Abstract

We investigate the effect of a magnetic field on red, green, and blue CdSe/ZnS quantum dot light-emitting diodes (QDLEDs). Circular multilayer ferromagnetic cobalt/platinum (Co/Pt) disks are deposited on a MgF2 layer covering an Al electrode, and a perpendicular magnetic field is applied to the QDs in the active layer. Carriers injected into the active layer are then trapped and efficiently recombined inside the QDs because of strong carrier localization caused by the perpendicular magnetic field. The luminescence of the QDLEDs in the multilayer increases by 33.31% at 7.5 V, 22.34% at 7.5 V, and 16.73% at 7.0 V compared with that of QDLEDs without the multilayer. The time-resolved photoluminescence of all the QDLEDs also indicates that their increased luminescence results from improved radiative recombination through the stronger carrier localization in the QDs.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Improved efficiency of InGaN/GaN light-emitting diodes with perpendicular magnetic field gradients

Jang-Hwan Han, Jae-Joon Kim, Young-Chul Leem, Sang-Jo Kim, Wonyoung Kwak, Woo-Lim Jeong, BeongKi Cho, Dong-Seon Lee, and Seong-Ju Park
Opt. Express 27(25) 36708-36716 (2019)

Highly efficient hybrid light-emitting device using complex of CdSe/ZnS quantum dots embedded in co-polymer as an active layer

Byoung-Ho Kang, Jun-Seon Seo, Sohee Jeong, Jihye Lee, Chang-Soo Han, Do-Eok Kim, Kyu-Jin Kim, Se-Hyuk Yeom, Dae-Hyuk Kwon, Hak-Rin Kim, and Shin-Won Kang
Opt. Express 18(17) 18303-18311 (2010)

Surface plasmon-enhanced quantum dot light-emitting diodes by incorporating gold nanoparticles

Jiangyong Pan, Jing Chen, Dewei Zhao, Qianqian Huang, Qasim Khan, Xiang Liu, Zhi Tao, Zichen Zhang, and Wei Lei
Opt. Express 24(2) A33-A43 (2016)

References

  • View by:
  • |
  • |
  • |

  1. Y. Shirasaki, G. J. Supran, M. G. Bawendi, and V. Bulović, “Emergence of colloidal quantum-dot light-emitting technologies,” Nat. Photonics 7(1), 13–23 (2013).
    [Crossref]
  2. B. S. Mashford, M. Stevenson, Z. Popovic, C. Hamilton, Z. Zhou, C. Breen, J. Steckel, V. Bulovic, M. Bawendi, S. Coe-Sullivan, and P. T. Kazlas, “High-efficiency quantum-dot light-emitting devices with enhanced charge injection,” Nat. Photonics 7(5), 407–412 (2013).
    [Crossref]
  3. S. Kim, S. H. Im, and S. W. Kim, “Performance of light-emitting-diode based on quantum dots,” Nanoscale 5(12), 5205–5214 (2013).
    [Crossref]
  4. Q. Sun, Y. A. Wang, L. S. Li, D. Wang, T. Zhu, J. Xu, C. Yang, and Y. Li, “Bright, multicoloured light-emitting diodes based on quantum dots,” Nat. Photonics 1(12), 717–722 (2007).
    [Crossref]
  5. J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, “Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted device structure,” Nano Lett. 12(5), 2362–2366 (2012).
    [Crossref]
  6. W. K. Bae and J. Lim, “Nanostructured colloidal quantum dots for efficient electroluminescence devices,” Korean J. Chem. Eng. 36(2), 173–185 (2019).
    [Crossref]
  7. Q. Zhang, X. Gu, Z. Chen, J. Jiang, Z. Zhang, J. Wei, F. Li, X. Jin, Y. Song, and Q. Li, “Enhancing extraction efficiency of quantum dot light-emitting diodes by surface engineering,” Opt. Express 25(15), 17683–17694 (2017).
    [Crossref]
  8. M. S. Kushwaha, “Magneto-optical absorption in semiconducting spherical quantum dots: Influence of the dot-size, confining potential, and magnetic field,” AIP Adv. 4(12), 127151 (2014).
    [Crossref]
  9. G. Weng, W. R. Zhao, S. Q. Chen, H. Akiyama, Z. C. Li, J. P. Liu, and B. P. Zhang, “Strong localization effect and carrier relaxation dynamics in self-assembled InGaN quantum dots emitting in the green,” Nanoscale Res. Lett. 10(1), 31 (2015).
    [Crossref]
  10. P. Jing, J. Zheng, M. Ikezawa, X. Liu, S. Lv, X. Kong, J. Zhao, and Y. Masumoto, “Temperature-dependent photoluminescence of CdSe-core CdS/CdZnS/ZnS-multishell quantum dots,” J. Phys. Chem. C 113(31), 13545–13550 (2009).
    [Crossref]
  11. B. N. Pal, Y. Ghosh, S. Brovelli, R. Laocharoensuk, V. I. Klimov, J. A. Hollingsworth, and H. Htoon, “Giant CdSe/CdS core/shell nanocrystal quantum dots as efficient electroluminescent materials: strong influence of shell thickness on light-emitting diode performance,” Nano Lett. 12(1), 331–336 (2012).
    [Crossref]
  12. M. Larsson, E. Moskalenko, A. Larsson, P. Holtz, C. Verdozzi, C.-O. Almbladh, W. V. Schoenfeld, and P. M. Petroff, “Magnetic field effects on optical and transport properties in InAs/GaAs quantum dots,” Phys. Rev. B 74(24), 245312 (2006).
    [Crossref]
  13. E. Alphandéry, R. J. Nicholas, N. J. Mason, S. G. Lyapin, and P. C. Klipstein, “Photoluminescence of self-assembled InSb quantum dots grown on GaSb as a function of excitation power, temperature, and magnetic field,” Phys. Rev. B 65(11), 115322 (2002).
    [Crossref]
  14. J. Reijniers, F. M. Peeters, and A. Matulis, “Electron scattering on circular symmetric magnetic profiles in a two-dimensional electron gas,” Phys. Rev. B 64(24), 245314 (2001).
    [Crossref]
  15. A. Nogaret, S. J. Bending, and M. Henini, “Resistance resonance effects through magnetic edge states,” Phys. Rev. Lett. 84(10), 2231–2234 (2000).
    [Crossref]
  16. Q. X. Zhao, B. Monemar, P. O. Holtz, T. Lundström, M. Sundaram, J. L. Merz, and A. C. Gossard, “Magnetic-field-induced localization effects on radiative recombination in GaAs/AlxGa1-xAs heterostructures,” Phys. Rev. B 50(11), 7514–7517 (1994).
    [Crossref]
  17. F. Y. Tsai, C. P. Lee, O. Voskoboynikov, H. H. Cheng, J. Shen, and Y. Oka, “Time-resolved photoluminescence study of InGaAs/GaAs quantum wells on (111)B GaAs substrates under magnetic fields,” J. Appl. Phys. 89(12), 7875–7878 (2001).
    [Crossref]
  18. B. Arnaudov, T. Paskova, O. Valassiades, P. P. Paskov, S. Evtimova, B. Monomer, and M. Heuken, “Magnetic-field-induced localization of electrons in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 83(13), 2590–2592 (2003).
    [Crossref]
  19. J. J. Kim, Y. C. Leem, J. W. Kang, J. Kwon, B. Cho, S. Y. Yim, J. H. Baek, and S. J. Park, “Enhancement of the Optical Output Power of InGaN/GaN Multiple Quantum Well Light-Emitting Diodes by a CoFe Ferromagnetic Layer,” ACS Photonics 2(11), 1519–1523 (2015).
    [Crossref]
  20. B. Hu, L. Yan, and M. Shao, “Magnetic-field effects in organic semiconducting materials and devices,” Adv. Mater. 21(14-15), 1500–1516 (2009).
    [Crossref]
  21. J. Kalinowski, M. Cocchi, D. Virgili, P. D. Marco, and V. Fattori, “Magnetic field effects on emission and current in Alq3-based electroluminescent diodes,” Chem. Phys. Lett. 380(5-6), 710–715 (2003).
    [Crossref]
  22. C. J. Sun, Y. Wu, Z. Xu, B. Hu, J. Bai, J. P. Wang, and J. Shen, “Enhancement of quantum efficiency of organic light emitting devices by doping magnetic nanoparticles,” Appl. Phys. Lett. 90(23), 232110 (2007).
    [Crossref]
  23. N. Nakajima, T. Koide, T. Shidara, H. Miyauchi, H. Fukutani, A. Fujimori, K. Iio, T. Katayama, M. Nývlt, and Y. Suzuki, “Perpendicular Magnetic Anisotropy Caused by Interfacial Hybridization via Enhanced Orbital Moment in Co/Pt Multilayers: Magnetic Circular X-Ray Dichroism Study,” Phys. Rev. Lett. 81(23), 5229–5232 (1998).
    [Crossref]
  24. S. Bandiera, R. C. Sousa, B. Rodmacq, and B. Dieny, “Asymmetric interfacial perpendicular magnetic anisotropy in Pt/Co/Pt trilayers,” IEEE Magn. Lett. 2, 3000504 (2011).
    [Crossref]
  25. J. Thiele, C. Boeglin, K. Hricovini, and F. Chevrier, “Magnetic circular x-ray-dichroism study of Co/Pt (111),” Phys. Rev. B 53(18), R11934 (1996).
    [Crossref]
  26. J. H. Han, J. J. Kim, Y. C. Leem, S. J. Kim, W. Kwak, W. L. Jeong, B. Cho, D. S. Lee, and S. J. Park, “Improved efficiency of InGaN/GaN light-emitting diodes with perpendicular magnetic field gradients,” Opt. Express (accepted).
  27. K. S. Novoselov, A. K. Geim, S. V. Dubonos, Y. G. Cornelissens, F. M. Peeters, and J. C. Maan, “Scattering of ballistic electrons at a mesoscopic spot of strong magnetic field,” Phys. Rev. B 65(23), 233312 (2002).
    [Crossref]
  28. O. Ostroverkhova, Handbook of Organic Materials for Electronic and Photonic Devices (Elsevier, 2019).
  29. F. F. Chen, Introduction to plasma physics and controlled fusion (Plenum Press, 1984).
  30. S. Raymond, S. Fafard, P. J. Poole, A. Wojs, P. Hawrylak, C. Gould, A. Sachrajda, and S. Charbonneau, “State-filling and magneto-photoluminescence of excited states in InGaAs/GaAs self-assembled quantum dots,” Superlattices Microstruct. 21(4), 541–558 (1997).
    [Crossref]
  31. Q. Ren, L. Bai, A. Murayama, Z. Chen, and X. Shen, “Magnetic field induced charging effect in a single CdSe quantum dot,” Phys. Status Solidi B 246(4), 791–794 (2009).
    [Crossref]
  32. S. J. Prado, C. Trallero-Giner, A. M. Alcalde, V. López-Richard, and G. E. Marques, “Influence of quantum dot shape on the Landé g-factor determination,” Phys. Rev. B 69(20), 201310 (2004).
    [Crossref]
  33. Y. Gao and X. Peng, “Photogenerated excitons in plain core CdSe nanocrystals with unity radiative decay in single channel: the effects of surface and ligands,” J. Am. Chem. Soc. 137(12), 4230–4235 (2015).
    [Crossref]

