Abstract

We present, what is to our knowledge, the first detailed lasing investigation of cryogenic Yb:YLF gain media in the E//a-axis. Compared to the usually employed E//c-axis, the a-axis of Yb:YLF provides a much broader and smooth gain profile, but this comes at the expense of reduced gain product. We have shown that, despite the lower gain, which (i) increases susceptibility to cavity losses, (ii) raises lasing threshold, and (iii) inflates thermal load, efficient and high-power lasing could be achieved in the E//a axis as well. A record continuous-wave (cw) powers above 300 W, cw slope efficiencies of 73%, and a tuning range covering the 995-1020.5 nm region were demonstrated. In quasi-cw lasing experiments, via minimization of thermal effects, slope efficiencies can be scaled up to 85%. In gain-switched operation, sub-50-µs long pulses with a peak power exceeding 2.5 kW at multi-kHz repetition rate were attained. We measured a beam quality factor below 1.5 for laser average powers up to 100 W and below 3 for laser average powers up to 300 W. Power scaling limits due to thermal effects, laser dynamics in pulsed pumping, and multicolor lasing operation potential were also investigated. The detailed results presented in this manuscript will pave the way towards development of high-power and high-energy Yb:YLF oscillators and amplifiers with sub-500-fs pulse duration.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Highly-efficient Q-switched Yb:YLF laser at 995 nm with a second harmonic conversion

N. Ter-Gabrielan, V. Fromzel, T. Sanamyan, and M. Dubinskii
Opt. Mater. Express 7(7) 2396-2403 (2017)

High-power tunable diode-pumped Yb3+:CaF2 laser

A. Lucca, M. Jacquemet, F. Druon, F. Balembois, P. Georges, P. Camy, J. L. Doualan, and R. Moncorgé
Opt. Lett. 29(16) 1879-1881 (2004)

High efficiency room temperature laser emission in heavily doped Yb:YLF

Matteo Vannini, Guido Toci, Daniele Alderighi, Daniela Parisi, Francesco Cornacchia, and Mauro Tonelli
Opt. Express 15(13) 7994-8002 (2007)

References

  • View by:
  • |
  • |
  • |

  1. A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable Concept for Diode-Pumped High-Power Solid-State Lasers,” Appl. Phys. B: Lasers Opt. 58(5), 365–372 (1994).
    [Crossref]
  2. C. J. Saraceno, “Mode-locked thin-disk lasers and their potential application for high-power terahertz generation,” J. Opt. 20(4), 044010 (2018).
    [Crossref]
  3. A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: Results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13(3), 598–609 (2007).
    [Crossref]
  4. J. Brons, V. Pervak, D. Bauer, D. Sutter, O. Pronin, and F. Krausz, “Powerful 100-fs-scale Kerr-lens mode-locked thin-disk oscillator,” Opt. Lett. 41(15), 3567–3570 (2016).
    [Crossref]
  5. T. Nubbemeyer, M. Kaumanns, M. Ueffing, M. Gorjan, A. Alismail, H. Fattahi, J. Brons, O. Pronin, H. G. Barros, Z. Major, T. Metzger, D. Sutter, and F. Krausz, “1 kW, 200 mJ picosecond thin-disk laser system,” Opt. Lett. 42(7), 1381–1384 (2017).
    [Crossref]
  6. T. Sudmeyer, C. Krankel, C. R. E. Baer, O. H. Heckl, C. J. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, and U. Keller, “High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation,” Appl. Phys. B: Lasers Opt. 97(2), 281–295 (2009).
    [Crossref]
  7. W. Q. Li, Z. B. Gan, L. H. Yu, C. Wang, Y. Q. Liu, Z. Guo, L. Xu, M. Xu, Y. Hang, Y. Xu, J. Y. Wang, P. Huang, H. Cao, B. Yao, X. B. Zhang, L. R. Chen, Y. H. Tang, S. Li, X. Y. Liu, S. M. Li, M. Z. He, D. J. Yin, X. Y. Liang, Y. X. Leng, R. X. Li, and Z. Z. Xu, “339 J high-energy Ti:sapphire chirped-pulse amplifier for 10 PW laser facility,” Opt. Lett. 43(22), 5681–5684 (2018).
    [Crossref]
  8. Q. Liu, M. Gong, F. Y. Lu, W. P. Gong, and C. Li, “520-W continuous-wave diode corner-pumped composite Yb : YAG slab laser,” Opt. Lett. 30(7), 726–728 (2005).
    [Crossref]
  9. X. Delen, Y. Zaouter, I. Martial, N. Aubry, J. Didierjean, C. Honninger, E. Mottay, F. Balembois, and P. Georges, “Yb:YAG single crystal fiber power amplifier for femtosecond sources,” Opt. Lett. 38(2), 109–111 (2013).
    [Crossref]
  10. M. Schulz, R. Riedel, A. Willner, T. Mans, C. Schnitzler, P. Russbueldt, J. Dolkemeyer, E. Seise, T. Gottschall, S. Hadrich, S. Duesterer, H. Schlarb, J. Feldhaus, J. Limpert, B. Faatz, A. Tunnermann, J. Rossbach, M. Drescher, and F. Tavella, “Yb:YAG Innoslab amplifier: efficient high repetition rate subpicosecond pumping system for optical parametric chirped pulse amplification,” Opt. Lett. 36(13), 2456–2458 (2011).
    [Crossref]
  11. X. M. Chen, L. Xu, H. Hu, T. J. Zhou, Y. H. Sun, H. Jiang, J. Lei, W. Q. Lv, H. Su, Y. Shi, M. Li, Y. C. Wu, Z. Y. Yao, N. Zhao, X. X. Xu, Q. S. Gao, X. J. Wang, and C. Tang, “High-efficiency, high-average-power, CW Yb: YAG zigzag slab master oscillator power amplifier at room temperature,” Opt. Express 24(21), 24517–24523 (2016).
    [Crossref]
  12. D. C. Brown, “The promise of cryogenic solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 587–599 (2005).
    [Crossref]
  13. T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
    [Crossref]
  14. N. Coluccelli, G. Galzerano, L. Bonelli, A. Di Lieto, M. Tonelli, and P. Laporta, “Diode-pumped passively mode-locked Yb : YLF laser,” Opt. Express 16(5), 2922–2927 (2008).
    [Crossref]
  15. C. Honninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B: Lasers Opt. 69(1), 3–17 (1999).
    [Crossref]
  16. D. C. Brown, S. Tornegard, J. Kolis, C. McMillen, C. Moore, L. Sanjeewa, and C. Hancock, “The Application of Cryogenic Laser Physics to the Development of High Average Power Ultra-Short Pulse Lasers,” Applied Sciences-Basel 6 (2016).
  17. R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO(3), LiYF4, LiLuF4, BaY2F8, KGd(WO4)(2), and KY(WO4)(2) laser crystals in the 80-300 K temperature range,” J. Appl. Phys. 98(10), 103514 (2005).
    [Crossref]
  18. W. Koechner, Solid-state laser engineering (Springer, New York, 2006).
  19. B. W. Woods, S. A. Payne, J. E. Marion, R. S. Hughes, and L. E. Davis, “Thermomechanical and thermooptic properties of the LiCaAlF6-Cr3+ laser material,” J. Opt. Soc. Am. B 8(5), 970–977 (1991).
    [Crossref]
  20. L. J. Atherton, S. A. Payne, and C. D. Brandle, “Oxide and fluoride laser crystals,” Annu. Rev. Mater. Sci. 23(1), 453–502 (1993).
    [Crossref]
  21. N. Ter-Gabrielan, V. Fromzel, T. Sanamyan, and M. Dubinskii, “Highly-efficient Q-switched Yb: YLF laser at 995 nm with a second harmonic conversion,” Opt. Mater. Express 7(7), 2396–2403 (2017).
    [Crossref]
  22. D. C. Brown, S. Tornegard, and J. Kolis, “Cryogenic nanosecond and picosecond high average and peak power (HAPP) pump lasers for ultrafast applications,” High Power Laser Sci. Eng. 4, e15 (2016).
    [Crossref]
  23. D. Alderighi, A. Pirri, G. Toci, and M. Vannini, “Tunability enhancement of Yb:YLF based laser,” Opt. Express 18(3), 2236–2241 (2010).
    [Crossref]
  24. S. Nakamura, H. Yoshioka, T. Ogawa, and S. Wada, “Broadly Tunable Yb3+-Doped Y3Al5O12 Ceramic Laser at Room Temperature,” Jpn. J. Appl. Phys. 48(6), 060205 (2009).
    [Crossref]
  25. F. Pirzio, L. Fregnani, A. Volpi, A. Di Lieto, M. Tonelli, and A. Agnesi, “87 fs pulse generation in a diode-pumped semiconductor saturable absorber mirror mode-locked Yb:YLF laser,” Appl. Opt. 55(16), 4414–4417 (2016).
    [Crossref]
  26. S. Uemura and K. Torizuka, “Sub-40-fs Pulses from a Diode-Pumped Kerr-Lens Mode-Locked Yb-Doped Yttrium Aluminum Garnet Laser,” Jpn. J. Appl. Phys. 50, 010201 (2011).
    [Crossref]
  27. J. Fischer, A. C. Heinrich, S. Maier, J. Jungwirth, D. Brida, and A. Leitenstorfer, “615 fs pulses with 17 mJ energy generated by an Yb:thin-disk amplifier at 3 kHz repetition rate,” Opt. Lett. 41(2), 246–249 (2016).
    [Crossref]
  28. J. Kawanaka, K. Yamakawa, H. Nishioka, and K. Ueda, “Improved high-field laser characteristics of a diode-pumped Yb : LiYF4 crystal at low temperature,” Opt. Express 10(10), 455–460 (2002).
    [Crossref]
  29. D. E. Miller, J. R. Ochoa, and T. Y. Fan, “Cryogenically cooled, 149 W, Q-switched, Yb:LiYF4 laser,” Opt. Lett. 38(20), 4260–4261 (2013).
    [Crossref]
  30. A. Bensalah, Y. Guyot, M. Ito, A. Brenier, H. Sato, T. Fukuda, and G. Boulon, “Growth of Yb3+-doped YLiF4 laser crystal by the Czochralski method. Attempt of Yb3+ energy level assignment and estimation of the laser potentiality,” Opt. Mater. 26(4), 375–383 (2004).
    [Crossref]
  31. A. Sugiyama, M. Katsurayama, Y. Anzai, and T. Tsuboi, “Spectroscopic properties of Yb doped YLF grown by a vertical Bridgman method,” J. Alloys Compd. 408-412, 780–783 (2006).
    [Crossref]
  32. M. Vannini, G. Toci, D. Alderighi, D. Parisi, F. Cornacchia, and M. Tonelli, “High efficiency room temperature laser emission in heavily doped Yb : YLF,” Opt. Express 15(13), 7994–8002 (2007).
    [Crossref]
  33. N. Uehara, K. Ueda, and Y. Kubota, “Spectroscopic measurements of a high-concentration Yb3+:LiYF4 crystal,” Jpn. J. Appl. Phys. 35(Part 2, No. 4B), L499–L501 (1996).
    [Crossref]
  34. J. Kawanaka, H. Nishioka, N. Inoue, and K. Ueda, “Tunable continuous-wave Yb : YLF laser operation with a diode-pumped chirped-pulse amplification system,” Appl. Opt. 40(21), 3542–3546 (2001).
    [Crossref]
  35. N. Coluccelli, G. Galzerano, L. Bonelli, A. Toncelli, A. Di Lieto, M. Tonelli, and P. Laporta, “Room-temperature diode-pumped Yb3+-doped LiYF4 and KYF4 lasers,” Appl. Phys. B: Lasers Opt. 92(4), 519–523 (2008).
    [Crossref]
  36. A. Pirri, D. Alderighi, G. Toci, M. Vannini, M. Nikl, and H. Sato, “Direct Comparison of Yb3+:CaF2 and heavily doped Yb3+:YLF as laser media at room temperature,” Opt. Express 17(20), 18312–18319 (2009).
    [Crossref]
  37. L. E. Zapata, D. J. Ripin, and T. Y. Fan, “Power scaling of cryogenic Yb:LiYF4 lasers,” Opt. Lett. 35(11), 1854–1856 (2010).
    [Crossref]
  38. K. Beil, S. T. Fredrich-Thornton, C. Kränkel, K. Petermann, D. Parisi, M. Tonelli, and G. Huber, “New thin disk laser materials: Yb:ScYLO and Yb:YLF,” in CLEO/Europe and EQEC (2011), p. CA11_16.
  39. J. G. Yin, Y. Hang, X. M. He, L. H. Zhang, C. C. Zhao, J. Gong, and P. X. Zhang, “Direct comparison of Yb3+-doped LiYF4 and LiLuF4 as laser media at room-temperature,” Laser Phys. Lett. 9(2), 126–130 (2012).
    [Crossref]
  40. W. Bolanos, F. Starecki, A. Braud, J. L. Doualan, R. Moncorge, and P. Camy, “2.8 W end-pumped Yb3+:LiYF4 waveguide laser,” Opt. Lett. 38(24), 5377–5380 (2013).
    [Crossref]
  41. F. D. Lelii, S. Jun, F. Pirzio, G. Piccinno, M. Tonelli, and A. Agnesi, “Laser investigation of Yb:YLF crystals fabricated with the micro-pulling-down technique,” Appl. Opt. 57(9), 2223–2226 (2018).
    [Crossref]
  42. J. Kawanaka, K. Yamakawa, H. Nishioka, and K. Ueda, “30-mJ, diode-pumped, chirped-pulse Yb : YLF regenerative amplifier,” Opt. Lett. 28(21), 2121–2123 (2003).
    [Crossref]
  43. D. Rand, D. Miller, D. J. Ripin, and T. Y. Fan, “Cryogenic Yb3+-doped materials for pulsed solid-state laser applications [Invited],” Opt. Mater. Express 1(3), 434–450 (2011).
    [Crossref]
  44. D. E. Miller, L. E. Zapata, D. J. Ripin, and T. Y. Fan, “Sub-picosecond pulses at 100 W average power from a Yb:YLF chirped-pulse amplification system,” Opt. Lett. 37(13), 2700–2702 (2012).
    [Crossref]
  45. J. Manni, D. Harris, and T. Y. Fan, “High-gain (43 dB), high-power (40 W), highly efficient multipass amplifier at 995 nm in Yb:LiYF4,” Opt. Commun. 417, 54–56 (2018).
    [Crossref]
  46. V. Bagini, R. Borghi, F. Gori, A. M. Pacileo, M. Santarsiero, D. Ambrosini, and G. S. Spagnolo, “Propagation of axially symmetric flattened Gaussian beams,” J. Opt. Soc. Am. A 13(7), 1385–1394 (1996).
    [Crossref]
  47. M. Kida, Y. Kikuchi, O. Takahashi, and I. Michiyoshi, “Pool-Boiling Heat-Transfer in Liquid-Nitrogen,” J. Nucl. Sci. Technol. (Abingdon, U. K.) 18(7), 501–513 (1981).
    [Crossref]
  48. K. Bouazaoui, R. Agounoun, K. Sbai, A. Zoubir, I. Kadiri, M. Rahmoune, and R. Saadani, “Experimental and Numerical Study of Pool Boiling Heat Transfer of Liquid Nitrogen LN2: Application to the Brass Ribbon Cooling in Horizontal Position,” Internat. J. Mech. Mechatronics Eng. 17(2), 74–82 (2017).
  49. B. Baudouy, “Heat transfer and cooling techniques at low temperature,” arXiv:1501.07153 (2015).
  50. Y. Hua, W. Liu, M. Hemmer, L. E. Zapata, G. J. Zhou, D. N. Schimpf, T. Eidam, J. Limpert, A. Tunnermann, F. X. Kartner, and G. Q. Chang, “87-W 1018-nm Yb-fiber ultrafast seeding source for cryogenic Yb: yttrium lithium fluoride amplifier,” Opt. Lett. 43(8), 1686–1689 (2018).
    [Crossref]
  51. H. Cankaya, U. Demirbas, M. Pergament, M. Hemmer, Y. Hua, L. E. Zapata, and F. X. Kärtner, “160-mJ Cryogenically-Cooled Yb:YLF Amplifier System at 1019 nm,” in CLEO Europe (Munich, 2019).
  52. T. Y. Fan, “Heat Generation in Nd:YAG and Yb:YAG,” IEEE J. Quantum Electron. 29(6), 1457–1459 (1993).
    [Crossref]
  53. E. Beyatli, A. Sennaroglu, and U. Demirbas, “Self-Q-Switched Cr:LiCAF Laser,” J. Opt. Soc. Am. B 30(4), 914–921 (2013).
    [Crossref]
  54. G. Tawy and M. J. Damzen, “Tunable, dual wavelength and self-Q-switched Alexandrite laser using crystal birefringence control,” Opt. Express 27(13), 17507–17520 (2019).
    [Crossref]
  55. A. L. Bloom, “Modes of a laser resonator containing tilted birefringent plates,” J. Opt. Soc. Am. B 64(4), 447–452 (1974).
    [Crossref]
  56. S. Lovold, P. F. Moulton, D. K. Killinger, and N. Menwk, “Frequency Tuning Characteristics of a Q-Switched Co:MgF2 Laser “ IEEE J,” Quantum Electron. 21(3), 202–208 (1985).
    [Crossref]
  57. K. Naganuma, G. Lenz, and E. P. Ippen, “Variable Bandwidth Birefringent Filter for Tunable Femtosecond Lasers,” IEEE J. Quantum Electron. 28(10), 2142–2150 (1992).
    [Crossref]
  58. U. Demirbas, “Off-surface optic axis birefringent filters for smooth tuning of broadband lasers,” Appl. Opt. 56(28), 7815–7825 (2017).
    [Crossref]
  59. S. Manjooran, P. Loiko, and A. Major, “A discretely tunable dual-wavelength multi-watt Yb:CALGO laser,” Appl. Phys. B: Lasers Opt. 124(1), 13 (2018).
    [Crossref]
  60. U. Demirbas, R. Uecker, J. G. Fujimoto, and A. Leitenstorfer, “Multicolor lasers using birefringent filters: experimental demonstration with Cr:Nd:GSGG and Cr:LiSAF,” Opt. Express 25(3), 2594–2607 (2017).
    [Crossref]
  61. H. Yoshioka, S. Nakamura, T. Ogawa, and S. Wada, “Dual-wavelength mode-locked Yb:YAG ceramic laser in single cavity,” Opt. Express 18(2), 1479–1486 (2010).
    [Crossref]
  62. T. Yerebakan, U. Demirbas, S. Eggert, R. Bertram, P. Reiche, and A. Leitenstorfer, “Red diode pumped Cr:Nd:GSGG laser: two-color mode-locked operation,” J. Opt. Soc. Am. B 34(5), 1023–1032 (2017).
    [Crossref]
  63. Q. Yang, Y. G. Wang, D. H. Liu, J. Liu, L. H. Zheng, L. B. Su, and J. Xu, “Dual-wavelength mode-locked Yb:LuYSiO5 laser with a double-walled carbon nanotube saturable absorber,” Laser Phys. Lett. 9(2), 135–140 (2012).
    [Crossref]
  64. D. F. Zhang, A. Fallahi, M. Hemmer, X. J. Wu, M. Fakhari, Y. Hua, H. Cankaya, A. L. Calendron, L. E. Zapata, N. H. Matlis, and F. X. Kartner, “Segmented terahertz electron accelerator and manipulator (STEAM),” Nat. Photonics 12(6), 336–342 (2018).
    [Crossref]
  65. D. F. Zhang, A. Fallahi, M. Hemmer, H. Ye, M. Fakhari, Y. Hua, H. Cankaya, A. L. Calendron, L. E. Zapata, N. H. Matlis, and F. X. Kartner, “Femtosecond phase control in high-field terahertz-driven ultrafast electron sources,” Optica 6(7), 872–877 (2019).
    [Crossref]

