Abstract

In this paper, we present a system for nonmechanical three-dimensional beam steering using an electrowetting based liquid lens and liquid prism. The optical design of the presented system was modeled with Zemax and three-dimensional beam steering was simulated by changing the ROC of the lens and the apex angle of the prism. The liquid lens from Corning-Varioptic was used and the liquid prism was fabricated and these were combined. The liquid lens and liquid prism were filled with two immiscible liquids whose densities are the same. The liquid lens provides variable focal lengths as the applied voltage is changed. The diopter range of the liquid lens is from −3.9 D to 14.5 D. Beam steering on the x-axis, y-axis, and xy-axis was achieved by applying different voltages to four sidewalls of the liquid prism. The liquid prism has a beam steering angle of up to 11.6 °, 12 °, and 11.8 ° on x-axis, y-axis, and xy-axis, respectively. By combining the electrowetting actuated liquid lens and liquid prism, three-dimensional beam steering control including the z-axis direction was demonstrated.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Lidar system with nonmechanical electrowetting-based wide-angle beam steering

Mo Zohrabi, Wei Yang Lim, Robert H. Cormack, Omkar D. Supekar, Victor M. Bright, and Juliet T. Gopinath
Opt. Express 27(4) 4404-4415 (2019)

Wide-angle nonmechanical beam steering using liquid lenses

Mo Zohrabi, Robert H. Cormack, and Juliet T. Gopinath
Opt. Express 24(21) 23798-23809 (2016)

Multifunctional optofluidic lens with beam steering

Chao Liu, Di Wang, Qiong-Hua Wang, and Yan Xing
Opt. Express 28(5) 7734-7745 (2020)

References

  • View by:
  • |
  • |
  • |

  1. J. D. Lechleiter, D.-T. Lin, and I. Sieneart, “Multi-photon laser scanning microscopy using an acoustic optical deflector,” Biophys. J. 83(4), 2292–2299 (2002).
    [Crossref]
  2. T. Ota, H. Fukuyama, Y. Ishihara, H. Tanaka, and T. Takamatsu, “In situ fluorescence imaging of organs through compact scanning head for confocal laser microscopy,” J. Biomed. Opt. 10(2), 024010 (2005).
    [Crossref]
  3. J. Diaci, D. Bracun, A. Gorkic, and J. Mozina, “Rapid and flexible laser marking and engraving of tilted and curved surfaces,” Opt. Laser. Eng. 49(2), 195–199 (2011).
    [Crossref]
  4. Z. He, G. Tan, D. Chanda, and S. Wu, “Novel liquid crystal photonic devices enabled by two-photon polymerization,” Opt. Express 27(8), 11472–11491 (2019).
    [Crossref]
  5. S. A. Reza and N. A. Riza, “A liquid lens-based broadband variable fiber optical attenuator,” Opt. Commun. 282(7), 1298–1303 (2009).
    [Crossref]
  6. A. Petrovskaya and S. Thrun, “Model based vehicle detection and tracking for autonomous urban driving,” Auton. Robot. 26(2-3), 123–139 (2009).
    [Crossref]
  7. M. Zohrabi, W. Y. Lim, R. H. Cormack, O. D. Supekar, V. M. Bright, and J. T. Gopinath, “Lidar system with nonmechanical electrowetting-based wide-angle beam steering,” Opt. Express 27(4), 4404–4415 (2019).
    [Crossref]
  8. L. J. Hornbeck, “128 × 128 deformable mirror device,” IEEE Trans. Electron Devices 30(5), 539–545 (1983).
    [Crossref]
  9. M. G. da Silva, D. W. DeRoo, M. J. Tracy, A. Rybaltowski, C. G. Caflisch, and R. M. Potenza, “Ladar using mems scanning,” US Patent 20120236379 A1 (2012).
  10. U. Hofmann, J. Janes, and H. Quenzer, “High-q mems resonators for laser beam scanning displays,” Micromachines 3(2), 509–528 (2012).
    [Crossref]
  11. A. Wehr and U. Lohr, “Airborne laser scanning—an introduction and overview,” ISPRS J. Photogramm. Remote Sens. 54(2-3), 68–82 (1999).
    [Crossref]
  12. B. D. Duncan, J. B. Philip, and S. Vassili, “Wide angle achromatic prism beam steering for infrared countermeasure applications,” Opt. Eng. 42(4), 1038–1047 (2003).
    [Crossref]
  13. P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97(6), 1078–1096 (2009).
    [Crossref]
  14. Z. He, F. Gou, R. Chen, K. Yin, T. Zhan, and S. T. Wu, “Liquid crystal beam steering devices: Principles, recent advances, and future developments,” Crystals 9(6), 292 (2019).
    [Crossref]
  15. O. Pishnyak, L. Kreminska, O. D. Lavrentovich, J. J. Pouch, F. A. Miranda, and B. K. Winker, “Liquid crystal digital beam steering device based on decoupled birefringent deflector and polarization rotator,” Mol. Cryst. Liq. Cryst. 433(1), 279–295 (2005).
    [Crossref]
  16. J. Kim, C. Oh, M. J. Escuti, L. Hosting, and S. Serati, “Wide-angle nonmechanical beam steering using thin liquid crystal polarization gratings,” Proc. SPIE 7093, 709302 (2008).
    [Crossref]
  17. J. Lindle, A. Watnik, and V. Cassella, “Efficient multibeam large-angle nonmechanical laser beam steering from computer-generated holograms rendered on a liquid crystal spatial light modulator,” Appl. Opt. 55(16), 4336–4341 (2016).
    [Crossref]
  18. H. Ren, S. Xu, and S. Wu, “Deformable liquid droplets for optical beam control,” Opt. Express 18(11), 11904–11910 (2010).
    [Crossref]
  19. Y. Lin, K. Chen, and S. Wu, “Broadband and polarization-independent beam steering using dielectrophoresis-tilted prism,” Opt. Express 17(10), 8651–8656 (2009).
    [Crossref]
  20. C. E. Clement and S. Y. Park, “High-performance beam steering using electrowetting-driven liquid prism,” Appl. Phys. Lett. 108(19), 191601 (2016).
    [Crossref]
  21. D. Kopp, L. Lehmann, and H. Zappe, “Optofluidic laser scanner based on a rotating liquid prism,” Appl. Opt. 55(9), 2136–2142 (2016).
    [Crossref]
  22. F. Mugele and J. C. Baret, “Electrowetting: From basics to applications,” J. Phys.: Condens. Matter 17(28), R705–R774 (2005).
    [Crossref]
  23. W. C. Nelson and C. Kim, “Droplet actuation by electrowetting-on-dielectric (EWOD): A review,” J. Adhes. Sci. Technol. 26(12-17), 1–25 (2012).
    [Crossref]
  24. H. Choi and Y. H. Won, “Fluidic Lens of Floating Water Using Intermediate Hydrophilic Layer Based on Electrowetting,” IEEE Photonics Technol. Lett. 25(18), 1829–1831 (2013).
    [Crossref]
  25. Y. H. Won, J. Kim, C. Kim, J. Lee, D. Shin, G. Koo, and J. H. Sim, “Autostereoscopic three-dimensional displays based on electrowetting liquid lenses,” Opt. Eng. 57(6), 061618 (2018).
    [Crossref]
  26. J. Lee, J. Kim, C. Kim, D. Shin, G. Koo, J. H. Sim, and Y. H. Won, “Improving the performance of an electrowetting lenticular lens array by using a thin polycarbonate chamber,” Opt. Express 24(26), 29972–29983 (2016).
    [Crossref]
  27. J. H. Sim, J. Kim, C. Kim, D. Shin, J. Lee, G. Koo, G. S. Jung, and Y. H. Won, “Novel biconvex structure electrowetting liquid lenticular lens for 2D/3D convertible display,” Sci. Rep. 8(1), 15416 (2018).
    [Crossref]
  28. H. Ren, S. Xu, and S. T. Wu, “Effects of gravity on the shape of liquid droplets,” Opt. Commun. 283(17), 3255–3258 (2010).
    [Crossref]

