Abstract

Intracavity optical tweezers have been proposed and demonstrated recently, which allows orders-of-magnitude higher optical confinement with lower-numerical-aperture lens and lower laser power in contrast to the standard optical tweezers. We further investigate its characteristics about the position stability of trapped particles. The dependence of the radial and axial position stability on the laser intensity acting on the particle of 10-µm diameter in intracavity optical tweezers and standard optical tweezers are compared experimentally. Result shows that higher laser intensity can make stronger optical confinement in intracavity optical tweezers under the condition of good trap operation, compared with standard optical tweezers. We demonstrate and analyze the coupling between the particle’s radial and axial motion, and then provide two approaches to reduce it. Our work will benefit the further enhancement of position stability for the trapped particle in intracavity optical tweezers.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Axial optical trapping forces on two particles trapped simultaneously by optical tweezers

Shenghua Xu, Yinmei Li, and Liren Lou
Appl. Opt. 44(13) 2667-2672 (2005)

Observation of asymmetrically dynamic motion of single colloidal particles in a polarized optical trap

Changan Xie, Mumtaz A. Dinno, and Yong-qing Li
Opt. Express 13(5) 1621-1627 (2005)

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Zhu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
    [Crossref]
  2. A. D. Mehta, M. Rief, J. A. Spudich, D. A. Spudich, and R. M. Simmons, “Single-Molecule Biomechanics with Optical Methods,” Science 283(5408), 1689–1695 (1999).
    [Crossref]
  3. M. Zhong, X. Wei, J. Zhou, Z. Wang, and Y. Li, “Trapping red blood cells in living animals using optical tweezers,” Nat. Commun. 4(1), 1768 (2013).
    [Crossref]
  4. T. M. Hoang, R. Pan, J. Ahn, J. Bang, H. Quan, and T. Li, “Experimental Test of the Differential Fluctuation Theorem and a Generalized Jarzynski Equality for Arbitrary Initial States,” Phys. Rev. Lett. 120(8), 080602 (2018).
    [Crossref]
  5. D. J. Evans, E. G. D. Cohen, and G. P. Morriss, “Probability of Second Law Violations in Shearing Steady States,” Phys. Rev. Lett. 71(21), 3616 (1993).
    [Crossref]
  6. G. Wang, E. Sevick, E. Mittag, D. J. Searles, and D. J. Evans, “Experimental Demonstration of Violations of the Second Law of Thermodynamics for Small Systems and Short Time Scales,” Phys. Rev. Lett. 89(5), 050601 (2002).
    [Crossref]
  7. O. Romero-Isart, A. C. Pflanzer, F. Blaser, R. Kaltenbaek, N. Kiesel, M. Aspelmeyer, and J. I. Cirac, “Large Quantum Superpositions and Interference of Massive Nanometer-Sized Objects,” Phys. Rev. Lett. 107(2), 020405 (2011).
    [Crossref]
  8. Y. Chen, “Macroscopic quantum mechanics: theory and experimental concepts of optomechanics,” J. Phys. B: At., Mol. Opt. Phys. 46(10), 104001 (2013).
    [Crossref]
  9. M. O. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
    [Crossref]
  10. G. Ranjit, D. P. Atherton, J. H. Stutz, M. Cunningham, and A. A. Geraci, “Attonewton force detection using microspheres in a dual-beam optical trap in high vacuum,” Phys. Rev. A: At., Mol., Opt. Phys. 91(5), 051805 (2015).
    [Crossref]
  11. J. Millen, T. Deesuwan, P. Barker, and J. Anders, “Nanoscale temperature measurements using non-equilibrium Brownian dynamics of a levitated nanosphere,” Nat. Nanotechnol. 9(6), 425–429 (2014).
    [Crossref]
  12. A. Kotnala, Y. Zheng, J. Fu, and W. Cheng, “Back-focal-plane interferometric detectionof nanoparticles in spatially confined microfluidic channels,” Rev. Sci. Instrum. 90(2), 023107 (2019).
    [Crossref]
  13. W. Xiong, G. Xiao, X. Han, J. Zhou, X. Chen, and H. Luo, “Back-focal-plane displacement detection using side-scattered light in dual-beam fiber-optic traps,” Opt. Express 25(8), 9449–9457 (2017).
    [Crossref]
  14. G. Xiao, K. Yang, H. Luo, X. Chen, and W. Xiong, “Orbital Rotation of Trapped Particle in a Transversely Misaligned Dual-fiber Optical Trap,” IEEE Photonics J. 8(1), 1–8 (2016).
    [Crossref]
  15. K. König, H. Liang, and B. J. Tromberg, “Cell damage by near-IR microbeams,” Nature 377(6544), 20–21 (1995).
    [Crossref]
  16. Y. Liu, L. Fan, Y. E. Lee, N. Fang, S. G. Johnson, and O. Miller, “Optimal Nanoparticle Forces, Torques, and Illumination Fields,” ACS Photonics 6(2), 395–402 (2019).
    [Crossref]
  17. J. J. Gorman, A. Balijepalli, and T. W. Lebrun, “Feedback Control of Optically Trapped Particles,” Springer US, 2012.
  18. A. Ashkin and J. M. Dziedzic, “Feedback stabilization of optically levitated particles,” Appl. Phys. Lett. 30(4), 202–204 (1977).
    [Crossref]
  19. A. Rohrbach and E. H. K. Stelzer, “Three-dimensional position detection of optically trapped dielectric particles,” J. Appl. Phys. 91(8), 5474–5488 (2002).
    [Crossref]
  20. L. Nugent-Glandorf and T. T. Perkins, “Measuring 0.1 nm motion in 1 ms in an optical microscope with differential back-focal-plane detection,” Opt. Lett. 29(22), 2611–2613 (2004).
    [Crossref]
  21. M. T. Valentine, N. R. Guydosh, B. Gutíerrez-Medina, A. N. Fehr, J. O. Andreasson, and S. M. Block, “Precision steering of an optical trap by electro-optic deflection,” Opt. Lett. 33(6), 599–601 (2008).
    [Crossref]
  22. J. Gorman, T. LeBrun, and A. Balijepalli, “Control of optically trapped particles for Brownian motion suppression,” IEEE Trans. Control Syst. Technol.2009.
  23. A. E. Wallin, H. Ojala, and E. Hæggström, “Stiffer optical tweezers through real-time feedback control,” Appl. Phys. Lett. 92(22), 224104 (2008).
    [Crossref]
  24. T. Sandeep, B. A. Andrew, P. Darwin, and G. Jesper, “Dynamic axial stabilization of counter-propagating beam-traps with feedback control,” Opt. Express 18(17), 18217–18222 (2010).
    [Crossref]
  25. F. Kalantarifard, P. Elahi, G. Makey, O. M. Marago, F. O. Ilday, and G. Volpe, “Intracavity optical trapping of microscopic particles in a ring-cavity fiber laser,” Nat. Commun. 10(1), 2683 (2019).
    [Crossref]
  26. Philip H. Jones, O. M. Marago, and G. Volpe, “Optical Tweezers: Principles and Applications,” Cambridge University Press, 2015.
  27. A. Ashkin, “Force of a Single-Beam Gradient Laser Trap on a Dielectric Sphere in the Ray Optics Regime,” Biophys. J. 61(2), 569–582 (1992).
    [Crossref]