2019 (2)

2018 (7)

F. D. Lelii, S. Jun, F. Pirzio, G. Piccinno, M. Tonelli, and A. Agnesi, “Laser investigation of Yb:YLF crystals fabricated with the micro-pulling-down technique,” Appl. Opt. 57(9), 2223–2226 (2018).
[Crossref]

Y. Hua, W. Liu, M. Hemmer, L. E. Zapata, G. J. Zhou, D. N. Schimpf, T. Eidam, J. Limpert, A. Tunnermann, F. X. Kartner, and G. Q. Chang, “87-W 1018-nm Yb-fiber ultrafast seeding source for cryogenic Yb: yttrium lithium fluoride amplifier,” Opt. Lett. 43(8), 1686–1689 (2018).
[Crossref]

W. Q. Li, Z. B. Gan, L. H. Yu, C. Wang, Y. Q. Liu, Z. Guo, L. Xu, M. Xu, Y. Hang, Y. Xu, J. Y. Wang, P. Huang, H. Cao, B. Yao, X. B. Zhang, L. R. Chen, Y. H. Tang, S. Li, X. Y. Liu, S. M. Li, M. Z. He, D. J. Yin, X. Y. Liang, Y. X. Leng, R. X. Li, and Z. Z. Xu, “339 J high-energy Ti:sapphire chirped-pulse amplifier for 10 PW laser facility,” Opt. Lett. 43(22), 5681–5684 (2018).
[Crossref]

C. J. Saraceno, “Mode-locked thin-disk lasers and their potential application for high-power terahertz generation,” J. Opt. 20(4), 044010 (2018).
[Crossref]

J. Manni, D. Harris, and T. Y. Fan, “High-gain (43 dB), high-power (40 W), highly efficient multipass amplifier at 995 nm in Yb:LiYF4,” Opt. Commun. 417, 54–56 (2018).
[Crossref]

S. Manjooran, P. Loiko, and A. Major, “A discretely tunable dual-wavelength multi-watt Yb:CALGO laser,” Appl. Phys. B: Lasers Opt. 124(1), 13 (2018).
[Crossref]

D. F. Zhang, A. Fallahi, M. Hemmer, X. J. Wu, M. Fakhari, Y. Hua, H. Cankaya, A. L. Calendron, L. E. Zapata, N. H. Matlis, and F. X. Kartner, “Segmented terahertz electron accelerator and manipulator (STEAM),” Nat. Photonics 12(6), 336–342 (2018).
[Crossref]

2017 (6)

2016 (5)

2013 (4)

2012 (3)

D. E. Miller, L. E. Zapata, D. J. Ripin, and T. Y. Fan, “Sub-picosecond pulses at 100 W average power from a Yb:YLF chirped-pulse amplification system,” Opt. Lett. 37(13), 2700–2702 (2012).
[Crossref]

Q. Yang, Y. G. Wang, D. H. Liu, J. Liu, L. H. Zheng, L. B. Su, and J. Xu, “Dual-wavelength mode-locked Yb:LuYSiO5 laser with a double-walled carbon nanotube saturable absorber,” Laser Phys. Lett. 9(2), 135–140 (2012).
[Crossref]

J. G. Yin, Y. Hang, X. M. He, L. H. Zhang, C. C. Zhao, J. Gong, and P. X. Zhang, “Direct comparison of Yb3+-doped LiYF4 and LiLuF4 as laser media at room-temperature,” Laser Phys. Lett. 9(2), 126–130 (2012).
[Crossref]

2011 (3)

2010 (3)

2009 (3)

A. Pirri, D. Alderighi, G. Toci, M. Vannini, M. Nikl, and H. Sato, “Direct Comparison of Yb3+:CaF2 and heavily doped Yb3+:YLF as laser media at room temperature,” Opt. Express 17(20), 18312–18319 (2009).
[Crossref]

S. Nakamura, H. Yoshioka, T. Ogawa, and S. Wada, “Broadly Tunable Yb3+-Doped Y3Al5O12 Ceramic Laser at Room Temperature,” Jpn. J. Appl. Phys. 48(6), 060205 (2009).
[Crossref]

T. Sudmeyer, C. Krankel, C. R. E. Baer, O. H. Heckl, C. J. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, and U. Keller, “High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation,” Appl. Phys. B: Lasers Opt. 97(2), 281–295 (2009).
[Crossref]

2008 (2)

