov, J.-M. Gérad, J. Claudon, R. J. Warburton, M. Poggi, and M. Munsch, “A fiber-coupled quantum-dot on a photonic tip,” Appl. Phys. Lett. 108(1), 011112 (2016).
[Crossref]

Gschrey, M.

T. Heindel, A. Thoma, I. Schwartz, E. R. Schmidgall, L. Gantz, D. Cogan, M. Strauß, P. Schnauber, M. Gschrey, J.-H. Schulze, A. Strittmatter, S. Rodt, D. Gershoni, and S. Reitzenstein, “Accessing the dark exciton spin in deterministic quantum-dot microlenses,” APL Photonics 2(12), 121303 (2017).
[Crossref]

A. Thoma, P. Schnauber, M. Gschrey, M. Seifried, J. Wolters, J.-H. Schulze, A. Strittmatter, S. Rodt, A. Carmele, A. Knorr, T. Heindel, and S. Reitzenstein, “Exploring dephasing of a solid-state quantum emitter via time- and temperature-dependent Hong-Ou-Mandel experiments,” Phys. Rev. Lett. 116(3), 033601 (2016).
[Crossref]

M. Gschrey, R. Schmidt, J.-H. Schulze, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Resolution and alignment accuracy of low-temperature in situ electron beam lithography for nanophotonic device fabrication,” J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 33(2), 021603 (2015).
[Crossref]

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Krüger, J.-H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6(1), 7662 (2015).
[Crossref]

M. Gschrey, F. Gericke, A. Schüßler, R. Schmidt, J.-H. Schulze, T. Heindel, S. Rodt, A. Strittmatter, and S. Reitzenstein, “In situ electron-beam lithography for deterministic single-quantum-dot mesa-structures using low-temperature cathodoluminescence spectroscopy,” Appl. Phys. Lett. 102(25), 251113 (2013).
[Crossref]

Hai, H.

H. Wang, H. Hai, T.-H. Chung, J. Qin, L. Xiaoxia, J.-P.- Li, R.-Z. Liu, H.-S. Zhong, Y.-M. He, X. Ding, Y.-H. Deng, Q. Dai, Y.-H. Huo, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor source of entangled photons which simultaneously has high fidelity, efficiency and indistinguishability,” Phys. Rev. Lett. 122(11), 113602 (2019).
[Crossref]

Hammerschmidt, M.

P.-I. Schneider, X. G. Santiago, V. Soltwitsch, M. Hammerschmidt, S. Burger, and C. Rockstuhl, “Benchmarking Five Global Optimization Approaches for Nano-optical Shape Optimization and Parameter Reconstruction,” ACS Photonics (posted 17 September 2019).
[Crossref]

He, Y.-M.

H. Wang, H. Hai, T.-H. Chung, J. Qin, L. Xiaoxia, J.-P.- Li, R.-Z. Liu, H.-S. Zhong, Y.-M. He, X. Ding, Y.-H. Deng, Q. Dai, Y.-H. Huo, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor source of entangled photons which simultaneously has high fidelity, efficiency and indistinguishability,” Phys. Rev. Lett. 122(11), 113602 (2019).
[Crossref]

He, Y.-M.-

H. Wang, Z.-C. Duan, Y.-H. Li, S. Chen, J.-P.- Lim, Y.-M.- He, M.-C. Chen, Y. Hu, X. Ding, C.-Z. Peng, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “Near-Transform-Limited Single Photons from an Efficient Solid-State Quantum Emitter,” Phys. Rev. Lett. 116(21), 213601 (2016).
[Crossref]

Heindel, T.

A. Schlehahn, S. Fischbach, R. Schmidt, A. Kagansky, A. Strittmatter, S. Rodt, T. Heindel, and S. Reitzenstein, “A stand-alone fiber-coupled single-photon source,” Sci. Rep. 8(1), 1340 (2018).
[Crossref]

T. Heindel, A. Thoma, I. Schwartz, E. R. Schmidgall, L. Gantz, D. Cogan, M. Strauß, P. Schnauber, M. Gschrey, J.-H. Schulze, A. Strittmatter, S. Rodt, D. Gershoni, and S. Reitzenstein, “Accessing the dark exciton spin in deterministic quantum-dot microlenses,” APL Photonics 2(12), 121303 (2017).
[Crossref]

A. Thoma, P. Schnauber, M. Gschrey, M. Seifried, J. Wolters, J.-H. Schulze, A. Strittmatter, S. Rodt, A. Carmele, A. Knorr, T. Heindel, and S. Reitzenstein, “Exploring dephasing of a solid-state quantum emitter via time- and temperature-dependent Hong-Ou-Mandel experiments,” Phys. Rev. Lett. 116(3), 033601 (2016).
[Crossref]

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Krüger, J.-H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6(1), 7662 (2015).
[Crossref]

M. Gschrey, F. Gericke, A. Schüßler, R. Schmidt, J.-H. Schulze, T. Heindel, S. Rodt, A. Strittmatter, and S. Reitzenstein, “In situ electron-beam lithography for deterministic single-quantum-dot mesa-structures using low-temperature cathodoluminescence spectroscopy,” Appl. Phys. Lett. 102(25), 251113 (2013).
[Crossref]

T. Heindel, C. Schneider, M. Lermer, S. H. Kwon, T. Braun, S. Reitzenstein, S. Höfling, M. Kamp, and A. Forchel, “Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency,” Appl. Phys. Lett. 96(1), 011107 (2010).
[Crossref]

T. Heindel, S. Rodt, and S. Reitzenstein, in Quantum Dots for Quantum Information Technologies, P. Michler, ed. (Springer International Publishing, Cham, 2017), p. 199

Hepp, S.

S. Hepp, M. Jetter, S. L. Portalupi, and P. Michler, “Semiconductor Quantum Dots for Integrated Quantum Photonics,” Adv. Quantum Technol. 2(9), 1900020 (2019).
[Crossref]

S. Kolatschek, S. Hepp, M. Sartison, M. Jetter, P. Michler, and S. L. Portalupi, “Deterministic fabrication of circular Bragg gratings coupled to single quantum emitters via the combination of in-situ optical lithography and electron-beam lithography,” Appl. Phys. Letter. 125, 045701 (2019).
[Crossref]

Höfling, S.

H. Wang, H. Hai, T.-H. Chung, J. Qin, L. Xiaoxia, J.-P.- Li, R.-Z. Liu, H.-S. Zhong, Y.-M. He, X. Ding, Y.-H. Deng, Q. Dai, Y.-H. Huo, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor source of entangled photons which simultaneously has high fidelity, efficiency and indistinguishability,” Phys. Rev. Lett. 122(11), 113602 (2019).
[Crossref]

H. Wang, Z.-C. Duan, Y.-H. Li, S. Chen, J.-P.- Lim, Y.-M.- He, M.-C. Chen, Y. Hu, X. Ding, C.-Z. Peng, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “Near-Transform-Limited Single Photons from an Efficient Solid-State Quantum Emitter,” Phys. Rev. Lett. 116(21), 213601 (2016).
[Crossref]

C.-M. Lee, H.-J. Lim, C. Schneider, S. Maier, S. Höfling, M. Kamp, and Y.-H. Lee, “Efficient single photon source based on µ-fibre-coupled tunable microcavity,” Sci. Rep. 5(1), 14309 (2015).
[Crossref]

T. Heindel, C. Schneider, M. Lermer, S. H. Kwon, T. Braun, S. Reitzenstein, S. Höfling, M. Kamp, and A. Forchel, “Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency,” Appl. Phys. Lett. 96(1), 011107 (2010).
[Crossref]

Hu, Y.

H. Wang, Z.-C. Duan, Y.-H. Li, S. Chen, J.-P.- Lim, Y.-M.- He, M.-C. Chen, Y. Hu, X. Ding, C.-Z. Peng, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “Near-Transform-Limited Single Photons from an Efficient Solid-State Quantum Emitter,” Phys. Rev. Lett. 116(21), 213601 (2016).
[Crossref]

Huo, Y.-H.

H. Wang, H. Hai, T.-H. Chung, J. Qin, L. Xiaoxia, J.-P.- Li, R.-Z. Liu, H.-S. Zhong, Y.-M. He, X. Ding, Y.-H. Deng, Q. Dai, Y.-H. Huo, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor source of entangled photons which simultaneously has high fidelity, efficiency and indistinguishability,” Phys. Rev. Lett. 122(11), 113602 (2019).
[Crossref]

Iles-Smith, J.

J. Liu, R. Su, Y. Wei, B. Yao, S. F. C. da Silva, Y. Yu, J. Iles-Smith, K. Srinivasan, A. Rastelli, J. Li, and X. Wang, “A solid-state source of strongly entangled photon pairs with high brightness and indistinguishability,” Nat. Nanotechnol. 14(6), 586–593 (2019).
[Crossref]

Inoue, K.

E. Waks, K. Inoue, C. Santori, D. Fattal, J. Vučković, G. Solomon, and Y. Yamamoto, “Secure communication: quantum cryptography with a photon turnstile,” Nature 420(6917), 762 (2002).
[Crossref]

Jelezko, F.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum Computers,” Nature 464(7285), 45–53 (2010).
[Crossref]

Jetter, M.

S. Hepp, M. Jetter, S. L. Portalupi, and P. Michler, “Semiconductor Quantum Dots for Integrated Quantum Photonics,” Adv. Quantum Technol. 2(9), 1900020 (2019).
[Crossref]

S. Kolatschek, S. Hepp, M. Sartison, M. Jetter, P. Michler, and S. L. Portalupi, “Deterministic fabrication of circular Bragg gratings coupled to single quantum emitters via the combination of in-situ optical lithography and electron-beam lithography,” Appl. Phys. Letter. 125, 045701 (2019).
[Crossref]

M. Paul, J. Kettler, K. Zeuner, C. Clausen, M. Jetter, and P. Michler, “Metal-organic vapor-phase epitaxy-grown ultra-low density In-GaAs/GaAs quantum dots exhbiting cascaded single-photon emis-sion at 1.3 µm,” Appl. Phys. Lett. 106(12), 122105 (2015).
[Crossref]

Kagansky, A.