2019 (3)

A. Kotnala, Y. Zheng, J. Fu, and W. Cheng, “Back-focal-plane interferometric detectionof nanoparticles in spatially confined microfluidic channels,” Rev. Sci. Instrum. 90(2), 023107 (2019).
[Crossref]

Y. Liu, L. Fan, Y. E. Lee, N. Fang, S. G. Johnson, and O. Miller, “Optimal Nanoparticle Forces, Torques, and Illumination Fields,” ACS Photonics 6(2), 395–402 (2019).
[Crossref]

F. Kalantarifard, P. Elahi, G. Makey, O. M. Marago, F. O. Ilday, and G. Volpe, “Intracavity optical trapping of microscopic particles in a ring-cavity fiber laser,” Nat. Commun. 10(1), 2683 (2019).
[Crossref]

2018 (1)

T. M. Hoang, R. Pan, J. Ahn, J. Bang, H. Quan, and T. Li, “Experimental Test of the Differential Fluctuation Theorem and a Generalized Jarzynski Equality for Arbitrary Initial States,” Phys. Rev. Lett. 120(8), 080602 (2018).
[Crossref]

2017 (1)

2016 (1)

G. Xiao, K. Yang, H. Luo, X. Chen, and W. Xiong, “Orbital Rotation of Trapped Particle in a Transversely Misaligned Dual-fiber Optical Trap,” IEEE Photonics J. 8(1), 1–8 (2016).
[Crossref]

2015 (1)

G. Ranjit, D. P. Atherton, J. H. Stutz, M. Cunningham, and A. A. Geraci, “Attonewton force detection using microspheres in a dual-beam optical trap in high vacuum,” Phys. Rev. A: At., Mol., Opt. Phys. 91(5), 051805 (2015).
[Crossref]

2014 (1)

J. Millen, T. Deesuwan, P. Barker, and J. Anders, “Nanoscale temperature measurements using non-equilibrium Brownian dynamics of a levitated nanosphere,” Nat. Nanotechnol. 9(6), 425–429 (2014).
[Crossref]

2013 (3)

M. Zhong, X. Wei, J. Zhou, Z. Wang, and Y. Li, “Trapping red blood cells in living animals using optical tweezers,” Nat. Commun. 4(1), 1768 (2013).
[Crossref]

Y. Chen, “Macroscopic quantum mechanics: theory and experimental concepts of optomechanics,” J. Phys. B: At., Mol. Opt. Phys. 46(10), 104001 (2013).
[Crossref]

M. O. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[Crossref]

2011 (1)

O. Romero-Isart, A. C. Pflanzer, F. Blaser, R. Kaltenbaek, N. Kiesel, M. Aspelmeyer, and J. I. Cirac, “Large Quantum Superpositions and Interference of Massive Nanometer-Sized Objects,” Phys. Rev. Lett. 107(2), 020405 (2011).
[Crossref]

2010 (1)

2008 (2)

M. T. Valentine, N. R. Guydosh, B. Gutíerrez-Medina, A. N. Fehr, J. O. Andreasson, and S. M. Block, “Precision steering of an optical trap by electro-optic deflection,” Opt. Lett. 33(6), 599–601 (2008).
[Crossref]

A. E. Wallin, H. Ojala, and E. Hæggström, “Stiffer optical tweezers through real-time feedback control,” Appl. Phys. Lett. 92(22), 224104 (2008).
[Crossref]

2004 (1)

2002 (2)

A. Rohrbach and E. H. K. Stelzer, “Three-dimensional position detection of optically trapped dielectric particles,” J. Appl. Phys. 91(8), 5474–5488 (2002).
[Crossref]

G. Wang, E. Sevick, E. Mittag, D. J. Searles, and D. J. Evans, “Experimental Demonstration of Violations of the Second Law of Thermodynamics for Small Systems and Short Time Scales,” Phys. Rev. Lett. 89(5), 050601 (2002).
[Crossref]