2019 (1)

W. K. Bae and J. Lim, “Nanostructured colloidal quantum dots for efficient electroluminescence devices,” Korean J. Chem. Eng. 36(2), 173–185 (2019).
[Crossref]

2017 (1)

2015 (3)

Y. Gao and X. Peng, “Photogenerated excitons in plain core CdSe nanocrystals with unity radiative decay in single channel: the effects of surface and ligands,” J. Am. Chem. Soc. 137(12), 4230–4235 (2015).
[Crossref]

G. Weng, W. R. Zhao, S. Q. Chen, H. Akiyama, Z. C. Li, J. P. Liu, and B. P. Zhang, “Strong localization effect and carrier relaxation dynamics in self-assembled InGaN quantum dots emitting in the green,” Nanoscale Res. Lett. 10(1), 31 (2015).
[Crossref]

J. J. Kim, Y. C. Leem, J. W. Kang, J. Kwon, B. Cho, S. Y. Yim, J. H. Baek, and S. J. Park, “Enhancement of the Optical Output Power of InGaN/GaN Multiple Quantum Well Light-Emitting Diodes by a CoFe Ferromagnetic Layer,” ACS Photonics 2(11), 1519–1523 (2015).
[Crossref]

2014 (1)

M. S. Kushwaha, “Magneto-optical absorption in semiconducting spherical quantum dots: Influence of the dot-size, confining potential, and magnetic field,” AIP Adv. 4(12), 127151 (2014).
[Crossref]

2013 (3)

Y. Shirasaki, G. J. Supran, M. G. Bawendi, and V. Bulović, “Emergence of colloidal quantum-dot light-emitting technologies,” Nat. Photonics 7(1), 13–23 (2013).
[Crossref]

B. S. Mashford, M. Stevenson, Z. Popovic, C. Hamilton, Z. Zhou, C. Breen, J. Steckel, V. Bulovic, M. Bawendi, S. Coe-Sullivan, and P. T. Kazlas, “High-efficiency quantum-dot light-emitting devices with enhanced charge injection,” Nat. Photonics 7(5), 407–412 (2013).
[Crossref]

S. Kim, S. H. Im, and S. W. Kim, “Performance of light-emitting-diode based on quantum dots,” Nanoscale 5(12), 5205–5214 (2013).
[Crossref]

2012 (2)

J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, “Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted device structure,” Nano Lett. 12(5), 2362–2366 (2012).
[Crossref]

B. N. Pal, Y. Ghosh, S. Brovelli, R. Laocharoensuk, V. I. Klimov, J. A. Hollingsworth, and H. Htoon, “Giant CdSe/CdS core/shell nanocrystal quantum dots as efficient electroluminescent materials: strong influence of shell thickness on light-emitting diode performance,” Nano Lett. 12(1), 331–336 (2012).
[Crossref]

2011 (1)

S. Bandiera, R. C. Sousa, B. Rodmacq, and B. Dieny, “Asymmetric interfacial perpendicular magnetic anisotropy in Pt/Co/Pt trilayers,” IEEE Magn. Lett. 2, 3000504 (2011).
[Crossref]

2009 (3)

B. Hu, L. Yan, and M. Shao, “Magnetic-field effects in organic semiconducting materials and devices,” Adv. Mater. 21(14-15), 1500–1516 (2009).
[Crossref]

P. Jing, J. Zheng, M. Ikezawa, X. Liu, S. Lv, X. Kong, J. Zhao, and Y. Masumoto, “Temperature-dependent photoluminescence of CdSe-core CdS/CdZnS/ZnS-multishell quantum dots,” J. Phys. Chem. C 113(31), 13545–13550 (2009).
[Crossref]

Q. Ren, L. Bai, A. Murayama, Z. Chen, and X. Shen, “Magnetic field induced charging effect in a single CdSe quantum dot,” Phys. Status Solidi B 246(4), 791–794 (2009).
[Crossref]

2007 (2)

Q. Sun, Y. A. Wang, L. S. Li, D. Wang, T. Zhu, J. Xu, C. Yang, and Y. Li, “Bright, multicoloured light-emitting diodes based on quantum dots,” Nat. Photonics 1(12), 717–722 (2007).
[Crossref]

C. J. Sun, Y. Wu, Z. Xu, B. Hu, J. Bai, J. P. Wang, and J. Shen, “Enhancement of quantum efficiency of organic light emitting devices by doping magnetic nanoparticles,” Appl. Phys. Lett. 90(23), 232110 (2007).
[Crossref]

2006 (1)

M. Larsson, E. Moskalenko, A. Larsson, P. Holtz, C. Verdozzi, C.-O. Almbladh, W. V. Schoenfeld, and P. M. Petroff, “Magnetic field effects on optical and transport properties in InAs/GaAs quantum dots,” Phys. Rev. B 74(24), 245312 (2006).
[Crossref]

2004 (1)

S. J. Prado, C. Trallero-Giner, A. M. Alcalde, V. López-Richard, and G. E. Marques, “Influence of quantum dot shape on the Landé g-factor determination,” Phys. Rev. B 69(20), 201310 (2004).
[Crossref]

2003 (2)

B. Arnaudov, T. Paskova, O. Valassiades, P. P. Paskov, S. Evtimova, B. Monomer, and M. Heuken, “Magnetic-field-induced localization of electrons in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 83(13), 2590–2592 (2003).
[Crossref]

J. Kalinowski, M. Cocchi, D. Virgili, P. D. Marco, and V. Fattori, “Magnetic field effects on emission and current in Alq3-based electroluminescent diodes,” Chem. Phys. Lett. 380(5-6), 710–715 (2003).
[Crossref]

2002 (2)

K. S. Novoselov, A. K. Geim, S. V. Dubonos, Y. G. Cornelissens, F. M. Peeters, and J. C. Maan, “Scattering of ballistic electrons at a mesoscopic spot of strong magnetic field,” Phys. Rev. B 65(23), 233312 (2002).
[Crossref]

E. Alphandéry, R. J. Nicholas, N. J. Mason, S. G. Lyapin, and P. C. Klipstein, “Photoluminescence of self-assembled InSb quantum dots grown on GaSb as a function of excitation power, temperature, and magnetic field,” Phys. Rev. B 65(11), 115322 (2002).
[Crossref]

2001 (2)

J. Reijniers, F. M. Peeters, and A. Matulis, “Electron scattering on circular symmetric magnetic profiles in a two-dimensional electron gas,” Phys. Rev. B 64(24), 245314 (2001).
[Crossref]

F. Y. Tsai, C. P. Lee, O. Voskoboynikov, H. H. Cheng, J. Shen, and Y. Oka, “Time-resolved photoluminescence study of InGaAs/GaAs quantum wells on (111)B GaAs substrates under magnetic fields,” J. Appl. Phys. 89(12), 7875–7878 (2001).
[Crossref]

2000 (1)

A. Nogaret, S. J. Bending, and M. Henini, “Resistance resonance effects through magnetic edge states,” Phys. Rev. Lett. 84(10), 2231–2234 (2000).
[Crossref]

1998 (1)

N. Nakajima, T. Koide, T. Shidara, H. Miyauchi, H. Fukutani, A. Fujimori, K. Iio, T. Katayama, M. Nývlt, and Y. Suzuki, “Perpendicular Magnetic Anisotropy Caused by Interfacial Hybridization via Enhanced Orbital Moment in Co/Pt Multilayers: Magnetic Circular X-Ray Dichroism Study,” Phys. Rev. Lett. 81(23), 5229–5232 (1998).
[Crossref]

1997 (1)

S. Raymond, S. Fafard, P. J. Poole, A. Wojs, P. Hawrylak, C. Gould, A. Sachrajda, and S. Charbonneau, “State-filling and magneto-photoluminescence of excited states in InGaAs/GaAs self-assembled quantum dots,” Superlattices Microstruct. 21(4), 541–558 (1997).
[Crossref]

1996 (1)

J. Thiele, C. Boeglin, K. Hricovini, and F. Chevrier, “Magnetic circular x-ray-dichroism study of Co/Pt (111),” Phys. Rev. B 53(18), R11934 (1996).
[Crossref]

1994 (1)

Q. X. Zhao, B. Monemar, P. O. Holtz, T. Lundström, M. Sundaram, J. L. Merz, and A. C. Gossard, “Magnetic-field-induced localization effects on radiative recombination in GaAs/AlxGa1-xAs heterostructures,” Phys. Rev. B 50(11), 7514–7517 (1994).
[Crossref]

Akiyama, H.

G. Weng, W. R. Zhao, S. Q. Chen, H. Akiyama, Z. C. Li, J. P. Liu, and B. P. Zhang, “Strong localization effect and carrier relaxation dynamics in self-assembled InGaN quantum dots emitting in the green,” Nanoscale Res. Lett. 10(1), 31 (2015).
[Crossref]

Alcalde, A. M.

S. J. Prado, C. Trallero-Giner, A. M. Alcalde, V. López-Richard, and G. E. Marques, “Influence of quantum dot shape on the Landé g-factor determination,” Phys. Rev. B 69(20), 201310 (2004).
[Crossref]

Almbladh, C.-O.

M. Larsson, E. Moskalenko, A. Larsson, P. Holtz, C. Verdozzi, C.-O. Almbladh, W. V. Schoenfeld, and P. M. Petroff, “Magnetic field effects on optical and transport properties in InAs/GaAs quantum dots,” Phys. Rev. B 74(24), 245312 (2006).
[Crossref]

Alphandéry, E.

E. Alphandéry, R. J. Nicholas, N. J. Mason, S. G. Lyapin, and P. C. Klipstein, “Photoluminescence of self-assembled InSb quantum dots grown on GaSb as a function of excitation power, temperature, and magnetic field,” Phys. Rev. B 65(11), 115322 (2002).
[Crossref]

Arnaudov, B.

B. Arnaudov, T. Paskova, O. Valassiades, P. P. Paskov, S. Evtimova, B. Monomer, and M. Heuken, “Magnetic-field-induced localization of electrons in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 83(13), 2590–2592 (2003).
[Crossref]

Bae, W. K.

W. K. Bae and J. Lim, “Nanostructured colloidal quantum dots for efficient electroluminescence devices,” Korean J. Chem. Eng. 36(2), 173–185 (2019).
[Crossref]

J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, “Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted device structure,” Nano Lett. 12(5), 2362–2366 (2012).
[Crossref]

Baek, J. H.

J. J. Kim, Y. C. Leem, J. W. Kang, J. Kwon, B. Cho, S. Y. Yim, J. H. Baek, and S. J. Park, “Enhancement of the Optical Output Power of InGaN/GaN Multiple Quantum Well Light-Emitting Diodes by a CoFe Ferromagnetic Layer,” ACS Photonics 2(11), 1519–1523 (2015).
[Crossref]

Bai, J.