A. Schlehahn, S. Fischbach, R. Schmidt, A. Kagansky, A. Strittmatter, S. Rodt, T. Heindel, and S. Reitzenstein, “A stand-alone fiber-coupled single-photon source,” Sci. Rep. 8(1), 1340 (2018).
[Crossref]

Kamp, M.

H. Wang, Z.-C. Duan, Y.-H. Li, S. Chen, J.-P.- Lim, Y.-M.- He, M.-C. Chen, Y. Hu, X. Ding, C.-Z. Peng, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “Near-Transform-Limited Single Photons from an Efficient Solid-State Quantum Emitter,” Phys. Rev. Lett. 116(21), 213601 (2016).
[Crossref]

C.-M. Lee, H.-J. Lim, C. Schneider, S. Maier, S. Höfling, M. Kamp, and Y.-H. Lee, “Efficient single photon source based on µ-fibre-coupled tunable microcavity,” Sci. Rep. 5(1), 14309 (2015).
[Crossref]

T. Heindel, C. Schneider, M. Lermer, S. H. Kwon, T. Braun, S. Reitzenstein, S. Höfling, M. Kamp, and A. Forchel, “Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency,” Appl. Phys. Lett. 96(1), 011107 (2010).
[Crossref]

Kettler, J.

M. Paul, J. Kettler, K. Zeuner, C. Clausen, M. Jetter, and P. Michler, “Metal-organic vapor-phase epitaxy-grown ultra-low density In-GaAs/GaAs quantum dots exhbiting cascaded single-photon emis-sion at 1.3 µm,” Appl. Phys. Lett. 106(12), 122105 (2015).
[Crossref]

Knorr, A.

A. Thoma, P. Schnauber, M. Gschrey, M. Seifried, J. Wolters, J.-H. Schulze, A. Strittmatter, S. Rodt, A. Carmele, A. Knorr, T. Heindel, and S. Reitzenstein, “Exploring dephasing of a solid-state quantum emitter via time- and temperature-dependent Hong-Ou-Mandel experiments,” Phys. Rev. Lett. 116(3), 033601 (2016).
[Crossref]

Kok, P.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79(1), 135–174 (2007).
[Crossref]

Kolatschek, S.

S. Kolatschek, S. Hepp, M. Sartison, M. Jetter, P. Michler, and S. L. Portalupi, “Deterministic fabrication of circular Bragg gratings coupled to single quantum emitters via the combination of in-situ optical lithography and electron-beam lithography,” Appl. Phys. Letter. 125, 045701 (2019).
[Crossref]

Konthasinghe, K.

J. Liu, M. I. Darvanço, L. Sapienza, K. Konthasinghe, J. V. De Miranda Cardoso, J. D. Song, A. Badolato, and K. Srinivasan, “Cryogenic photoluminescence imaging system for nanoscale positioning of single quantum emitters,” Rev. Sci. Instrum. 88(2), 023116 (2017)..
[Crossref]

Krüger, L.

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Krüger, J.-H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6(1), 7662 (2015).
[Crossref]

Kwon, S. H.

T. Heindel, C. Schneider, M. Lermer, S. H. Kwon, T. Braun, S. Reitzenstein, S. Höfling, M. Kamp, and A. Forchel, “Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency,” Appl. Phys. Lett. 96(1), 011107 (2010).
[Crossref]

Ladd, T. D.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum Computers,” Nature 464(7285), 45–53 (2010).
[Crossref]

Laflamme, R.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum Computers,” Nature 464(7285), 45–53 (2010).
[Crossref]

Lanco, L.

O. Gazzano, S. M. de Vasconcellos, C. Arnold, A. Nowak, E. Galopin, I. Sagnes, L. Lanco, A. Lemaître, and P. Senellart, “Bright solid-state sources for indistinguishable single photons,” Nat. Commun. 4(1), 1425 (2013).
[Crossref]

A. Dousse, L. Lanco, J. Suffczyński, E. Semenova, A. Miard, A. Lemaître, I. Sagnes, C. Roblin, J. Bloch, and P. Senellart, “Controlled Light-Matter Coupling for a Single Quantum Dot Em-bedded in a Pillar Microcavity Using Far-Field Optical Lithography,” Phys. Rev. Lett. 101(26), 267404 (2008)..
[Crossref]

Lee, C.-M.

C.-M. Lee, H.-J. Lim, C. Schneider, S. Maier, S. Höfling, M. Kamp, and Y.-H. Lee, “Efficient single photon source based on µ-fibre-coupled tunable microcavity,” Sci. Rep. 5(1), 14309 (2015).
[Crossref]

Lee, E. H.

Lee, Y.-H.

C.-M. Lee, H.-J. Lim, C. Schneider, S. Maier, S. Höfling, M. Kamp, and Y.-H. Lee, “Efficient single photon source based on µ-fibre-coupled tunable microcavity,” Sci. Rep. 5(1), 14309 (2015).
[Crossref]

Lemaître, A.

O. Gazzano, S. M. de Vasconcellos, C. Arnold, A. Nowak, E. Galopin, I. Sagnes, L. Lanco, A. Lemaître, and P. Senellart, “Bright solid-state sources for indistinguishable single photons,” Nat. Commun. 4(1), 1425 (2013).
[Crossref]

A. Dousse, L. Lanco, J. Suffczyński, E. Semenova, A. Miard, A. Lemaître, I. Sagnes, C. Roblin, J. Bloch, and P. Senellart, “Controlled Light-Matter Coupling for a Single Quantum Dot Em-bedded in a Pillar Microcavity Using Far-Field Optical Lithography,” Phys. Rev. Lett. 101(26), 267404 (2008)..
[Crossref]

Lermer, M.

T. Heindel, C. Schneider, M. Lermer, S. H. Kwon, T. Braun, S. Reitzenstein, S. Höfling, M. Kamp, and A. Forchel, “Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency,” Appl. Phys. Lett. 96(1), 011107 (2010).
[Crossref]

Li, J.

J. Liu, R. Su, Y. Wei, B. Yao, S. F. C. da Silva, Y. Yu, J. Iles-Smith, K. Srinivasan, A. Rastelli, J. Li, and X. Wang, “A solid-state source of strongly entangled photon pairs with high brightness and indistinguishability,” Nat. Nanotechnol. 14(6), 586–593 (2019).
[Crossref]

Li, J.-P.-

H. Wang, H. Hai, T.-H. Chung, J. Qin, L. Xiaoxia, J.-P.- Li, R.-Z. Liu, H.-S. Zhong, Y.-M. He, X. Ding, Y.-H. Deng, Q. Dai, Y.-H. Huo, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor source of entangled photons which simultaneously has high fidelity, efficiency and indistinguishability,” Phys. Rev. Lett. 122(11), 113602 (2019).
[Crossref]

Li, Y.-H.

H. Wang, Z.-C. Duan, Y.-H. Li, S. Chen, J.-P.- Lim, Y.-M.- He, M.-C. Chen, Y. Hu, X. Ding, C.-Z. Peng, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “Near-Transform-Limited Single Photons from an Efficient Solid-State Quantum Emitter,” Phys. Rev. Lett. 116(21), 213601 (2016).
[Crossref]

Lim, H.-J.

C.-M. Lee, H.-J. Lim, C. Schneider, S. Maier, S. Höfling, M. Kamp, and Y.-H. Lee, “Efficient single photon source based on µ-fibre-coupled tunable microcavity,” Sci. Rep. 5(1), 14309 (2015).
[Crossref]

Lim, J.-P.-

H. Wang, Z.-C. Duan, Y.-H. Li, S. Chen, J.-P.- Lim, Y.-M.- He, M.-C. Chen, Y. Hu, X. Ding, C.-Z. Peng, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “Near-Transform-Limited Single Photons from an Efficient Solid-State Quantum Emitter,” Phys. Rev. Lett. 116(21), 213601 (2016).
[Crossref]

Lindner, N. H.

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff, “Entangled Photon Pairs from Semiconductor Quantum Dots,” Phys. Rev. Lett. 96(13), 130501 (2006).
[Crossref]

Liu, J.

J. Liu, R. Su, Y. Wei, B. Yao, S. F. C. da Silva, Y. Yu, J. Iles-Smith, K. Srinivasan, A. Rastelli, J. Li, and X. Wang, “A solid-state source of strongly entangled photon pairs with high brightness and indistinguishability,” Nat. Nanotechnol. 14(6), 586–593 (2019).
[Crossref]

B. Yao, R. Su, Y. Wei, Z. Liu, T. Zhao, and J. Liu, “Design for Hybrid Circular Bragg Grating for a Highly Efficient Quantum-Dot Single photon Source,” J. Korean Phys. Soc. 73(10), 1502–1505 (2018).
[Crossref]

J. Liu, M. I. Darvanço, L. Sapienza, K. Konthasinghe, J. V. De Miranda Cardoso, J. D. Song, A. Badolato, and K. Srinivasan, “Cryogenic photoluminescence imaging system for nanoscale positioning of single quantum emitters,” Rev. Sci. Instrum. 88(2), 023116 (2017)..
[Crossref]

R. S. Daveau, K. C. Balram, T. Pregnolato, J. Liu, E. H. Lee, J. D. Song, V. Verma, R. Mirin, S. W. Nam, L. Midolo, S. Stobbe, K. Srinivasan, and P. Lodahl, “Efficient fiber-coupled single-photon source based on quantum dots in a photonic-crystal waveguide,” Optica 4(2), 178–184 (2017).
[Crossref]

Liu, R.-Z.