2019 (3)

2018 (2)

Y. H. Won, J. Kim, C. Kim, J. Lee, D. Shin, G. Koo, and J. H. Sim, “Autostereoscopic three-dimensional displays based on electrowetting liquid lenses,” Opt. Eng. 57(6), 061618 (2018).
[Crossref]

J. H. Sim, J. Kim, C. Kim, D. Shin, J. Lee, G. Koo, G. S. Jung, and Y. H. Won, “Novel biconvex structure electrowetting liquid lenticular lens for 2D/3D convertible display,” Sci. Rep. 8(1), 15416 (2018).
[Crossref]

2016 (4)

2013 (1)

H. Choi and Y. H. Won, “Fluidic Lens of Floating Water Using Intermediate Hydrophilic Layer Based on Electrowetting,” IEEE Photonics Technol. Lett. 25(18), 1829–1831 (2013).
[Crossref]

2012 (2)

W. C. Nelson and C. Kim, “Droplet actuation by electrowetting-on-dielectric (EWOD): A review,” J. Adhes. Sci. Technol. 26(12-17), 1–25 (2012).
[Crossref]

U. Hofmann, J. Janes, and H. Quenzer, “High-q mems resonators for laser beam scanning displays,” Micromachines 3(2), 509–528 (2012).
[Crossref]

2011 (1)

J. Diaci, D. Bracun, A. Gorkic, and J. Mozina, “Rapid and flexible laser marking and engraving of tilted and curved surfaces,” Opt. Laser. Eng. 49(2), 195–199 (2011).
[Crossref]

2010 (2)

H. Ren, S. Xu, and S. Wu, “Deformable liquid droplets for optical beam control,” Opt. Express 18(11), 11904–11910 (2010).
[Crossref]

H. Ren, S. Xu, and S. T. Wu, “Effects of gravity on the shape of liquid droplets,” Opt. Commun. 283(17), 3255–3258 (2010).
[Crossref]

2009 (4)

Y. Lin, K. Chen, and S. Wu, “Broadband and polarization-independent beam steering using dielectrophoresis-tilted prism,” Opt. Express 17(10), 8651–8656 (2009).
[Crossref]

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97(6), 1078–1096 (2009).
[Crossref]

S. A. Reza and N. A. Riza, “A liquid lens-based broadband variable fiber optical attenuator,” Opt. Commun. 282(7), 1298–1303 (2009).
[Crossref]

A. Petrovskaya and S. Thrun, “Model based vehicle detection and tracking for autonomous urban driving,” Auton. Robot. 26(2-3), 123–139 (2009).
[Crossref]

2008 (1)