C. J. Sun, Y. Wu, Z. Xu, B. Hu, J. Bai, J. P. Wang, and J. Shen, “Enhancement of quantum efficiency of organic light emitting devices by doping magnetic nanoparticles,” Appl. Phys. Lett. 90(23), 232110 (2007).
[Crossref]

Bai, L.

Q. Ren, L. Bai, A. Murayama, Z. Chen, and X. Shen, “Magnetic field induced charging effect in a single CdSe quantum dot,” Phys. Status Solidi B 246(4), 791–794 (2009).
[Crossref]

Bandiera, S.

S. Bandiera, R. C. Sousa, B. Rodmacq, and B. Dieny, “Asymmetric interfacial perpendicular magnetic anisotropy in Pt/Co/Pt trilayers,” IEEE Magn. Lett. 2, 3000504 (2011).
[Crossref]

Bawendi, M.

B. S. Mashford, M. Stevenson, Z. Popovic, C. Hamilton, Z. Zhou, C. Breen, J. Steckel, V. Bulovic, M. Bawendi, S. Coe-Sullivan, and P. T. Kazlas, “High-efficiency quantum-dot light-emitting devices with enhanced charge injection,” Nat. Photonics 7(5), 407–412 (2013).
[Crossref]

Bawendi, M. G.

Y. Shirasaki, G. J. Supran, M. G. Bawendi, and V. Bulović, “Emergence of colloidal quantum-dot light-emitting technologies,” Nat. Photonics 7(1), 13–23 (2013).
[Crossref]

Bending, S. J.

A. Nogaret, S. J. Bending, and M. Henini, “Resistance resonance effects through magnetic edge states,” Phys. Rev. Lett. 84(10), 2231–2234 (2000).
[Crossref]

Boeglin, C.

J. Thiele, C. Boeglin, K. Hricovini, and F. Chevrier, “Magnetic circular x-ray-dichroism study of Co/Pt (111),” Phys. Rev. B 53(18), R11934 (1996).
[Crossref]

Breen, C.

B. S. Mashford, M. Stevenson, Z. Popovic, C. Hamilton, Z. Zhou, C. Breen, J. Steckel, V. Bulovic, M. Bawendi, S. Coe-Sullivan, and P. T. Kazlas, “High-efficiency quantum-dot light-emitting devices with enhanced charge injection,” Nat. Photonics 7(5), 407–412 (2013).
[Crossref]

Brovelli, S.

B. N. Pal, Y. Ghosh, S. Brovelli, R. Laocharoensuk, V. I. Klimov, J. A. Hollingsworth, and H. Htoon, “Giant CdSe/CdS core/shell nanocrystal quantum dots as efficient electroluminescent materials: strong influence of shell thickness on light-emitting diode performance,” Nano Lett. 12(1), 331–336 (2012).
[Crossref]

Bulovic, V.

B. S. Mashford, M. Stevenson, Z. Popovic, C. Hamilton, Z. Zhou, C. Breen, J. Steckel, V. Bulovic, M. Bawendi, S. Coe-Sullivan, and P. T. Kazlas, “High-efficiency quantum-dot light-emitting devices with enhanced charge injection,” Nat. Photonics 7(5), 407–412 (2013).
[Crossref]

Y. Shirasaki, G. J. Supran, M. G. Bawendi, and V. Bulović, “Emergence of colloidal quantum-dot light-emitting technologies,” Nat. Photonics 7(1), 13–23 (2013).
[Crossref]

Char, K.

J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, “Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted device structure,” Nano Lett. 12(5), 2362–2366 (2012).
[Crossref]

Charbonneau, S.

S. Raymond, S. Fafard, P. J. Poole, A. Wojs, P. Hawrylak, C. Gould, A. Sachrajda, and S. Charbonneau, “State-filling and magneto-photoluminescence of excited states in InGaAs/GaAs self-assembled quantum dots,” Superlattices Microstruct. 21(4), 541–558 (1997).
[Crossref]

Chen, F. F.

F. F. Chen, Introduction to plasma physics and controlled fusion (Plenum Press, 1984).

Chen, S. Q.

G. Weng, W. R. Zhao, S. Q. Chen, H. Akiyama, Z. C. Li, J. P. Liu, and B. P. Zhang, “Strong localization effect and carrier relaxation dynamics in self-assembled InGaN quantum dots emitting in the green,” Nanoscale Res. Lett. 10(1), 31 (2015).
[Crossref]

Chen, Z.

Q. Zhang, X. Gu, Z. Chen, J. Jiang, Z. Zhang, J. Wei, F. Li, X. Jin, Y. Song, and Q. Li, “Enhancing extraction efficiency of quantum dot light-emitting diodes by surface engineering,” Opt. Express 25(15), 17683–17694 (2017).
[Crossref]

Q. Ren, L. Bai, A. Murayama, Z. Chen, and X. Shen, “Magnetic field induced charging effect in a single CdSe quantum dot,” Phys. Status Solidi B 246(4), 791–794 (2009).
[Crossref]

Cheng, H. H.

F. Y. Tsai, C. P. Lee, O. Voskoboynikov, H. H. Cheng, J. Shen, and Y. Oka, “Time-resolved photoluminescence study of InGaAs/GaAs quantum wells on (111)B GaAs substrates under magnetic fields,” J. Appl. Phys. 89(12), 7875–7878 (2001).
[Crossref]

Chevrier, F.

J. Thiele, C. Boeglin, K. Hricovini, and F. Chevrier, “Magnetic circular x-ray-dichroism study of Co/Pt (111),” Phys. Rev. B 53(18), R11934 (1996).
[Crossref]

Cho, B.

J. J. Kim, Y. C. Leem, J. W. Kang, J. Kwon, B. Cho, S. Y. Yim, J. H. Baek, and S. J. Park, “Enhancement of the Optical Output Power of InGaN/GaN Multiple Quantum Well Light-Emitting Diodes by a CoFe Ferromagnetic Layer,” ACS Photonics 2(11), 1519–1523 (2015).
[Crossref]

J. H. Han, J. J. Kim, Y. C. Leem, S. J. Kim, W. Kwak, W. L. Jeong, B. Cho, D. S. Lee, and S. J. Park, “Improved efficiency of InGaN/GaN light-emitting diodes with perpendicular magnetic field gradients,” Opt. Express (accepted).

Cho, H.

J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, “Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted device structure,” Nano Lett. 12(5), 2362–2366 (2012).
[Crossref]

Cocchi, M.

J. Kalinowski, M. Cocchi, D. Virgili, P. D. Marco, and V. Fattori, “Magnetic field effects on emission and current in Alq3-based electroluminescent diodes,” Chem. Phys. Lett. 380(5-6), 710–715 (2003).
[Crossref]

Coe-Sullivan, S.

B. S. Mashford, M. Stevenson, Z. Popovic, C. Hamilton, Z. Zhou, C. Breen, J. Steckel, V. Bulovic, M. Bawendi, S. Coe-Sullivan, and P. T. Kazlas, “High-efficiency quantum-dot light-emitting devices with enhanced charge injection,” Nat. Photonics 7(5), 407–412 (2013).
[Crossref]

Cornelissens, Y. G.

K. S. Novoselov, A. K. Geim, S. V. Dubonos, Y. G. Cornelissens, F. M. Peeters, and J. C. Maan, “Scattering of ballistic electrons at a mesoscopic spot of strong magnetic field,” Phys. Rev. B 65(23), 233312 (2002).
[Crossref]

Dieny, B.

S. Bandiera, R. C. Sousa, B. Rodmacq, and B. Dieny, “Asymmetric interfacial perpendicular magnetic anisotropy in Pt/Co/Pt trilayers,” IEEE Magn. Lett. 2, 3000504 (2011).
[Crossref]

Dubonos, S. V.

K. S. Novoselov, A. K. Geim, S. V. Dubonos, Y. G. Cornelissens, F. M. Peeters, and J. C. Maan, “Scattering of ballistic electrons at a mesoscopic spot of strong magnetic field,” Phys. Rev. B 65(23), 233312 (2002).
[Crossref]

Evtimova, S.

B. Arnaudov, T. Paskova, O. Valassiades, P. P. Paskov, S. Evtimova, B. Monomer, and M. Heuken, “Magnetic-field-induced localization of electrons in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 83(13), 2590–2592 (2003).
[Crossref]

Fafard, S.

S. Raymond, S. Fafard, P. J. Poole, A. Wojs, P. Hawrylak, C. Gould, A. Sachrajda, and S. Charbonneau, “State-filling and magneto-photoluminescence of excited states in InGaAs/GaAs self-assembled quantum dots,” Superlattices Microstruct. 21(4), 541–558 (1997).
[Crossref]

Fattori, V.

J. Kalinowski, M. Cocchi, D. Virgili, P. D. Marco, and V. Fattori, “Magnetic field effects on emission and current in Alq3-based electroluminescent diodes,” Chem. Phys. Lett. 380(5-6), 710–715 (2003).
[Crossref]

Fujimori, A.

N. Nakajima, T. Koide, T. Shidara, H. Miyauchi, H. Fukutani, A. Fujimori, K. Iio, T. Katayama, M. Nývlt, and Y. Suzuki, “Perpendicular Magnetic Anisotropy Caused by Interfacial Hybridization via Enhanced Orbital Moment in Co/Pt Multilayers: Magnetic Circular X-Ray Dichroism Study,” Phys. Rev. Lett. 81(23), 5229–5232 (1998).
[Crossref]

Fukutani, H.

N. Nakajima, T. Koide, T. Shidara, H. Miyauchi, H. Fukutani, A. Fujimori, K. Iio, T. Katayama, M. Nývlt, and Y. Suzuki, “Perpendicular Magnetic Anisotropy Caused by Interfacial Hybridization via Enhanced Orbital Moment in Co/Pt Multilayers: Magnetic Circular X-Ray Dichroism Study,” Phys. Rev. Lett. 81(23), 5229–5232 (1998).
[Crossref]

Gao, Y.

Y. Gao and X. Peng, “Photogenerated excitons in plain core CdSe nanocrystals with unity radiative decay in single channel: the effects of surface and ligands,” J. Am. Chem. Soc. 137(12), 4230–4235 (2015).
[Crossref]

Geim, A. K.

K. S. Novoselov, A. K. Geim, S. V. Dubonos, Y. G. Cornelissens, F. M. Peeters, and J. C. Maan, “Scattering of ballistic electrons at a mesoscopic spot of strong magnetic field,” Phys. Rev. B 65(23), 233312 (2002).
[Crossref]

Ghosh, Y.

B. N. Pal, Y. Ghosh, S. Brovelli, R. Laocharoensuk, V. I. Klimov, J. A. Hollingsworth, and H. Htoon, “Giant CdSe/CdS core/shell nanocrystal quantum dots as efficient electroluminescent materials: strong influence of shell thickness on light-emitting diode performance,” Nano Lett. 12(1), 331–336 (2012).
[Crossref]

Gossard, A. C.

Q. X. Zhao, B. Monemar, P. O. Holtz, T. Lundström, M. Sundaram, J. L. Merz, and A. C. Gossard, “Magnetic-field-induced localization effects on radiative recombination in GaAs/AlxGa1-xAs heterostructures,” Phys. Rev. B 50(11), 7514–7517 (1994).
[Crossref]

Gould, C.