H. Wang, H. Hai, T.-H. Chung, J. Qin, L. Xiaoxia, J.-P.- Li, R.-Z. Liu, H.-S. Zhong, Y.-M. He, X. Ding, Y.-H. Deng, Q. Dai, Y.-H. Huo, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor source of entangled photons which simultaneously has high fidelity, efficiency and indistinguishability,” Phys. Rev. Lett. 122(11), 113602 (2019).
[Crossref]

Liu, Z.

B. Yao, R. Su, Y. Wei, Z. Liu, T. Zhao, and J. Liu, “Design for Hybrid Circular Bragg Grating for a Highly Efficient Quantum-Dot Single photon Source,” J. Korean Phys. Soc. 73(10), 1502–1505 (2018).
[Crossref]

Lo, H.-K.

H.-K. Lo, M. Curty, and K. Tamaki, “Secure quantum key distribution,” Nat. Photonics 8(8), 595–604 (2014).
[Crossref]

Lodahl, P.

Löffler, W.

H. Snijders, J. A. Frey, J. Norman, V. P. Post, A. C. Gossard, J. E. Bowers, M. P. van Exter, W. Löffler, and D. Bouwmeester, “Fiber-Coupled Cavity-QED Soruce of Identical Single Photons,” Phys. Rev. Applied 9(3), 031002 (2018).
[Crossref]

Lu, C.-Y.

H. Wang, H. Hai, T.-H. Chung, J. Qin, L. Xiaoxia, J.-P.- Li, R.-Z. Liu, H.-S. Zhong, Y.-M. He, X. Ding, Y.-H. Deng, Q. Dai, Y.-H. Huo, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor source of entangled photons which simultaneously has high fidelity, efficiency and indistinguishability,” Phys. Rev. Lett. 122(11), 113602 (2019).
[Crossref]

H. Wang, Z.-C. Duan, Y.-H. Li, S. Chen, J.-P.- Lim, Y.-M.- He, M.-C. Chen, Y. Hu, X. Ding, C.-Z. Peng, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “Near-Transform-Limited Single Photons from an Efficient Solid-State Quantum Emitter,” Phys. Rev. Lett. 116(21), 213601 (2016).
[Crossref]

Maier, S.

C.-M. Lee, H.-J. Lim, C. Schneider, S. Maier, S. Höfling, M. Kamp, and Y.-H. Lee, “Efficient single photon source based on µ-fibre-coupled tunable microcavity,” Sci. Rep. 5(1), 14309 (2015).
[Crossref]

Miard, A.

A. Dousse, L. Lanco, J. Suffczyński, E. Semenova, A. Miard, A. Lemaître, I. Sagnes, C. Roblin, J. Bloch, and P. Senellart, “Controlled Light-Matter Coupling for a Single Quantum Dot Em-bedded in a Pillar Microcavity Using Far-Field Optical Lithography,” Phys. Rev. Lett. 101(26), 267404 (2008)..
[Crossref]

Michler, P.

S. Hepp, M. Jetter, S. L. Portalupi, and P. Michler, “Semiconductor Quantum Dots for Integrated Quantum Photonics,” Adv. Quantum Technol. 2(9), 1900020 (2019).
[Crossref]

S. Kolatschek, S. Hepp, M. Sartison, M. Jetter, P. Michler, and S. L. Portalupi, “Deterministic fabrication of circular Bragg gratings coupled to single quantum emitters via the combination of in-situ optical lithography and electron-beam lithography,” Appl. Phys. Letter. 125, 045701 (2019).
[Crossref]

M. Paul, J. Kettler, K. Zeuner, C. Clausen, M. Jetter, and P. Michler, “Metal-organic vapor-phase epitaxy-grown ultra-low density In-GaAs/GaAs quantum dots exhbiting cascaded single-photon emis-sion at 1.3 µm,” Appl. Phys. Lett. 106(12), 122105 (2015).
[Crossref]

Midolo, L.

Milburn, G. J.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79(1), 135–174 (2007).
[Crossref]

Mirin, R.

Monroe, C.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum Computers,” Nature 464(7285), 45–53 (2010).
[Crossref]

Munro, W. J.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79(1), 135–174 (2007).
[Crossref]

Munsch, M.

D. Cadeddu, J. Teissier, F. R. Braakman, N. Gregersen, P. Stepanov, J.-M. Gérad, J. Claudon, R. J. Warburton, M. Poggi, and M. Munsch, “A fiber-coupled quantum-dot on a photonic tip,” Appl. Phys. Lett. 108(1), 011112 (2016).
[Crossref]

Nakamura, Y.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum Computers,” Nature 464(7285), 45–53 (2010).
[Crossref]

Nam, S. W.

Nemoto, K.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79(1), 135–174 (2007).
[Crossref]

Norman, J.

H. Snijders, J. A. Frey, J. Norman, V. P. Post, A. C. Gossard, J. E. Bowers, M. P. van Exter, W. Löffler, and D. Bouwmeester, “Fiber-Coupled Cavity-QED Soruce of Identical Single Photons,” Phys. Rev. Applied 9(3), 031002 (2018).
[Crossref]

Nowak, A.

O. Gazzano, S. M. de Vasconcellos, C. Arnold, A. Nowak, E. Galopin, I. Sagnes, L. Lanco, A. Lemaître, and P. Senellart, “Bright solid-state sources for indistinguishable single photons,” Nat. Commun. 4(1), 1425 (2013).
[Crossref]

O’Brien, J. L.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum Computers,” Nature 464(7285), 45–53 (2010).
[Crossref]

J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photonics 3(12), 687–695 (2009).
[Crossref]

Pan, J.-W.

H. Wang, H. Hai, T.-H. Chung, J. Qin, L. Xiaoxia, J.-P.- Li, R.-Z. Liu, H.-S. Zhong, Y.-M. He, X. Ding, Y.-H. Deng, Q. Dai, Y.-H. Huo, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor source of entangled photons which simultaneously has high fidelity, efficiency and indistinguishability,” Phys. Rev. Lett. 122(11), 113602 (2019).
[Crossref]

H. Wang, Z.-C. Duan, Y.-H. Li, S. Chen, J.-P.- Lim, Y.-M.- He, M.-C. Chen, Y. Hu, X. Ding, C.-Z. Peng, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “Near-Transform-Limited Single Photons from an Efficient Solid-State Quantum Emitter,” Phys. Rev. Lett. 116(21), 213601 (2016).
[Crossref]

Paul, M.

M. Paul, J. Kettler, K. Zeuner, C. Clausen, M. Jetter, and P. Michler, “Metal-organic vapor-phase epitaxy-grown ultra-low density In-GaAs/GaAs quantum dots exhbiting cascaded single-photon emis-sion at 1.3 µm,” Appl. Phys. Lett. 106(12), 122105 (2015).
[Crossref]

Peng, C.-Z.

H. Wang, Z.-C. Duan, Y.-H. Li, S. Chen, J.-P.- Lim, Y.-M.- He, M.-C. Chen, Y. Hu, X. Ding, C.-Z. Peng, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “Near-Transform-Limited Single Photons from an Efficient Solid-State Quantum Emitter,” Phys. Rev. Lett. 116(21), 213601 (2016).
[Crossref]

Petroff, P. M.

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff, “Entangled Photon Pairs from Semiconductor Quantum Dots,” Phys. Rev. Lett. 96(13), 130501 (2006).
[Crossref]

Poem, E.

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff, “Entangled Photon Pairs from Semiconductor Quantum Dots,” Phys. Rev. Lett. 96(13), 130501 (2006).
[Crossref]

Poggi, M.

D. Cadeddu, J. Teissier, F. R. Braakman, N. Gregersen, P. Stepanov, J.-M. Gérad, J. Claudon, R. J. Warburton, M. Poggi, and M. Munsch, “A fiber-coupled quantum-dot on a photonic tip,” Appl. Phys. Lett. 108(1), 011112 (2016).
[Crossref]

Portalupi, S. L.

S. Kolatschek, S. Hepp, M. Sartison, M. Jetter, P. Michler, and S. L. Portalupi, “Deterministic fabrication of circular Bragg gratings coupled to single quantum emitters via the combination of in-situ optical lithography and electron-beam lithography,” Appl. Phys. Letter. 125, 045701 (2019).
[Crossref]

S. Hepp, M. Jetter, S. L. Portalupi, and P. Michler, “Semiconductor Quantum Dots for Integrated Quantum Photonics,” Adv. Quantum Technol. 2(9), 1900020 (2019).
[Crossref]

Post, V. P.

H. Snijders, J. A. Frey, J. Norman, V. P. Post, A. C. Gossard, J. E. Bowers, M. P. van Exter, W. Löffler, and D. Bouwmeester, “Fiber-Coupled Cavity-QED Soruce of Identical Single Photons,” Phys. Rev. Applied 9(3), 031002 (2018).
[Crossref]

Pregnolato, T.

Qin, J.

H. Wang, H. Hai, T.-H. Chung, J. Qin, L. Xiaoxia, J.-P.- Li, R.-Z. Liu, H.-S. Zhong, Y.-M. He, X. Ding, Y.-H. Deng, Q. Dai, Y.-H. Huo, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor source of entangled photons which simultaneously has high fidelity, efficiency and indistinguishability,” Phys. Rev. Lett. 122(11), 113602 (2019).
[Crossref]

Rakher, M. T.

M. I. Davanço, M. T. Rakher, D. Schuh, A. Badolato, and K. Srinivasan, “A circular dielectric grating for vertical extraction of single quantum dot emission,” Appl. Phys. Lett. 99(4), 041102 (2011).
[Crossref]

Ralph, T. C.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79(1), 135–174 (2007).
[Crossref]

Rastelli, A.

J. Liu, R. Su, Y. Wei, B. Yao, S. F. C. da Silva, Y. Yu, J. Iles-Smith, K. Srinivasan, A. Rastelli, J. Li, and X. Wang, “A solid-state source of strongly entangled photon pairs with high brightness and indistinguishability,” Nat. Nanotechnol. 14(6), 586–593 (2019).
[Crossref]

Raussendorf, R.