1999 (1)

A. D. Mehta, M. Rief, J. A. Spudich, D. A. Spudich, and R. M. Simmons, “Single-Molecule Biomechanics with Optical Methods,” Science 283(5408), 1689–1695 (1999).
[Crossref]

1995 (1)

K. König, H. Liang, and B. J. Tromberg, “Cell damage by near-IR microbeams,” Nature 377(6544), 20–21 (1995).
[Crossref]

1993 (1)

D. J. Evans, E. G. D. Cohen, and G. P. Morriss, “Probability of Second Law Violations in Shearing Steady States,” Phys. Rev. Lett. 71(21), 3616 (1993).
[Crossref]

1992 (1)

A. Ashkin, “Force of a Single-Beam Gradient Laser Trap on a Dielectric Sphere in the Ray Optics Regime,” Biophys. J. 61(2), 569–582 (1992).
[Crossref]

1986 (1)

1977 (1)

A. Ashkin and J. M. Dziedzic, “Feedback stabilization of optically levitated particles,” Appl. Phys. Lett. 30(4), 202–204 (1977).
[Crossref]

Ahn, J.

T. M. Hoang, R. Pan, J. Ahn, J. Bang, H. Quan, and T. Li, “Experimental Test of the Differential Fluctuation Theorem and a Generalized Jarzynski Equality for Arbitrary Initial States,” Phys. Rev. Lett. 120(8), 080602 (2018).
[Crossref]

Anders, J.

J. Millen, T. Deesuwan, P. Barker, and J. Anders, “Nanoscale temperature measurements using non-equilibrium Brownian dynamics of a levitated nanosphere,” Nat. Nanotechnol. 9(6), 425–429 (2014).
[Crossref]

Andreasson, J. O.

Andrew, B. A.

Ashkin, A.

A. Ashkin, “Force of a Single-Beam Gradient Laser Trap on a Dielectric Sphere in the Ray Optics Regime,” Biophys. J. 61(2), 569–582 (1992).
[Crossref]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Zhu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
[Crossref]

A. Ashkin and J. M. Dziedzic, “Feedback stabilization of optically levitated particles,” Appl. Phys. Lett. 30(4), 202–204 (1977).
[Crossref]

Aspelmeyer, M.

O. Romero-Isart, A. C. Pflanzer, F. Blaser, R. Kaltenbaek, N. Kiesel, M. Aspelmeyer, and J. I. Cirac, “Large Quantum Superpositions and Interference of Massive Nanometer-Sized Objects,” Phys. Rev. Lett. 107(2), 020405 (2011).
[Crossref]

Atherton, D. P.

G. Ranjit, D. P. Atherton, J. H. Stutz, M. Cunningham, and A. A. Geraci, “Attonewton force detection using microspheres in a dual-beam optical trap in high vacuum,” Phys. Rev. A: At., Mol., Opt. Phys. 91(5), 051805 (2015).
[Crossref]

Balijepalli, A.

J. J. Gorman, A. Balijepalli, and T. W. Lebrun, “Feedback Control of Optically Trapped Particles,” Springer US, 2012.

J. Gorman, T. LeBrun, and A. Balijepalli, “Control of optically trapped particles for Brownian motion suppression,” IEEE Trans. Control Syst. Technol.2009.

Bang, J.

T. M. Hoang, R. Pan, J. Ahn, J. Bang, H. Quan, and T. Li, “Experimental Test of the Differential Fluctuation Theorem and a Generalized Jarzynski Equality for Arbitrary Initial States,” Phys. Rev. Lett. 120(8), 080602 (2018).
[Crossref]

Barker, P.

J. Millen, T. Deesuwan, P. Barker, and J. Anders, “Nanoscale temperature measurements using non-equilibrium Brownian dynamics of a levitated nanosphere,” Nat. Nanotechnol. 9(6), 425–429 (2014).
[Crossref]

Bjorkholm, J. E.

Blaser, F.

O. Romero-Isart, A. C. Pflanzer, F. Blaser, R. Kaltenbaek, N. Kiesel, M. Aspelmeyer, and J. I. Cirac, “Large Quantum Superpositions and Interference of Massive Nanometer-Sized Objects,” Phys. Rev. Lett. 107(2), 020405 (2011).
[Crossref]

Block, S. M.

Chen, X.

W. Xiong, G. Xiao, X. Han, J. Zhou, X. Chen, and H. Luo, “Back-focal-plane displacement detection using side-scattered light in dual-beam fiber-optic traps,” Opt. Express 25(8), 9449–9457 (2017).
[Crossref]

G. Xiao, K. Yang, H. Luo, X. Chen, and W. Xiong, “Orbital Rotation of Trapped Particle in a Transversely Misaligned Dual-fiber Optical Trap,” IEEE Photonics J. 8(1), 1–8 (2016).
[Crossref]

Chen, Y.

Y. Chen, “Macroscopic quantum mechanics: theory and experimental concepts of optomechanics,” J. Phys. B: At., Mol. Opt. Phys. 46(10), 104001 (2013).
[Crossref]

Cheng, W.

A. Kotnala, Y. Zheng, J. Fu, and W. Cheng, “Back-focal-plane interferometric detectionof nanoparticles in spatially confined microfluidic channels,” Rev. Sci. Instrum. 90(2), 023107 (2019).
[Crossref]

Cirac, J. I.