J. Kim, C. Oh, M. J. Escuti, L. Hosting, and S. Serati, “Wide-angle nonmechanical beam steering using thin liquid crystal polarization gratings,” Proc. SPIE 7093, 709302 (2008).
[Crossref]

2005 (3)

O. Pishnyak, L. Kreminska, O. D. Lavrentovich, J. J. Pouch, F. A. Miranda, and B. K. Winker, “Liquid crystal digital beam steering device based on decoupled birefringent deflector and polarization rotator,” Mol. Cryst. Liq. Cryst. 433(1), 279–295 (2005).
[Crossref]

T. Ota, H. Fukuyama, Y. Ishihara, H. Tanaka, and T. Takamatsu, “In situ fluorescence imaging of organs through compact scanning head for confocal laser microscopy,” J. Biomed. Opt. 10(2), 024010 (2005).
[Crossref]

F. Mugele and J. C. Baret, “Electrowetting: From basics to applications,” J. Phys.: Condens. Matter 17(28), R705–R774 (2005).
[Crossref]

2003 (1)

B. D. Duncan, J. B. Philip, and S. Vassili, “Wide angle achromatic prism beam steering for infrared countermeasure applications,” Opt. Eng. 42(4), 1038–1047 (2003).
[Crossref]

2002 (1)

J. D. Lechleiter, D.-T. Lin, and I. Sieneart, “Multi-photon laser scanning microscopy using an acoustic optical deflector,” Biophys. J. 83(4), 2292–2299 (2002).
[Crossref]

1999 (1)

A. Wehr and U. Lohr, “Airborne laser scanning—an introduction and overview,” ISPRS J. Photogramm. Remote Sens. 54(2-3), 68–82 (1999).
[Crossref]

1983 (1)

L. J. Hornbeck, “128 × 128 deformable mirror device,” IEEE Trans. Electron Devices 30(5), 539–545 (1983).
[Crossref]

Baret, J. C.

F. Mugele and J. C. Baret, “Electrowetting: From basics to applications,” J. Phys.: Condens. Matter 17(28), R705–R774 (2005).
[Crossref]

Bos, P. J.

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97(6), 1078–1096 (2009).
[Crossref]

Bracun, D.

J. Diaci, D. Bracun, A. Gorkic, and J. Mozina, “Rapid and flexible laser marking and engraving of tilted and curved surfaces,” Opt. Laser. Eng. 49(2), 195–199 (2011).
[Crossref]

Bright, V. M.

Caflisch, C. G.

M. G. da Silva, D. W. DeRoo, M. J. Tracy, A. Rybaltowski, C. G. Caflisch, and R. M. Potenza, “Ladar using mems scanning,” US Patent 20120236379 A1 (2012).

Cassella, V.

Chanda, D.

Chen, K.

Chen, R.

Z. He, F. Gou, R. Chen, K. Yin, T. Zhan, and S. T. Wu, “Liquid crystal beam steering devices: Principles, recent advances, and future developments,” Crystals 9(6), 292 (2019).
[Crossref]

Choi, H.

H. Choi and Y. H. Won, “Fluidic Lens of Floating Water Using Intermediate Hydrophilic Layer Based on Electrowetting,” IEEE Photonics Technol. Lett. 25(18), 1829–1831 (2013).
[Crossref]

Clement, C. E.

C. E. Clement and S. Y. Park, “High-performance beam steering using electrowetting-driven liquid prism,” Appl. Phys. Lett. 108(19), 191601 (2016).
[Crossref]

Cormack, R. H.

da Silva, M. G.

M. G. da Silva, D. W. DeRoo, M. J. Tracy, A. Rybaltowski, C. G. Caflisch, and R. M. Potenza, “Ladar using mems scanning,” US Patent 20120236379 A1 (2012).

DeRoo, D. W.

M. G. da Silva, D. W. DeRoo, M. J. Tracy, A. Rybaltowski, C. G. Caflisch, and R. M. Potenza, “Ladar using mems scanning,” US Patent 20120236379 A1 (2012).

Diaci, J.

J. Diaci, D. Bracun, A. Gorkic, and J. Mozina, “Rapid and flexible laser marking and engraving of tilted and curved surfaces,” Opt. Laser. Eng. 49(2), 195–199 (2011).
[Crossref]

Duncan, B. D.

B. D. Duncan, J. B. Philip, and S. Vassili, “Wide angle achromatic prism beam steering for infrared countermeasure applications,” Opt. Eng. 42(4), 1038–1047 (2003).
[Crossref]

Escuti, M. J.

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97(6), 1078–1096 (2009).
[Crossref]

J. Kim, C. Oh, M. J. Escuti, L. Hosting, and S. Serati, “Wide-angle nonmechanical beam steering using thin liquid crystal polarization gratings,” Proc. SPIE 7093, 709302 (2008).
[Crossref]

Fukuyama, H.

T. Ota, H. Fukuyama, Y. Ishihara, H. Tanaka, and T. Takamatsu, “In situ fluorescence imaging of organs through compact scanning head for confocal laser microscopy,” J. Biomed. Opt. 10(2), 024010 (2005).
[Crossref]

Gopinath, J. T.

Gorkic, A.

J. Diaci, D. Bracun, A. Gorkic, and J. Mozina, “Rapid and flexible laser marking and engraving of tilted and curved surfaces,” Opt. Laser. Eng. 49(2), 195–199 (2011).
[Crossref]

Gou, F.