R. Raussendorf and H. J. Briegel, “A one-way quantum computer,” Phys. Rev. Lett. 86(22), 5188–5191 (2001).
[Crossref]

Reitzenstein, S.

A. Schlehahn, S. Fischbach, R. Schmidt, A. Kagansky, A. Strittmatter, S. Rodt, T. Heindel, and S. Reitzenstein, “A stand-alone fiber-coupled single-photon source,” Sci. Rep. 8(1), 1340 (2018).
[Crossref]

P.-I. Schneider, N. Srocka, S. Rodt, L. Zschiedrich, S. Reitzenstein, and S. Burger, “Numerical optimization of the extraction efficiency of a quantum-dot based single-photon emitter into a single-mode fiber,” Opt. Express 26(7), 8479 (2018).
[Crossref]

T. Heindel, A. Thoma, I. Schwartz, E. R. Schmidgall, L. Gantz, D. Cogan, M. Strauß, P. Schnauber, M. Gschrey, J.-H. Schulze, A. Strittmatter, S. Rodt, D. Gershoni, and S. Reitzenstein, “Accessing the dark exciton spin in deterministic quantum-dot microlenses,” APL Photonics 2(12), 121303 (2017).
[Crossref]

A. Thoma, P. Schnauber, M. Gschrey, M. Seifried, J. Wolters, J.-H. Schulze, A. Strittmatter, S. Rodt, A. Carmele, A. Knorr, T. Heindel, and S. Reitzenstein, “Exploring dephasing of a solid-state quantum emitter via time- and temperature-dependent Hong-Ou-Mandel experiments,” Phys. Rev. Lett. 116(3), 033601 (2016).
[Crossref]

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Krüger, J.-H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6(1), 7662 (2015).
[Crossref]

M. Gschrey, R. Schmidt, J.-H. Schulze, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Resolution and alignment accuracy of low-temperature in situ electron beam lithography for nanophotonic device fabrication,” J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 33(2), 021603 (2015).
[Crossref]

M. Gschrey, F. Gericke, A. Schüßler, R. Schmidt, J.-H. Schulze, T. Heindel, S. Rodt, A. Strittmatter, and S. Reitzenstein, “In situ electron-beam lithography for deterministic single-quantum-dot mesa-structures using low-temperature cathodoluminescence spectroscopy,” Appl. Phys. Lett. 102(25), 251113 (2013).
[Crossref]

S. Reitzenstein and A. Forchel, “Quantum dot micropillars,” J. Phys. D: Appl. Phys. 43(3), 033001 (2010).
[Crossref]

T. Heindel, C. Schneider, M. Lermer, S. H. Kwon, T. Braun, S. Reitzenstein, S. Höfling, M. Kamp, and A. Forchel, “Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency,” Appl. Phys. Lett. 96(1), 011107 (2010).
[Crossref]

T. Heindel, S. Rodt, and S. Reitzenstein, in Quantum Dots for Quantum Information Technologies, P. Michler, ed. (Springer International Publishing, Cham, 2017), p. 199

Ribordy, G.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[Crossref]

Roblin, C.

A. Dousse, L. Lanco, J. Suffczyński, E. Semenova, A. Miard, A. Lemaître, I. Sagnes, C. Roblin, J. Bloch, and P. Senellart, “Controlled Light-Matter Coupling for a Single Quantum Dot Em-bedded in a Pillar Microcavity Using Far-Field Optical Lithography,” Phys. Rev. Lett. 101(26), 267404 (2008)..
[Crossref]

Rockstuhl, C.

P.-I. Schneider, X. G. Santiago, V. Soltwitsch, M. Hammerschmidt, S. Burger, and C. Rockstuhl, “Benchmarking Five Global Optimization Approaches for Nano-optical Shape Optimization and Parameter Reconstruction,” ACS Photonics (posted 17 September 2019).
[Crossref]

Rodt, S.

A. Schlehahn, S. Fischbach, R. Schmidt, A. Kagansky, A. Strittmatter, S. Rodt, T. Heindel, and S. Reitzenstein, “A stand-alone fiber-coupled single-photon source,” Sci. Rep. 8(1), 1340 (2018).
[Crossref]

P.-I. Schneider, N. Srocka, S. Rodt, L. Zschiedrich, S. Reitzenstein, and S. Burger, “Numerical optimization of the extraction efficiency of a quantum-dot based single-photon emitter into a single-mode fiber,” Opt. Express 26(7), 8479 (2018).
[Crossref]

T. Heindel, A. Thoma, I. Schwartz, E. R. Schmidgall, L. Gantz, D. Cogan, M. Strauß, P. Schnauber, M. Gschrey, J.-H. Schulze, A. Strittmatter, S. Rodt, D. Gershoni, and S. Reitzenstein, “Accessing the dark exciton spin in deterministic quantum-dot microlenses,” APL Photonics 2(12), 121303 (2017).
[Crossref]

A. Thoma, P. Schnauber, M. Gschrey, M. Seifried, J. Wolters, J.-H. Schulze, A. Strittmatter, S. Rodt, A. Carmele, A. Knorr, T. Heindel, and S. Reitzenstein, “Exploring dephasing of a solid-state quantum emitter via time- and temperature-dependent Hong-Ou-Mandel experiments,” Phys. Rev. Lett. 116(3), 033601 (2016).
[Crossref]

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Krüger, J.-H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6(1), 7662 (2015).
[Crossref]

M. Gschrey, R. Schmidt, J.-H. Schulze, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Resolution and alignment accuracy of low-temperature in situ electron beam lithography for nanophotonic device fabrication,” J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 33(2), 021603 (2015).
[Crossref]

M. Gschrey, F. Gericke, A. Schüßler, R. Schmidt, J.-H. Schulze, T. Heindel, S. Rodt, A. Strittmatter, and S. Reitzenstein, “In situ electron-beam lithography for deterministic single-quantum-dot mesa-structures using low-temperature cathodoluminescence spectroscopy,” Appl. Phys. Lett. 102(25), 251113 (2013).
[Crossref]

T. Heindel, S. Rodt, and S. Reitzenstein, in Quantum Dots for Quantum Information Technologies, P. Michler, ed. (Springer International Publishing, Cham, 2017), p. 199

Sagnes, I.

O. Gazzano, S. M. de Vasconcellos, C. Arnold, A. Nowak, E. Galopin, I. Sagnes, L. Lanco, A. Lemaître, and P. Senellart, “Bright solid-state sources for indistinguishable single photons,” Nat. Commun. 4(1), 1425 (2013).
[Crossref]

A. Dousse, L. Lanco, J. Suffczyński, E. Semenova, A. Miard, A. Lemaître, I. Sagnes, C. Roblin, J. Bloch, and P. Senellart, “Controlled Light-Matter Coupling for a Single Quantum Dot Em-bedded in a Pillar Microcavity Using Far-Field Optical Lithography,” Phys. Rev. Lett. 101(26), 267404 (2008)..
[Crossref]

Santiago, X. G.

P.-I. Schneider, X. G. Santiago, V. Soltwitsch, M. Hammerschmidt, S. Burger, and C. Rockstuhl, “Benchmarking Five Global Optimization Approaches for Nano-optical Shape Optimization and Parameter Reconstruction,” ACS Photonics (posted 17 September 2019).
[Crossref]

Santori, C.

E. Waks, K. Inoue, C. Santori, D. Fattal, J. Vučković, G. Solomon, and Y. Yamamoto, “Secure communication: quantum cryptography with a photon turnstile,” Nature 420(6917), 762 (2002).
[Crossref]

Sapienza, L.

J. Liu, M. I. Darvanço, L. Sapienza, K. Konthasinghe, J. V. De Miranda Cardoso, J. D. Song, A. Badolato, and K. Srinivasan, “Cryogenic photoluminescence imaging system for nanoscale positioning of single quantum emitters,” Rev. Sci. Instrum. 88(2), 023116 (2017)..
[Crossref]

Sartison, M.

S. Kolatschek, S. Hepp, M. Sartison, M. Jetter, P. Michler, and S. L. Portalupi, “Deterministic fabrication of circular Bragg gratings coupled to single quantum emitters via the combination of in-situ optical lithography and electron-beam lithography,” Appl. Phys. Letter. 125, 045701 (2019).
[Crossref]

Schlehahn, A.

A. Schlehahn, S. Fischbach, R. Schmidt, A. Kagansky, A. Strittmatter, S. Rodt, T. Heindel, and S. Reitzenstein, “A stand-alone fiber-coupled single-photon source,” Sci. Rep. 8(1), 1340 (2018).
[Crossref]

Schmidgall, E. R.

T. Heindel, A. Thoma, I. Schwartz, E. R. Schmidgall, L. Gantz, D. Cogan, M. Strauß, P. Schnauber, M. Gschrey, J.-H. Schulze, A. Strittmatter, S. Rodt, D. Gershoni, and S. Reitzenstein, “Accessing the dark exciton spin in deterministic quantum-dot microlenses,” APL Photonics 2(12), 121303 (2017).
[Crossref]

Schmidt, F.

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Krüger, J.-H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6(1), 7662 (2015).
[Crossref]

Schmidt, R.

A. Schlehahn, S. Fischbach, R. Schmidt, A. Kagansky, A. Strittmatter, S. Rodt, T. Heindel, and S. Reitzenstein, “A stand-alone fiber-coupled single-photon source,” Sci. Rep. 8(1), 1340 (2018).
[Crossref]

M. Gschrey, R. Schmidt, J.-H. Schulze, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Resolution and alignment accuracy of low-temperature in situ electron beam lithography for nanophotonic device fabrication,” J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 33(2), 021603 (2015).
[Crossref]

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Krüger, J.-H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6(1), 7662 (2015).
[Crossref]

M. Gschrey, F. Gericke, A. Schüßler, R. Schmidt, J.-H. Schulze, T. Heindel, S. Rodt, A. Strittmatter, and S. Reitzenstein, “In situ electron-beam lithography for deterministic single-quantum-dot mesa-structures using low-temperature cathodoluminescence spectroscopy,” Appl. Phys. Lett. 102(25), 251113 (2013).
[Crossref]

Schnauber, P.