O. Romero-Isart, A. C. Pflanzer, F. Blaser, R. Kaltenbaek, N. Kiesel, M. Aspelmeyer, and J. I. Cirac, “Large Quantum Superpositions and Interference of Massive Nanometer-Sized Objects,” Phys. Rev. Lett. 107(2), 020405 (2011).
[Crossref]

Cohen, E. G. D.

D. J. Evans, E. G. D. Cohen, and G. P. Morriss, “Probability of Second Law Violations in Shearing Steady States,” Phys. Rev. Lett. 71(21), 3616 (1993).
[Crossref]

Cunningham, M.

G. Ranjit, D. P. Atherton, J. H. Stutz, M. Cunningham, and A. A. Geraci, “Attonewton force detection using microspheres in a dual-beam optical trap in high vacuum,” Phys. Rev. A: At., Mol., Opt. Phys. 91(5), 051805 (2015).
[Crossref]

Darwin, P.

Deesuwan, T.

J. Millen, T. Deesuwan, P. Barker, and J. Anders, “Nanoscale temperature measurements using non-equilibrium Brownian dynamics of a levitated nanosphere,” Nat. Nanotechnol. 9(6), 425–429 (2014).
[Crossref]

Dziedzic, J. M.

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Zhu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
[Crossref]

A. Ashkin and J. M. Dziedzic, “Feedback stabilization of optically levitated particles,” Appl. Phys. Lett. 30(4), 202–204 (1977).
[Crossref]

Elahi, P.

F. Kalantarifard, P. Elahi, G. Makey, O. M. Marago, F. O. Ilday, and G. Volpe, “Intracavity optical trapping of microscopic particles in a ring-cavity fiber laser,” Nat. Commun. 10(1), 2683 (2019).
[Crossref]

Evans, D. J.

G. Wang, E. Sevick, E. Mittag, D. J. Searles, and D. J. Evans, “Experimental Demonstration of Violations of the Second Law of Thermodynamics for Small Systems and Short Time Scales,” Phys. Rev. Lett. 89(5), 050601 (2002).
[Crossref]

D. J. Evans, E. G. D. Cohen, and G. P. Morriss, “Probability of Second Law Violations in Shearing Steady States,” Phys. Rev. Lett. 71(21), 3616 (1993).
[Crossref]

Fan, L.

Y. Liu, L. Fan, Y. E. Lee, N. Fang, S. G. Johnson, and O. Miller, “Optimal Nanoparticle Forces, Torques, and Illumination Fields,” ACS Photonics 6(2), 395–402 (2019).
[Crossref]

Fang, N.

Y. Liu, L. Fan, Y. E. Lee, N. Fang, S. G. Johnson, and O. Miller, “Optimal Nanoparticle Forces, Torques, and Illumination Fields,” ACS Photonics 6(2), 395–402 (2019).
[Crossref]

Fehr, A. N.

Ferrari, A. C.

M. O. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[Crossref]

Fu, J.

A. Kotnala, Y. Zheng, J. Fu, and W. Cheng, “Back-focal-plane interferometric detectionof nanoparticles in spatially confined microfluidic channels,” Rev. Sci. Instrum. 90(2), 023107 (2019).
[Crossref]

Geraci, A. A.

G. Ranjit, D. P. Atherton, J. H. Stutz, M. Cunningham, and A. A. Geraci, “Attonewton force detection using microspheres in a dual-beam optical trap in high vacuum,” Phys. Rev. A: At., Mol., Opt. Phys. 91(5), 051805 (2015).
[Crossref]

Gorman, J.

J. Gorman, T. LeBrun, and A. Balijepalli, “Control of optically trapped particles for Brownian motion suppression,” IEEE Trans. Control Syst. Technol.2009.

Gorman, J. J.

J. J. Gorman, A. Balijepalli, and T. W. Lebrun, “Feedback Control of Optically Trapped Particles,” Springer US, 2012.

Gucciardi, P. G.

M. O. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[Crossref]

Gutíerrez-Medina, B.

Guydosh, N. R.

Hæggström, E.

A. E. Wallin, H. Ojala, and E. Hæggström, “Stiffer optical tweezers through real-time feedback control,” Appl. Phys. Lett. 92(22), 224104 (2008).
[Crossref]

Han, X.

Hoang, T. M.

T. M. Hoang, R. Pan, J. Ahn, J. Bang, H. Quan, and T. Li, “Experimental Test of the Differential Fluctuation Theorem and a Generalized Jarzynski Equality for Arbitrary Initial States,” Phys. Rev. Lett. 120(8), 080602 (2018).
[Crossref]

Ilday, F. O.

F. Kalantarifard, P. Elahi, G. Makey, O. M. Marago, F. O. Ilday, and G. Volpe, “Intracavity optical trapping of microscopic particles in a ring-cavity fiber laser,” Nat. Commun. 10(1), 2683 (2019).
[Crossref]

Jesper, G.

Johnson, S. G.

Y. Liu, L. Fan, Y. E. Lee, N. Fang, S. G. Johnson, and O. Miller, “Optimal Nanoparticle Forces, Torques, and Illumination Fields,” ACS Photonics 6(2), 395–402 (2019).
[Crossref]

Jones, P. H.

M. O. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[Crossref]

Jones, Philip H.

Philip H. Jones, O. M. Marago, and G. Volpe, “Optical Tweezers: Principles and Applications,” Cambridge University Press, 2015.

Kalantarifard, F.

F. Kalantarifard, P. Elahi, G. Makey, O. M. Marago, F. O. Ilday, and G. Volpe, “Intracavity optical trapping of microscopic particles in a ring-cavity fiber laser,” Nat. Commun. 10(1), 2683 (2019).
[Crossref]

Kaltenbaek, R.