Z. He, F. Gou, R. Chen, K. Yin, T. Zhan, and S. T. Wu, “Liquid crystal beam steering devices: Principles, recent advances, and future developments,” Crystals 9(6), 292 (2019).
[Crossref]

He, Z.

Z. He, F. Gou, R. Chen, K. Yin, T. Zhan, and S. T. Wu, “Liquid crystal beam steering devices: Principles, recent advances, and future developments,” Crystals 9(6), 292 (2019).
[Crossref]

Z. He, G. Tan, D. Chanda, and S. Wu, “Novel liquid crystal photonic devices enabled by two-photon polymerization,” Opt. Express 27(8), 11472–11491 (2019).
[Crossref]

Heikenfeld, J.

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97(6), 1078–1096 (2009).
[Crossref]

Hofmann, U.

U. Hofmann, J. Janes, and H. Quenzer, “High-q mems resonators for laser beam scanning displays,” Micromachines 3(2), 509–528 (2012).
[Crossref]

Hornbeck, L. J.

L. J. Hornbeck, “128 × 128 deformable mirror device,” IEEE Trans. Electron Devices 30(5), 539–545 (1983).
[Crossref]

Hosting, L.

J. Kim, C. Oh, M. J. Escuti, L. Hosting, and S. Serati, “Wide-angle nonmechanical beam steering using thin liquid crystal polarization gratings,” Proc. SPIE 7093, 709302 (2008).
[Crossref]

Ishihara, Y.

T. Ota, H. Fukuyama, Y. Ishihara, H. Tanaka, and T. Takamatsu, “In situ fluorescence imaging of organs through compact scanning head for confocal laser microscopy,” J. Biomed. Opt. 10(2), 024010 (2005).
[Crossref]

Janes, J.

U. Hofmann, J. Janes, and H. Quenzer, “High-q mems resonators for laser beam scanning displays,” Micromachines 3(2), 509–528 (2012).
[Crossref]

Jung, G. S.

J. H. Sim, J. Kim, C. Kim, D. Shin, J. Lee, G. Koo, G. S. Jung, and Y. H. Won, “Novel biconvex structure electrowetting liquid lenticular lens for 2D/3D convertible display,” Sci. Rep. 8(1), 15416 (2018).
[Crossref]

Kim, C.

J. H. Sim, J. Kim, C. Kim, D. Shin, J. Lee, G. Koo, G. S. Jung, and Y. H. Won, “Novel biconvex structure electrowetting liquid lenticular lens for 2D/3D convertible display,” Sci. Rep. 8(1), 15416 (2018).
[Crossref]

Y. H. Won, J. Kim, C. Kim, J. Lee, D. Shin, G. Koo, and J. H. Sim, “Autostereoscopic three-dimensional displays based on electrowetting liquid lenses,” Opt. Eng. 57(6), 061618 (2018).
[Crossref]

J. Lee, J. Kim, C. Kim, D. Shin, G. Koo, J. H. Sim, and Y. H. Won, “Improving the performance of an electrowetting lenticular lens array by using a thin polycarbonate chamber,” Opt. Express 24(26), 29972–29983 (2016).
[Crossref]

W. C. Nelson and C. Kim, “Droplet actuation by electrowetting-on-dielectric (EWOD): A review,” J. Adhes. Sci. Technol. 26(12-17), 1–25 (2012).
[Crossref]

Kim, J.

Y. H. Won, J. Kim, C. Kim, J. Lee, D. Shin, G. Koo, and J. H. Sim, “Autostereoscopic three-dimensional displays based on electrowetting liquid lenses,” Opt. Eng. 57(6), 061618 (2018).
[Crossref]

J. H. Sim, J. Kim, C. Kim, D. Shin, J. Lee, G. Koo, G. S. Jung, and Y. H. Won, “Novel biconvex structure electrowetting liquid lenticular lens for 2D/3D convertible display,” Sci. Rep. 8(1), 15416 (2018).
[Crossref]

J. Lee, J. Kim, C. Kim, D. Shin, G. Koo, J. H. Sim, and Y. H. Won, “Improving the performance of an electrowetting lenticular lens array by using a thin polycarbonate chamber,” Opt. Express 24(26), 29972–29983 (2016).
[Crossref]

J. Kim, C. Oh, M. J. Escuti, L. Hosting, and S. Serati, “Wide-angle nonmechanical beam steering using thin liquid crystal polarization gratings,” Proc. SPIE 7093, 709302 (2008).
[Crossref]

Koo, G.

Y. H. Won, J. Kim, C. Kim, J. Lee, D. Shin, G. Koo, and J. H. Sim, “Autostereoscopic three-dimensional displays based on electrowetting liquid lenses,” Opt. Eng. 57(6), 061618 (2018).
[Crossref]

J. H. Sim, J. Kim, C. Kim, D. Shin, J. Lee, G. Koo, G. S. Jung, and Y. H. Won, “Novel biconvex structure electrowetting liquid lenticular lens for 2D/3D convertible display,” Sci. Rep. 8(1), 15416 (2018).
[Crossref]

J. Lee, J. Kim, C. Kim, D. Shin, G. Koo, J. H. Sim, and Y. H. Won, “Improving the performance of an electrowetting lenticular lens array by using a thin polycarbonate chamber,” Opt. Express 24(26), 29972–29983 (2016).
[Crossref]

Kopp, D.

Kreminska, L.