T. Heindel, A. Thoma, I. Schwartz, E. R. Schmidgall, L. Gantz, D. Cogan, M. Strauß, P. Schnauber, M. Gschrey, J.-H. Schulze, A. Strittmatter, S. Rodt, D. Gershoni, and S. Reitzenstein, “Accessing the dark exciton spin in deterministic quantum-dot microlenses,” APL Photonics 2(12), 121303 (2017).
[Crossref]

A. Thoma, P. Schnauber, M. Gschrey, M. Seifried, J. Wolters, J.-H. Schulze, A. Strittmatter, S. Rodt, A. Carmele, A. Knorr, T. Heindel, and S. Reitzenstein, “Exploring dephasing of a solid-state quantum emitter via time- and temperature-dependent Hong-Ou-Mandel experiments,” Phys. Rev. Lett. 116(3), 033601 (2016).
[Crossref]

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Krüger, J.-H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6(1), 7662 (2015).
[Crossref]

Schneider, C.

H. Wang, Z.-C. Duan, Y.-H. Li, S. Chen, J.-P.- Lim, Y.-M.- He, M.-C. Chen, Y. Hu, X. Ding, C.-Z. Peng, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “Near-Transform-Limited Single Photons from an Efficient Solid-State Quantum Emitter,” Phys. Rev. Lett. 116(21), 213601 (2016).
[Crossref]

C.-M. Lee, H.-J. Lim, C. Schneider, S. Maier, S. Höfling, M. Kamp, and Y.-H. Lee, “Efficient single photon source based on µ-fibre-coupled tunable microcavity,” Sci. Rep. 5(1), 14309 (2015).
[Crossref]

T. Heindel, C. Schneider, M. Lermer, S. H. Kwon, T. Braun, S. Reitzenstein, S. Höfling, M. Kamp, and A. Forchel, “Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency,” Appl. Phys. Lett. 96(1), 011107 (2010).
[Crossref]

Schneider, P.-I.

P.-I. Schneider, N. Srocka, S. Rodt, L. Zschiedrich, S. Reitzenstein, and S. Burger, “Numerical optimization of the extraction efficiency of a quantum-dot based single-photon emitter into a single-mode fiber,” Opt. Express 26(7), 8479 (2018).
[Crossref]

P.-I. Schneider, X. G. Santiago, V. Soltwitsch, M. Hammerschmidt, S. Burger, and C. Rockstuhl, “Benchmarking Five Global Optimization Approaches for Nano-optical Shape Optimization and Parameter Reconstruction,” ACS Photonics (posted 17 September 2019).
[Crossref]

Schuh, D.

M. I. Davanço, M. T. Rakher, D. Schuh, A. Badolato, and K. Srinivasan, “A circular dielectric grating for vertical extraction of single quantum dot emission,” Appl. Phys. Lett. 99(4), 041102 (2011).
[Crossref]

Schulze, J.-H.

T. Heindel, A. Thoma, I. Schwartz, E. R. Schmidgall, L. Gantz, D. Cogan, M. Strauß, P. Schnauber, M. Gschrey, J.-H. Schulze, A. Strittmatter, S. Rodt, D. Gershoni, and S. Reitzenstein, “Accessing the dark exciton spin in deterministic quantum-dot microlenses,” APL Photonics 2(12), 121303 (2017).
[Crossref]

A. Thoma, P. Schnauber, M. Gschrey, M. Seifried, J. Wolters, J.-H. Schulze, A. Strittmatter, S. Rodt, A. Carmele, A. Knorr, T. Heindel, and S. Reitzenstein, “Exploring dephasing of a solid-state quantum emitter via time- and temperature-dependent Hong-Ou-Mandel experiments,” Phys. Rev. Lett. 116(3), 033601 (2016).
[Crossref]

M. Gschrey, R. Schmidt, J.-H. Schulze, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Resolution and alignment accuracy of low-temperature in situ electron beam lithography for nanophotonic device fabrication,” J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 33(2), 021603 (2015).
[Crossref]

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Krüger, J.-H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6(1), 7662 (2015).
[Crossref]

M. Gschrey, F. Gericke, A. Schüßler, R. Schmidt, J.-H. Schulze, T. Heindel, S. Rodt, A. Strittmatter, and S. Reitzenstein, “In situ electron-beam lithography for deterministic single-quantum-dot mesa-structures using low-temperature cathodoluminescence spectroscopy,” Appl. Phys. Lett. 102(25), 251113 (2013).
[Crossref]

Schüßler, A.

M. Gschrey, F. Gericke, A. Schüßler, R. Schmidt, J.-H. Schulze, T. Heindel, S. Rodt, A. Strittmatter, and S. Reitzenstein, “In situ electron-beam lithography for deterministic single-quantum-dot mesa-structures using low-temperature cathodoluminescence spectroscopy,” Appl. Phys. Lett. 102(25), 251113 (2013).
[Crossref]

Schwartz, I.

T. Heindel, A. Thoma, I. Schwartz, E. R. Schmidgall, L. Gantz, D. Cogan, M. Strauß, P. Schnauber, M. Gschrey, J.-H. Schulze, A. Strittmatter, S. Rodt, D. Gershoni, and S. Reitzenstein, “Accessing the dark exciton spin in deterministic quantum-dot microlenses,” APL Photonics 2(12), 121303 (2017).
[Crossref]

Seifried, M.

A. Thoma, P. Schnauber, M. Gschrey, M. Seifried, J. Wolters, J.-H. Schulze, A. Strittmatter, S. Rodt, A. Carmele, A. Knorr, T. Heindel, and S. Reitzenstein, “Exploring dephasing of a solid-state quantum emitter via time- and temperature-dependent Hong-Ou-Mandel experiments,” Phys. Rev. Lett. 116(3), 033601 (2016).
[Crossref]

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Krüger, J.-H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6(1), 7662 (2015).
[Crossref]

Semenova, E.

A. Dousse, L. Lanco, J. Suffczyński, E. Semenova, A. Miard, A. Lemaître, I. Sagnes, C. Roblin, J. Bloch, and P. Senellart, “Controlled Light-Matter Coupling for a Single Quantum Dot Em-bedded in a Pillar Microcavity Using Far-Field Optical Lithography,” Phys. Rev. Lett. 101(26), 267404 (2008)..
[Crossref]

Senellart, P.

O. Gazzano, S. M. de Vasconcellos, C. Arnold, A. Nowak, E. Galopin, I. Sagnes, L. Lanco, A. Lemaître, and P. Senellart, “Bright solid-state sources for indistinguishable single photons,” Nat. Commun. 4(1), 1425 (2013).
[Crossref]

A. Dousse, L. Lanco, J. Suffczyński, E. Semenova, A. Miard, A. Lemaître, I. Sagnes, C. Roblin, J. Bloch, and P. Senellart, “Controlled Light-Matter Coupling for a Single Quantum Dot Em-bedded in a Pillar Microcavity Using Far-Field Optical Lithography,” Phys. Rev. Lett. 101(26), 267404 (2008)..
[Crossref]

Snijders, H.

H. Snijders, J. A. Frey, J. Norman, V. P. Post, A. C. Gossard, J. E. Bowers, M. P. van Exter, W. Löffler, and D. Bouwmeester, “Fiber-Coupled Cavity-QED Soruce of Identical Single Photons,” Phys. Rev. Applied 9(3), 031002 (2018).
[Crossref]

Solomon, G.

E. Waks, K. Inoue, C. Santori, D. Fattal, J. Vučković, G. Solomon, and Y. Yamamoto, “Secure communication: quantum cryptography with a photon turnstile,” Nature 420(6917), 762 (2002).
[Crossref]

Soltwitsch, V.

P.-I. Schneider, X. G. Santiago, V. Soltwitsch, M. Hammerschmidt, S. Burger, and C. Rockstuhl, “Benchmarking Five Global Optimization Approaches for Nano-optical Shape Optimization and Parameter Reconstruction,” ACS Photonics (posted 17 September 2019).
[Crossref]

Song, J. D.

J. Liu, M. I. Darvanço, L. Sapienza, K. Konthasinghe, J. V. De Miranda Cardoso, J. D. Song, A. Badolato, and K. Srinivasan, “Cryogenic photoluminescence imaging system for nanoscale positioning of single quantum emitters,” Rev. Sci. Instrum. 88(2), 023116 (2017)..
[Crossref]

R. S. Daveau, K. C. Balram, T. Pregnolato, J. Liu, E. H. Lee, J. D. Song, V. Verma, R. Mirin, S. W. Nam, L. Midolo, S. Stobbe, K. Srinivasan, and P. Lodahl, “Efficient fiber-coupled single-photon source based on quantum dots in a photonic-crystal waveguide,” Optica 4(2), 178–184 (2017).
[Crossref]

Srinivasan, K.