O. Romero-Isart, A. C. Pflanzer, F. Blaser, R. Kaltenbaek, N. Kiesel, M. Aspelmeyer, and J. I. Cirac, “Large Quantum Superpositions and Interference of Massive Nanometer-Sized Objects,” Phys. Rev. Lett. 107(2), 020405 (2011).
[Crossref]

Kiesel, N.

O. Romero-Isart, A. C. Pflanzer, F. Blaser, R. Kaltenbaek, N. Kiesel, M. Aspelmeyer, and J. I. Cirac, “Large Quantum Superpositions and Interference of Massive Nanometer-Sized Objects,” Phys. Rev. Lett. 107(2), 020405 (2011).
[Crossref]

König, K.

K. König, H. Liang, and B. J. Tromberg, “Cell damage by near-IR microbeams,” Nature 377(6544), 20–21 (1995).
[Crossref]

Kotnala, A.

A. Kotnala, Y. Zheng, J. Fu, and W. Cheng, “Back-focal-plane interferometric detectionof nanoparticles in spatially confined microfluidic channels,” Rev. Sci. Instrum. 90(2), 023107 (2019).
[Crossref]

LeBrun, T.

J. Gorman, T. LeBrun, and A. Balijepalli, “Control of optically trapped particles for Brownian motion suppression,” IEEE Trans. Control Syst. Technol.2009.

Lebrun, T. W.

J. J. Gorman, A. Balijepalli, and T. W. Lebrun, “Feedback Control of Optically Trapped Particles,” Springer US, 2012.

Lee, Y. E.

Y. Liu, L. Fan, Y. E. Lee, N. Fang, S. G. Johnson, and O. Miller, “Optimal Nanoparticle Forces, Torques, and Illumination Fields,” ACS Photonics 6(2), 395–402 (2019).
[Crossref]

Li, T.

T. M. Hoang, R. Pan, J. Ahn, J. Bang, H. Quan, and T. Li, “Experimental Test of the Differential Fluctuation Theorem and a Generalized Jarzynski Equality for Arbitrary Initial States,” Phys. Rev. Lett. 120(8), 080602 (2018).
[Crossref]

Li, Y.

M. Zhong, X. Wei, J. Zhou, Z. Wang, and Y. Li, “Trapping red blood cells in living animals using optical tweezers,” Nat. Commun. 4(1), 1768 (2013).
[Crossref]

Liang, H.

K. König, H. Liang, and B. J. Tromberg, “Cell damage by near-IR microbeams,” Nature 377(6544), 20–21 (1995).
[Crossref]

Liu, Y.

Y. Liu, L. Fan, Y. E. Lee, N. Fang, S. G. Johnson, and O. Miller, “Optimal Nanoparticle Forces, Torques, and Illumination Fields,” ACS Photonics 6(2), 395–402 (2019).
[Crossref]

Luo, H.

W. Xiong, G. Xiao, X. Han, J. Zhou, X. Chen, and H. Luo, “Back-focal-plane displacement detection using side-scattered light in dual-beam fiber-optic traps,” Opt. Express 25(8), 9449–9457 (2017).
[Crossref]

G. Xiao, K. Yang, H. Luo, X. Chen, and W. Xiong, “Orbital Rotation of Trapped Particle in a Transversely Misaligned Dual-fiber Optical Trap,” IEEE Photonics J. 8(1), 1–8 (2016).
[Crossref]

Makey, G.

F. Kalantarifard, P. Elahi, G. Makey, O. M. Marago, F. O. Ilday, and G. Volpe, “Intracavity optical trapping of microscopic particles in a ring-cavity fiber laser,” Nat. Commun. 10(1), 2683 (2019).
[Crossref]

Marago, O. M.

F. Kalantarifard, P. Elahi, G. Makey, O. M. Marago, F. O. Ilday, and G. Volpe, “Intracavity optical trapping of microscopic particles in a ring-cavity fiber laser,” Nat. Commun. 10(1), 2683 (2019).
[Crossref]

Philip H. Jones, O. M. Marago, and G. Volpe, “Optical Tweezers: Principles and Applications,” Cambridge University Press, 2015.

Maragò, M. O.

M. O. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[Crossref]

Mehta, A. D.

A. D. Mehta, M. Rief, J. A. Spudich, D. A. Spudich, and R. M. Simmons, “Single-Molecule Biomechanics with Optical Methods,” Science 283(5408), 1689–1695 (1999).
[Crossref]

Millen, J.

J. Millen, T. Deesuwan, P. Barker, and J. Anders, “Nanoscale temperature measurements using non-equilibrium Brownian dynamics of a levitated nanosphere,” Nat. Nanotechnol. 9(6), 425–429 (2014).
[Crossref]

Miller, O.

Y. Liu, L. Fan, Y. E. Lee, N. Fang, S. G. Johnson, and O. Miller, “Optimal Nanoparticle Forces, Torques, and Illumination Fields,” ACS Photonics 6(2), 395–402 (2019).
[Crossref]

Mittag, E.

G. Wang, E. Sevick, E. Mittag, D. J. Searles, and D. J. Evans, “Experimental Demonstration of Violations of the Second Law of Thermodynamics for Small Systems and Short Time Scales,” Phys. Rev. Lett. 89(5), 050601 (2002).
[Crossref]

Morriss, G. P.

D. J. Evans, E. G. D. Cohen, and G. P. Morriss, “Probability of Second Law Violations in Shearing Steady States,” Phys. Rev. Lett. 71(21), 3616 (1993).
[Crossref]

Nugent-Glandorf, L.