S. Raymond, S. Fafard, P. J. Poole, A. Wojs, P. Hawrylak, C. Gould, A. Sachrajda, and S. Charbonneau, “State-filling and magneto-photoluminescence of excited states in InGaAs/GaAs self-assembled quantum dots,” Superlattices Microstruct. 21(4), 541–558 (1997).
[Crossref]

Gu, X.

Hamilton, C.

B. S. Mashford, M. Stevenson, Z. Popovic, C. Hamilton, Z. Zhou, C. Breen, J. Steckel, V. Bulovic, M. Bawendi, S. Coe-Sullivan, and P. T. Kazlas, “High-efficiency quantum-dot light-emitting devices with enhanced charge injection,” Nat. Photonics 7(5), 407–412 (2013).
[Crossref]

Han, J. H.

J. H. Han, J. J. Kim, Y. C. Leem, S. J. Kim, W. Kwak, W. L. Jeong, B. Cho, D. S. Lee, and S. J. Park, “Improved efficiency of InGaN/GaN light-emitting diodes with perpendicular magnetic field gradients,” Opt. Express (accepted).

Hawrylak, P.

S. Raymond, S. Fafard, P. J. Poole, A. Wojs, P. Hawrylak, C. Gould, A. Sachrajda, and S. Charbonneau, “State-filling and magneto-photoluminescence of excited states in InGaAs/GaAs self-assembled quantum dots,” Superlattices Microstruct. 21(4), 541–558 (1997).
[Crossref]

Henini, M.

A. Nogaret, S. J. Bending, and M. Henini, “Resistance resonance effects through magnetic edge states,” Phys. Rev. Lett. 84(10), 2231–2234 (2000).
[Crossref]

Heuken, M.

B. Arnaudov, T. Paskova, O. Valassiades, P. P. Paskov, S. Evtimova, B. Monomer, and M. Heuken, “Magnetic-field-induced localization of electrons in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 83(13), 2590–2592 (2003).
[Crossref]

Hollingsworth, J. A.

B. N. Pal, Y. Ghosh, S. Brovelli, R. Laocharoensuk, V. I. Klimov, J. A. Hollingsworth, and H. Htoon, “Giant CdSe/CdS core/shell nanocrystal quantum dots as efficient electroluminescent materials: strong influence of shell thickness on light-emitting diode performance,” Nano Lett. 12(1), 331–336 (2012).
[Crossref]

Holtz, P.

M. Larsson, E. Moskalenko, A. Larsson, P. Holtz, C. Verdozzi, C.-O. Almbladh, W. V. Schoenfeld, and P. M. Petroff, “Magnetic field effects on optical and transport properties in InAs/GaAs quantum dots,” Phys. Rev. B 74(24), 245312 (2006).
[Crossref]

Holtz, P. O.

Q. X. Zhao, B. Monemar, P. O. Holtz, T. Lundström, M. Sundaram, J. L. Merz, and A. C. Gossard, “Magnetic-field-induced localization effects on radiative recombination in GaAs/AlxGa1-xAs heterostructures,” Phys. Rev. B 50(11), 7514–7517 (1994).
[Crossref]

Hricovini, K.

J. Thiele, C. Boeglin, K. Hricovini, and F. Chevrier, “Magnetic circular x-ray-dichroism study of Co/Pt (111),” Phys. Rev. B 53(18), R11934 (1996).
[Crossref]

Htoon, H.

B. N. Pal, Y. Ghosh, S. Brovelli, R. Laocharoensuk, V. I. Klimov, J. A. Hollingsworth, and H. Htoon, “Giant CdSe/CdS core/shell nanocrystal quantum dots as efficient electroluminescent materials: strong influence of shell thickness on light-emitting diode performance,” Nano Lett. 12(1), 331–336 (2012).
[Crossref]

Hu, B.

B. Hu, L. Yan, and M. Shao, “Magnetic-field effects in organic semiconducting materials and devices,” Adv. Mater. 21(14-15), 1500–1516 (2009).
[Crossref]

C. J. Sun, Y. Wu, Z. Xu, B. Hu, J. Bai, J. P. Wang, and J. Shen, “Enhancement of quantum efficiency of organic light emitting devices by doping magnetic nanoparticles,” Appl. Phys. Lett. 90(23), 232110 (2007).
[Crossref]

Iio, K.

N. Nakajima, T. Koide, T. Shidara, H. Miyauchi, H. Fukutani, A. Fujimori, K. Iio, T. Katayama, M. Nývlt, and Y. Suzuki, “Perpendicular Magnetic Anisotropy Caused by Interfacial Hybridization via Enhanced Orbital Moment in Co/Pt Multilayers: Magnetic Circular X-Ray Dichroism Study,” Phys. Rev. Lett. 81(23), 5229–5232 (1998).
[Crossref]

Ikezawa, M.

P. Jing, J. Zheng, M. Ikezawa, X. Liu, S. Lv, X. Kong, J. Zhao, and Y. Masumoto, “Temperature-dependent photoluminescence of CdSe-core CdS/CdZnS/ZnS-multishell quantum dots,” J. Phys. Chem. C 113(31), 13545–13550 (2009).
[Crossref]

Im, S. H.

S. Kim, S. H. Im, and S. W. Kim, “Performance of light-emitting-diode based on quantum dots,” Nanoscale 5(12), 5205–5214 (2013).
[Crossref]

Jeong, W. L.

J. H. Han, J. J. Kim, Y. C. Leem, S. J. Kim, W. Kwak, W. L. Jeong, B. Cho, D. S. Lee, and S. J. Park, “Improved efficiency of InGaN/GaN light-emitting diodes with perpendicular magnetic field gradients,” Opt. Express (accepted).

Jiang, J.

Jin, X.

Jing, P.

P. Jing, J. Zheng, M. Ikezawa, X. Liu, S. Lv, X. Kong, J. Zhao, and Y. Masumoto, “Temperature-dependent photoluminescence of CdSe-core CdS/CdZnS/ZnS-multishell quantum dots,” J. Phys. Chem. C 113(31), 13545–13550 (2009).
[Crossref]

Kalinowski, J.

J. Kalinowski, M. Cocchi, D. Virgili, P. D. Marco, and V. Fattori, “Magnetic field effects on emission and current in Alq3-based electroluminescent diodes,” Chem. Phys. Lett. 380(5-6), 710–715 (2003).
[Crossref]

Kang, J. W.

J. J. Kim, Y. C. Leem, J. W. Kang, J. Kwon, B. Cho, S. Y. Yim, J. H. Baek, and S. J. Park, “Enhancement of the Optical Output Power of InGaN/GaN Multiple Quantum Well Light-Emitting Diodes by a CoFe Ferromagnetic Layer,” ACS Photonics 2(11), 1519–1523 (2015).
[Crossref]

Katayama, T.

N. Nakajima, T. Koide, T. Shidara, H. Miyauchi, H. Fukutani, A. Fujimori, K. Iio, T. Katayama, M. Nývlt, and Y. Suzuki, “Perpendicular Magnetic Anisotropy Caused by Interfacial Hybridization via Enhanced Orbital Moment in Co/Pt Multilayers: Magnetic Circular X-Ray Dichroism Study,” Phys. Rev. Lett. 81(23), 5229–5232 (1998).
[Crossref]

Kazlas, P. T.

B. S. Mashford, M. Stevenson, Z. Popovic, C. Hamilton, Z. Zhou, C. Breen, J. Steckel, V. Bulovic, M. Bawendi, S. Coe-Sullivan, and P. T. Kazlas, “High-efficiency quantum-dot light-emitting devices with enhanced charge injection,” Nat. Photonics 7(5), 407–412 (2013).
[Crossref]

Kim, J. J.

J. J. Kim, Y. C. Leem, J. W. Kang, J. Kwon, B. Cho, S. Y. Yim, J. H. Baek, and S. J. Park, “Enhancement of the Optical Output Power of InGaN/GaN Multiple Quantum Well Light-Emitting Diodes by a CoFe Ferromagnetic Layer,” ACS Photonics 2(11), 1519–1523 (2015).
[Crossref]

J. H. Han, J. J. Kim, Y. C. Leem, S. J. Kim, W. Kwak, W. L. Jeong, B. Cho, D. S. Lee, and S. J. Park, “Improved efficiency of InGaN/GaN light-emitting diodes with perpendicular magnetic field gradients,” Opt. Express (accepted).

Kim, S.

S. Kim, S. H. Im, and S. W. Kim, “Performance of light-emitting-diode based on quantum dots,” Nanoscale 5(12), 5205–5214 (2013).
[Crossref]

Kim, S. J.

J. H. Han, J. J. Kim, Y. C. Leem, S. J. Kim, W. Kwak, W. L. Jeong, B. Cho, D. S. Lee, and S. J. Park, “Improved efficiency of InGaN/GaN light-emitting diodes with perpendicular magnetic field gradients,” Opt. Express (accepted).

Kim, S. W.

S. Kim, S. H. Im, and S. W. Kim, “Performance of light-emitting-diode based on quantum dots,” Nanoscale 5(12), 5205–5214 (2013).
[Crossref]

Klimov, V. I.

B. N. Pal, Y. Ghosh, S. Brovelli, R. Laocharoensuk, V. I. Klimov, J. A. Hollingsworth, and H. Htoon, “Giant CdSe/CdS core/shell nanocrystal quantum dots as efficient electroluminescent materials: strong influence of shell thickness on light-emitting diode performance,” Nano Lett. 12(1), 331–336 (2012).
[Crossref]

Klipstein, P. C.

E. Alphandéry, R. J. Nicholas, N. J. Mason, S. G. Lyapin, and P. C. Klipstein, “Photoluminescence of self-assembled InSb quantum dots grown on GaSb as a function of excitation power, temperature, and magnetic field,” Phys. Rev. B 65(11), 115322 (2002).
[Crossref]

Koide, T.

N. Nakajima, T. Koide, T. Shidara, H. Miyauchi, H. Fukutani, A. Fujimori, K. Iio, T. Katayama, M. Nývlt, and Y. Suzuki, “Perpendicular Magnetic Anisotropy Caused by Interfacial Hybridization via Enhanced Orbital Moment in Co/Pt Multilayers: Magnetic Circular X-Ray Dichroism Study,” Phys. Rev. Lett. 81(23), 5229–5232 (1998).
[Crossref]

Kong, X.

P. Jing, J. Zheng, M. Ikezawa, X. Liu, S. Lv, X. Kong, J. Zhao, and Y. Masumoto, “Temperature-dependent photoluminescence of CdSe-core CdS/CdZnS/ZnS-multishell quantum dots,” J. Phys. Chem. C 113(31), 13545–13550 (2009).
[Crossref]

Kushwaha, M. S.

M. S. Kushwaha, “Magneto-optical absorption in semiconducting spherical quantum dots: Influence of the dot-size, confining potential, and magnetic field,” AIP Adv. 4(12), 127151 (2014).
[Crossref]

Kwak, J.

J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, “Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted device structure,” Nano Lett. 12(5), 2362–2366 (2012).
[Crossref]

Kwak, W.