O. Pishnyak, L. Kreminska, O. D. Lavrentovich, J. J. Pouch, F. A. Miranda, and B. K. Winker, “Liquid crystal digital beam steering device based on decoupled birefringent deflector and polarization rotator,” Mol. Cryst. Liq. Cryst. 433(1), 279–295 (2005).
[Crossref]

Lavrentovich, O. D.

O. Pishnyak, L. Kreminska, O. D. Lavrentovich, J. J. Pouch, F. A. Miranda, and B. K. Winker, “Liquid crystal digital beam steering device based on decoupled birefringent deflector and polarization rotator,” Mol. Cryst. Liq. Cryst. 433(1), 279–295 (2005).
[Crossref]

Lechleiter, J. D.

J. D. Lechleiter, D.-T. Lin, and I. Sieneart, “Multi-photon laser scanning microscopy using an acoustic optical deflector,” Biophys. J. 83(4), 2292–2299 (2002).
[Crossref]

Lee, J.

Y. H. Won, J. Kim, C. Kim, J. Lee, D. Shin, G. Koo, and J. H. Sim, “Autostereoscopic three-dimensional displays based on electrowetting liquid lenses,” Opt. Eng. 57(6), 061618 (2018).
[Crossref]

J. H. Sim, J. Kim, C. Kim, D. Shin, J. Lee, G. Koo, G. S. Jung, and Y. H. Won, “Novel biconvex structure electrowetting liquid lenticular lens for 2D/3D convertible display,” Sci. Rep. 8(1), 15416 (2018).
[Crossref]

J. Lee, J. Kim, C. Kim, D. Shin, G. Koo, J. H. Sim, and Y. H. Won, “Improving the performance of an electrowetting lenticular lens array by using a thin polycarbonate chamber,” Opt. Express 24(26), 29972–29983 (2016).
[Crossref]

Lehmann, L.

Lim, W. Y.

Lin, D.-T.

J. D. Lechleiter, D.-T. Lin, and I. Sieneart, “Multi-photon laser scanning microscopy using an acoustic optical deflector,” Biophys. J. 83(4), 2292–2299 (2002).
[Crossref]

Lin, Y.

Lindle, J.

Lohr, U.

A. Wehr and U. Lohr, “Airborne laser scanning—an introduction and overview,” ISPRS J. Photogramm. Remote Sens. 54(2-3), 68–82 (1999).
[Crossref]

McManamon, P. F.

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97(6), 1078–1096 (2009).
[Crossref]

Miranda, F. A.

O. Pishnyak, L. Kreminska, O. D. Lavrentovich, J. J. Pouch, F. A. Miranda, and B. K. Winker, “Liquid crystal digital beam steering device based on decoupled birefringent deflector and polarization rotator,” Mol. Cryst. Liq. Cryst. 433(1), 279–295 (2005).
[Crossref]

Mozina, J.

J. Diaci, D. Bracun, A. Gorkic, and J. Mozina, “Rapid and flexible laser marking and engraving of tilted and curved surfaces,” Opt. Laser. Eng. 49(2), 195–199 (2011).
[Crossref]

Mugele, F.

F. Mugele and J. C. Baret, “Electrowetting: From basics to applications,” J. Phys.: Condens. Matter 17(28), R705–R774 (2005).
[Crossref]

Nelson, W. C.

W. C. Nelson and C. Kim, “Droplet actuation by electrowetting-on-dielectric (EWOD): A review,” J. Adhes. Sci. Technol. 26(12-17), 1–25 (2012).
[Crossref]

Oh, C.

J. Kim, C. Oh, M. J. Escuti, L. Hosting, and S. Serati, “Wide-angle nonmechanical beam steering using thin liquid crystal polarization gratings,” Proc. SPIE 7093, 709302 (2008).
[Crossref]

Ota, T.

T. Ota, H. Fukuyama, Y. Ishihara, H. Tanaka, and T. Takamatsu, “In situ fluorescence imaging of organs through compact scanning head for confocal laser microscopy,” J. Biomed. Opt. 10(2), 024010 (2005).
[Crossref]

Park, S. Y.

C. E. Clement and S. Y. Park, “High-performance beam steering using electrowetting-driven liquid prism,” Appl. Phys. Lett. 108(19), 191601 (2016).
[Crossref]

Petrovskaya, A.

A. Petrovskaya and S. Thrun, “Model based vehicle detection and tracking for autonomous urban driving,” Auton. Robot. 26(2-3), 123–139 (2009).
[Crossref]

Philip, J. B.

B. D. Duncan, J. B. Philip, and S. Vassili, “Wide angle achromatic prism beam steering for infrared countermeasure applications,” Opt. Eng. 42(4), 1038–1047 (2003).
[Crossref]

Pishnyak, O.

O. Pishnyak, L. Kreminska, O. D. Lavrentovich, J. J. Pouch, F. A. Miranda, and B. K. Winker, “Liquid crystal digital beam steering device based on decoupled birefringent deflector and polarization rotator,” Mol. Cryst. Liq. Cryst. 433(1), 279–295 (2005).
[Crossref]

Potenza, R. M.

M. G. da Silva, D. W. DeRoo, M. J. Tracy, A. Rybaltowski, C. G. Caflisch, and R. M. Potenza, “Ladar using mems scanning,” US Patent 20120236379 A1 (2012).

Pouch, J. J.

O. Pishnyak, L. Kreminska, O. D. Lavrentovich, J. J. Pouch, F. A. Miranda, and B. K. Winker, “Liquid crystal digital beam steering device based on decoupled birefringent deflector and polarization rotator,” Mol. Cryst. Liq. Cryst. 433(1), 279–295 (2005).
[Crossref]

Quenzer, H.