N. Coluccelli, G. Galzerano, L. Bonelli, A. Toncelli, A. Di Lieto, M. Tonelli, and P. Laporta, “Room-temperature diode-pumped Yb3+-doped LiYF4 and KYF4 lasers,” Appl. Phys. B: Lasers Opt. 92(4), 519–523 (2008).
[Crossref]

N. Coluccelli, G. Galzerano, L. Bonelli, A. Di Lieto, M. Tonelli, and P. Laporta, “Diode-pumped passively mode-locked Yb : YLF laser,” Opt. Express 16(5), 2922–2927 (2008).
[Crossref]

2007 (3)

M. Vannini, G. Toci, D. Alderighi, D. Parisi, F. Cornacchia, and M. Tonelli, “High efficiency room temperature laser emission in heavily doped Yb : YLF,” Opt. Express 15(13), 7994–8002 (2007).
[Crossref]

A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: Results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13(3), 598–609 (2007).
[Crossref]

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

2006 (1)

A. Sugiyama, M. Katsurayama, Y. Anzai, and T. Tsuboi, “Spectroscopic properties of Yb doped YLF grown by a vertical Bridgman method,” J. Alloys Compd. 408-412, 780–783 (2006).
[Crossref]

2005 (3)

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO(3), LiYF4, LiLuF4, BaY2F8, KGd(WO4)(2), and KY(WO4)(2) laser crystals in the 80-300 K temperature range,” J. Appl. Phys. 98(10), 103514 (2005).
[Crossref]

D. C. Brown, “The promise of cryogenic solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 587–599 (2005).
[Crossref]

Q. Liu, M. Gong, F. Y. Lu, W. P. Gong, and C. Li, “520-W continuous-wave diode corner-pumped composite Yb : YAG slab laser,” Opt. Lett. 30(7), 726–728 (2005).
[Crossref]

2004 (1)

A. Bensalah, Y. Guyot, M. Ito, A. Brenier, H. Sato, T. Fukuda, and G. Boulon, “Growth of Yb3+-doped YLiF4 laser crystal by the Czochralski method. Attempt of Yb3+ energy level assignment and estimation of the laser potentiality,” Opt. Mater. 26(4), 375–383 (2004).
[Crossref]

2003 (1)

2002 (1)

2001 (1)

1999 (1)

C. Honninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B: Lasers Opt. 69(1), 3–17 (1999).
[Crossref]

1996 (2)

N. Uehara, K. Ueda, and Y. Kubota, “Spectroscopic measurements of a high-concentration Yb3+:LiYF4 crystal,” Jpn. J. Appl. Phys. 35(Part 2, No. 4B), L499–L501 (1996).
[Crossref]

V. Bagini, R. Borghi, F. Gori, A. M. Pacileo, M. Santarsiero, D. Ambrosini, and G. S. Spagnolo, “Propagation of axially symmetric flattened Gaussian beams,” J. Opt. Soc. Am. A 13(7), 1385–1394 (1996).
[Crossref]

1994 (1)

A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable Concept for Diode-Pumped High-Power Solid-State Lasers,” Appl. Phys. B: Lasers Opt. 58(5), 365–372 (1994).
[Crossref]

1993 (2)

L. J. Atherton, S. A. Payne, and C. D. Brandle, “Oxide and fluoride laser crystals,” Annu. Rev. Mater. Sci. 23(1), 453–502 (1993).
[Crossref]

T. Y. Fan, “Heat Generation in Nd:YAG and Yb:YAG,” IEEE J. Quantum Electron. 29(6), 1457–1459 (1993).
[Crossref]

1992 (1)

K. Naganuma, G. Lenz, and E. P. Ippen, “Variable Bandwidth Birefringent Filter for Tunable Femtosecond Lasers,” IEEE J. Quantum Electron. 28(10), 2142–2150 (1992).
[Crossref]

1991 (1)

1985 (1)

S. Lovold, P. F. Moulton, D. K. Killinger, and N. Menwk, “Frequency Tuning Characteristics of a Q-Switched Co:MgF2 Laser “ IEEE J,” Quantum Electron. 21(3), 202–208 (1985).
[Crossref]

1981 (1)

M. Kida, Y. Kikuchi, O. Takahashi, and I. Michiyoshi, “Pool-Boiling Heat-Transfer in Liquid-Nitrogen,” J. Nucl. Sci. Technol. (Abingdon, U. K.) 18(7), 501–513 (1981).
[Crossref]

1974 (1)

A. L. Bloom, “Modes of a laser resonator containing tilted birefringent plates,” J. Opt. Soc. Am. B 64(4), 447–452 (1974).
[Crossref]

Aggarwal, R. L.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO(3), LiYF4, LiLuF4, BaY2F8, KGd(WO4)(2), and KY(WO4)(2) laser crystals in the 80-300 K temperature range,” J. Appl. Phys. 98(10), 103514 (2005).
[Crossref]

Agnesi, A.

Agounoun, R.

K. Bouazaoui, R. Agounoun, K. Sbai, A. Zoubir, I. Kadiri, M. Rahmoune, and R. Saadani, “Experimental and Numerical Study of Pool Boiling Heat Transfer of Liquid Nitrogen LN2: Application to the Brass Ribbon Cooling in Horizontal Position,” Internat. J. Mech. Mechatronics Eng. 17(2), 74–82 (2017).

Alderighi, D.

Alismail, A.

Ambrosini, D.

Anzai, Y.

A. Sugiyama, M. Katsurayama, Y. Anzai, and T. Tsuboi, “Spectroscopic properties of Yb doped YLF grown by a vertical Bridgman method,” J. Alloys Compd. 408-412, 780–783 (2006).
[Crossref]

Atherton, L. J.

L. J. Atherton, S. A. Payne, and C. D. Brandle, “Oxide and fluoride laser crystals,” Annu. Rev. Mater. Sci. 23(1), 453–502 (1993).
[Crossref]

Aubry, N.

Baer, C. R. E.

T. Sudmeyer, C. Krankel, C. R. E. Baer, O. H. Heckl, C. J. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, and U. Keller, “High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation,” Appl. Phys. B: Lasers Opt. 97(2), 281–295 (2009).
[Crossref]

Bagini, V.

Balembois, F.

Barros, H. G.

Baudouy, B.

B. Baudouy, “Heat transfer and cooling techniques at low temperature,” arXiv:1501.07153 (2015).

Bauer, D.

Beil, K.

K. Beil, S. T. Fredrich-Thornton, C. Kränkel, K. Petermann, D. Parisi, M. Tonelli, and G. Huber, “New thin disk laser materials: Yb:ScYLO and Yb:YLF,” in CLEO/Europe and EQEC (2011), p. CA11_16.

Bensalah, A.

A. Bensalah, Y. Guyot, M. Ito, A. Brenier, H. Sato, T. Fukuda, and G. Boulon, “Growth of Yb3+-doped YLiF4 laser crystal by the Czochralski method. Attempt of Yb3+ energy level assignment and estimation of the laser potentiality,” Opt. Mater. 26(4), 375–383 (2004).
[Crossref]

Bertram, R.

Beyatli, E.

Biswal, S.

C. Honninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B: Lasers Opt. 69(1), 3–17 (1999).
[Crossref]

Bloom, A. L.

A. L. Bloom, “Modes of a laser resonator containing tilted birefringent plates,” J. Opt. Soc. Am. B 64(4), 447–452 (1974).
[Crossref]

Bolanos, W.

Bonelli, L.

N. Coluccelli, G. Galzerano, L. Bonelli, A. Di Lieto, M. Tonelli, and P. Laporta, “Diode-pumped passively mode-locked Yb : YLF laser,” Opt. Express 16(5), 2922–2927 (2008).
[Crossref]

N. Coluccelli, G. Galzerano, L. Bonelli, A. Toncelli, A. Di Lieto, M. Tonelli, and P. Laporta, “Room-temperature diode-pumped Yb3+-doped LiYF4 and KYF4 lasers,” Appl. Phys. B: Lasers Opt. 92(4), 519–523 (2008).
[Crossref]

Borghi, R.

Bouazaoui, K.

K. Bouazaoui, R. Agounoun, K. Sbai, A. Zoubir, I. Kadiri, M. Rahmoune, and R. Saadani, “Experimental and Numerical Study of Pool Boiling Heat Transfer of Liquid Nitrogen LN2: Application to the Brass Ribbon Cooling in Horizontal Position,” Internat. J. Mech. Mechatronics Eng. 17(2), 74–82 (2017).

Boulon, G.

A. Bensalah, Y. Guyot, M. Ito, A. Brenier, H. Sato, T. Fukuda, and G. Boulon, “Growth of Yb3+-doped YLiF4 laser crystal by the Czochralski method. Attempt of Yb3+ energy level assignment and estimation of the laser potentiality,” Opt. Mater. 26(4), 375–383 (2004).
[Crossref]

Brandle, C. D.

L. J. Atherton, S. A. Payne, and C. D. Brandle, “Oxide and fluoride laser crystals,” Annu. Rev. Mater. Sci. 23(1), 453–502 (1993).
[Crossref]

Brauch, U.

A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable Concept for Diode-Pumped High-Power Solid-State Lasers,” Appl. Phys. B: Lasers Opt. 58(5), 365–372 (1994).
[Crossref]

Braud, A.

Braun, A.

C. Honninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B: Lasers Opt. 69(1), 3–17 (1999).
[Crossref]

Brenier, A.

A. Bensalah, Y. Guyot, M. Ito, A. Brenier, H. Sato, T. Fukuda, and G. Boulon, “Growth of Yb3+-doped YLiF4 laser crystal by the Czochralski method. Attempt of Yb3+ energy level assignment and estimation of the laser potentiality,” Opt. Mater. 26(4), 375–383 (2004).
[Crossref]

Brida, D.

Brons, J.

Brown, D. C.

D. C. Brown, S. Tornegard, and J. Kolis, “Cryogenic nanosecond and picosecond high average and peak power (HAPP) pump lasers for ultrafast applications,” High Power Laser Sci. Eng. 4, e15 (2016).
[Crossref]

D. C. Brown, “The promise of cryogenic solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 587–599 (2005).
[Crossref]

D. C. Brown, S. Tornegard, J. Kolis, C. McMillen, C. Moore, L. Sanjeewa, and C. Hancock, “The Application of Cryogenic Laser Physics to the Development of High Average Power Ultra-Short Pulse Lasers,” Applied Sciences-Basel 6 (2016).

Calendron, A. L.

D. F. Zhang, A. Fallahi, M. Hemmer, H. Ye, M. Fakhari, Y. Hua, H. Cankaya, A. L. Calendron, L. E. Zapata, N. H. Matlis, and F. X. Kartner, “Femtosecond phase control in high-field terahertz-driven ultrafast electron sources,” Optica 6(7), 872–877 (2019).
[Crossref]

D. F. Zhang, A. Fallahi, M. Hemmer, X. J. Wu, M. Fakhari, Y. Hua, H. Cankaya, A. L. Calendron, L. E. Zapata, N. H. Matlis, and F. X. Kartner, “Segmented terahertz electron accelerator and manipulator (STEAM),” Nat. Photonics 12(6), 336–342 (2018).
[Crossref]

Camy, P.

Cankaya, H.

D. F. Zhang, A. Fallahi, M. Hemmer, H. Ye, M. Fakhari, Y. Hua, H. Cankaya, A. L. Calendron, L. E. Zapata, N. H. Matlis, and F. X. Kartner, “Femtosecond phase control in high-field terahertz-driven ultrafast electron sources,” Optica 6(7), 872–877 (2019).
[Crossref]

D. F. Zhang, A. Fallahi, M. Hemmer, X. J. Wu, M. Fakhari, Y. Hua, H. Cankaya, A. L. Calendron, L. E. Zapata, N. H. Matlis, and F. X. Kartner, “Segmented terahertz electron accelerator and manipulator (STEAM),” Nat. Photonics 12(6), 336–342 (2018).
[Crossref]

H. Cankaya, U. Demirbas, M. Pergament, M. Hemmer, Y. Hua, L. E. Zapata, and F. X. Kärtner, “160-mJ Cryogenically-Cooled Yb:YLF Amplifier System at 1019 nm,” in CLEO Europe (Munich, 2019).

Cao, H.

Chang, G. Q.