J. H. Han, J. J. Kim, Y. C. Leem, S. J. Kim, W. Kwak, W. L. Jeong, B. Cho, D. S. Lee, and S. J. Park, “Improved efficiency of InGaN/GaN light-emitting diodes with perpendicular magnetic field gradients,” Opt. Express (accepted).

Kwon, J.

J. J. Kim, Y. C. Leem, J. W. Kang, J. Kwon, B. Cho, S. Y. Yim, J. H. Baek, and S. J. Park, “Enhancement of the Optical Output Power of InGaN/GaN Multiple Quantum Well Light-Emitting Diodes by a CoFe Ferromagnetic Layer,” ACS Photonics 2(11), 1519–1523 (2015).
[Crossref]

Laocharoensuk, R.

B. N. Pal, Y. Ghosh, S. Brovelli, R. Laocharoensuk, V. I. Klimov, J. A. Hollingsworth, and H. Htoon, “Giant CdSe/CdS core/shell nanocrystal quantum dots as efficient electroluminescent materials: strong influence of shell thickness on light-emitting diode performance,” Nano Lett. 12(1), 331–336 (2012).
[Crossref]

Larsson, A.

M. Larsson, E. Moskalenko, A. Larsson, P. Holtz, C. Verdozzi, C.-O. Almbladh, W. V. Schoenfeld, and P. M. Petroff, “Magnetic field effects on optical and transport properties in InAs/GaAs quantum dots,” Phys. Rev. B 74(24), 245312 (2006).
[Crossref]

Larsson, M.

M. Larsson, E. Moskalenko, A. Larsson, P. Holtz, C. Verdozzi, C.-O. Almbladh, W. V. Schoenfeld, and P. M. Petroff, “Magnetic field effects on optical and transport properties in InAs/GaAs quantum dots,” Phys. Rev. B 74(24), 245312 (2006).
[Crossref]

Lee, C.

J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, “Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted device structure,” Nano Lett. 12(5), 2362–2366 (2012).
[Crossref]

Lee, C. P.

F. Y. Tsai, C. P. Lee, O. Voskoboynikov, H. H. Cheng, J. Shen, and Y. Oka, “Time-resolved photoluminescence study of InGaAs/GaAs quantum wells on (111)B GaAs substrates under magnetic fields,” J. Appl. Phys. 89(12), 7875–7878 (2001).
[Crossref]

Lee, D.

J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, “Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted device structure,” Nano Lett. 12(5), 2362–2366 (2012).
[Crossref]

Lee, D. S.

J. H. Han, J. J. Kim, Y. C. Leem, S. J. Kim, W. Kwak, W. L. Jeong, B. Cho, D. S. Lee, and S. J. Park, “Improved efficiency of InGaN/GaN light-emitting diodes with perpendicular magnetic field gradients,” Opt. Express (accepted).

Lee, S.

J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, “Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted device structure,” Nano Lett. 12(5), 2362–2366 (2012).
[Crossref]

Leem, Y. C.

J. J. Kim, Y. C. Leem, J. W. Kang, J. Kwon, B. Cho, S. Y. Yim, J. H. Baek, and S. J. Park, “Enhancement of the Optical Output Power of InGaN/GaN Multiple Quantum Well Light-Emitting Diodes by a CoFe Ferromagnetic Layer,” ACS Photonics 2(11), 1519–1523 (2015).
[Crossref]

J. H. Han, J. J. Kim, Y. C. Leem, S. J. Kim, W. Kwak, W. L. Jeong, B. Cho, D. S. Lee, and S. J. Park, “Improved efficiency of InGaN/GaN light-emitting diodes with perpendicular magnetic field gradients,” Opt. Express (accepted).

Li, F.

Li, L. S.

Q. Sun, Y. A. Wang, L. S. Li, D. Wang, T. Zhu, J. Xu, C. Yang, and Y. Li, “Bright, multicoloured light-emitting diodes based on quantum dots,” Nat. Photonics 1(12), 717–722 (2007).
[Crossref]

Li, Q.

Li, Y.

Q. Sun, Y. A. Wang, L. S. Li, D. Wang, T. Zhu, J. Xu, C. Yang, and Y. Li, “Bright, multicoloured light-emitting diodes based on quantum dots,” Nat. Photonics 1(12), 717–722 (2007).
[Crossref]

Li, Z. C.

G. Weng, W. R. Zhao, S. Q. Chen, H. Akiyama, Z. C. Li, J. P. Liu, and B. P. Zhang, “Strong localization effect and carrier relaxation dynamics in self-assembled InGaN quantum dots emitting in the green,” Nanoscale Res. Lett. 10(1), 31 (2015).
[Crossref]

Lim, J.

W. K. Bae and J. Lim, “Nanostructured colloidal quantum dots for efficient electroluminescence devices,” Korean J. Chem. Eng. 36(2), 173–185 (2019).
[Crossref]

J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, “Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted device structure,” Nano Lett. 12(5), 2362–2366 (2012).
[Crossref]

Liu, J. P.

G. Weng, W. R. Zhao, S. Q. Chen, H. Akiyama, Z. C. Li, J. P. Liu, and B. P. Zhang, “Strong localization effect and carrier relaxation dynamics in self-assembled InGaN quantum dots emitting in the green,” Nanoscale Res. Lett. 10(1), 31 (2015).
[Crossref]

Liu, X.

P. Jing, J. Zheng, M. Ikezawa, X. Liu, S. Lv, X. Kong, J. Zhao, and Y. Masumoto, “Temperature-dependent photoluminescence of CdSe-core CdS/CdZnS/ZnS-multishell quantum dots,” J. Phys. Chem. C 113(31), 13545–13550 (2009).
[Crossref]

López-Richard, V.

S. J. Prado, C. Trallero-Giner, A. M. Alcalde, V. López-Richard, and G. E. Marques, “Influence of quantum dot shape on the Landé g-factor determination,” Phys. Rev. B 69(20), 201310 (2004).
[Crossref]

Lundström, T.

Q. X. Zhao, B. Monemar, P. O. Holtz, T. Lundström, M. Sundaram, J. L. Merz, and A. C. Gossard, “Magnetic-field-induced localization effects on radiative recombination in GaAs/AlxGa1-xAs heterostructures,” Phys. Rev. B 50(11), 7514–7517 (1994).
[Crossref]

Lv, S.

P. Jing, J. Zheng, M. Ikezawa, X. Liu, S. Lv, X. Kong, J. Zhao, and Y. Masumoto, “Temperature-dependent photoluminescence of CdSe-core CdS/CdZnS/ZnS-multishell quantum dots,” J. Phys. Chem. C 113(31), 13545–13550 (2009).
[Crossref]

Lyapin, S. G.

E. Alphandéry, R. J. Nicholas, N. J. Mason, S. G. Lyapin, and P. C. Klipstein, “Photoluminescence of self-assembled InSb quantum dots grown on GaSb as a function of excitation power, temperature, and magnetic field,” Phys. Rev. B 65(11), 115322 (2002).
[Crossref]

Maan, J. C.

K. S. Novoselov, A. K. Geim, S. V. Dubonos, Y. G. Cornelissens, F. M. Peeters, and J. C. Maan, “Scattering of ballistic electrons at a mesoscopic spot of strong magnetic field,” Phys. Rev. B 65(23), 233312 (2002).
[Crossref]

Marco, P. D.

J. Kalinowski, M. Cocchi, D. Virgili, P. D. Marco, and V. Fattori, “Magnetic field effects on emission and current in Alq3-based electroluminescent diodes,” Chem. Phys. Lett. 380(5-6), 710–715 (2003).
[Crossref]

Marques, G. E.

S. J. Prado, C. Trallero-Giner, A. M. Alcalde, V. López-Richard, and G. E. Marques, “Influence of quantum dot shape on the Landé g-factor determination,” Phys. Rev. B 69(20), 201310 (2004).
[Crossref]

Mashford, B. S.

B. S. Mashford, M. Stevenson, Z. Popovic, C. Hamilton, Z. Zhou, C. Breen, J. Steckel, V. Bulovic, M. Bawendi, S. Coe-Sullivan, and P. T. Kazlas, “High-efficiency quantum-dot light-emitting devices with enhanced charge injection,” Nat. Photonics 7(5), 407–412 (2013).
[Crossref]

Mason, N. J.

E. Alphandéry, R. J. Nicholas, N. J. Mason, S. G. Lyapin, and P. C. Klipstein, “Photoluminescence of self-assembled InSb quantum dots grown on GaSb as a function of excitation power, temperature, and magnetic field,” Phys. Rev. B 65(11), 115322 (2002).
[Crossref]

Masumoto, Y.

P. Jing, J. Zheng, M. Ikezawa, X. Liu, S. Lv, X. Kong, J. Zhao, and Y. Masumoto, “Temperature-dependent photoluminescence of CdSe-core CdS/CdZnS/ZnS-multishell quantum dots,” J. Phys. Chem. C 113(31), 13545–13550 (2009).
[Crossref]

Matulis, A.

J. Reijniers, F. M. Peeters, and A. Matulis, “Electron scattering on circular symmetric magnetic profiles in a two-dimensional electron gas,” Phys. Rev. B 64(24), 245314 (2001).
[Crossref]

Merz, J. L.

Q. X. Zhao, B. Monemar, P. O. Holtz, T. Lundström, M. Sundaram, J. L. Merz, and A. C. Gossard, “Magnetic-field-induced localization effects on radiative recombination in GaAs/AlxGa1-xAs heterostructures,” Phys. Rev. B 50(11), 7514–7517 (1994).
[Crossref]

Miyauchi, H.

N. Nakajima, T. Koide, T. Shidara, H. Miyauchi, H. Fukutani, A. Fujimori, K. Iio, T. Katayama, M. Nývlt, and Y. Suzuki, “Perpendicular Magnetic Anisotropy Caused by Interfacial Hybridization via Enhanced Orbital Moment in Co/Pt Multilayers: Magnetic Circular X-Ray Dichroism Study,” Phys. Rev. Lett. 81(23), 5229–5232 (1998).
[Crossref]

Monemar, B.

Q. X. Zhao, B. Monemar, P. O. Holtz, T. Lundström, M. Sundaram, J. L. Merz, and A. C. Gossard, “Magnetic-field-induced localization effects on radiative recombination in GaAs/AlxGa1-xAs heterostructures,” Phys. Rev. B 50(11), 7514–7517 (1994).
[Crossref]

Monomer, B.

B. Arnaudov, T. Paskova, O. Valassiades, P. P. Paskov, S. Evtimova, B. Monomer, and M. Heuken, “Magnetic-field-induced localization of electrons in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 83(13), 2590–2592 (2003).
[Crossref]

Moskalenko, E.

M. Larsson, E. Moskalenko, A. Larsson, P. Holtz, C. Verdozzi, C.-O. Almbladh, W. V. Schoenfeld, and P. M. Petroff, “Magnetic field effects on optical and transport properties in InAs/GaAs quantum dots,” Phys. Rev. B 74(24), 245312 (2006).
[Crossref]

Murayama, A.