J. Liu, R. Su, Y. Wei, B. Yao, S. F. C. da Silva, Y. Yu, J. Iles-Smith, K. Srinivasan, A. Rastelli, J. Li, and X. Wang, “A solid-state source of strongly entangled photon pairs with high brightness and indistinguishability,” Nat. Nanotechnol. 14(6), 586–593 (2019).
[Crossref]

J. Liu, M. I. Darvanço, L. Sapienza, K. Konthasinghe, J. V. De Miranda Cardoso, J. D. Song, A. Badolato, and K. Srinivasan, “Cryogenic photoluminescence imaging system for nanoscale positioning of single quantum emitters,” Rev. Sci. Instrum. 88(2), 023116 (2017)..
[Crossref]

R. S. Daveau, K. C. Balram, T. Pregnolato, J. Liu, E. H. Lee, J. D. Song, V. Verma, R. Mirin, S. W. Nam, L. Midolo, S. Stobbe, K. Srinivasan, and P. Lodahl, “Efficient fiber-coupled single-photon source based on quantum dots in a photonic-crystal waveguide,” Optica 4(2), 178–184 (2017).
[Crossref]

M. I. Davanço, M. T. Rakher, D. Schuh, A. Badolato, and K. Srinivasan, “A circular dielectric grating for vertical extraction of single quantum dot emission,” Appl. Phys. Lett. 99(4), 041102 (2011).
[Crossref]

Srocka, N.

Stepanov, P.

D. Cadeddu, J. Teissier, F. R. Braakman, N. Gregersen, P. Stepanov, J.-M. Gérad, J. Claudon, R. J. Warburton, M. Poggi, and M. Munsch, “A fiber-coupled quantum-dot on a photonic tip,” Appl. Phys. Lett. 108(1), 011112 (2016).
[Crossref]

Stobbe, S.

Strauß, M.

T. Heindel, A. Thoma, I. Schwartz, E. R. Schmidgall, L. Gantz, D. Cogan, M. Strauß, P. Schnauber, M. Gschrey, J.-H. Schulze, A. Strittmatter, S. Rodt, D. Gershoni, and S. Reitzenstein, “Accessing the dark exciton spin in deterministic quantum-dot microlenses,” APL Photonics 2(12), 121303 (2017).
[Crossref]

Strittmatter, A.

A. Schlehahn, S. Fischbach, R. Schmidt, A. Kagansky, A. Strittmatter, S. Rodt, T. Heindel, and S. Reitzenstein, “A stand-alone fiber-coupled single-photon source,” Sci. Rep. 8(1), 1340 (2018).
[Crossref]

T. Heindel, A. Thoma, I. Schwartz, E. R. Schmidgall, L. Gantz, D. Cogan, M. Strauß, P. Schnauber, M. Gschrey, J.-H. Schulze, A. Strittmatter, S. Rodt, D. Gershoni, and S. Reitzenstein, “Accessing the dark exciton spin in deterministic quantum-dot microlenses,” APL Photonics 2(12), 121303 (2017).
[Crossref]

A. Thoma, P. Schnauber, M. Gschrey, M. Seifried, J. Wolters, J.-H. Schulze, A. Strittmatter, S. Rodt, A. Carmele, A. Knorr, T. Heindel, and S. Reitzenstein, “Exploring dephasing of a solid-state quantum emitter via time- and temperature-dependent Hong-Ou-Mandel experiments,” Phys. Rev. Lett. 116(3), 033601 (2016).
[Crossref]

M. Gschrey, R. Schmidt, J.-H. Schulze, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Resolution and alignment accuracy of low-temperature in situ electron beam lithography for nanophotonic device fabrication,” J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 33(2), 021603 (2015).
[Crossref]

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Krüger, J.-H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6(1), 7662 (2015).
[Crossref]

M. Gschrey, F. Gericke, A. Schüßler, R. Schmidt, J.-H. Schulze, T. Heindel, S. Rodt, A. Strittmatter, and S. Reitzenstein, “In situ electron-beam lithography for deterministic single-quantum-dot mesa-structures using low-temperature cathodoluminescence spectroscopy,” Appl. Phys. Lett. 102(25), 251113 (2013).
[Crossref]

Su, R.

J. Liu, R. Su, Y. Wei, B. Yao, S. F. C. da Silva, Y. Yu, J. Iles-Smith, K. Srinivasan, A. Rastelli, J. Li, and X. Wang, “A solid-state source of strongly entangled photon pairs with high brightness and indistinguishability,” Nat. Nanotechnol. 14(6), 586–593 (2019).
[Crossref]

B. Yao, R. Su, Y. Wei, Z. Liu, T. Zhao, and J. Liu, “Design for Hybrid Circular Bragg Grating for a Highly Efficient Quantum-Dot Single photon Source,” J. Korean Phys. Soc. 73(10), 1502–1505 (2018).
[Crossref]

Suffczynski, J.

A. Dousse, L. Lanco, J. Suffczyński, E. Semenova, A. Miard, A. Lemaître, I. Sagnes, C. Roblin, J. Bloch, and P. Senellart, “Controlled Light-Matter Coupling for a Single Quantum Dot Em-bedded in a Pillar Microcavity Using Far-Field Optical Lithography,” Phys. Rev. Lett. 101(26), 267404 (2008)..
[Crossref]

Tamaki, K.

H.-K. Lo, M. Curty, and K. Tamaki, “Secure quantum key distribution,” Nat. Photonics 8(8), 595–604 (2014).
[Crossref]

Teissier, J.

D. Cadeddu, J. Teissier, F. R. Braakman, N. Gregersen, P. Stepanov, J.-M. Gérad, J. Claudon, R. J. Warburton, M. Poggi, and M. Munsch, “A fiber-coupled quantum-dot on a photonic tip,” Appl. Phys. Lett. 108(1), 011112 (2016).
[Crossref]

Thoma, A.

T. Heindel, A. Thoma, I. Schwartz, E. R. Schmidgall, L. Gantz, D. Cogan, M. Strauß, P. Schnauber, M. Gschrey, J.-H. Schulze, A. Strittmatter, S. Rodt, D. Gershoni, and S. Reitzenstein, “Accessing the dark exciton spin in deterministic quantum-dot microlenses,” APL Photonics 2(12), 121303 (2017).
[Crossref]

A. Thoma, P. Schnauber, M. Gschrey, M. Seifried, J. Wolters, J.-H. Schulze, A. Strittmatter, S. Rodt, A. Carmele, A. Knorr, T. Heindel, and S. Reitzenstein, “Exploring dephasing of a solid-state quantum emitter via time- and temperature-dependent Hong-Ou-Mandel experiments,” Phys. Rev. Lett. 116(3), 033601 (2016).
[Crossref]

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Krüger, J.-H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6(1), 7662 (2015).
[Crossref]

Tittel, W.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[Crossref]

Toth, M.

I. Aharonovich, D. Englund, and M. Toth, “Solid-state single-photon emitters,” Nat. Photonics 10(10), 631–641 (2016).
[Crossref]

van Exter, M. P.

H. Snijders, J. A. Frey, J. Norman, V. P. Post, A. C. Gossard, J. E. Bowers, M. P. van Exter, W. Löffler, and D. Bouwmeester, “Fiber-Coupled Cavity-QED Soruce of Identical Single Photons,” Phys. Rev. Applied 9(3), 031002 (2018).
[Crossref]

Verma, V.

Vuckovic, J.

J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photonics 3(12), 687–695 (2009).
[Crossref]

E. Waks, K. Inoue, C. Santori, D. Fattal, J. Vučković, G. Solomon, and Y. Yamamoto, “Secure communication: quantum cryptography with a photon turnstile,” Nature 420(6917), 762 (2002).
[Crossref]

Waks, E.

E. Waks, K. Inoue, C. Santori, D. Fattal, J. Vučković, G. Solomon, and Y. Yamamoto, “Secure communication: quantum cryptography with a photon turnstile,” Nature 420(6917), 762 (2002).
[Crossref]

Wang, H.

H. Wang, H. Hai, T.-H. Chung, J. Qin, L. Xiaoxia, J.-P.- Li, R.-Z. Liu, H.-S. Zhong, Y.-M. He, X. Ding, Y.-H. Deng, Q. Dai, Y.-H. Huo, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor source of entangled photons which simultaneously has high fidelity, efficiency and indistinguishability,” Phys. Rev. Lett. 122(11), 113602 (2019).
[Crossref]

H. Wang, Z.-C. Duan, Y.-H. Li, S. Chen, J.-P.- Lim, Y.-M.- He, M.-C. Chen, Y. Hu, X. Ding, C.-Z. Peng, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “Near-Transform-Limited Single Photons from an Efficient Solid-State Quantum Emitter,” Phys. Rev. Lett. 116(21), 213601 (2016).
[Crossref]

Wang, X.

J. Liu, R. Su, Y. Wei, B. Yao, S. F. C. da Silva, Y. Yu, J. Iles-Smith, K. Srinivasan, A. Rastelli, J. Li, and X. Wang, “A solid-state source of strongly entangled photon pairs with high brightness and indistinguishability,” Nat. Nanotechnol. 14(6), 586–593 (2019).
[Crossref]

Warburton, R. J.

D. Cadeddu, J. Teissier, F. R. Braakman, N. Gregersen, P. Stepanov, J.-M. Gérad, J. Claudon, R. J. Warburton, M. Poggi, and M. Munsch, “A fiber-coupled quantum-dot on a photonic tip,” Appl. Phys. Lett. 108(1), 011112 (2016).
[Crossref]

Wei, Y.

J. Liu, R. Su, Y. Wei, B. Yao, S. F. C. da Silva, Y. Yu, J. Iles-Smith, K. Srinivasan, A. Rastelli, J. Li, and X. Wang, “A solid-state source of strongly entangled photon pairs with high brightness and indistinguishability,” Nat. Nanotechnol. 14(6), 586–593 (2019).
[Crossref]

B. Yao, R. Su, Y. Wei, Z. Liu, T. Zhao, and J. Liu, “Design for Hybrid Circular Bragg Grating for a Highly Efficient Quantum-Dot Single photon Source,” J. Korean Phys. Soc. 73(10), 1502–1505 (2018).
[Crossref]

Wohlfeil, B.

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Krüger, J.-H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6(1), 7662 (2015).
[Crossref]

Wolters, J.