Chann, B.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

Chen, L. R.

Chen, X. M.

Coluccelli, N.

N. Coluccelli, G. Galzerano, L. Bonelli, A. Di Lieto, M. Tonelli, and P. Laporta, “Diode-pumped passively mode-locked Yb : YLF laser,” Opt. Express 16(5), 2922–2927 (2008).
[Crossref]

N. Coluccelli, G. Galzerano, L. Bonelli, A. Toncelli, A. Di Lieto, M. Tonelli, and P. Laporta, “Room-temperature diode-pumped Yb3+-doped LiYF4 and KYF4 lasers,” Appl. Phys. B: Lasers Opt. 92(4), 519–523 (2008).
[Crossref]

Cornacchia, F.

Damzen, M. J.

Davis, L. E.

Delen, X.

Demirbas, U.

Di Lieto, A.

Didierjean, J.

Dolkemeyer, J.

Doualan, J. L.

Drescher, M.

Dubinskii, M.

Duesterer, S.

Eggert, S.

Eidam, T.

Faatz, B.

Fakhari, M.

D. F. Zhang, A. Fallahi, M. Hemmer, H. Ye, M. Fakhari, Y. Hua, H. Cankaya, A. L. Calendron, L. E. Zapata, N. H. Matlis, and F. X. Kartner, “Femtosecond phase control in high-field terahertz-driven ultrafast electron sources,” Optica 6(7), 872–877 (2019).
[Crossref]

D. F. Zhang, A. Fallahi, M. Hemmer, X. J. Wu, M. Fakhari, Y. Hua, H. Cankaya, A. L. Calendron, L. E. Zapata, N. H. Matlis, and F. X. Kartner, “Segmented terahertz electron accelerator and manipulator (STEAM),” Nat. Photonics 12(6), 336–342 (2018).
[Crossref]

Fallahi, A.

D. F. Zhang, A. Fallahi, M. Hemmer, H. Ye, M. Fakhari, Y. Hua, H. Cankaya, A. L. Calendron, L. E. Zapata, N. H. Matlis, and F. X. Kartner, “Femtosecond phase control in high-field terahertz-driven ultrafast electron sources,” Optica 6(7), 872–877 (2019).
[Crossref]

D. F. Zhang, A. Fallahi, M. Hemmer, X. J. Wu, M. Fakhari, Y. Hua, H. Cankaya, A. L. Calendron, L. E. Zapata, N. H. Matlis, and F. X. Kartner, “Segmented terahertz electron accelerator and manipulator (STEAM),” Nat. Photonics 12(6), 336–342 (2018).
[Crossref]

Fan, T. Y.

J. Manni, D. Harris, and T. Y. Fan, “High-gain (43 dB), high-power (40 W), highly efficient multipass amplifier at 995 nm in Yb:LiYF4,” Opt. Commun. 417, 54–56 (2018).
[Crossref]

D. E. Miller, J. R. Ochoa, and T. Y. Fan, “Cryogenically cooled, 149 W, Q-switched, Yb:LiYF4 laser,” Opt. Lett. 38(20), 4260–4261 (2013).
[Crossref]

D. E. Miller, L. E. Zapata, D. J. Ripin, and T. Y. Fan, “Sub-picosecond pulses at 100 W average power from a Yb:YLF chirped-pulse amplification system,” Opt. Lett. 37(13), 2700–2702 (2012).
[Crossref]

D. Rand, D. Miller, D. J. Ripin, and T. Y. Fan, “Cryogenic Yb3+-doped materials for pulsed solid-state laser applications [Invited],” Opt. Mater. Express 1(3), 434–450 (2011).
[Crossref]

L. E. Zapata, D. J. Ripin, and T. Y. Fan, “Power scaling of cryogenic Yb:LiYF4 lasers,” Opt. Lett. 35(11), 1854–1856 (2010).
[Crossref]

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO(3), LiYF4, LiLuF4, BaY2F8, KGd(WO4)(2), and KY(WO4)(2) laser crystals in the 80-300 K temperature range,” J. Appl. Phys. 98(10), 103514 (2005).
[Crossref]

T. Y. Fan, “Heat Generation in Nd:YAG and Yb:YAG,” IEEE J. Quantum Electron. 29(6), 1457–1459 (1993).
[Crossref]

Fattahi, H.

Feldhaus, J.

Fischer, J.

Fredrich-Thornton, S. T.

K. Beil, S. T. Fredrich-Thornton, C. Kränkel, K. Petermann, D. Parisi, M. Tonelli, and G. Huber, “New thin disk laser materials: Yb:ScYLO and Yb:YLF,” in CLEO/Europe and EQEC (2011), p. CA11_16.

Fregnani, L.

Fromzel, V.

Fujimoto, J. G.

Fukuda, T.

A. Bensalah, Y. Guyot, M. Ito, A. Brenier, H. Sato, T. Fukuda, and G. Boulon, “Growth of Yb3+-doped YLiF4 laser crystal by the Czochralski method. Attempt of Yb3+ energy level assignment and estimation of the laser potentiality,” Opt. Mater. 26(4), 375–383 (2004).
[Crossref]

Galzerano, G.

N. Coluccelli, G. Galzerano, L. Bonelli, A. Toncelli, A. Di Lieto, M. Tonelli, and P. Laporta, “Room-temperature diode-pumped Yb3+-doped LiYF4 and KYF4 lasers,” Appl. Phys. B: Lasers Opt. 92(4), 519–523 (2008).
[Crossref]

N. Coluccelli, G. Galzerano, L. Bonelli, A. Di Lieto, M. Tonelli, and P. Laporta, “Diode-pumped passively mode-locked Yb : YLF laser,” Opt. Express 16(5), 2922–2927 (2008).
[Crossref]

Gan, Z. B.

Gao, Q. S.

Georges, P.

Giesen, A.

A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: Results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13(3), 598–609 (2007).
[Crossref]

C. Honninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B: Lasers Opt. 69(1), 3–17 (1999).
[Crossref]

A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable Concept for Diode-Pumped High-Power Solid-State Lasers,” Appl. Phys. B: Lasers Opt. 58(5), 365–372 (1994).
[Crossref]

Golling, M.

T. Sudmeyer, C. Krankel, C. R. E. Baer, O. H. Heckl, C. J. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, and U. Keller, “High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation,” Appl. Phys. B: Lasers Opt. 97(2), 281–295 (2009).
[Crossref]

Gong, J.

J. G. Yin, Y. Hang, X. M. He, L. H. Zhang, C. C. Zhao, J. Gong, and P. X. Zhang, “Direct comparison of Yb3+-doped LiYF4 and LiLuF4 as laser media at room-temperature,” Laser Phys. Lett. 9(2), 126–130 (2012).
[Crossref]

Gong, M.

Gong, W. P.

Gori, F.

Gorjan, M.

Gottschall, T.

Graf, M.

C. Honninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B: Lasers Opt. 69(1), 3–17 (1999).
[Crossref]

Guo, Z.

Guyot, Y.

A. Bensalah, Y. Guyot, M. Ito, A. Brenier, H. Sato, T. Fukuda, and G. Boulon, “Growth of Yb3+-doped YLiF4 laser crystal by the Czochralski method. Attempt of Yb3+ energy level assignment and estimation of the laser potentiality,” Opt. Mater. 26(4), 375–383 (2004).
[Crossref]

Hadrich, S.

Hancock, C.

D. C. Brown, S. Tornegard, J. Kolis, C. McMillen, C. Moore, L. Sanjeewa, and C. Hancock, “The Application of Cryogenic Laser Physics to the Development of High Average Power Ultra-Short Pulse Lasers,” Applied Sciences-Basel 6 (2016).

Hang, Y.

Harris, D.

J. Manni, D. Harris, and T. Y. Fan, “High-gain (43 dB), high-power (40 W), highly efficient multipass amplifier at 995 nm in Yb:LiYF4,” Opt. Commun. 417, 54–56 (2018).
[Crossref]

He, M. Z.

He, X. M.

J. G. Yin, Y. Hang, X. M. He, L. H. Zhang, C. C. Zhao, J. Gong, and P. X. Zhang, “Direct comparison of Yb3+-doped LiYF4 and LiLuF4 as laser media at room-temperature,” Laser Phys. Lett. 9(2), 126–130 (2012).
[Crossref]

Heckl, O. H.

T. Sudmeyer, C. Krankel, C. R. E. Baer, O. H. Heckl, C. J. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, and U. Keller, “High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation,” Appl. Phys. B: Lasers Opt. 97(2), 281–295 (2009).
[Crossref]

Heinrich, A. C.

Hemmer, M.

D. F. Zhang, A. Fallahi, M. Hemmer, H. Ye, M. Fakhari, Y. Hua, H. Cankaya, A. L. Calendron, L. E. Zapata, N. H. Matlis, and F. X. Kartner, “Femtosecond phase control in high-field terahertz-driven ultrafast electron sources,” Optica 6(7), 872–877 (2019).
[Crossref]

Y. Hua, W. Liu, M. Hemmer, L. E. Zapata, G. J. Zhou, D. N. Schimpf, T. Eidam, J. Limpert, A. Tunnermann, F. X. Kartner, and G. Q. Chang, “87-W 1018-nm Yb-fiber ultrafast seeding source for cryogenic Yb: yttrium lithium fluoride amplifier,” Opt. Lett. 43(8), 1686–1689 (2018).
[Crossref]

D. F. Zhang, A. Fallahi, M. Hemmer, X. J. Wu, M. Fakhari, Y. Hua, H. Cankaya, A. L. Calendron, L. E. Zapata, N. H. Matlis, and F. X. Kartner, “Segmented terahertz electron accelerator and manipulator (STEAM),” Nat. Photonics 12(6), 336–342 (2018).
[Crossref]

H. Cankaya, U. Demirbas, M. Pergament, M. Hemmer, Y. Hua, L. E. Zapata, and F. X. Kärtner, “160-mJ Cryogenically-Cooled Yb:YLF Amplifier System at 1019 nm,” in CLEO Europe (Munich, 2019).

Honninger, C.

X. Delen, Y. Zaouter, I. Martial, N. Aubry, J. Didierjean, C. Honninger, E. Mottay, F. Balembois, and P. Georges, “Yb:YAG single crystal fiber power amplifier for femtosecond sources,” Opt. Lett. 38(2), 109–111 (2013).
[Crossref]

C. Honninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B: Lasers Opt. 69(1), 3–17 (1999).
[Crossref]

Hu, H.

Hua, Y.

D. F. Zhang, A. Fallahi, M. Hemmer, H. Ye, M. Fakhari, Y. Hua, H. Cankaya, A. L. Calendron, L. E. Zapata, N. H. Matlis, and F. X. Kartner, “Femtosecond phase control in high-field terahertz-driven ultrafast electron sources,” Optica 6(7), 872–877 (2019).
[Crossref]

Y. Hua, W. Liu, M. Hemmer, L. E. Zapata, G. J. Zhou, D. N. Schimpf, T. Eidam, J. Limpert, A. Tunnermann, F. X. Kartner, and G. Q. Chang, “87-W 1018-nm Yb-fiber ultrafast seeding source for cryogenic Yb: yttrium lithium fluoride amplifier,” Opt. Lett. 43(8), 1686–1689 (2018).
[Crossref]

D. F. Zhang, A. Fallahi, M. Hemmer, X. J. Wu, M. Fakhari, Y. Hua, H. Cankaya, A. L. Calendron, L. E. Zapata, N. H. Matlis, and F. X. Kartner, “Segmented terahertz electron accelerator and manipulator (STEAM),” Nat. Photonics 12(6), 336–342 (2018).
[Crossref]

H. Cankaya, U. Demirbas, M. Pergament, M. Hemmer, Y. Hua, L. E. Zapata, and F. X. Kärtner, “160-mJ Cryogenically-Cooled Yb:YLF Amplifier System at 1019 nm,” in CLEO Europe (Munich, 2019).

Huang, P.

Huber, G.

T. Sudmeyer, C. Krankel, C. R. E. Baer, O. H. Heckl, C. J. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, and U. Keller, “High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation,” Appl. Phys. B: Lasers Opt. 97(2), 281–295 (2009).
[Crossref]

K. Beil, S. T. Fredrich-Thornton, C. Kränkel, K. Petermann, D. Parisi, M. Tonelli, and G. Huber, “New thin disk laser materials: Yb:ScYLO and Yb:YLF,” in CLEO/Europe and EQEC (2011), p. CA11_16.