Q. Ren, L. Bai, A. Murayama, Z. Chen, and X. Shen, “Magnetic field induced charging effect in a single CdSe quantum dot,” Phys. Status Solidi B 246(4), 791–794 (2009).
[Crossref]

Nakajima, N.

N. Nakajima, T. Koide, T. Shidara, H. Miyauchi, H. Fukutani, A. Fujimori, K. Iio, T. Katayama, M. Nývlt, and Y. Suzuki, “Perpendicular Magnetic Anisotropy Caused by Interfacial Hybridization via Enhanced Orbital Moment in Co/Pt Multilayers: Magnetic Circular X-Ray Dichroism Study,” Phys. Rev. Lett. 81(23), 5229–5232 (1998).
[Crossref]

Nicholas, R. J.

E. Alphandéry, R. J. Nicholas, N. J. Mason, S. G. Lyapin, and P. C. Klipstein, “Photoluminescence of self-assembled InSb quantum dots grown on GaSb as a function of excitation power, temperature, and magnetic field,” Phys. Rev. B 65(11), 115322 (2002).
[Crossref]

Nogaret, A.

A. Nogaret, S. J. Bending, and M. Henini, “Resistance resonance effects through magnetic edge states,” Phys. Rev. Lett. 84(10), 2231–2234 (2000).
[Crossref]

Novoselov, K. S.

K. S. Novoselov, A. K. Geim, S. V. Dubonos, Y. G. Cornelissens, F. M. Peeters, and J. C. Maan, “Scattering of ballistic electrons at a mesoscopic spot of strong magnetic field,” Phys. Rev. B 65(23), 233312 (2002).
[Crossref]

Nývlt, M.

N. Nakajima, T. Koide, T. Shidara, H. Miyauchi, H. Fukutani, A. Fujimori, K. Iio, T. Katayama, M. Nývlt, and Y. Suzuki, “Perpendicular Magnetic Anisotropy Caused by Interfacial Hybridization via Enhanced Orbital Moment in Co/Pt Multilayers: Magnetic Circular X-Ray Dichroism Study,” Phys. Rev. Lett. 81(23), 5229–5232 (1998).
[Crossref]

Oka, Y.

F. Y. Tsai, C. P. Lee, O. Voskoboynikov, H. H. Cheng, J. Shen, and Y. Oka, “Time-resolved photoluminescence study of InGaAs/GaAs quantum wells on (111)B GaAs substrates under magnetic fields,” J. Appl. Phys. 89(12), 7875–7878 (2001).
[Crossref]

Ostroverkhova, O.

O. Ostroverkhova, Handbook of Organic Materials for Electronic and Photonic Devices (Elsevier, 2019).

Pal, B. N.

B. N. Pal, Y. Ghosh, S. Brovelli, R. Laocharoensuk, V. I. Klimov, J. A. Hollingsworth, and H. Htoon, “Giant CdSe/CdS core/shell nanocrystal quantum dots as efficient electroluminescent materials: strong influence of shell thickness on light-emitting diode performance,” Nano Lett. 12(1), 331–336 (2012).
[Crossref]

Park, I.

J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, “Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted device structure,” Nano Lett. 12(5), 2362–2366 (2012).
[Crossref]

Park, M.

J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, “Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted device structure,” Nano Lett. 12(5), 2362–2366 (2012).
[Crossref]

Park, S. J.

J. J. Kim, Y. C. Leem, J. W. Kang, J. Kwon, B. Cho, S. Y. Yim, J. H. Baek, and S. J. Park, “Enhancement of the Optical Output Power of InGaN/GaN Multiple Quantum Well Light-Emitting Diodes by a CoFe Ferromagnetic Layer,” ACS Photonics 2(11), 1519–1523 (2015).
[Crossref]

J. H. Han, J. J. Kim, Y. C. Leem, S. J. Kim, W. Kwak, W. L. Jeong, B. Cho, D. S. Lee, and S. J. Park, “Improved efficiency of InGaN/GaN light-emitting diodes with perpendicular magnetic field gradients,” Opt. Express (accepted).

Paskov, P. P.

B. Arnaudov, T. Paskova, O. Valassiades, P. P. Paskov, S. Evtimova, B. Monomer, and M. Heuken, “Magnetic-field-induced localization of electrons in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 83(13), 2590–2592 (2003).
[Crossref]

Paskova, T.

B. Arnaudov, T. Paskova, O. Valassiades, P. P. Paskov, S. Evtimova, B. Monomer, and M. Heuken, “Magnetic-field-induced localization of electrons in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 83(13), 2590–2592 (2003).
[Crossref]

Peeters, F. M.

K. S. Novoselov, A. K. Geim, S. V. Dubonos, Y. G. Cornelissens, F. M. Peeters, and J. C. Maan, “Scattering of ballistic electrons at a mesoscopic spot of strong magnetic field,” Phys. Rev. B 65(23), 233312 (2002).
[Crossref]

J. Reijniers, F. M. Peeters, and A. Matulis, “Electron scattering on circular symmetric magnetic profiles in a two-dimensional electron gas,” Phys. Rev. B 64(24), 245314 (2001).
[Crossref]

Peng, X.

Y. Gao and X. Peng, “Photogenerated excitons in plain core CdSe nanocrystals with unity radiative decay in single channel: the effects of surface and ligands,” J. Am. Chem. Soc. 137(12), 4230–4235 (2015).
[Crossref]

Petroff, P. M.

M. Larsson, E. Moskalenko, A. Larsson, P. Holtz, C. Verdozzi, C.-O. Almbladh, W. V. Schoenfeld, and P. M. Petroff, “Magnetic field effects on optical and transport properties in InAs/GaAs quantum dots,” Phys. Rev. B 74(24), 245312 (2006).
[Crossref]

Poole, P. J.

S. Raymond, S. Fafard, P. J. Poole, A. Wojs, P. Hawrylak, C. Gould, A. Sachrajda, and S. Charbonneau, “State-filling and magneto-photoluminescence of excited states in InGaAs/GaAs self-assembled quantum dots,” Superlattices Microstruct. 21(4), 541–558 (1997).
[Crossref]

Popovic, Z.

B. S. Mashford, M. Stevenson, Z. Popovic, C. Hamilton, Z. Zhou, C. Breen, J. Steckel, V. Bulovic, M. Bawendi, S. Coe-Sullivan, and P. T. Kazlas, “High-efficiency quantum-dot light-emitting devices with enhanced charge injection,” Nat. Photonics 7(5), 407–412 (2013).
[Crossref]

Prado, S. J.

S. J. Prado, C. Trallero-Giner, A. M. Alcalde, V. López-Richard, and G. E. Marques, “Influence of quantum dot shape on the Landé g-factor determination,” Phys. Rev. B 69(20), 201310 (2004).
[Crossref]

Raymond, S.

S. Raymond, S. Fafard, P. J. Poole, A. Wojs, P. Hawrylak, C. Gould, A. Sachrajda, and S. Charbonneau, “State-filling and magneto-photoluminescence of excited states in InGaAs/GaAs self-assembled quantum dots,” Superlattices Microstruct. 21(4), 541–558 (1997).
[Crossref]

Reijniers, J.

J. Reijniers, F. M. Peeters, and A. Matulis, “Electron scattering on circular symmetric magnetic profiles in a two-dimensional electron gas,” Phys. Rev. B 64(24), 245314 (2001).
[Crossref]

Ren, Q.

Q. Ren, L. Bai, A. Murayama, Z. Chen, and X. Shen, “Magnetic field induced charging effect in a single CdSe quantum dot,” Phys. Status Solidi B 246(4), 791–794 (2009).
[Crossref]

Rodmacq, B.

S. Bandiera, R. C. Sousa, B. Rodmacq, and B. Dieny, “Asymmetric interfacial perpendicular magnetic anisotropy in Pt/Co/Pt trilayers,” IEEE Magn. Lett. 2, 3000504 (2011).
[Crossref]

Sachrajda, A.

S. Raymond, S. Fafard, P. J. Poole, A. Wojs, P. Hawrylak, C. Gould, A. Sachrajda, and S. Charbonneau, “State-filling and magneto-photoluminescence of excited states in InGaAs/GaAs self-assembled quantum dots,” Superlattices Microstruct. 21(4), 541–558 (1997).
[Crossref]

Schoenfeld, W. V.

M. Larsson, E. Moskalenko, A. Larsson, P. Holtz, C. Verdozzi, C.-O. Almbladh, W. V. Schoenfeld, and P. M. Petroff, “Magnetic field effects on optical and transport properties in InAs/GaAs quantum dots,” Phys. Rev. B 74(24), 245312 (2006).
[Crossref]

Shao, M.

B. Hu, L. Yan, and M. Shao, “Magnetic-field effects in organic semiconducting materials and devices,” Adv. Mater. 21(14-15), 1500–1516 (2009).
[Crossref]

Shen, J.

C. J. Sun, Y. Wu, Z. Xu, B. Hu, J. Bai, J. P. Wang, and J. Shen, “Enhancement of quantum efficiency of organic light emitting devices by doping magnetic nanoparticles,” Appl. Phys. Lett. 90(23), 232110 (2007).
[Crossref]

F. Y. Tsai, C. P. Lee, O. Voskoboynikov, H. H. Cheng, J. Shen, and Y. Oka, “Time-resolved photoluminescence study of InGaAs/GaAs quantum wells on (111)B GaAs substrates under magnetic fields,” J. Appl. Phys. 89(12), 7875–7878 (2001).
[Crossref]

Shen, X.

Q. Ren, L. Bai, A. Murayama, Z. Chen, and X. Shen, “Magnetic field induced charging effect in a single CdSe quantum dot,” Phys. Status Solidi B 246(4), 791–794 (2009).
[Crossref]

Shidara, T.

N. Nakajima, T. Koide, T. Shidara, H. Miyauchi, H. Fukutani, A. Fujimori, K. Iio, T. Katayama, M. Nývlt, and Y. Suzuki, “Perpendicular Magnetic Anisotropy Caused by Interfacial Hybridization via Enhanced Orbital Moment in Co/Pt Multilayers: Magnetic Circular X-Ray Dichroism Study,” Phys. Rev. Lett. 81(23), 5229–5232 (1998).
[Crossref]

Shirasaki, Y.

Y. Shirasaki, G. J. Supran, M. G. Bawendi, and V. Bulović, “Emergence of colloidal quantum-dot light-emitting technologies,” Nat. Photonics 7(1), 13–23 (2013).
[Crossref]

Song, Y.

Sousa, R. C.

S. Bandiera, R. C. Sousa, B. Rodmacq, and B. Dieny, “Asymmetric interfacial perpendicular magnetic anisotropy in Pt/Co/Pt trilayers,” IEEE Magn. Lett. 2, 3000504 (2011).
[Crossref]

Steckel, J.

B. S. Mashford, M. Stevenson, Z. Popovic, C. Hamilton, Z. Zhou, C. Breen, J. Steckel, V. Bulovic, M. Bawendi, S. Coe-Sullivan, and P. T. Kazlas, “High-efficiency quantum-dot light-emitting devices with enhanced charge injection,” Nat. Photonics 7(5), 407–412 (2013).
[Crossref]

Stevenson, M.