Ojala, H.

A. E. Wallin, H. Ojala, and E. Hæggström, “Stiffer optical tweezers through real-time feedback control,” Appl. Phys. Lett. 92(22), 224104 (2008).
[Crossref]

Pan, R.

T. M. Hoang, R. Pan, J. Ahn, J. Bang, H. Quan, and T. Li, “Experimental Test of the Differential Fluctuation Theorem and a Generalized Jarzynski Equality for Arbitrary Initial States,” Phys. Rev. Lett. 120(8), 080602 (2018).
[Crossref]

Perkins, T. T.

Pflanzer, A. C.

O. Romero-Isart, A. C. Pflanzer, F. Blaser, R. Kaltenbaek, N. Kiesel, M. Aspelmeyer, and J. I. Cirac, “Large Quantum Superpositions and Interference of Massive Nanometer-Sized Objects,” Phys. Rev. Lett. 107(2), 020405 (2011).
[Crossref]

Quan, H.

T. M. Hoang, R. Pan, J. Ahn, J. Bang, H. Quan, and T. Li, “Experimental Test of the Differential Fluctuation Theorem and a Generalized Jarzynski Equality for Arbitrary Initial States,” Phys. Rev. Lett. 120(8), 080602 (2018).
[Crossref]

Ranjit, G.

G. Ranjit, D. P. Atherton, J. H. Stutz, M. Cunningham, and A. A. Geraci, “Attonewton force detection using microspheres in a dual-beam optical trap in high vacuum,” Phys. Rev. A: At., Mol., Opt. Phys. 91(5), 051805 (2015).
[Crossref]

Rief, M.

A. D. Mehta, M. Rief, J. A. Spudich, D. A. Spudich, and R. M. Simmons, “Single-Molecule Biomechanics with Optical Methods,” Science 283(5408), 1689–1695 (1999).
[Crossref]

Rohrbach, A.

A. Rohrbach and E. H. K. Stelzer, “Three-dimensional position detection of optically trapped dielectric particles,” J. Appl. Phys. 91(8), 5474–5488 (2002).
[Crossref]

Romero-Isart, O.

O. Romero-Isart, A. C. Pflanzer, F. Blaser, R. Kaltenbaek, N. Kiesel, M. Aspelmeyer, and J. I. Cirac, “Large Quantum Superpositions and Interference of Massive Nanometer-Sized Objects,” Phys. Rev. Lett. 107(2), 020405 (2011).
[Crossref]

Sandeep, T.

Searles, D. J.

G. Wang, E. Sevick, E. Mittag, D. J. Searles, and D. J. Evans, “Experimental Demonstration of Violations of the Second Law of Thermodynamics for Small Systems and Short Time Scales,” Phys. Rev. Lett. 89(5), 050601 (2002).
[Crossref]

Sevick, E.

G. Wang, E. Sevick, E. Mittag, D. J. Searles, and D. J. Evans, “Experimental Demonstration of Violations of the Second Law of Thermodynamics for Small Systems and Short Time Scales,” Phys. Rev. Lett. 89(5), 050601 (2002).
[Crossref]

Simmons, R. M.

A. D. Mehta, M. Rief, J. A. Spudich, D. A. Spudich, and R. M. Simmons, “Single-Molecule Biomechanics with Optical Methods,” Science 283(5408), 1689–1695 (1999).
[Crossref]

Spudich, D. A.

A. D. Mehta, M. Rief, J. A. Spudich, D. A. Spudich, and R. M. Simmons, “Single-Molecule Biomechanics with Optical Methods,” Science 283(5408), 1689–1695 (1999).
[Crossref]

Spudich, J. A.

A. D. Mehta, M. Rief, J. A. Spudich, D. A. Spudich, and R. M. Simmons, “Single-Molecule Biomechanics with Optical Methods,” Science 283(5408), 1689–1695 (1999).
[Crossref]

Stelzer, E. H. K.

A. Rohrbach and E. H. K. Stelzer, “Three-dimensional position detection of optically trapped dielectric particles,” J. Appl. Phys. 91(8), 5474–5488 (2002).
[Crossref]

Stutz, J. H.

G. Ranjit, D. P. Atherton, J. H. Stutz, M. Cunningham, and A. A. Geraci, “Attonewton force detection using microspheres in a dual-beam optical trap in high vacuum,” Phys. Rev. A: At., Mol., Opt. Phys. 91(5), 051805 (2015).
[Crossref]

Tromberg, B. J.

K. König, H. Liang, and B. J. Tromberg, “Cell damage by near-IR microbeams,” Nature 377(6544), 20–21 (1995).
[Crossref]

Valentine, M. T.

Volpe, G.

F. Kalantarifard, P. Elahi, G. Makey, O. M. Marago, F. O. Ilday, and G. Volpe, “Intracavity optical trapping of microscopic particles in a ring-cavity fiber laser,” Nat. Commun. 10(1), 2683 (2019).
[Crossref]

M. O. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[Crossref]

Philip H. Jones, O. M. Marago, and G. Volpe, “Optical Tweezers: Principles and Applications,” Cambridge University Press, 2015.

Wallin, A. E.

A. E. Wallin, H. Ojala, and E. Hæggström, “Stiffer optical tweezers through real-time feedback control,” Appl. Phys. Lett. 92(22), 224104 (2008).
[Crossref]

Wang, G.

G. Wang, E. Sevick, E. Mittag, D. J. Searles, and D. J. Evans, “Experimental Demonstration of Violations of the Second Law of Thermodynamics for Small Systems and Short Time Scales,” Phys. Rev. Lett. 89(5), 050601 (2002).
[Crossref]

Wang, Z.