Hugel, H.

A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable Concept for Diode-Pumped High-Power Solid-State Lasers,” Appl. Phys. B: Lasers Opt. 58(5), 365–372 (1994).
[Crossref]

Hughes, R. S.

Inoue, N.

Ippen, E. P.

K. Naganuma, G. Lenz, and E. P. Ippen, “Variable Bandwidth Birefringent Filter for Tunable Femtosecond Lasers,” IEEE J. Quantum Electron. 28(10), 2142–2150 (1992).
[Crossref]

Ito, M.

A. Bensalah, Y. Guyot, M. Ito, A. Brenier, H. Sato, T. Fukuda, and G. Boulon, “Growth of Yb3+-doped YLiF4 laser crystal by the Czochralski method. Attempt of Yb3+ energy level assignment and estimation of the laser potentiality,” Opt. Mater. 26(4), 375–383 (2004).
[Crossref]

Jiang, H.

Johannsen, I.

C. Honninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B: Lasers Opt. 69(1), 3–17 (1999).
[Crossref]

Jun, S.

Jungwirth, J.

Kadiri, I.

K. Bouazaoui, R. Agounoun, K. Sbai, A. Zoubir, I. Kadiri, M. Rahmoune, and R. Saadani, “Experimental and Numerical Study of Pool Boiling Heat Transfer of Liquid Nitrogen LN2: Application to the Brass Ribbon Cooling in Horizontal Position,” Internat. J. Mech. Mechatronics Eng. 17(2), 74–82 (2017).

Kartner, F. X.

Kärtner, F. X.

H. Cankaya, U. Demirbas, M. Pergament, M. Hemmer, Y. Hua, L. E. Zapata, and F. X. Kärtner, “160-mJ Cryogenically-Cooled Yb:YLF Amplifier System at 1019 nm,” in CLEO Europe (Munich, 2019).

Katsurayama, M.

A. Sugiyama, M. Katsurayama, Y. Anzai, and T. Tsuboi, “Spectroscopic properties of Yb doped YLF grown by a vertical Bridgman method,” J. Alloys Compd. 408-412, 780–783 (2006).
[Crossref]

Kaumanns, M.

Kawanaka, J.

Keller, U.

T. Sudmeyer, C. Krankel, C. R. E. Baer, O. H. Heckl, C. J. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, and U. Keller, “High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation,” Appl. Phys. B: Lasers Opt. 97(2), 281–295 (2009).
[Crossref]

C. Honninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B: Lasers Opt. 69(1), 3–17 (1999).
[Crossref]

Kida, M.

M. Kida, Y. Kikuchi, O. Takahashi, and I. Michiyoshi, “Pool-Boiling Heat-Transfer in Liquid-Nitrogen,” J. Nucl. Sci. Technol. (Abingdon, U. K.) 18(7), 501–513 (1981).
[Crossref]

Kikuchi, Y.

M. Kida, Y. Kikuchi, O. Takahashi, and I. Michiyoshi, “Pool-Boiling Heat-Transfer in Liquid-Nitrogen,” J. Nucl. Sci. Technol. (Abingdon, U. K.) 18(7), 501–513 (1981).
[Crossref]

Killinger, D. K.

S. Lovold, P. F. Moulton, D. K. Killinger, and N. Menwk, “Frequency Tuning Characteristics of a Q-Switched Co:MgF2 Laser “ IEEE J,” Quantum Electron. 21(3), 202–208 (1985).
[Crossref]

Koechner, W.

W. Koechner, Solid-state laser engineering (Springer, New York, 2006).

Kolis, J.

D. C. Brown, S. Tornegard, and J. Kolis, “Cryogenic nanosecond and picosecond high average and peak power (HAPP) pump lasers for ultrafast applications,” High Power Laser Sci. Eng. 4, e15 (2016).
[Crossref]

D. C. Brown, S. Tornegard, J. Kolis, C. McMillen, C. Moore, L. Sanjeewa, and C. Hancock, “The Application of Cryogenic Laser Physics to the Development of High Average Power Ultra-Short Pulse Lasers,” Applied Sciences-Basel 6 (2016).

Krankel, C.

T. Sudmeyer, C. Krankel, C. R. E. Baer, O. H. Heckl, C. J. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, and U. Keller, “High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation,” Appl. Phys. B: Lasers Opt. 97(2), 281–295 (2009).
[Crossref]

Kränkel, C.

K. Beil, S. T. Fredrich-Thornton, C. Kränkel, K. Petermann, D. Parisi, M. Tonelli, and G. Huber, “New thin disk laser materials: Yb:ScYLO and Yb:YLF,” in CLEO/Europe and EQEC (2011), p. CA11_16.

Krausz, F.

Kubota, Y.

N. Uehara, K. Ueda, and Y. Kubota, “Spectroscopic measurements of a high-concentration Yb3+:LiYF4 crystal,” Jpn. J. Appl. Phys. 35(Part 2, No. 4B), L499–L501 (1996).
[Crossref]

Laporta, P.

N. Coluccelli, G. Galzerano, L. Bonelli, A. Toncelli, A. Di Lieto, M. Tonelli, and P. Laporta, “Room-temperature diode-pumped Yb3+-doped LiYF4 and KYF4 lasers,” Appl. Phys. B: Lasers Opt. 92(4), 519–523 (2008).
[Crossref]

N. Coluccelli, G. Galzerano, L. Bonelli, A. Di Lieto, M. Tonelli, and P. Laporta, “Diode-pumped passively mode-locked Yb : YLF laser,” Opt. Express 16(5), 2922–2927 (2008).
[Crossref]

Lei, J.

Leitenstorfer, A.

Lelii, F. D.

Leng, Y. X.

Lenz, G.

K. Naganuma, G. Lenz, and E. P. Ippen, “Variable Bandwidth Birefringent Filter for Tunable Femtosecond Lasers,” IEEE J. Quantum Electron. 28(10), 2142–2150 (1992).
[Crossref]

Li, C.

Li, M.

Li, R. X.

Li, S.

Li, S. M.

Li, W. Q.

Liang, X. Y.

Limpert, J.

Liu, D. H.

Q. Yang, Y. G. Wang, D. H. Liu, J. Liu, L. H. Zheng, L. B. Su, and J. Xu, “Dual-wavelength mode-locked Yb:LuYSiO5 laser with a double-walled carbon nanotube saturable absorber,” Laser Phys. Lett. 9(2), 135–140 (2012).
[Crossref]

Liu, J.

Q. Yang, Y. G. Wang, D. H. Liu, J. Liu, L. H. Zheng, L. B. Su, and J. Xu, “Dual-wavelength mode-locked Yb:LuYSiO5 laser with a double-walled carbon nanotube saturable absorber,” Laser Phys. Lett. 9(2), 135–140 (2012).
[Crossref]

Liu, Q.

Liu, W.

Liu, X. Y.

Liu, Y. Q.

Loiko, P.

S. Manjooran, P. Loiko, and A. Major, “A discretely tunable dual-wavelength multi-watt Yb:CALGO laser,” Appl. Phys. B: Lasers Opt. 124(1), 13 (2018).
[Crossref]

Lovold, S.

S. Lovold, P. F. Moulton, D. K. Killinger, and N. Menwk, “Frequency Tuning Characteristics of a Q-Switched Co:MgF2 Laser “ IEEE J,” Quantum Electron. 21(3), 202–208 (1985).
[Crossref]

Lu, F. Y.

Lv, W. Q.

Maier, S.

Major, A.

S. Manjooran, P. Loiko, and A. Major, “A discretely tunable dual-wavelength multi-watt Yb:CALGO laser,” Appl. Phys. B: Lasers Opt. 124(1), 13 (2018).
[Crossref]

Major, Z.

Manjooran, S.

S. Manjooran, P. Loiko, and A. Major, “A discretely tunable dual-wavelength multi-watt Yb:CALGO laser,” Appl. Phys. B: Lasers Opt. 124(1), 13 (2018).
[Crossref]

Manni, J.

J. Manni, D. Harris, and T. Y. Fan, “High-gain (43 dB), high-power (40 W), highly efficient multipass amplifier at 995 nm in Yb:LiYF4,” Opt. Commun. 417, 54–56 (2018).
[Crossref]

Mans, T.

Marion, J. E.

Martial, I.

Matlis, N. H.

D. F. Zhang, A. Fallahi, M. Hemmer, H. Ye, M. Fakhari, Y. Hua, H. Cankaya, A. L. Calendron, L. E. Zapata, N. H. Matlis, and F. X. Kartner, “Femtosecond phase control in high-field terahertz-driven ultrafast electron sources,” Optica 6(7), 872–877 (2019).
[Crossref]

D. F. Zhang, A. Fallahi, M. Hemmer, X. J. Wu, M. Fakhari, Y. Hua, H. Cankaya, A. L. Calendron, L. E. Zapata, N. H. Matlis, and F. X. Kartner, “Segmented terahertz electron accelerator and manipulator (STEAM),” Nat. Photonics 12(6), 336–342 (2018).
[Crossref]

McMillen, C.

D. C. Brown, S. Tornegard, J. Kolis, C. McMillen, C. Moore, L. Sanjeewa, and C. Hancock, “The Application of Cryogenic Laser Physics to the Development of High Average Power Ultra-Short Pulse Lasers,” Applied Sciences-Basel 6 (2016).

Menwk, N.

S. Lovold, P. F. Moulton, D. K. Killinger, and N. Menwk, “Frequency Tuning Characteristics of a Q-Switched Co:MgF2 Laser “ IEEE J,” Quantum Electron. 21(3), 202–208 (1985).
[Crossref]

Metzger, T.

Michiyoshi, I.

M. Kida, Y. Kikuchi, O. Takahashi, and I. Michiyoshi, “Pool-Boiling Heat-Transfer in Liquid-Nitrogen,” J. Nucl. Sci. Technol. (Abingdon, U. K.) 18(7), 501–513 (1981).
[Crossref]

Miller, D.

Miller, D. E.

Moncorge, R.

Moore, C.

D. C. Brown, S. Tornegard, J. Kolis, C. McMillen, C. Moore, L. Sanjeewa, and C. Hancock, “The Application of Cryogenic Laser Physics to the Development of High Average Power Ultra-Short Pulse Lasers,” Applied Sciences-Basel 6 (2016).

Morier-Genoud, F.

C. Honninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B: Lasers Opt. 69(1), 3–17 (1999).
[Crossref]

Moser, M.

C. Honninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B: Lasers Opt. 69(1), 3–17 (1999).
[Crossref]

Mottay, E.

Moulton, P. F.

S. Lovold, P. F. Moulton, D. K. Killinger, and N. Menwk, “Frequency Tuning Characteristics of a Q-Switched Co:MgF2 Laser “ IEEE J,” Quantum Electron. 21(3), 202–208 (1985).
[Crossref]

Mourou, G. A.

C. Honninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B: Lasers Opt. 69(1), 3–17 (1999).
[Crossref]

Naganuma, K.

K. Naganuma, G. Lenz, and E. P. Ippen, “Variable Bandwidth Birefringent Filter for Tunable Femtosecond Lasers,” IEEE J. Quantum Electron. 28(10), 2142–2150 (1992).
[Crossref]

Nakamura, S.

H. Yoshioka, S. Nakamura, T. Ogawa, and S. Wada, “Dual-wavelength mode-locked Yb:YAG ceramic laser in single cavity,” Opt. Express 18(2), 1479–1486 (2010).
[Crossref]

S. Nakamura, H. Yoshioka, T. Ogawa, and S. Wada, “Broadly Tunable Yb3+-Doped Y3Al5O12 Ceramic Laser at Room Temperature,” Jpn. J. Appl. Phys. 48(6), 060205 (2009).
[Crossref]

Nees, J.

C. Honninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B: Lasers Opt. 69(1), 3–17 (1999).
[Crossref]

Nikl, M.

Nishioka, H.

Nubbemeyer, T.

Ochoa, J. R.