U. Hofmann, J. Janes, and H. Quenzer, “High-q mems resonators for laser beam scanning displays,” Micromachines 3(2), 509–528 (2012).
[Crossref]

Ren, H.

H. Ren, S. Xu, and S. T. Wu, “Effects of gravity on the shape of liquid droplets,” Opt. Commun. 283(17), 3255–3258 (2010).
[Crossref]

H. Ren, S. Xu, and S. Wu, “Deformable liquid droplets for optical beam control,” Opt. Express 18(11), 11904–11910 (2010).
[Crossref]

Reza, S. A.

S. A. Reza and N. A. Riza, “A liquid lens-based broadband variable fiber optical attenuator,” Opt. Commun. 282(7), 1298–1303 (2009).
[Crossref]

Riza, N. A.

S. A. Reza and N. A. Riza, “A liquid lens-based broadband variable fiber optical attenuator,” Opt. Commun. 282(7), 1298–1303 (2009).
[Crossref]

Rybaltowski, A.

M. G. da Silva, D. W. DeRoo, M. J. Tracy, A. Rybaltowski, C. G. Caflisch, and R. M. Potenza, “Ladar using mems scanning,” US Patent 20120236379 A1 (2012).

Serati, S.

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97(6), 1078–1096 (2009).
[Crossref]

J. Kim, C. Oh, M. J. Escuti, L. Hosting, and S. Serati, “Wide-angle nonmechanical beam steering using thin liquid crystal polarization gratings,” Proc. SPIE 7093, 709302 (2008).
[Crossref]

Shin, D.

Y. H. Won, J. Kim, C. Kim, J. Lee, D. Shin, G. Koo, and J. H. Sim, “Autostereoscopic three-dimensional displays based on electrowetting liquid lenses,” Opt. Eng. 57(6), 061618 (2018).
[Crossref]

J. H. Sim, J. Kim, C. Kim, D. Shin, J. Lee, G. Koo, G. S. Jung, and Y. H. Won, “Novel biconvex structure electrowetting liquid lenticular lens for 2D/3D convertible display,” Sci. Rep. 8(1), 15416 (2018).
[Crossref]

J. Lee, J. Kim, C. Kim, D. Shin, G. Koo, J. H. Sim, and Y. H. Won, “Improving the performance of an electrowetting lenticular lens array by using a thin polycarbonate chamber,” Opt. Express 24(26), 29972–29983 (2016).
[Crossref]

Sieneart, I.

J. D. Lechleiter, D.-T. Lin, and I. Sieneart, “Multi-photon laser scanning microscopy using an acoustic optical deflector,” Biophys. J. 83(4), 2292–2299 (2002).
[Crossref]

Sim, J. H.

Y. H. Won, J. Kim, C. Kim, J. Lee, D. Shin, G. Koo, and J. H. Sim, “Autostereoscopic three-dimensional displays based on electrowetting liquid lenses,” Opt. Eng. 57(6), 061618 (2018).
[Crossref]

J. H. Sim, J. Kim, C. Kim, D. Shin, J. Lee, G. Koo, G. S. Jung, and Y. H. Won, “Novel biconvex structure electrowetting liquid lenticular lens for 2D/3D convertible display,” Sci. Rep. 8(1), 15416 (2018).
[Crossref]

J. Lee, J. Kim, C. Kim, D. Shin, G. Koo, J. H. Sim, and Y. H. Won, “Improving the performance of an electrowetting lenticular lens array by using a thin polycarbonate chamber,” Opt. Express 24(26), 29972–29983 (2016).
[Crossref]

Supekar, O. D.

Takamatsu, T.

T. Ota, H. Fukuyama, Y. Ishihara, H. Tanaka, and T. Takamatsu, “In situ fluorescence imaging of organs through compact scanning head for confocal laser microscopy,” J. Biomed. Opt. 10(2), 024010 (2005).
[Crossref]

Tan, G.

Tanaka, H.

T. Ota, H. Fukuyama, Y. Ishihara, H. Tanaka, and T. Takamatsu, “In situ fluorescence imaging of organs through compact scanning head for confocal laser microscopy,” J. Biomed. Opt. 10(2), 024010 (2005).
[Crossref]

Thrun, S.

A. Petrovskaya and S. Thrun, “Model based vehicle detection and tracking for autonomous urban driving,” Auton. Robot. 26(2-3), 123–139 (2009).
[Crossref]

Tracy, M. J.

M. G. da Silva, D. W. DeRoo, M. J. Tracy, A. Rybaltowski, C. G. Caflisch, and R. M. Potenza, “Ladar using mems scanning,” US Patent 20120236379 A1 (2012).

Vassili, S.

B. D. Duncan, J. B. Philip, and S. Vassili, “Wide angle achromatic prism beam steering for infrared countermeasure applications,” Opt. Eng. 42(4), 1038–1047 (2003).
[Crossref]

Watnik, A.

Watson, E. A.

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97(6), 1078–1096 (2009).
[Crossref]

Wehr, A.

A. Wehr and U. Lohr, “Airborne laser scanning—an introduction and overview,” ISPRS J. Photogramm. Remote Sens. 54(2-3), 68–82 (1999).
[Crossref]

Winker, B. K.