M. Zhong, X. Wei, J. Zhou, Z. Wang, and Y. Li, “Trapping red blood cells in living animals using optical tweezers,” Nat. Commun. 4(1), 1768 (2013).
[Crossref]

Wei, X.

M. Zhong, X. Wei, J. Zhou, Z. Wang, and Y. Li, “Trapping red blood cells in living animals using optical tweezers,” Nat. Commun. 4(1), 1768 (2013).
[Crossref]

Xiao, G.

W. Xiong, G. Xiao, X. Han, J. Zhou, X. Chen, and H. Luo, “Back-focal-plane displacement detection using side-scattered light in dual-beam fiber-optic traps,” Opt. Express 25(8), 9449–9457 (2017).
[Crossref]

G. Xiao, K. Yang, H. Luo, X. Chen, and W. Xiong, “Orbital Rotation of Trapped Particle in a Transversely Misaligned Dual-fiber Optical Trap,” IEEE Photonics J. 8(1), 1–8 (2016).
[Crossref]

Xiong, W.

W. Xiong, G. Xiao, X. Han, J. Zhou, X. Chen, and H. Luo, “Back-focal-plane displacement detection using side-scattered light in dual-beam fiber-optic traps,” Opt. Express 25(8), 9449–9457 (2017).
[Crossref]

G. Xiao, K. Yang, H. Luo, X. Chen, and W. Xiong, “Orbital Rotation of Trapped Particle in a Transversely Misaligned Dual-fiber Optical Trap,” IEEE Photonics J. 8(1), 1–8 (2016).
[Crossref]

Yang, K.

G. Xiao, K. Yang, H. Luo, X. Chen, and W. Xiong, “Orbital Rotation of Trapped Particle in a Transversely Misaligned Dual-fiber Optical Trap,” IEEE Photonics J. 8(1), 1–8 (2016).
[Crossref]

Zheng, Y.

A. Kotnala, Y. Zheng, J. Fu, and W. Cheng, “Back-focal-plane interferometric detectionof nanoparticles in spatially confined microfluidic channels,” Rev. Sci. Instrum. 90(2), 023107 (2019).
[Crossref]

Zhong, M.

M. Zhong, X. Wei, J. Zhou, Z. Wang, and Y. Li, “Trapping red blood cells in living animals using optical tweezers,” Nat. Commun. 4(1), 1768 (2013).
[Crossref]

Zhou, J.

W. Xiong, G. Xiao, X. Han, J. Zhou, X. Chen, and H. Luo, “Back-focal-plane displacement detection using side-scattered light in dual-beam fiber-optic traps,” Opt. Express 25(8), 9449–9457 (2017).
[Crossref]

M. Zhong, X. Wei, J. Zhou, Z. Wang, and Y. Li, “Trapping red blood cells in living animals using optical tweezers,” Nat. Commun. 4(1), 1768 (2013).
[Crossref]

Zhu, S.

ACS Photonics (1)

Y. Liu, L. Fan, Y. E. Lee, N. Fang, S. G. Johnson, and O. Miller, “Optimal Nanoparticle Forces, Torques, and Illumination Fields,” ACS Photonics 6(2), 395–402 (2019).
[Crossref]

Appl. Phys. Lett. (2)

A. Ashkin and J. M. Dziedzic, “Feedback stabilization of optically levitated particles,” Appl. Phys. Lett. 30(4), 202–204 (1977).
[Crossref]

A. E. Wallin, H. Ojala, and E. Hæggström, “Stiffer optical tweezers through real-time feedback control,” Appl. Phys. Lett. 92(22), 224104 (2008).
[Crossref]

Biophys. J. (1)

A. Ashkin, “Force of a Single-Beam Gradient Laser Trap on a Dielectric Sphere in the Ray Optics Regime,” Biophys. J. 61(2), 569–582 (1992).
[Crossref]

IEEE Photonics J. (1)

G. Xiao, K. Yang, H. Luo, X. Chen, and W. Xiong, “Orbital Rotation of Trapped Particle in a Transversely Misaligned Dual-fiber Optical Trap,” IEEE Photonics J. 8(1), 1–8 (2016).
[Crossref]

J. Appl. Phys. (1)

A. Rohrbach and E. H. K. Stelzer, “Three-dimensional position detection of optically trapped dielectric particles,” J. Appl. Phys. 91(8), 5474–5488 (2002).
[Crossref]

J. Phys. B: At., Mol. Opt. Phys. (1)

Y. Chen, “Macroscopic quantum mechanics: theory and experimental concepts of optomechanics,” J. Phys. B: At., Mol. Opt. Phys. 46(10), 104001 (2013).
[Crossref]

Nat. Commun. (2)

M. Zhong, X. Wei, J. Zhou, Z. Wang, and Y. Li, “Trapping red blood cells in living animals using optical tweezers,” Nat. Commun. 4(1), 1768 (2013).
[Crossref]

F. Kalantarifard, P. Elahi, G. Makey, O. M. Marago, F. O. Ilday, and G. Volpe, “Intracavity optical trapping of microscopic particles in a ring-cavity fiber laser,” Nat. Commun. 10(1), 2683 (2019).
[Crossref]

Nat. Nanotechnol. (2)

M. O. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[Crossref]

J. Millen, T. Deesuwan, P. Barker, and J. Anders, “Nanoscale temperature measurements using non-equilibrium Brownian dynamics of a levitated nanosphere,” Nat. Nanotechnol. 9(6), 425–429 (2014).
[Crossref]