D. E. Miller, J. R. Ochoa, and T. Y. Fan, “Cryogenically cooled, 149 W, Q-switched, Yb:LiYF4 laser,” Opt. Lett. 38(20), 4260–4261 (2013).
[Crossref]

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO(3), LiYF4, LiLuF4, BaY2F8, KGd(WO4)(2), and KY(WO4)(2) laser crystals in the 80-300 K temperature range,” J. Appl. Phys. 98(10), 103514 (2005).
[Crossref]

Ogawa, T.

H. Yoshioka, S. Nakamura, T. Ogawa, and S. Wada, “Dual-wavelength mode-locked Yb:YAG ceramic laser in single cavity,” Opt. Express 18(2), 1479–1486 (2010).
[Crossref]

S. Nakamura, H. Yoshioka, T. Ogawa, and S. Wada, “Broadly Tunable Yb3+-Doped Y3Al5O12 Ceramic Laser at Room Temperature,” Jpn. J. Appl. Phys. 48(6), 060205 (2009).
[Crossref]

Opower, H.

A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable Concept for Diode-Pumped High-Power Solid-State Lasers,” Appl. Phys. B: Lasers Opt. 58(5), 365–372 (1994).
[Crossref]

Pacileo, A. M.

Parisi, D.

M. Vannini, G. Toci, D. Alderighi, D. Parisi, F. Cornacchia, and M. Tonelli, “High efficiency room temperature laser emission in heavily doped Yb : YLF,” Opt. Express 15(13), 7994–8002 (2007).
[Crossref]

K. Beil, S. T. Fredrich-Thornton, C. Kränkel, K. Petermann, D. Parisi, M. Tonelli, and G. Huber, “New thin disk laser materials: Yb:ScYLO and Yb:YLF,” in CLEO/Europe and EQEC (2011), p. CA11_16.

Paschotta, R.

C. Honninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B: Lasers Opt. 69(1), 3–17 (1999).
[Crossref]

Payne, S. A.

Pergament, M.

H. Cankaya, U. Demirbas, M. Pergament, M. Hemmer, Y. Hua, L. E. Zapata, and F. X. Kärtner, “160-mJ Cryogenically-Cooled Yb:YLF Amplifier System at 1019 nm,” in CLEO Europe (Munich, 2019).

Pervak, V.

Petermann, K.

T. Sudmeyer, C. Krankel, C. R. E. Baer, O. H. Heckl, C. J. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, and U. Keller, “High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation,” Appl. Phys. B: Lasers Opt. 97(2), 281–295 (2009).
[Crossref]

K. Beil, S. T. Fredrich-Thornton, C. Kränkel, K. Petermann, D. Parisi, M. Tonelli, and G. Huber, “New thin disk laser materials: Yb:ScYLO and Yb:YLF,” in CLEO/Europe and EQEC (2011), p. CA11_16.

Peters, R.

T. Sudmeyer, C. Krankel, C. R. E. Baer, O. H. Heckl, C. J. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, and U. Keller, “High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation,” Appl. Phys. B: Lasers Opt. 97(2), 281–295 (2009).
[Crossref]

Piccinno, G.

Pirri, A.

Pirzio, F.

Pronin, O.

Rahmoune, M.

K. Bouazaoui, R. Agounoun, K. Sbai, A. Zoubir, I. Kadiri, M. Rahmoune, and R. Saadani, “Experimental and Numerical Study of Pool Boiling Heat Transfer of Liquid Nitrogen LN2: Application to the Brass Ribbon Cooling in Horizontal Position,” Internat. J. Mech. Mechatronics Eng. 17(2), 74–82 (2017).

Rand, D.

Reiche, P.

Riedel, R.

Ripin, D. J.

D. E. Miller, L. E. Zapata, D. J. Ripin, and T. Y. Fan, “Sub-picosecond pulses at 100 W average power from a Yb:YLF chirped-pulse amplification system,” Opt. Lett. 37(13), 2700–2702 (2012).
[Crossref]

D. Rand, D. Miller, D. J. Ripin, and T. Y. Fan, “Cryogenic Yb3+-doped materials for pulsed solid-state laser applications [Invited],” Opt. Mater. Express 1(3), 434–450 (2011).
[Crossref]

L. E. Zapata, D. J. Ripin, and T. Y. Fan, “Power scaling of cryogenic Yb:LiYF4 lasers,” Opt. Lett. 35(11), 1854–1856 (2010).
[Crossref]

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO(3), LiYF4, LiLuF4, BaY2F8, KGd(WO4)(2), and KY(WO4)(2) laser crystals in the 80-300 K temperature range,” J. Appl. Phys. 98(10), 103514 (2005).
[Crossref]

Rossbach, J.

Russbueldt, P.

Saadani, R.

K. Bouazaoui, R. Agounoun, K. Sbai, A. Zoubir, I. Kadiri, M. Rahmoune, and R. Saadani, “Experimental and Numerical Study of Pool Boiling Heat Transfer of Liquid Nitrogen LN2: Application to the Brass Ribbon Cooling in Horizontal Position,” Internat. J. Mech. Mechatronics Eng. 17(2), 74–82 (2017).

Sanamyan, T.

Sanjeewa, L.

D. C. Brown, S. Tornegard, J. Kolis, C. McMillen, C. Moore, L. Sanjeewa, and C. Hancock, “The Application of Cryogenic Laser Physics to the Development of High Average Power Ultra-Short Pulse Lasers,” Applied Sciences-Basel 6 (2016).

Santarsiero, M.

Saraceno, C. J.

C. J. Saraceno, “Mode-locked thin-disk lasers and their potential application for high-power terahertz generation,” J. Opt. 20(4), 044010 (2018).
[Crossref]

T. Sudmeyer, C. Krankel, C. R. E. Baer, O. H. Heckl, C. J. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, and U. Keller, “High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation,” Appl. Phys. B: Lasers Opt. 97(2), 281–295 (2009).
[Crossref]

Sato, H.

A. Pirri, D. Alderighi, G. Toci, M. Vannini, M. Nikl, and H. Sato, “Direct Comparison of Yb3+:CaF2 and heavily doped Yb3+:YLF as laser media at room temperature,” Opt. Express 17(20), 18312–18319 (2009).
[Crossref]

A. Bensalah, Y. Guyot, M. Ito, A. Brenier, H. Sato, T. Fukuda, and G. Boulon, “Growth of Yb3+-doped YLiF4 laser crystal by the Czochralski method. Attempt of Yb3+ energy level assignment and estimation of the laser potentiality,” Opt. Mater. 26(4), 375–383 (2004).
[Crossref]

Sbai, K.

K. Bouazaoui, R. Agounoun, K. Sbai, A. Zoubir, I. Kadiri, M. Rahmoune, and R. Saadani, “Experimental and Numerical Study of Pool Boiling Heat Transfer of Liquid Nitrogen LN2: Application to the Brass Ribbon Cooling in Horizontal Position,” Internat. J. Mech. Mechatronics Eng. 17(2), 74–82 (2017).

Schimpf, D. N.

Schlarb, H.

Schnitzler, C.

Schulz, M.

Seeber, W.

C. Honninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B: Lasers Opt. 69(1), 3–17 (1999).
[Crossref]

Seise, E.

Sennaroglu, A.

Shi, Y.

Spagnolo, G. S.

Speiser, J.

A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: Results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13(3), 598–609 (2007).
[Crossref]

Spitzberg, J.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

Starecki, F.

Su, H.

Su, L. B.

Q. Yang, Y. G. Wang, D. H. Liu, J. Liu, L. H. Zheng, L. B. Su, and J. Xu, “Dual-wavelength mode-locked Yb:LuYSiO5 laser with a double-walled carbon nanotube saturable absorber,” Laser Phys. Lett. 9(2), 135–140 (2012).
[Crossref]

Sudmeyer, T.

T. Sudmeyer, C. Krankel, C. R. E. Baer, O. H. Heckl, C. J. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, and U. Keller, “High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation,” Appl. Phys. B: Lasers Opt. 97(2), 281–295 (2009).
[Crossref]

Sugiyama, A.

A. Sugiyama, M. Katsurayama, Y. Anzai, and T. Tsuboi, “Spectroscopic properties of Yb doped YLF grown by a vertical Bridgman method,” J. Alloys Compd. 408-412, 780–783 (2006).
[Crossref]

Sun, Y. H.

Sutter, D.

Takahashi, O.

M. Kida, Y. Kikuchi, O. Takahashi, and I. Michiyoshi, “Pool-Boiling Heat-Transfer in Liquid-Nitrogen,” J. Nucl. Sci. Technol. (Abingdon, U. K.) 18(7), 501–513 (1981).
[Crossref]

Tang, C.

Tang, Y. H.

Tavella, F.

Tawy, G.

Ter-Gabrielan, N.

Tilleman, M.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

Toci, G.

Toncelli, A.

N. Coluccelli, G. Galzerano, L. Bonelli, A. Toncelli, A. Di Lieto, M. Tonelli, and P. Laporta, “Room-temperature diode-pumped Yb3+-doped LiYF4 and KYF4 lasers,” Appl. Phys. B: Lasers Opt. 92(4), 519–523 (2008).
[Crossref]

Tonelli, M.

Torizuka, K.

S. Uemura and K. Torizuka, “Sub-40-fs Pulses from a Diode-Pumped Kerr-Lens Mode-Locked Yb-Doped Yttrium Aluminum Garnet Laser,” Jpn. J. Appl. Phys. 50, 010201 (2011).
[Crossref]

Tornegard, S.

D. C. Brown, S. Tornegard, and J. Kolis, “Cryogenic nanosecond and picosecond high average and peak power (HAPP) pump lasers for ultrafast applications,” High Power Laser Sci. Eng. 4, e15 (2016).
[Crossref]

D. C. Brown, S. Tornegard, J. Kolis, C. McMillen, C. Moore, L. Sanjeewa, and C. Hancock, “The Application of Cryogenic Laser Physics to the Development of High Average Power Ultra-Short Pulse Lasers,” Applied Sciences-Basel 6 (2016).

Tsuboi, T.

A. Sugiyama, M. Katsurayama, Y. Anzai, and T. Tsuboi, “Spectroscopic properties of Yb doped YLF grown by a vertical Bridgman method,” J. Alloys Compd. 408-412, 780–783 (2006).
[Crossref]

Tunnermann, A.

Uecker, R.

Ueda, K.

Ueffing, M.

Uehara, N.

N. Uehara, K. Ueda, and Y. Kubota, “Spectroscopic measurements of a high-concentration Yb3+:LiYF4 crystal,” Jpn. J. Appl. Phys. 35(Part 2, No. 4B), L499–L501 (1996).
[Crossref]

Uemura, S.

S. Uemura and K. Torizuka, “Sub-40-fs Pulses from a Diode-Pumped Kerr-Lens Mode-Locked Yb-Doped Yttrium Aluminum Garnet Laser,” Jpn. J. Appl. Phys. 50, 010201 (2011).
[Crossref]

Vannini, M.

Volpi, A.

Voss, A.

A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable Concept for Diode-Pumped High-Power Solid-State Lasers,” Appl. Phys. B: Lasers Opt. 58(5), 365–372 (1994).
[Crossref]

Wada, S.

H. Yoshioka, S. Nakamura, T. Ogawa, and S. Wada, “Dual-wavelength mode-locked Yb:YAG ceramic laser in single cavity,” Opt. Express 18(2), 1479–1486 (2010).
[Crossref]

S. Nakamura, H. Yoshioka, T. Ogawa, and S. Wada, “Broadly Tunable Yb3+-Doped Y3Al5O12 Ceramic Laser at Room Temperature,” Jpn. J. Appl. Phys. 48(6), 060205 (2009).
[Crossref]

Wang, C.

Wang, J. Y.

Wang, X. J.

Wang, Y. G.

Q. Yang, Y. G. Wang, D. H. Liu, J. Liu, L. H. Zheng, L. B. Su, and J. Xu, “Dual-wavelength mode-locked Yb:LuYSiO5 laser with a double-walled carbon nanotube saturable absorber,” Laser Phys. Lett. 9(2), 135–140 (2012).
[Crossref]

Willner, A.

Wittig, K.