O. Pishnyak, L. Kreminska, O. D. Lavrentovich, J. J. Pouch, F. A. Miranda, and B. K. Winker, “Liquid crystal digital beam steering device based on decoupled birefringent deflector and polarization rotator,” Mol. Cryst. Liq. Cryst. 433(1), 279–295 (2005).
[Crossref]

Won, Y. H.

Y. H. Won, J. Kim, C. Kim, J. Lee, D. Shin, G. Koo, and J. H. Sim, “Autostereoscopic three-dimensional displays based on electrowetting liquid lenses,” Opt. Eng. 57(6), 061618 (2018).
[Crossref]

J. H. Sim, J. Kim, C. Kim, D. Shin, J. Lee, G. Koo, G. S. Jung, and Y. H. Won, “Novel biconvex structure electrowetting liquid lenticular lens for 2D/3D convertible display,” Sci. Rep. 8(1), 15416 (2018).
[Crossref]

J. Lee, J. Kim, C. Kim, D. Shin, G. Koo, J. H. Sim, and Y. H. Won, “Improving the performance of an electrowetting lenticular lens array by using a thin polycarbonate chamber,” Opt. Express 24(26), 29972–29983 (2016).
[Crossref]

H. Choi and Y. H. Won, “Fluidic Lens of Floating Water Using Intermediate Hydrophilic Layer Based on Electrowetting,” IEEE Photonics Technol. Lett. 25(18), 1829–1831 (2013).
[Crossref]

Wu, S.

Wu, S. T.

Z. He, F. Gou, R. Chen, K. Yin, T. Zhan, and S. T. Wu, “Liquid crystal beam steering devices: Principles, recent advances, and future developments,” Crystals 9(6), 292 (2019).
[Crossref]

H. Ren, S. Xu, and S. T. Wu, “Effects of gravity on the shape of liquid droplets,” Opt. Commun. 283(17), 3255–3258 (2010).
[Crossref]

Xie, H.

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97(6), 1078–1096 (2009).
[Crossref]

Xu, S.

H. Ren, S. Xu, and S. T. Wu, “Effects of gravity on the shape of liquid droplets,” Opt. Commun. 283(17), 3255–3258 (2010).
[Crossref]

H. Ren, S. Xu, and S. Wu, “Deformable liquid droplets for optical beam control,” Opt. Express 18(11), 11904–11910 (2010).
[Crossref]

Yin, K.

Z. He, F. Gou, R. Chen, K. Yin, T. Zhan, and S. T. Wu, “Liquid crystal beam steering devices: Principles, recent advances, and future developments,” Crystals 9(6), 292 (2019).
[Crossref]

Zappe, H.

Zhan, T.

Z. He, F. Gou, R. Chen, K. Yin, T. Zhan, and S. T. Wu, “Liquid crystal beam steering devices: Principles, recent advances, and future developments,” Crystals 9(6), 292 (2019).
[Crossref]

Zohrabi, M.

Appl. Opt. (2)

Appl. Phys. Lett. (1)

C. E. Clement and S. Y. Park, “High-performance beam steering using electrowetting-driven liquid prism,” Appl. Phys. Lett. 108(19), 191601 (2016).
[Crossref]

Auton. Robot. (1)

A. Petrovskaya and S. Thrun, “Model based vehicle detection and tracking for autonomous urban driving,” Auton. Robot. 26(2-3), 123–139 (2009).
[Crossref]

Biophys. J. (1)

J. D. Lechleiter, D.-T. Lin, and I. Sieneart, “Multi-photon laser scanning microscopy using an acoustic optical deflector,” Biophys. J. 83(4), 2292–2299 (2002).
[Crossref]

Crystals (1)

Z. He, F. Gou, R. Chen, K. Yin, T. Zhan, and S. T. Wu, “Liquid crystal beam steering devices: Principles, recent advances, and future developments,” Crystals 9(6), 292 (2019).
[Crossref]

IEEE Photonics Technol. Lett. (1)

H. Choi and Y. H. Won, “Fluidic Lens of Floating Water Using Intermediate Hydrophilic Layer Based on Electrowetting,” IEEE Photonics Technol. Lett. 25(18), 1829–1831 (2013).
[Crossref]

IEEE Trans. Electron Devices (1)

L. J. Hornbeck, “128 × 128 deformable mirror device,” IEEE Trans. Electron Devices 30(5), 539–545 (1983).
[Crossref]

ISPRS J. Photogramm. Remote Sens. (1)

A. Wehr and U. Lohr, “Airborne laser scanning—an introduction and overview,” ISPRS J. Photogramm. Remote Sens. 54(2-3), 68–82 (1999).
[Crossref]

J. Adhes. Sci. Technol. (1)

W. C. Nelson and C. Kim, “Droplet actuation by electrowetting-on-dielectric (EWOD): A review,” J. Adhes. Sci. Technol. 26(12-17), 1–25 (2012).
[Crossref]

J. Biomed. Opt. (1)

T. Ota, H. Fukuyama, Y. Ishihara, H. Tanaka, and T. Takamatsu, “In situ fluorescence imaging of organs through compact scanning head for confocal laser microscopy,” J. Biomed. Opt. 10(2), 024010 (2005).
[Crossref]

J. Phys.: Condens. Matter (1)

F. Mugele and J. C. Baret, “Electrowetting: From basics to applications,” J. Phys.: Condens. Matter 17(28), R705–R774 (2005).
[Crossref]

Micromachines (1)