B. S. Mashford, M. Stevenson, Z. Popovic, C. Hamilton, Z. Zhou, C. Breen, J. Steckel, V. Bulovic, M. Bawendi, S. Coe-Sullivan, and P. T. Kazlas, “High-efficiency quantum-dot light-emitting devices with enhanced charge injection,” Nat. Photonics 7(5), 407–412 (2013).
[Crossref]

Sun, C. J.

C. J. Sun, Y. Wu, Z. Xu, B. Hu, J. Bai, J. P. Wang, and J. Shen, “Enhancement of quantum efficiency of organic light emitting devices by doping magnetic nanoparticles,” Appl. Phys. Lett. 90(23), 232110 (2007).
[Crossref]

Sun, Q.

Q. Sun, Y. A. Wang, L. S. Li, D. Wang, T. Zhu, J. Xu, C. Yang, and Y. Li, “Bright, multicoloured light-emitting diodes based on quantum dots,” Nat. Photonics 1(12), 717–722 (2007).
[Crossref]

Sundaram, M.

Q. X. Zhao, B. Monemar, P. O. Holtz, T. Lundström, M. Sundaram, J. L. Merz, and A. C. Gossard, “Magnetic-field-induced localization effects on radiative recombination in GaAs/AlxGa1-xAs heterostructures,” Phys. Rev. B 50(11), 7514–7517 (1994).
[Crossref]

Supran, G. J.

Y. Shirasaki, G. J. Supran, M. G. Bawendi, and V. Bulović, “Emergence of colloidal quantum-dot light-emitting technologies,” Nat. Photonics 7(1), 13–23 (2013).
[Crossref]

Suzuki, Y.

N. Nakajima, T. Koide, T. Shidara, H. Miyauchi, H. Fukutani, A. Fujimori, K. Iio, T. Katayama, M. Nývlt, and Y. Suzuki, “Perpendicular Magnetic Anisotropy Caused by Interfacial Hybridization via Enhanced Orbital Moment in Co/Pt Multilayers: Magnetic Circular X-Ray Dichroism Study,” Phys. Rev. Lett. 81(23), 5229–5232 (1998).
[Crossref]

Thiele, J.

J. Thiele, C. Boeglin, K. Hricovini, and F. Chevrier, “Magnetic circular x-ray-dichroism study of Co/Pt (111),” Phys. Rev. B 53(18), R11934 (1996).
[Crossref]

Trallero-Giner, C.

S. J. Prado, C. Trallero-Giner, A. M. Alcalde, V. López-Richard, and G. E. Marques, “Influence of quantum dot shape on the Landé g-factor determination,” Phys. Rev. B 69(20), 201310 (2004).
[Crossref]

Tsai, F. Y.

F. Y. Tsai, C. P. Lee, O. Voskoboynikov, H. H. Cheng, J. Shen, and Y. Oka, “Time-resolved photoluminescence study of InGaAs/GaAs quantum wells on (111)B GaAs substrates under magnetic fields,” J. Appl. Phys. 89(12), 7875–7878 (2001).
[Crossref]

Valassiades, O.

B. Arnaudov, T. Paskova, O. Valassiades, P. P. Paskov, S. Evtimova, B. Monomer, and M. Heuken, “Magnetic-field-induced localization of electrons in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 83(13), 2590–2592 (2003).
[Crossref]

Verdozzi, C.

M. Larsson, E. Moskalenko, A. Larsson, P. Holtz, C. Verdozzi, C.-O. Almbladh, W. V. Schoenfeld, and P. M. Petroff, “Magnetic field effects on optical and transport properties in InAs/GaAs quantum dots,” Phys. Rev. B 74(24), 245312 (2006).
[Crossref]

Virgili, D.

J. Kalinowski, M. Cocchi, D. Virgili, P. D. Marco, and V. Fattori, “Magnetic field effects on emission and current in Alq3-based electroluminescent diodes,” Chem. Phys. Lett. 380(5-6), 710–715 (2003).
[Crossref]

Voskoboynikov, O.

F. Y. Tsai, C. P. Lee, O. Voskoboynikov, H. H. Cheng, J. Shen, and Y. Oka, “Time-resolved photoluminescence study of InGaAs/GaAs quantum wells on (111)B GaAs substrates under magnetic fields,” J. Appl. Phys. 89(12), 7875–7878 (2001).
[Crossref]

Wang, D.

Q. Sun, Y. A. Wang, L. S. Li, D. Wang, T. Zhu, J. Xu, C. Yang, and Y. Li, “Bright, multicoloured light-emitting diodes based on quantum dots,” Nat. Photonics 1(12), 717–722 (2007).
[Crossref]

Wang, J. P.

C. J. Sun, Y. Wu, Z. Xu, B. Hu, J. Bai, J. P. Wang, and J. Shen, “Enhancement of quantum efficiency of organic light emitting devices by doping magnetic nanoparticles,” Appl. Phys. Lett. 90(23), 232110 (2007).
[Crossref]

Wang, Y. A.

Q. Sun, Y. A. Wang, L. S. Li, D. Wang, T. Zhu, J. Xu, C. Yang, and Y. Li, “Bright, multicoloured light-emitting diodes based on quantum dots,” Nat. Photonics 1(12), 717–722 (2007).
[Crossref]

Wei, J.

Weng, G.

G. Weng, W. R. Zhao, S. Q. Chen, H. Akiyama, Z. C. Li, J. P. Liu, and B. P. Zhang, “Strong localization effect and carrier relaxation dynamics in self-assembled InGaN quantum dots emitting in the green,” Nanoscale Res. Lett. 10(1), 31 (2015).
[Crossref]

Wojs, A.

S. Raymond, S. Fafard, P. J. Poole, A. Wojs, P. Hawrylak, C. Gould, A. Sachrajda, and S. Charbonneau, “State-filling and magneto-photoluminescence of excited states in InGaAs/GaAs self-assembled quantum dots,” Superlattices Microstruct. 21(4), 541–558 (1997).
[Crossref]

Woo, H.

J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, “Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted device structure,” Nano Lett. 12(5), 2362–2366 (2012).
[Crossref]

Wu, Y.

C. J. Sun, Y. Wu, Z. Xu, B. Hu, J. Bai, J. P. Wang, and J. Shen, “Enhancement of quantum efficiency of organic light emitting devices by doping magnetic nanoparticles,” Appl. Phys. Lett. 90(23), 232110 (2007).
[Crossref]

Xu, J.

Q. Sun, Y. A. Wang, L. S. Li, D. Wang, T. Zhu, J. Xu, C. Yang, and Y. Li, “Bright, multicoloured light-emitting diodes based on quantum dots,” Nat. Photonics 1(12), 717–722 (2007).
[Crossref]

Xu, Z.

C. J. Sun, Y. Wu, Z. Xu, B. Hu, J. Bai, J. P. Wang, and J. Shen, “Enhancement of quantum efficiency of organic light emitting devices by doping magnetic nanoparticles,” Appl. Phys. Lett. 90(23), 232110 (2007).
[Crossref]

Yan, L.

B. Hu, L. Yan, and M. Shao, “Magnetic-field effects in organic semiconducting materials and devices,” Adv. Mater. 21(14-15), 1500–1516 (2009).
[Crossref]

Yang, C.

Q. Sun, Y. A. Wang, L. S. Li, D. Wang, T. Zhu, J. Xu, C. Yang, and Y. Li, “Bright, multicoloured light-emitting diodes based on quantum dots,” Nat. Photonics 1(12), 717–722 (2007).
[Crossref]

Yim, S. Y.

J. J. Kim, Y. C. Leem, J. W. Kang, J. Kwon, B. Cho, S. Y. Yim, J. H. Baek, and S. J. Park, “Enhancement of the Optical Output Power of InGaN/GaN Multiple Quantum Well Light-Emitting Diodes by a CoFe Ferromagnetic Layer,” ACS Photonics 2(11), 1519–1523 (2015).
[Crossref]

Yoon, D. Y.

J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, “Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted device structure,” Nano Lett. 12(5), 2362–2366 (2012).
[Crossref]

Zhang, B. P.

G. Weng, W. R. Zhao, S. Q. Chen, H. Akiyama, Z. C. Li, J. P. Liu, and B. P. Zhang, “Strong localization effect and carrier relaxation dynamics in self-assembled InGaN quantum dots emitting in the green,” Nanoscale Res. Lett. 10(1), 31 (2015).
[Crossref]

Zhang, Q.

Zhang, Z.

Zhao, J.

P. Jing, J. Zheng, M. Ikezawa, X. Liu, S. Lv, X. Kong, J. Zhao, and Y. Masumoto, “Temperature-dependent photoluminescence of CdSe-core CdS/CdZnS/ZnS-multishell quantum dots,” J. Phys. Chem. C 113(31), 13545–13550 (2009).
[Crossref]

Zhao, Q. X.

Q. X. Zhao, B. Monemar, P. O. Holtz, T. Lundström, M. Sundaram, J. L. Merz, and A. C. Gossard, “Magnetic-field-induced localization effects on radiative recombination in GaAs/AlxGa1-xAs heterostructures,” Phys. Rev. B 50(11), 7514–7517 (1994).
[Crossref]

Zhao, W. R.

G. Weng, W. R. Zhao, S. Q. Chen, H. Akiyama, Z. C. Li, J. P. Liu, and B. P. Zhang, “Strong localization effect and carrier relaxation dynamics in self-assembled InGaN quantum dots emitting in the green,” Nanoscale Res. Lett. 10(1), 31 (2015).
[Crossref]

Zheng, J.

P. Jing, J. Zheng, M. Ikezawa, X. Liu, S. Lv, X. Kong, J. Zhao, and Y. Masumoto, “Temperature-dependent photoluminescence of CdSe-core CdS/CdZnS/ZnS-multishell quantum dots,” J. Phys. Chem. C 113(31), 13545–13550 (2009).
[Crossref]

Zhou, Z.

B. S. Mashford, M. Stevenson, Z. Popovic, C. Hamilton, Z. Zhou, C. Breen, J. Steckel, V. Bulovic, M. Bawendi, S. Coe-Sullivan, and P. T. Kazlas, “High-efficiency quantum-dot light-emitting devices with enhanced charge injection,” Nat. Photonics 7(5), 407–412 (2013).
[Crossref]

Zhu, T.