A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable Concept for Diode-Pumped High-Power Solid-State Lasers,” Appl. Phys. B: Lasers Opt. 58(5), 365–372 (1994).
[Crossref]

Woods, B. W.

Wu, X. J.

D. F. Zhang, A. Fallahi, M. Hemmer, X. J. Wu, M. Fakhari, Y. Hua, H. Cankaya, A. L. Calendron, L. E. Zapata, N. H. Matlis, and F. X. Kartner, “Segmented terahertz electron accelerator and manipulator (STEAM),” Nat. Photonics 12(6), 336–342 (2018).
[Crossref]

Wu, Y. C.

Xu, J.

Q. Yang, Y. G. Wang, D. H. Liu, J. Liu, L. H. Zheng, L. B. Su, and J. Xu, “Dual-wavelength mode-locked Yb:LuYSiO5 laser with a double-walled carbon nanotube saturable absorber,” Laser Phys. Lett. 9(2), 135–140 (2012).
[Crossref]

Xu, L.

Xu, M.

Xu, X. X.

Xu, Y.

Xu, Z. Z.

Yamakawa, K.

Yang, Q.

Q. Yang, Y. G. Wang, D. H. Liu, J. Liu, L. H. Zheng, L. B. Su, and J. Xu, “Dual-wavelength mode-locked Yb:LuYSiO5 laser with a double-walled carbon nanotube saturable absorber,” Laser Phys. Lett. 9(2), 135–140 (2012).
[Crossref]

Yao, B.

Yao, Z. Y.

Ye, H.

Yerebakan, T.

Yin, D. J.

Yin, J. G.

J. G. Yin, Y. Hang, X. M. He, L. H. Zhang, C. C. Zhao, J. Gong, and P. X. Zhang, “Direct comparison of Yb3+-doped LiYF4 and LiLuF4 as laser media at room-temperature,” Laser Phys. Lett. 9(2), 126–130 (2012).
[Crossref]

Yoshioka, H.

H. Yoshioka, S. Nakamura, T. Ogawa, and S. Wada, “Dual-wavelength mode-locked Yb:YAG ceramic laser in single cavity,” Opt. Express 18(2), 1479–1486 (2010).
[Crossref]

S. Nakamura, H. Yoshioka, T. Ogawa, and S. Wada, “Broadly Tunable Yb3+-Doped Y3Al5O12 Ceramic Laser at Room Temperature,” Jpn. J. Appl. Phys. 48(6), 060205 (2009).
[Crossref]

Yu, L. H.

Zaouter, Y.

Zapata, L. E.

Zhang, D. F.

D. F. Zhang, A. Fallahi, M. Hemmer, H. Ye, M. Fakhari, Y. Hua, H. Cankaya, A. L. Calendron, L. E. Zapata, N. H. Matlis, and F. X. Kartner, “Femtosecond phase control in high-field terahertz-driven ultrafast electron sources,” Optica 6(7), 872–877 (2019).
[Crossref]

D. F. Zhang, A. Fallahi, M. Hemmer, X. J. Wu, M. Fakhari, Y. Hua, H. Cankaya, A. L. Calendron, L. E. Zapata, N. H. Matlis, and F. X. Kartner, “Segmented terahertz electron accelerator and manipulator (STEAM),” Nat. Photonics 12(6), 336–342 (2018).
[Crossref]

Zhang, G.

C. Honninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B: Lasers Opt. 69(1), 3–17 (1999).
[Crossref]

Zhang, L. H.

J. G. Yin, Y. Hang, X. M. He, L. H. Zhang, C. C. Zhao, J. Gong, and P. X. Zhang, “Direct comparison of Yb3+-doped LiYF4 and LiLuF4 as laser media at room-temperature,” Laser Phys. Lett. 9(2), 126–130 (2012).
[Crossref]

Zhang, P. X.

J. G. Yin, Y. Hang, X. M. He, L. H. Zhang, C. C. Zhao, J. Gong, and P. X. Zhang, “Direct comparison of Yb3+-doped LiYF4 and LiLuF4 as laser media at room-temperature,” Laser Phys. Lett. 9(2), 126–130 (2012).
[Crossref]

Zhang, X. B.

Zhao, C. C.

J. G. Yin, Y. Hang, X. M. He, L. H. Zhang, C. C. Zhao, J. Gong, and P. X. Zhang, “Direct comparison of Yb3+-doped LiYF4 and LiLuF4 as laser media at room-temperature,” Laser Phys. Lett. 9(2), 126–130 (2012).
[Crossref]

Zhao, N.

Zheng, L. H.

Q. Yang, Y. G. Wang, D. H. Liu, J. Liu, L. H. Zheng, L. B. Su, and J. Xu, “Dual-wavelength mode-locked Yb:LuYSiO5 laser with a double-walled carbon nanotube saturable absorber,” Laser Phys. Lett. 9(2), 135–140 (2012).
[Crossref]

Zhou, G. J.

Zhou, T. J.

Zoubir, A.

K. Bouazaoui, R. Agounoun, K. Sbai, A. Zoubir, I. Kadiri, M. Rahmoune, and R. Saadani, “Experimental and Numerical Study of Pool Boiling Heat Transfer of Liquid Nitrogen LN2: Application to the Brass Ribbon Cooling in Horizontal Position,” Internat. J. Mech. Mechatronics Eng. 17(2), 74–82 (2017).

Annu. Rev. Mater. Sci. (1)

L. J. Atherton, S. A. Payne, and C. D. Brandle, “Oxide and fluoride laser crystals,” Annu. Rev. Mater. Sci. 23(1), 453–502 (1993).
[Crossref]

Appl. Opt. (4)

Appl. Phys. B: Lasers Opt. (5)

S. Manjooran, P. Loiko, and A. Major, “A discretely tunable dual-wavelength multi-watt Yb:CALGO laser,” Appl. Phys. B: Lasers Opt. 124(1), 13 (2018).
[Crossref]

N. Coluccelli, G. Galzerano, L. Bonelli, A. Toncelli, A. Di Lieto, M. Tonelli, and P. Laporta, “Room-temperature diode-pumped Yb3+-doped LiYF4 and KYF4 lasers,” Appl. Phys. B: Lasers Opt. 92(4), 519–523 (2008).
[Crossref]

A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable Concept for Diode-Pumped High-Power Solid-State Lasers,” Appl. Phys. B: Lasers Opt. 58(5), 365–372 (1994).
[Crossref]

T. Sudmeyer, C. Krankel, C. R. E. Baer, O. H. Heckl, C. J. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, and U. Keller, “High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation,” Appl. Phys. B: Lasers Opt. 97(2), 281–295 (2009).
[Crossref]

C. Honninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B: Lasers Opt. 69(1), 3–17 (1999).
[Crossref]

High Power Laser Sci. Eng. (1)

D. C. Brown, S. Tornegard, and J. Kolis, “Cryogenic nanosecond and picosecond high average and peak power (HAPP) pump lasers for ultrafast applications,” High Power Laser Sci. Eng. 4, e15 (2016).
[Crossref]

IEEE J. Quantum Electron. (2)

K. Naganuma, G. Lenz, and E. P. Ippen, “Variable Bandwidth Birefringent Filter for Tunable Femtosecond Lasers,” IEEE J. Quantum Electron. 28(10), 2142–2150 (1992).
[Crossref]

T. Y. Fan, “Heat Generation in Nd:YAG and Yb:YAG,” IEEE J. Quantum Electron. 29(6), 1457–1459 (1993).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: Results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13(3), 598–609 (2007).
[Crossref]

D. C. Brown, “The promise of cryogenic solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 587–599 (2005).
[Crossref]

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

Internat. J. Mech. Mechatronics Eng. (1)

K. Bouazaoui, R. Agounoun, K. Sbai, A. Zoubir, I. Kadiri, M. Rahmoune, and R. Saadani, “Experimental and Numerical Study of Pool Boiling Heat Transfer of Liquid Nitrogen LN2: Application to the Brass Ribbon Cooling in Horizontal Position,” Internat. J. Mech. Mechatronics Eng. 17(2), 74–82 (2017).

J. Alloys Compd. (1)

A. Sugiyama, M. Katsurayama, Y. Anzai, and T. Tsuboi, “Spectroscopic properties of Yb doped YLF grown by a vertical Bridgman method,” J. Alloys Compd. 408-412, 780–783 (2006).
[Crossref]

J. Appl. Phys. (1)

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO(3), LiYF4, LiLuF4, BaY2F8, KGd(WO4)(2), and KY(WO4)(2) laser crystals in the 80-300 K temperature range,” J. Appl. Phys. 98(10), 103514 (2005).
[Crossref]

J. Nucl. Sci. Technol. (Abingdon, U. K.) (1)

M. Kida, Y. Kikuchi, O. Takahashi, and I. Michiyoshi, “Pool-Boiling Heat-Transfer in Liquid-Nitrogen,” J. Nucl. Sci. Technol. (Abingdon, U. K.) 18(7), 501–513 (1981).
[Crossref]

J. Opt. (1)

C. J. Saraceno, “Mode-locked thin-disk lasers and their potential application for high-power terahertz generation,” J. Opt. 20(4), 044010 (2018).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (4)

Jpn. J. Appl. Phys. (3)

N. Uehara, K. Ueda, and Y. Kubota, “Spectroscopic measurements of a high-concentration Yb3+:LiYF4 crystal,” Jpn. J. Appl. Phys. 35(Part 2, No. 4B), L499–L501 (1996).
[Crossref]

S. Nakamura, H. Yoshioka, T. Ogawa, and S. Wada, “Broadly Tunable Yb3+-Doped Y3Al5O12 Ceramic Laser at Room Temperature,” Jpn. J. Appl. Phys. 48(6), 060205 (2009).
[Crossref]

S. Uemura and K. Torizuka, “Sub-40-fs Pulses from a Diode-Pumped Kerr-Lens Mode-Locked Yb-Doped Yttrium Aluminum Garnet Laser,” Jpn. J. Appl. Phys. 50, 010201 (2011).
[Crossref]

Laser Phys. Lett. (2)

J. G. Yin, Y. Hang, X. M. He, L. H. Zhang, C. C. Zhao, J. Gong, and P. X. Zhang, “Direct comparison of Yb3+-doped LiYF4 and LiLuF4 as laser media at room-temperature,” Laser Phys. Lett. 9(2), 126–130 (2012).
[Crossref]

Q. Yang, Y. G. Wang, D. H. Liu, J. Liu, L. H. Zheng, L. B. Su, and J. Xu, “Dual-wavelength mode-locked Yb:LuYSiO5 laser with a double-walled carbon nanotube saturable absorber,” Laser Phys. Lett. 9(2), 135–140 (2012).
[Crossref]

Nat. Photonics (1)

D. F. Zhang, A. Fallahi, M. Hemmer, X. J. Wu, M. Fakhari, Y. Hua, H. Cankaya, A. L. Calendron, L. E. Zapata, N. H. Matlis, and F. X. Kartner, “Segmented terahertz electron accelerator and manipulator (STEAM),” Nat. Photonics 12(6), 336–342 (2018).
[Crossref]

Opt. Commun. (1)

J. Manni, D. Harris, and T. Y. Fan, “High-gain (43 dB), high-power (40 W), highly efficient multipass amplifier at 995 nm in Yb:LiYF4,” Opt. Commun. 417, 54–56 (2018).
[Crossref]

Opt. Express (9)

J. Kawanaka, K. Yamakawa, H. Nishioka, and K. Ueda, “Improved high-field laser characteristics of a diode-pumped Yb : LiYF4 crystal at low temperature,” Opt. Express 10(10), 455–460 (2002).
[Crossref]

M. Vannini, G. Toci, D. Alderighi, D. Parisi, F. Cornacchia, and M. Tonelli, “High efficiency room temperature laser emission in heavily doped Yb : YLF,” Opt. Express 15(13), 7994–8002 (2007).
[Crossref]

N. Coluccelli, G. Galzerano, L. Bonelli, A. Di Lieto, M. Tonelli, and P. Laporta, “Diode-pumped passively mode-locked Yb : YLF laser,” Opt. Express 16(5), 2922–2927 (2008).
[Crossref]

A. Pirri, D. Alderighi, G. Toci, M. Vannini, M. Nikl, and H. Sato, “Direct Comparison of Yb3+:CaF2 and heavily doped Yb3+:YLF as laser media at room temperature,” Opt. Express 17(20), 18312–18319 (2009).
[Crossref]