U. Hofmann, J. Janes, and H. Quenzer, “High-q mems resonators for laser beam scanning displays,” Micromachines 3(2), 509–528 (2012).
[Crossref]

Mol. Cryst. Liq. Cryst. (1)

O. Pishnyak, L. Kreminska, O. D. Lavrentovich, J. J. Pouch, F. A. Miranda, and B. K. Winker, “Liquid crystal digital beam steering device based on decoupled birefringent deflector and polarization rotator,” Mol. Cryst. Liq. Cryst. 433(1), 279–295 (2005).
[Crossref]

Opt. Commun. (2)

S. A. Reza and N. A. Riza, “A liquid lens-based broadband variable fiber optical attenuator,” Opt. Commun. 282(7), 1298–1303 (2009).
[Crossref]

H. Ren, S. Xu, and S. T. Wu, “Effects of gravity on the shape of liquid droplets,” Opt. Commun. 283(17), 3255–3258 (2010).
[Crossref]

Opt. Eng. (2)

Y. H. Won, J. Kim, C. Kim, J. Lee, D. Shin, G. Koo, and J. H. Sim, “Autostereoscopic three-dimensional displays based on electrowetting liquid lenses,” Opt. Eng. 57(6), 061618 (2018).
[Crossref]

B. D. Duncan, J. B. Philip, and S. Vassili, “Wide angle achromatic prism beam steering for infrared countermeasure applications,” Opt. Eng. 42(4), 1038–1047 (2003).
[Crossref]

Opt. Express (5)

Opt. Laser. Eng. (1)

J. Diaci, D. Bracun, A. Gorkic, and J. Mozina, “Rapid and flexible laser marking and engraving of tilted and curved surfaces,” Opt. Laser. Eng. 49(2), 195–199 (2011).
[Crossref]

Proc. IEEE (1)

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97(6), 1078–1096 (2009).
[Crossref]

Proc. SPIE (1)

J. Kim, C. Oh, M. J. Escuti, L. Hosting, and S. Serati, “Wide-angle nonmechanical beam steering using thin liquid crystal polarization gratings,” Proc. SPIE 7093, 709302 (2008).
[Crossref]

Sci. Rep. (1)

J. H. Sim, J. Kim, C. Kim, D. Shin, J. Lee, G. Koo, G. S. Jung, and Y. H. Won, “Novel biconvex structure electrowetting liquid lenticular lens for 2D/3D convertible display,” Sci. Rep. 8(1), 15416 (2018).
[Crossref]

Other (1)

M. G. da Silva, D. W. DeRoo, M. J. Tracy, A. Rybaltowski, C. G. Caflisch, and R. M. Potenza, “Ladar using mems scanning,” US Patent 20120236379 A1 (2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. Focal points of the tunable liquid lens depending on the radius of curvature of the lens. (a) 100 mm focal point, (b) 45 mm focal point.
Fig. 2.
Fig. 2. Beam steering direction according to the liquid prism tilting with a flat liquid lens. (a) No tilting, (b) x-axis tilting, (c) y-axis tilting, (d) xy-axis tilting.
Fig. 3.
Fig. 3. Beam steering direction according to the liquid prism tilting with bi-convex lens. (a) No tilting, (b) x-axis tilting, (c) y-axis tilting, (d) xy-axis tilting.
Fig. 4.
Fig. 4. Measurement of the focal length of the liquid lens. (a) Optical setup using a wavefront sensor. (b) Diopter of the liquid lens and the wavefronts measured from the wavefront sensor depending on the applied voltages.
Fig. 5.
Fig. 5. Liquid prism setup. (a) Structure and fabrication of the liquid prism, (b) Schematic of the liquid prism operation based on the voltages applied to the different sidewalls.
Fig. 6.
Fig. 6. Contact angle change of each wall with various applied voltages: (a) 0 V, (b) 40 V, (c) 80 V, (d) 0 V (90 ° rotation), (e) 40 V (90 ° rotation), (f) 80 V (90 ° rotation). (g) Contact angle change of four states (no rotation, rotate 90 ° to the right, rotate 90 ° to the left, flip vertical) according to the applied voltage.
Fig. 7.
Fig. 7. Tilting prism operation when different voltages were applied to the sidewalls: (a) No voltage applied, (b) V1 = 20 V, V3 = 80 V, V2 = V4 = 0 V (side-view) (c) V1 = V3 = 0 V, V2 = 20 V, V4 = 80 V (side-view), (d) V1 = 20 V, V3 = 80 V, V2 = V4 = 40 V. (top-view). (e) Wavefront of the liquid prism when the liquid-liquid interface was flat.
Fig. 8.
Fig. 8. Two-dimensional beam steering measurements. (a) Setup for measuring the steering angle using the liquid prism. (b) Displacement of the light spot when different voltages were applied to the opposite sidewalls. (c) Setup for measuring the steering angle using the liquid lens and liquid prism. (d) Displacement of the light spot when different voltages were applied to the opposite sidewalls.
Fig. 9.
Fig. 9. Schematic of three-dimensional beam steering setup using the liquid lens and the liquid prism at the same time and photograph of the experimental setup.
Fig. 10.
Fig. 10. Three-dimensional beam steering. (a) Displacement of the light spot at L1 = 8 cm, L2 = 10 cm, and L3 = 14 cm. (b) The locations of the beam on the check-patterned paper at different z-axis depths.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

f 1 = ( 1 R 1 f 2 ) 1 ( 1 d f 2 )

Metrics