Q. Sun, Y. A. Wang, L. S. Li, D. Wang, T. Zhu, J. Xu, C. Yang, and Y. Li, “Bright, multicoloured light-emitting diodes based on quantum dots,” Nat. Photonics 1(12), 717–722 (2007).
[Crossref]

ACS Photonics (1)

J. J. Kim, Y. C. Leem, J. W. Kang, J. Kwon, B. Cho, S. Y. Yim, J. H. Baek, and S. J. Park, “Enhancement of the Optical Output Power of InGaN/GaN Multiple Quantum Well Light-Emitting Diodes by a CoFe Ferromagnetic Layer,” ACS Photonics 2(11), 1519–1523 (2015).
[Crossref]

Adv. Mater. (1)

B. Hu, L. Yan, and M. Shao, “Magnetic-field effects in organic semiconducting materials and devices,” Adv. Mater. 21(14-15), 1500–1516 (2009).
[Crossref]

AIP Adv. (1)

M. S. Kushwaha, “Magneto-optical absorption in semiconducting spherical quantum dots: Influence of the dot-size, confining potential, and magnetic field,” AIP Adv. 4(12), 127151 (2014).
[Crossref]

Appl. Phys. Lett. (2)

B. Arnaudov, T. Paskova, O. Valassiades, P. P. Paskov, S. Evtimova, B. Monomer, and M. Heuken, “Magnetic-field-induced localization of electrons in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 83(13), 2590–2592 (2003).
[Crossref]

C. J. Sun, Y. Wu, Z. Xu, B. Hu, J. Bai, J. P. Wang, and J. Shen, “Enhancement of quantum efficiency of organic light emitting devices by doping magnetic nanoparticles,” Appl. Phys. Lett. 90(23), 232110 (2007).
[Crossref]

Chem. Phys. Lett. (1)

J. Kalinowski, M. Cocchi, D. Virgili, P. D. Marco, and V. Fattori, “Magnetic field effects on emission and current in Alq3-based electroluminescent diodes,” Chem. Phys. Lett. 380(5-6), 710–715 (2003).
[Crossref]

IEEE Magn. Lett. (1)

S. Bandiera, R. C. Sousa, B. Rodmacq, and B. Dieny, “Asymmetric interfacial perpendicular magnetic anisotropy in Pt/Co/Pt trilayers,” IEEE Magn. Lett. 2, 3000504 (2011).
[Crossref]

J. Am. Chem. Soc. (1)

Y. Gao and X. Peng, “Photogenerated excitons in plain core CdSe nanocrystals with unity radiative decay in single channel: the effects of surface and ligands,” J. Am. Chem. Soc. 137(12), 4230–4235 (2015).
[Crossref]

J. Appl. Phys. (1)

F. Y. Tsai, C. P. Lee, O. Voskoboynikov, H. H. Cheng, J. Shen, and Y. Oka, “Time-resolved photoluminescence study of InGaAs/GaAs quantum wells on (111)B GaAs substrates under magnetic fields,” J. Appl. Phys. 89(12), 7875–7878 (2001).
[Crossref]

J. Phys. Chem. C (1)

P. Jing, J. Zheng, M. Ikezawa, X. Liu, S. Lv, X. Kong, J. Zhao, and Y. Masumoto, “Temperature-dependent photoluminescence of CdSe-core CdS/CdZnS/ZnS-multishell quantum dots,” J. Phys. Chem. C 113(31), 13545–13550 (2009).
[Crossref]

Korean J. Chem. Eng. (1)

W. K. Bae and J. Lim, “Nanostructured colloidal quantum dots for efficient electroluminescence devices,” Korean J. Chem. Eng. 36(2), 173–185 (2019).
[Crossref]

Nano Lett. (2)

B. N. Pal, Y. Ghosh, S. Brovelli, R. Laocharoensuk, V. I. Klimov, J. A. Hollingsworth, and H. Htoon, “Giant CdSe/CdS core/shell nanocrystal quantum dots as efficient electroluminescent materials: strong influence of shell thickness on light-emitting diode performance,” Nano Lett. 12(1), 331–336 (2012).
[Crossref]

J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, “Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted device structure,” Nano Lett. 12(5), 2362–2366 (2012).
[Crossref]

Nanoscale (1)

S. Kim, S. H. Im, and S. W. Kim, “Performance of light-emitting-diode based on quantum dots,” Nanoscale 5(12), 5205–5214 (2013).
[Crossref]

Nanoscale Res. Lett. (1)

G. Weng, W. R. Zhao, S. Q. Chen, H. Akiyama, Z. C. Li, J. P. Liu, and B. P. Zhang, “Strong localization effect and carrier relaxation dynamics in self-assembled InGaN quantum dots emitting in the green,” Nanoscale Res. Lett. 10(1), 31 (2015).
[Crossref]

Nat. Photonics (3)

Q. Sun, Y. A. Wang, L. S. Li, D. Wang, T. Zhu, J. Xu, C. Yang, and Y. Li, “Bright, multicoloured light-emitting diodes based on quantum dots,” Nat. Photonics 1(12), 717–722 (2007).
[Crossref]

Y. Shirasaki, G. J. Supran, M. G. Bawendi, and V. Bulović, “Emergence of colloidal quantum-dot light-emitting technologies,” Nat. Photonics 7(1), 13–23 (2013).
[Crossref]

B. S. Mashford, M. Stevenson, Z. Popovic, C. Hamilton, Z. Zhou, C. Breen, J. Steckel, V. Bulovic, M. Bawendi, S. Coe-Sullivan, and P. T. Kazlas, “High-efficiency quantum-dot light-emitting devices with enhanced charge injection,” Nat. Photonics 7(5), 407–412 (2013).
[Crossref]

Opt. Express (1)

Phys. Rev. B (7)

Q. X. Zhao, B. Monemar, P. O. Holtz, T. Lundström, M. Sundaram, J. L. Merz, and A. C. Gossard, “Magnetic-field-induced localization effects on radiative recombination in GaAs/AlxGa1-xAs heterostructures,” Phys. Rev. B 50(11), 7514–7517 (1994).
[Crossref]

M. Larsson, E. Moskalenko, A. Larsson, P. Holtz, C. Verdozzi, C.-O. Almbladh, W. V. Schoenfeld, and P. M. Petroff, “Magnetic field effects on optical and transport properties in InAs/GaAs quantum dots,” Phys. Rev. B 74(24), 245312 (2006).
[Crossref]

E. Alphandéry, R. J. Nicholas, N. J. Mason, S. G. Lyapin, and P. C. Klipstein, “Photoluminescence of self-assembled InSb quantum dots grown on GaSb as a function of excitation power, temperature, and magnetic field,” Phys. Rev. B 65(11), 115322 (2002).
[Crossref]

J. Reijniers, F. M. Peeters, and A. Matulis, “Electron scattering on circular symmetric magnetic profiles in a two-dimensional electron gas,” Phys. Rev. B 64(24), 245314 (2001).
[Crossref]

S. J. Prado, C. Trallero-Giner, A. M. Alcalde, V. López-Richard, and G. E. Marques, “Influence of quantum dot shape on the Landé g-factor determination,” Phys. Rev. B 69(20), 201310 (2004).
[Crossref]

J. Thiele, C. Boeglin, K. Hricovini, and F. Chevrier, “Magnetic circular x-ray-dichroism study of Co/Pt (111),” Phys. Rev. B 53(18), R11934 (1996).
[Crossref]

K. S. Novoselov, A. K. Geim, S. V. Dubonos, Y. G. Cornelissens, F. M. Peeters, and J. C. Maan, “Scattering of ballistic electrons at a mesoscopic spot of strong magnetic field,” Phys. Rev. B 65(23), 233312 (2002).
[Crossref]

Phys. Rev. Lett. (2)

N. Nakajima, T. Koide, T. Shidara, H. Miyauchi, H. Fukutani, A. Fujimori, K. Iio, T. Katayama, M. Nývlt, and Y. Suzuki, “Perpendicular Magnetic Anisotropy Caused by Interfacial Hybridization via Enhanced Orbital Moment in Co/Pt Multilayers: Magnetic Circular X-Ray Dichroism Study,” Phys. Rev. Lett. 81(23), 5229–5232 (1998).
[Crossref]

A. Nogaret, S. J. Bending, and M. Henini, “Resistance resonance effects through magnetic edge states,” Phys. Rev. Lett. 84(10), 2231–2234 (2000).
[Crossref]

Phys. Status Solidi B (1)

Q. Ren, L. Bai, A. Murayama, Z. Chen, and X. Shen, “Magnetic field induced charging effect in a single CdSe quantum dot,” Phys. Status Solidi B 246(4), 791–794 (2009).
[Crossref]

Superlattices Microstruct. (1)

S. Raymond, S. Fafard, P. J. Poole, A. Wojs, P. Hawrylak, C. Gould, A. Sachrajda, and S. Charbonneau, “State-filling and magneto-photoluminescence of excited states in InGaAs/GaAs self-assembled quantum dots,” Superlattices Microstruct. 21(4), 541–558 (1997).
[Crossref]

Other (3)

O. Ostroverkhova, Handbook of Organic Materials for Electronic and Photonic Devices (Elsevier, 2019).

F. F. Chen, Introduction to plasma physics and controlled fusion (Plenum Press, 1984).

J. H. Han, J. J. Kim, Y. C. Leem, S. J. Kim, W. Kwak, W. L. Jeong, B. Cho, D. S. Lee, and S. J. Park, “Improved efficiency of InGaN/GaN light-emitting diodes with perpendicular magnetic field gradients,” Opt. Express (accepted).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Schematic of fabrication steps for QDLEDs with a ferromagnetic Co/Pt multilayer: (a) ITO-deposited glass substrate; (b) spin-coated PEDOT:PSS and poly-TPD as a hole transport layer on ITO glass; (c) spin coating of red, green, and blue quantum dots on hole transport layer in (b); (d) spin-coated ZnO as an electron transport layer on a QD layer; (e) thermally evaporated 100-nm-thick Al layer as an electrode on ZnO; (f) electron-beam-evaporated MgF2 as an insulating and capping layer on Al and DC-sputtered ferromagnetic Co/Pt multilayer; (h) tilted and (i) cross-sectional scanning electron microscope (SEM) images of QDLED shown in (g).
Fig. 2.
Fig. 2. (a) Schematic of the circular ferromagnetic Co/Pt multilayer disk structure, and (b) vibrating sample magnetometer (VSM) characteristics of ferromagnetic Co/Pt multilayer on a Si substrate. The inset shows a ferromagnetic Co/Pt multilayer film on a Si substrate (1×1 cm2) for VSM measurements.
Fig. 3.
Fig. 3. (a) Current density–voltage (J–V) and luminance–voltage (L–V) characteristics of red, green, and blue QDLEDs before (black squares) and after (colored dots) deposition of the ferromagnetic Co/Pt multilayer (FCPM). J-V characteristics are plotted as solid squares (without FCPM) and solid dots (with FCPM). L-V characteristics are plotted as hollow squares (without of FCPM) and hollow dots (with FCPM).
Fig. 4.
Fig. 4. Schematics of (a) tilted-angle and (b) front-angle cross-sectional view of a QDLED with a ferromagnetic Co/Pt multilayer and magnetic field profiles; (c) carrier motions under the perpendicular magnetic field and magnetic field gradients in the edge region (marked “a”) where the magnetic field was strong and directed upward, and in the center region (marked “b”) where the magnetic field was weak and directed downward. The carrier trajectories denoted by “1”, “2”, and “3” have high, resonant, and low kinetic energy under the magnetic field gradient, respectively.
Fig. 5.
Fig. 5. EL spectra of (a) red, (b) green, and (c) blue QDLEDs without (black squares) and with (colored dots) deposition of the ferromagnetic Co/Pt multilayer.
Fig. 6.
Fig. 6. TR-PL spectra without (black squares) and with (colored dots) a ferromagnetic Co/Pt multilayer for the (a) red, (b) green, and (c) blue QDLEDs.