Nature (1)

K. König, H. Liang, and B. J. Tromberg, “Cell damage by near-IR microbeams,” Nature 377(6544), 20–21 (1995).
[Crossref]

Opt. Express (2)

Opt. Lett. (3)

Phys. Rev. A: At., Mol., Opt. Phys. (1)

G. Ranjit, D. P. Atherton, J. H. Stutz, M. Cunningham, and A. A. Geraci, “Attonewton force detection using microspheres in a dual-beam optical trap in high vacuum,” Phys. Rev. A: At., Mol., Opt. Phys. 91(5), 051805 (2015).
[Crossref]

Phys. Rev. Lett. (4)

T. M. Hoang, R. Pan, J. Ahn, J. Bang, H. Quan, and T. Li, “Experimental Test of the Differential Fluctuation Theorem and a Generalized Jarzynski Equality for Arbitrary Initial States,” Phys. Rev. Lett. 120(8), 080602 (2018).
[Crossref]

D. J. Evans, E. G. D. Cohen, and G. P. Morriss, “Probability of Second Law Violations in Shearing Steady States,” Phys. Rev. Lett. 71(21), 3616 (1993).
[Crossref]

G. Wang, E. Sevick, E. Mittag, D. J. Searles, and D. J. Evans, “Experimental Demonstration of Violations of the Second Law of Thermodynamics for Small Systems and Short Time Scales,” Phys. Rev. Lett. 89(5), 050601 (2002).
[Crossref]

O. Romero-Isart, A. C. Pflanzer, F. Blaser, R. Kaltenbaek, N. Kiesel, M. Aspelmeyer, and J. I. Cirac, “Large Quantum Superpositions and Interference of Massive Nanometer-Sized Objects,” Phys. Rev. Lett. 107(2), 020405 (2011).
[Crossref]

Rev. Sci. Instrum. (1)

A. Kotnala, Y. Zheng, J. Fu, and W. Cheng, “Back-focal-plane interferometric detectionof nanoparticles in spatially confined microfluidic channels,” Rev. Sci. Instrum. 90(2), 023107 (2019).
[Crossref]

Science (1)

A. D. Mehta, M. Rief, J. A. Spudich, D. A. Spudich, and R. M. Simmons, “Single-Molecule Biomechanics with Optical Methods,” Science 283(5408), 1689–1695 (1999).
[Crossref]

Other (3)

J. J. Gorman, A. Balijepalli, and T. W. Lebrun, “Feedback Control of Optically Trapped Particles,” Springer US, 2012.

Philip H. Jones, O. M. Marago, and G. Volpe, “Optical Tweezers: Principles and Applications,” Cambridge University Press, 2015.

J. Gorman, T. LeBrun, and A. Balijepalli, “Control of optically trapped particles for Brownian motion suppression,” IEEE Trans. Control Syst. Technol.2009.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Experimental setup of intracavity optical tweezers.
Fig. 2.
Fig. 2. Comparison of experimentally measured radial (◊, red) and axial (□, blue) confinement efficiency, Cer and Cez, at different trapping power densities, for standard optical tweezers (a)(b) and intracavity optical tweezers (c)(d).
Fig. 3.
Fig. 3. Experimental results of coupling between and radial motions. Radial (dotted curve) and axial (solid curve) particle displacements (a) and laser power in the cavity (b), when an applied step radial displacement (dashed curve, 5 µm, interval time 25s) acts on the particle.
Fig. 4.
Fig. 4. Simulation results for coupling between axial and radial motions, with parameters: λ = 1030 nm, the beam waist w0=1 mm, the focal length of objective f = 10.6 mm, NA = 0.25, the diameter of the polystyrene particle d = 10 µm, the density of the particle ρ = 2.2 g/cm2, the refractive index of the particle n = 1.59, and η=0.89×10−3Pa•s. Radial (dotted curve) and axial (solid curve) particle offsets(a) and the laser power (b) in the cavity corresponding to (a), when an applied step radial displacement (dashed curve, 4 µm, interval time 25 s) acts on the particle.
Fig. 5.
Fig. 5. Simulations for the axial offset δz (a) away from the equilibrium position and the recovery time δt (b) as a function of NA. The error bars stem from many simulations.
Fig. 6.
Fig. 6. Axial offset δz (a) away from equilibrium position and the recovery time δt (b) as a function of medium viscosity. The simulation starts from the medium viscosity η=1×10−6 Pa.s because less than this the particle is not trapped any more.
Fig. 7.
Fig. 7. Time evolution of radial and axial positions after the particle is settled at a radial offset of 3 µm for different medium viscosities: η=2×10−3 Pa•s (a), η=4×10−6 Pa•s(b), η=2×10−6 Pa•s (c) and η=1×10−6 Pa•s(d). δtr and δtz represent the radial and axial recovery times, respectively.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

S r = [ 1 n n ( r i r ¯ ) 2 ] 1 , S z = [ 1 n n ( z i z ¯ ) 2 ] 1 C e r = S r / S r I t , I t , C e z = S z / S z I t I t
C e = k I t k B T
r = m 1 [ F r γ ( r + 2 D W ( r , t ) ) ] z = m 1 [ F z F G γ ( z + 2 D W ( z , t ) ) ] ,
P ( ρ ) = { 0 ρ ρ L P 0 ( ρ 2 / ρ 2 ρ L 2 ρ L 2 1 ) ρ > ρ L ,
F g = Q g ( ρ ) P ( ρ ) F s = Q s ( ρ ) P ( ρ ) ,