A. Thoma, P. Schnauber, M. Gschrey, M. Seifried, J. Wolters, J.-H. Schulze, A. Strittmatter, S. Rodt, A. Carmele, A. Knorr, T. Heindel, and S. Reitzenstein, “Exploring dephasing of a solid-state quantum emitter via time- and temperature-dependent Hong-Ou-Mandel experiments,” Phys. Rev. Lett. 116(3), 033601 (2016).
[Crossref]

Xiaoxia, L.

H. Wang, H. Hai, T.-H. Chung, J. Qin, L. Xiaoxia, J.-P.- Li, R.-Z. Liu, H.-S. Zhong, Y.-M. He, X. Ding, Y.-H. Deng, Q. Dai, Y.-H. Huo, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor source of entangled photons which simultaneously has high fidelity, efficiency and indistinguishability,” Phys. Rev. Lett. 122(11), 113602 (2019).
[Crossref]

Yamamoto, Y.

E. Waks, K. Inoue, C. Santori, D. Fattal, J. Vučković, G. Solomon, and Y. Yamamoto, “Secure communication: quantum cryptography with a photon turnstile,” Nature 420(6917), 762 (2002).
[Crossref]

Yao, B.

J. Liu, R. Su, Y. Wei, B. Yao, S. F. C. da Silva, Y. Yu, J. Iles-Smith, K. Srinivasan, A. Rastelli, J. Li, and X. Wang, “A solid-state source of strongly entangled photon pairs with high brightness and indistinguishability,” Nat. Nanotechnol. 14(6), 586–593 (2019).
[Crossref]

B. Yao, R. Su, Y. Wei, Z. Liu, T. Zhao, and J. Liu, “Design for Hybrid Circular Bragg Grating for a Highly Efficient Quantum-Dot Single photon Source,” J. Korean Phys. Soc. 73(10), 1502–1505 (2018).
[Crossref]

Yu, Y.

J. Liu, R. Su, Y. Wei, B. Yao, S. F. C. da Silva, Y. Yu, J. Iles-Smith, K. Srinivasan, A. Rastelli, J. Li, and X. Wang, “A solid-state source of strongly entangled photon pairs with high brightness and indistinguishability,” Nat. Nanotechnol. 14(6), 586–593 (2019).
[Crossref]

Zbinden, H.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[Crossref]

Zeuner, K.

M. Paul, J. Kettler, K. Zeuner, C. Clausen, M. Jetter, and P. Michler, “Metal-organic vapor-phase epitaxy-grown ultra-low density In-GaAs/GaAs quantum dots exhbiting cascaded single-photon emis-sion at 1.3 µm,” Appl. Phys. Lett. 106(12), 122105 (2015).
[Crossref]

Zhao, T.

B. Yao, R. Su, Y. Wei, Z. Liu, T. Zhao, and J. Liu, “Design for Hybrid Circular Bragg Grating for a Highly Efficient Quantum-Dot Single photon Source,” J. Korean Phys. Soc. 73(10), 1502–1505 (2018).
[Crossref]

Zhong, H.-S.

H. Wang, H. Hai, T.-H. Chung, J. Qin, L. Xiaoxia, J.-P.- Li, R.-Z. Liu, H.-S. Zhong, Y.-M. He, X. Ding, Y.-H. Deng, Q. Dai, Y.-H. Huo, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor source of entangled photons which simultaneously has high fidelity, efficiency and indistinguishability,” Phys. Rev. Lett. 122(11), 113602 (2019).
[Crossref]

Zschiedrich, L.

Adv. Quantum Technol. (1)

S. Hepp, M. Jetter, S. L. Portalupi, and P. Michler, “Semiconductor Quantum Dots for Integrated Quantum Photonics,” Adv. Quantum Technol. 2(9), 1900020 (2019).
[Crossref]

APL Photonics (1)

T. Heindel, A. Thoma, I. Schwartz, E. R. Schmidgall, L. Gantz, D. Cogan, M. Strauß, P. Schnauber, M. Gschrey, J.-H. Schulze, A. Strittmatter, S. Rodt, D. Gershoni, and S. Reitzenstein, “Accessing the dark exciton spin in deterministic quantum-dot microlenses,” APL Photonics 2(12), 121303 (2017).
[Crossref]

Appl. Phys. Lett. (5)

M. I. Davanço, M. T. Rakher, D. Schuh, A. Badolato, and K. Srinivasan, “A circular dielectric grating for vertical extraction of single quantum dot emission,” Appl. Phys. Lett. 99(4), 041102 (2011).
[Crossref]

M. Paul, J. Kettler, K. Zeuner, C. Clausen, M. Jetter, and P. Michler, “Metal-organic vapor-phase epitaxy-grown ultra-low density In-GaAs/GaAs quantum dots exhbiting cascaded single-photon emis-sion at 1.3 µm,” Appl. Phys. Lett. 106(12), 122105 (2015).
[Crossref]

D. Cadeddu, J. Teissier, F. R. Braakman, N. Gregersen, P. Stepanov, J.-M. Gérad, J. Claudon, R. J. Warburton, M. Poggi, and M. Munsch, “A fiber-coupled quantum-dot on a photonic tip,” Appl. Phys. Lett. 108(1), 011112 (2016).
[Crossref]

M. Gschrey, F. Gericke, A. Schüßler, R. Schmidt, J.-H. Schulze, T. Heindel, S. Rodt, A. Strittmatter, and S. Reitzenstein, “In situ electron-beam lithography for deterministic single-quantum-dot mesa-structures using low-temperature cathodoluminescence spectroscopy,” Appl. Phys. Lett. 102(25), 251113 (2013).
[Crossref]

T. Heindel, C. Schneider, M. Lermer, S. H. Kwon, T. Braun, S. Reitzenstein, S. Höfling, M. Kamp, and A. Forchel, “Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency,” Appl. Phys. Lett. 96(1), 011107 (2010).
[Crossref]

Appl. Phys. Letter. (1)

S. Kolatschek, S. Hepp, M. Sartison, M. Jetter, P. Michler, and S. L. Portalupi, “Deterministic fabrication of circular Bragg gratings coupled to single quantum emitters via the combination of in-situ optical lithography and electron-beam lithography,” Appl. Phys. Letter. 125, 045701 (2019).
[Crossref]

J. Korean Phys. Soc. (1)

B. Yao, R. Su, Y. Wei, Z. Liu, T. Zhao, and J. Liu, “Design for Hybrid Circular Bragg Grating for a Highly Efficient Quantum-Dot Single photon Source,” J. Korean Phys. Soc. 73(10), 1502–1505 (2018).
[Crossref]

J. Phys. D: Appl. Phys. (1)

S. Reitzenstein and A. Forchel, “Quantum dot micropillars,” J. Phys. D: Appl. Phys. 43(3), 033001 (2010).
[Crossref]

J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. (1)

M. Gschrey, R. Schmidt, J.-H. Schulze, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Resolution and alignment accuracy of low-temperature in situ electron beam lithography for nanophotonic device fabrication,” J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 33(2), 021603 (2015).
[Crossref]

Nat. Commun. (2)

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Krüger, J.-H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6(1), 7662 (2015).
[Crossref]

O. Gazzano, S. M. de Vasconcellos, C. Arnold, A. Nowak, E. Galopin, I. Sagnes, L. Lanco, A. Lemaître, and P. Senellart, “Bright solid-state sources for indistinguishable single photons,” Nat. Commun. 4(1), 1425 (2013).
[Crossref]

Nat. Nanotechnol. (1)

J. Liu, R. Su, Y. Wei, B. Yao, S. F. C. da Silva, Y. Yu, J. Iles-Smith, K. Srinivasan, A. Rastelli, J. Li, and X. Wang, “A solid-state source of strongly entangled photon pairs with high brightness and indistinguishability,” Nat. Nanotechnol. 14(6), 586–593 (2019).
[Crossref]

Nat. Photonics (3)

J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photonics 3(12), 687–695 (2009).
[Crossref]

I. Aharonovich, D. Englund, and M. Toth, “Solid-state single-photon emitters,” Nat. Photonics 10(10), 631–641 (2016).
[Crossref]

H.-K. Lo, M. Curty, and K. Tamaki, “Secure quantum key distribution,” Nat. Photonics 8(8), 595–604 (2014).
[Crossref]

Nature (2)

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum Computers,” Nature 464(7285), 45–53 (2010).
[Crossref]

E. Waks, K. Inoue, C. Santori, D. Fattal, J. Vučković, G. Solomon, and Y. Yamamoto, “Secure communication: quantum cryptography with a photon turnstile,” Nature 420(6917), 762 (2002).
[Crossref]

New J. Phys. (1)

A. Acín, I. Bloch, H. Buhrman, T. Calarco, C. Eichler, and J. Eisert, “The quantum technologies roadmap: a European community view,” New J. Phys. 20(8), 080201 (2018).
[Crossref]

Opt. Express (1)

Optica (1)

Phys. Rev. Applied (1)

H. Snijders, J. A. Frey, J. Norman, V. P. Post, A. C. Gossard, J. E. Bowers, M. P. van Exter, W. Löffler, and D. Bouwmeester, “Fiber-Coupled Cavity-QED Soruce of Identical Single Photons,” Phys. Rev. Applied 9(3), 031002 (2018).
[Crossref]

Phys. Rev. Lett. (6)

A. Thoma, P. Schnauber, M. Gschrey, M. Seifried, J. Wolters, J.-H. Schulze, A. Strittmatter, S. Rodt, A. Carmele, A. Knorr, T. Heindel, and S. Reitzenstein, “Exploring dephasing of a solid-state quantum emitter via time- and temperature-dependent Hong-Ou-Mandel experiments,” Phys. Rev. Lett. 116(3), 033601 (2016).
[Crossref]

H. Wang, H. Hai, T.-H. Chung, J. Qin, L. Xiaoxia, J.-P.- Li, R.-Z. Liu, H.-S. Zhong, Y.-M. He, X. Ding, Y.-H. Deng, Q. Dai, Y.-H. Huo, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor source of entangled photons which simultaneously has high fidelity, efficiency and indistinguishability,” Phys. Rev. Lett. 122(11), 113602 (2019).
[Crossref]