H. Yoshioka, S. Nakamura, T. Ogawa, and S. Wada, “Dual-wavelength mode-locked Yb:YAG ceramic laser in single cavity,” Opt. Express 18(2), 1479–1486 (2010).
[Crossref]

D. Alderighi, A. Pirri, G. Toci, and M. Vannini, “Tunability enhancement of Yb:YLF based laser,” Opt. Express 18(3), 2236–2241 (2010).
[Crossref]

X. M. Chen, L. Xu, H. Hu, T. J. Zhou, Y. H. Sun, H. Jiang, J. Lei, W. Q. Lv, H. Su, Y. Shi, M. Li, Y. C. Wu, Z. Y. Yao, N. Zhao, X. X. Xu, Q. S. Gao, X. J. Wang, and C. Tang, “High-efficiency, high-average-power, CW Yb: YAG zigzag slab master oscillator power amplifier at room temperature,” Opt. Express 24(21), 24517–24523 (2016).
[Crossref]

U. Demirbas, R. Uecker, J. G. Fujimoto, and A. Leitenstorfer, “Multicolor lasers using birefringent filters: experimental demonstration with Cr:Nd:GSGG and Cr:LiSAF,” Opt. Express 25(3), 2594–2607 (2017).
[Crossref]

G. Tawy and M. J. Damzen, “Tunable, dual wavelength and self-Q-switched Alexandrite laser using crystal birefringence control,” Opt. Express 27(13), 17507–17520 (2019).
[Crossref]

Opt. Lett. (13)

T. Nubbemeyer, M. Kaumanns, M. Ueffing, M. Gorjan, A. Alismail, H. Fattahi, J. Brons, O. Pronin, H. G. Barros, Z. Major, T. Metzger, D. Sutter, and F. Krausz, “1 kW, 200 mJ picosecond thin-disk laser system,” Opt. Lett. 42(7), 1381–1384 (2017).
[Crossref]

Y. Hua, W. Liu, M. Hemmer, L. E. Zapata, G. J. Zhou, D. N. Schimpf, T. Eidam, J. Limpert, A. Tunnermann, F. X. Kartner, and G. Q. Chang, “87-W 1018-nm Yb-fiber ultrafast seeding source for cryogenic Yb: yttrium lithium fluoride amplifier,” Opt. Lett. 43(8), 1686–1689 (2018).
[Crossref]

W. Q. Li, Z. B. Gan, L. H. Yu, C. Wang, Y. Q. Liu, Z. Guo, L. Xu, M. Xu, Y. Hang, Y. Xu, J. Y. Wang, P. Huang, H. Cao, B. Yao, X. B. Zhang, L. R. Chen, Y. H. Tang, S. Li, X. Y. Liu, S. M. Li, M. Z. He, D. J. Yin, X. Y. Liang, Y. X. Leng, R. X. Li, and Z. Z. Xu, “339 J high-energy Ti:sapphire chirped-pulse amplifier for 10 PW laser facility,” Opt. Lett. 43(22), 5681–5684 (2018).
[Crossref]

L. E. Zapata, D. J. Ripin, and T. Y. Fan, “Power scaling of cryogenic Yb:LiYF4 lasers,” Opt. Lett. 35(11), 1854–1856 (2010).
[Crossref]

M. Schulz, R. Riedel, A. Willner, T. Mans, C. Schnitzler, P. Russbueldt, J. Dolkemeyer, E. Seise, T. Gottschall, S. Hadrich, S. Duesterer, H. Schlarb, J. Feldhaus, J. Limpert, B. Faatz, A. Tunnermann, J. Rossbach, M. Drescher, and F. Tavella, “Yb:YAG Innoslab amplifier: efficient high repetition rate subpicosecond pumping system for optical parametric chirped pulse amplification,” Opt. Lett. 36(13), 2456–2458 (2011).
[Crossref]

D. E. Miller, J. R. Ochoa, and T. Y. Fan, “Cryogenically cooled, 149 W, Q-switched, Yb:LiYF4 laser,” Opt. Lett. 38(20), 4260–4261 (2013).
[Crossref]

W. Bolanos, F. Starecki, A. Braud, J. L. Doualan, R. Moncorge, and P. Camy, “2.8 W end-pumped Yb3+:LiYF4 waveguide laser,” Opt. Lett. 38(24), 5377–5380 (2013).
[Crossref]

J. Fischer, A. C. Heinrich, S. Maier, J. Jungwirth, D. Brida, and A. Leitenstorfer, “615 fs pulses with 17 mJ energy generated by an Yb:thin-disk amplifier at 3 kHz repetition rate,” Opt. Lett. 41(2), 246–249 (2016).
[Crossref]

J. Brons, V. Pervak, D. Bauer, D. Sutter, O. Pronin, and F. Krausz, “Powerful 100-fs-scale Kerr-lens mode-locked thin-disk oscillator,” Opt. Lett. 41(15), 3567–3570 (2016).
[Crossref]

D. E. Miller, L. E. Zapata, D. J. Ripin, and T. Y. Fan, “Sub-picosecond pulses at 100 W average power from a Yb:YLF chirped-pulse amplification system,” Opt. Lett. 37(13), 2700–2702 (2012).
[Crossref]

X. Delen, Y. Zaouter, I. Martial, N. Aubry, J. Didierjean, C. Honninger, E. Mottay, F. Balembois, and P. Georges, “Yb:YAG single crystal fiber power amplifier for femtosecond sources,” Opt. Lett. 38(2), 109–111 (2013).
[Crossref]

J. Kawanaka, K. Yamakawa, H. Nishioka, and K. Ueda, “30-mJ, diode-pumped, chirped-pulse Yb : YLF regenerative amplifier,” Opt. Lett. 28(21), 2121–2123 (2003).
[Crossref]

Q. Liu, M. Gong, F. Y. Lu, W. P. Gong, and C. Li, “520-W continuous-wave diode corner-pumped composite Yb : YAG slab laser,” Opt. Lett. 30(7), 726–728 (2005).
[Crossref]

Opt. Mater. (1)

A. Bensalah, Y. Guyot, M. Ito, A. Brenier, H. Sato, T. Fukuda, and G. Boulon, “Growth of Yb3+-doped YLiF4 laser crystal by the Czochralski method. Attempt of Yb3+ energy level assignment and estimation of the laser potentiality,” Opt. Mater. 26(4), 375–383 (2004).
[Crossref]

Opt. Mater. Express (2)

Optica (1)

Quantum Electron. (1)

S. Lovold, P. F. Moulton, D. K. Killinger, and N. Menwk, “Frequency Tuning Characteristics of a Q-Switched Co:MgF2 Laser “ IEEE J,” Quantum Electron. 21(3), 202–208 (1985).
[Crossref]

Other (5)

B. Baudouy, “Heat transfer and cooling techniques at low temperature,” arXiv:1501.07153 (2015).

H. Cankaya, U. Demirbas, M. Pergament, M. Hemmer, Y. Hua, L. E. Zapata, and F. X. Kärtner, “160-mJ Cryogenically-Cooled Yb:YLF Amplifier System at 1019 nm,” in CLEO Europe (Munich, 2019).

K. Beil, S. T. Fredrich-Thornton, C. Kränkel, K. Petermann, D. Parisi, M. Tonelli, and G. Huber, “New thin disk laser materials: Yb:ScYLO and Yb:YLF,” in CLEO/Europe and EQEC (2011), p. CA11_16.

W. Koechner, Solid-state laser engineering (Springer, New York, 2006).

D. C. Brown, S. Tornegard, J. Kolis, C. McMillen, C. Moore, L. Sanjeewa, and C. Hancock, “The Application of Cryogenic Laser Physics to the Development of High Average Power Ultra-Short Pulse Lasers,” Applied Sciences-Basel 6 (2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. (a) Measured emission cross section of Yb:YLF at 80 K for E//a and E//c polarizations. (b) Comparison of effective gain cross section of Yb:YLF (E//a, 80 K) with room temperature (RT:300 K) and cryogenic (80 K) Yb:YAG. An inversion level of 25% is assumed for Yb:YAG, and all curves are shown in normalized units. The Yb:YLF gain profile is broader (10 nm), and smoother compared to Yb:YAG (8 nm). The flatter gain profile enables smoother tuning in lasing operation, and minimizes gain narrowing effect in amplifier applications.
Fig. 2.
Fig. 2. (a) Schematic of diode pumped cryogenically cooled Yb:YLF laser. DM: Dichroic mirror, PM1-3: Power meters, HR: High reflector mirror, f1-f2:pump fiber telescope lenses.
Fig. 3.
Fig. 3. Pump beam spatial profile measured at different positions around the focus: (a) 2-D profile (b) 1-D cross section around the focus. (c) Variation of pump beam radius with position around the focus point (measured at 13.5% and 50% of intensity). The flat-top pump beam had a diameter of around 2.1 mm at the focus.
Fig. 4.
Fig. 4. (a) Measured quasi-cw (gain-switched) lasing performance of cryogenic Yb:YLF laser using different output couplers with transmission values of 10%, 20%, 40% and 60%. The laser is pumped with 10 ms long pulses at 10 Hz repetition rate. (b) Measured pump absorption percentage during lasing operation at different incident power levels. (c-d) Measured representative laser output beam profiles at selected output power levels for the 20% (c) and 40% (d) transmitting OC.
Fig. 5.
Fig. 5. Measured quasi-cw lasing performance of cryogenic Yb:YLF laser: (a) at 10 Hz with pump pulsewidths ranging from 5 ms to 100 ms, (b) with 5 ms long pump pulses at repetition rates ranging from 10 Hz to 200 Hz. All the data is taken with the 20% transmitting OC.
Fig. 6.
Fig. 6. (a) Measured cw laser performance of the cryogenic Yb:YLF laser at output coupling values of 20% and 40%. (b) Measured pump absorption percentage during lasing operation at different incident power levels. (c-d) Measured representative laser output beam profiles at selected output power levels in the (c) NF: near filed and (d) FF: far filed. (e) Measured variation of beam quality factor (M2) of the laser output with laser average power.
Fig. 7.
Fig. 7. Measured variation of cw laser performance of the cryogenic Yb:YLF laser at different pump spot diameter values. The data is taken with a 20% transmitting output coupler. Note that these pump spot diameters indicated are the values at the beam waist position, and for the pump beam with an M2 of 220, the root mean square (rms) values of the pump beam diameter along the 2 cm long crystal is estimated as 2.79 mm, 2.56 mm 2.51 mm for the 2.5 mm, 2.08 mm and 1.67 mm beams, respectively.
Fig. 8.
Fig. 8. Variation of cryogenic Yb:YLF laser’s (a) average power, and (b) peak power with pump pulse-width duration for repetition rates ranging from 10 Hz to 2.56 kHz. The data is taken using a 20% transmitting output coupler, at a constant pump peak power of 2 kW.
Fig. 9.
Fig. 9. Measured variation of the Yb:YLF laser output in the time domain for gain-switched mode of operation, while pumping with: (a) 100 microsecond long pump pulses at 1 kHz repetition rate, (b) 1 ms long pulses at 100 Hz repetition rate. The data is taken with the 20% transmitting output coupler at a pump peak power of 2 kW.
Fig. 10.
Fig. 10. Measured variation of Yb:YLF laser output power with laser wavelength taken with 10 and 20% OCs. Dashed-black curve around 1018 nm and orange solid curve around 1013 nm are sample spectra for free-running and tuned lasing operation, respectively. Measured 80 K emission cross section (ECS) curve for the E//a axis of Yb:YLF is also shown.
Fig. 11.
Fig. 11. Sample optical spectra obtained in multi-wavelength operation of the cryogenic Yb:YLF laser. The emission cross section (ECS) curve for E//a polarization is given on top.

Tables (2)

Tables Icon

Table 1. Comparison of thermal, mechanical and optical parameters of Yb:YLF and Yb:YAG.*

Tables Icon

Table 2. Summary of continuous-wave (CW) or quasi continuous-wave (Q-CW) lasing results obtained with Yb:YLF gain media both at room-temperature (RT) and cryogenic temperatures (CT).**