A. Dousse, L. Lanco, J. Suffczyński, E. Semenova, A. Miard, A. Lemaître, I. Sagnes, C. Roblin, J. Bloch, and P. Senellart, “Controlled Light-Matter Coupling for a Single Quantum Dot Em-bedded in a Pillar Microcavity Using Far-Field Optical Lithography,” Phys. Rev. Lett. 101(26), 267404 (2008)..
[Crossref]

R. Raussendorf and H. J. Briegel, “A one-way quantum computer,” Phys. Rev. Lett. 86(22), 5188–5191 (2001).
[Crossref]

H. Wang, Z.-C. Duan, Y.-H. Li, S. Chen, J.-P.- Lim, Y.-M.- He, M.-C. Chen, Y. Hu, X. Ding, C.-Z. Peng, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “Near-Transform-Limited Single Photons from an Efficient Solid-State Quantum Emitter,” Phys. Rev. Lett. 116(21), 213601 (2016).
[Crossref]

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff, “Entangled Photon Pairs from Semiconductor Quantum Dots,” Phys. Rev. Lett. 96(13), 130501 (2006).
[Crossref]

Rev. Mod. Phys. (2)

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79(1), 135–174 (2007).
[Crossref]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[Crossref]

Rev. Sci. Instrum. (1)

J. Liu, M. I. Darvanço, L. Sapienza, K. Konthasinghe, J. V. De Miranda Cardoso, J. D. Song, A. Badolato, and K. Srinivasan, “Cryogenic photoluminescence imaging system for nanoscale positioning of single quantum emitters,” Rev. Sci. Instrum. 88(2), 023116 (2017)..
[Crossref]

Sci. Rep. (2)

A. Schlehahn, S. Fischbach, R. Schmidt, A. Kagansky, A. Strittmatter, S. Rodt, T. Heindel, and S. Reitzenstein, “A stand-alone fiber-coupled single-photon source,” Sci. Rep. 8(1), 1340 (2018).
[Crossref]

C.-M. Lee, H.-J. Lim, C. Schneider, S. Maier, S. Höfling, M. Kamp, and Y.-H. Lee, “Efficient single photon source based on µ-fibre-coupled tunable microcavity,” Sci. Rep. 5(1), 14309 (2015).
[Crossref]

Other (4)

P.-I. Schneider, X. G. Santiago, V. Soltwitsch, M. Hammerschmidt, S. Burger, and C. Rockstuhl, “Benchmarking Five Global Optimization Approaches for Nano-optical Shape Optimization and Parameter Reconstruction,” ACS Photonics (posted 17 September 2019).
[Crossref]

Norland Products Inc., Norland Optical Adhesive 81

JCMsuite by JCMwave. Simulation Suite for Nano-Optics (JCMwave GmbH, Berlin, 2019)

T. Heindel, S. Rodt, and S. Reitzenstein, in Quantum Dots for Quantum Information Technologies, P. Michler, ed. (Springer International Publishing, Cham, 2017), p. 199

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. (a) Schematic of the cross-section of a hybrid CBG device and relevant design parameters. (b) and (c) Top view of the CBG device and near-field intensity distribution of the supported optical mode inside the central CBG disc. (d) Far-field with NA = 0.8 showing the high directionality of the mode. (e) and (f) Simulated Purcell factor FP, photon collection efficiency (PCE) and dipole power collection efficiency (DCE) as a function of wavelength λ for a CBG design with narrowband and broadband characteristics, respectively.
Fig. 2.
Fig. 2. (a) Schematic cross-section of a hybrid CBG device considering fabrication imperfection resulting in narrower gaps with tilted side walls and reduced width WW/2. (b) FP and DCE as a function of wavelength for different ΔW. The gray shaded spectral region indicates FP > 2 (dashed horizontal line), if the side-wall imperfection is limited to dW = 6.67% (ΔW = 20 nm). (c) Operation wavelength λ (at maximum FP) and DCE as a function of ΔW. (d) Cross-sectional view of the near-field intensity distribution inside the CBG. (e) Schematic of the same fabrication imperfection as in (a) but with fixed central disc and variable gap-width W*. (f) FP and DCE as a function of wavelength for various W*. (g) λ and DCE at maximum FP as a function of W*.
Fig. 3.
Fig. 3. (a) Schematic of the 3D simulation setting to investigate the hybrid CBG devices with a dipole emitter deviating from the central position. (b) and (c) FP- and DCE-values for different x- and y- emitter positions in the disc. The white circles indicate a deviation of 34 nm from the center.
Fig. 4.
Fig. 4. (a) Schematic of the simulation setting to investigate the fiber-coupling of hybrid CBG devices emitting in the telecom O-band. (b) Mode coupling efficiency (MCE) to a 980HP fiber as a function of distance d between fiber and CBG for the narrowband (NB-) and broadband (BB-) designs from Figs. 1(e) and 1(f) for vacuum and adhesive (NOA81) between fiber and CBG device, respectively. (c) Maximum achievable MCE under variation of the gap-width W around its initial value for different narrowband (NB-) and broadband (BB-) designs, considering the coupling to 980HP and SMF28 fiber. For the narrowband design, the MCE is also calculated with an adhesive (NOA81) in-between fiber and CBG. For the NB-design with adhesive, the central disc radius was reduced to R = 540 nm to account for a redshift caused by the adhesive with higher refractive index compared to air. (d) 2D fiber-mode profiles and CBG-mode profile at the distance of maximum MCE for narrowband and broadband designs.
Fig. 5.
Fig. 5. (complementing Figs. 1(e) and 1(f)): (a) Maximum Purcell factor FP and dipole power collection efficiency DCE for the narrowband (NB)- and broadband (BB)- CBG device with varying number of rings. A FP close to 30 (above 15) and a DCE of over 90% is reached for devices with more than 6 rings (2 rings) for the NB-device (BB-device). (b) DCE of the NB-device at λ = 1319 nm as a function of the numerical aperture (NA). Due to the directional emission of the hybrid CBG devices, close to 90% of the dipole emission power is collected already for a NA of 0.4. (c) Near-field intensity distribution inside the circular Bragg grating (CBG) at a wavelength of λ = 1306.5 nm, at which a dip is observed in the dipole collection efficiency of the NB-device in (d). A closer look also reveals a local maximum in FP at the same spectral position, confirming that this substructure originates from another mode of the hybrid CBG device.
Fig. 6.
Fig. 6. (complementing Fig. 1): Influence of gap-width W of the CBG on the optical properties for the narrowband (W = 160 nm) [(a)-(d)] and broadband (W = 300 nm) [(e)-(g)] design, whose optical properties are displayed in Figs. 1(e) and 1(f), respectively. Influence of grating period P on optical properties for the narrowband design [(h)-(k)] and broadband design [(l)-(n)]. W = 100 nm (narrowband) and W = 260 nm (broadband) result in near-field intensity distributions with very low intensity contributions in the grating regions compared to W = 200 nm and W = 340 nm, which show a much higher sensitivity of λ on W and P. As seen from (a) and (h), the Purcell enhancement follows a bell-shaped distribution for variations in W and P, which can be correlated with the Q-factor Q and mode volume VM exhibited by the mode for the specific design. For certain W, Purcell factors of 55 are obtained. Since the maximum Q-factor found is 800, we believe that the weak-coupling regime is valid for the entire investigated parameter range, although a very small mode volume of ∼0.6 (λ/n)3 (≈ 0.034 µm3) is given. The higher Q, the spectrally narrower is the Purcell enhancement (WFp>2 corresponds to the spectral width with FP > 2). As can be further seen from (a) and (h), decreasing W or increasing the ring size (i.e. increasing P while keeping W constant) leads to a red-shift of the operation wavelength and maximum FP. This simultaneously shifts the maximum FP to shorter wavelengths compared to the spectral regions with high DCE-values, and the operation wavelength can be aligned to an optimal out-coupling. An increase in W or decrease in ring size has the opposite effect.
Fig. 7.
Fig. 7. (a)-(d) Influence of the thickness t(SiO2) of the SiO2 layer on the optical properties for the broadband design with W = 300 nm (cf. Figure 1(f)). The Purcell enhancement follows again a bell-shaped curve with varied SiO2 thickness. (b) and (d) show clearly that this change in FP arises from the influence of t(SiO2) on Q, whereas VM is constant over the varied thickness range, except for very thin dielectric layers. A maximum FP = 54 can be obtained at t(SiO2) = 190 nm. Regarding the origin of this resonance, we found that the 190 nm of SiO2 form a λ/2 distance between the position of the dipole and the gold mirror, corresponding to (1/2 t(GaAs) ⋅ nGaAs)/λ + (t(SiO2) ⋅ nSiO2)/λ, t(GaAs) = 240 nm ; nGaAs = 3.3885 ; nSiO2 = 1.45 ; λ = 1314.5 nm. This means that the emitted light travels a λ-distance back and forth to the mirror and is able to constructively interfere with the emitter again. On the other hand, a SiO2 thickness of at least 250 nm is required to achieve DCEs larger 90%. (e) and (f) Influence of the central disc radius R and CBG membrane thickness t(GaAs) on the optical properties. Increasing R and t(GaAs) both red-shift the operation wavelength, which can be used to fine-tune λ. The larger shift of λ with R is attributed to the high mode intensity at the edges of the disc.
Fig. 8.
Fig. 8. (complementing Fig. 3): 980HP fiber-mode profiles and CBG field-intensity distributions at a distance d of maximum fiber-mode coupling efficiency for the narrowband and broadband designs with W around 160 nm and 300 nm. The intensity cross-cuts and 2D intensity distributions indicate that highest coupling efficiency is achieved at optimum overlap of CBG field- and fiber-mode profile.

Metrics